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Abstract

Specification Mining describes the process of creating a specification from a (probably
unknown) program using sample executions. Most of the current specification miners are
deterministic. This thesis aims to create a probabilistic specification miner. Therefor, a
specification miner with three different probabililistic approaches has been implemented
and added to the LearnLib-Framework. The implementation has been validated by letting
the specification miner rebuild a predefined specification to compare the template and
the result, by running a hypothesis-test to compare the used approaches to calculate the
probabilities against another and by letting it mine the usage of a real API from n tests and
validate them with m more tests.
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Zusammenfassung

Specification Mining beschreibt den Vorgang, eine probabilistische Spezifikation eines
(möglicherweise unbekannten) Programms unter Verwendung von Beispielausführungen
zu erstellen. Die meisten der aktuellen Specification Miners sind deterministisch. Ziel dieser
Ausarbeitung ist ein probabilistischer Specification Miner. Dafür wurde ein Specification
Miner mit drei verschiedenen probabilistischen Ansätzen implementiert und dem LearnLib-
Framework hinzugefügt. Die Implementierung wurde validiert, indem der Specification
Miner eine vorgegebene Spezification nachgebaut hat, um die Vorlage mit dem Ergebnis
zu vergleichen, durch einen Hypothesen-Test, der die benutzten Ansätze zur Berechnung
der Wahrscheinlichkeiten untereinander verglicht und indem der Specification Miner eine
Spezifikation für die Benutzung einer realen API aus n tests erstellt, die mit m weiteren
Tests validiert wird.
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Chapter 1

Introduction

Section 1.1 deals with the motivation of this bachelors thesis, section 1.2 presends the goals
this thesis has and section 1.3 shows the structure of this document.

1.1 Motivation

Current software projects are becomming bigger and bigger over the time. What seems
to be a good thing on the one hand side, as the software can do much more complex
things that would have been impossible only a few years ago, is a bad thing for the internal
complexity of a software project, as it also is dramatically increasing with the size of a
project. The overall expense for both maintanance and extension of a given project largely
depends on the quality and extend of the formal specification [Goues and Weimer, 2011].
Especially for bigger project, a problem occurs: given that writing a complete specification
is both a time-consuming and an expensive job [Weimer and Necula, 2005] and a lot of
projects have last-minute changes that don’t make it to the final specification [Raffelt et al.,
2009], specifications are only too often incomplete. An incomplete specification often is one
of the reasons for the occurence of bugs [Kremenek et al., 2006].
Many companies are forced to use unspecified black-box legacy systems where none of the
current programming team really knows how the program works, where re-implementing
the program would be too expensive and the programmers who wrote the code don’t
work at the company anymore. For such legacy software systems, both maintanance
and extension is almost impossible. Thus, at the occurence of unwanted behavior by the
software caused by bugs can hardly ever can be fixed on such systems.
The research field of specification mining aims to automate the process of creating a formal
specification for a whole program, a certain api or several objects [Chen and Roşu, 2008].
A specification miner is a program that estimates a fitting specification from an existing
program by using special tests or sample executions to gain execution traces. The result is,
in most cases, a deterministic automaton [Ammons et al., 2002; Goues and Weimer, 2009;
Livshits et al., 2009; Chen and Roşu, 2008; Kremenek et al., 2006; Mao et al., 2011; Dallmeier
et al., 2006] or a set of certain rules [Engler et al., 2001], in other words invariants for the
program.
The deterministic automaton has transitions that lead from one state to an other state.
Those transitions can be infered from traces that were taken by sample executions or by
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1. Introduction

special tests.
Most of the current, deterministic specification miners are based on the assumption that not
every execution leads to a successful state, but that most executions do. Thus, once a fitting
(sometimes even probabilistic) specification has been found, a pruning step removes those
transitions that were rarely used during the execution, as they are probably faulty, and
then determinizes it by removing any counter or probabilistic value from the transitions.
A calculated specification can be used as a tool, let’s say, a plugin for eclipse, that automati-
cally checks if a programmer used an API in the right way. To check for the validity of the
usage, the program could use a mined specification. Due to the removal of rarely used
edges, a deterministic specification would lead to false negatives if the specification miner
pruned a path to an otherwise accepting state. In that case, the tool would show an error
eventhough the api was used in the right manner.
A probabilistic specifiation is an automaton-based specification that uses a probabilistic au-
tomaton instead of a deterministic one. During the creation of a probabilistic specification,
the miner would not remove transitions based on the fact that they hardly ever occured
during the execution.
Every transition in a probabilistic automaton is labeled with a floating point value, indi-
cating the likeliness of a certain transition to be taken once the automaton reached the
source state. In a probabilistic automaton, a rarely used (but possibly still correct) transition
wouldn’t be pruned, but merely be assigned with low transition probability. Hence, an
eclipse plugin wouldn’t throw an error, but maybe a warning, indicating that it could be
wrong, as the probability of this edge is very low. Ignoring those warnings, however, would
lead to false positives, as the transition actually can lead to an error. Using those warnings
with care would make debugging a bug that came from false usage of an api a lot easier.
This thesis targets at the creation of a program that can create such a probabilistic specifica-
tion from sample executions, namely a probabilistic specification miner. The probabilistic
specification miner is capable of creating a probabilistic specification for an Application
Programming Interface (API) or a given set of classes, using traces gathered from sample
executions. Those executions are performed by executing the Unit-Tests. Those tests are
taken from programs that actually use the desired API already. Using them, a probabilistic
automata is created that specifies the order in which the functions are to be called. The
actual program is written as an extension for the existing machine-learning framework
called LearnLib [Raffelt et al., 2009].
LearnLib is a framework that offers many algorithms needed for automata learning pur-
poses. It was originally developped by the german Dortmund University of Technology as a
closed-source project [Howar et al., 2014c], before it was reimplemented as open-source
java-project under the terms of LGPLv3 [Howar et al., 2014b].

2



1.2. Goals

1.2 Goals

The major goal of this thesis is it to write a probabilistic specification miner and include it
to the LearnLib-Framework. This goal can be split into several sub-goals.

1.2.1 Execute Unit-Tests from within Java

Any specification miner needs traces. To collect those traces, a program has to be executed
in the way it was meant to be. Due to the fact that programs usually don’t come with an
operational profile, the sample executions for the specification miner from this thesis are
comming from Unit-Tests. Thus, the first goal is to manage the execution of Unit-Tests
from the specification miner.

1.2.2 Collect Traces

During the execution of the Unit-Tests from the specification miner, the mined API has to
leave execution traces for every function that has been called. The second goal is it to collect
the traces from those classes that were chosen to create the probabilistic specification for.
Using the bytecode-manipulation framework JAVASSIST [Chiba, 2000], this goal includes
embedding tracing code to every function the classes that have to be observed offer.

1.2.3 Build a DFA from the gathered traces

Once the traces have been collected in the order they occured during the execution of
the Unit-tests, the next goal is it to use the traces in order to create a Deterministic Finite
Automaton (DFA). The DFA is calculated using the algorithm by Angulin [Angulin, 1987]
that is already implemented in the LearnLib-Framework. The Automata has nameless
states. At this time, the transitions are labeled only with an input parameter, indicating
what function is to be executed when the automaton takes this transition.

1.2.4 Calculate the probability for every transition

The automaton returned by Angulin is purely deterministic. The transitions already exist,
but there is no probabilistic value indicating how likely any transition is to be taken.
Hence this goal aims at the calculation of the transition probabilities for all transitions.
To achieve this goal, the traces gathered from the sample executions are taken one more
time to traverse the automaton and update a frequency counter for the edges. Using those
measured value, the probability then is calculated using one of three different methods.
The methods themselve are described in section 4.1.3.
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1. Introduction

1.2.5 Integrate the algorithm in LearnLib

Once the probabilistic specification miner has been created, it has to be integrated to the
open-source learning framework LearnLib [Raffelt et al., 2009].

1.3 Document Structure

The remainder of this document is structured as follows:
Chapter 2 offers an overview of foundations and technologies relevant to this thesis.
Chapter 3 introduces the research questions, the implementation requirements and the
qualitative research question relevant to this thesis. Chapter 4 presents the Sherlock-
approach used in this thesis. The evaluation of this approach is written in chapter 5.
Chapter 6 includes a brief discussion about the qualitative research questions from chapter
3. Chapter 7 gives an overview on what was done in this thesis and how this work can be
extended in future work.
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Chapter 2

Foundations and Technologies

This chapter points out the foundations and technologies that are required to understand
this thesis. Section 2.1 introduces the concept of automata learning, Section 2.2 presents
the foundations of Specification Mining alongside with several different approaches to
mine a specification from a program. Section 2.3 introduces the LearnLib-Framework that
offers many automata–learning algorithms. The AutomataLib-Framework, that is used by
LearnLib to hold their automata-objects, is introduced in section 2.4. Section 2.5 contains
information about a Java bytecode manipulating framework called Javassist that was used
by the actual specification miner.

2.1 Automata Learning

Automata learning, also called regular extrapolation or regular inference, describes the process
of building an automata that represends a piece of software or a protocol automatically
[Raffelt et al., 2009]. This usually happens by creating a deterministic finite automaton
(DFA), where the language Σ˚ that the automaton represends matches the observations of
an unknown automaton.
Automata learning can be used to automatically create a behavorial model from the input,
so programmers can use model-based verification techniques to verify the system. This
model typically is represented as a deterministic finite automaton (DFA) that matches
the behavior of the observed system and tells the programmer more about the internal
structure.

2.2 Specification Mining

Specification Mining is an automated process, where a machine, typically a piece of
software, creates a formal specification from a given code. Cook and Wolf [1996] categorize
it as reverse engineering method, where the goal is to get a high-level specification like a
graph or an automaton from a low-level specification like the source code. This makes it
easier for engineers to understand the system [Cook and Wolf, 1996]. According to Weimer
and Necula [2005], a specification miner takes a program as input in order to create a
specification, typically a finite state machine, that specifies a set of interesting events.
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2. Foundations and Technologies

2.2.1 Cook and Wolf (1996)

Cook and Wolf [1996] published a paper back in 1996 with one of the earliest approaches
for Specification Mining. Under the name of Process Discovery, the authors presented three
different methods to get the specification from the program. Two of them included the
usage of already existing algorithms, namely RNet and KTail [Bierman and Feldman, 1972],
that were extended by the authors. The third method, Markov, was designed by Cook and
Wolf [1996] to create a specification. The authors were trying to merely create a description
of the patterns that can be derived from execution traces and not a complete specification
that covers every aspect of the underlying program.
To create a specification, the tracer first creates a set of socalled event streams. An event
stream is a set of traces from the program. The Markov-Algorithm then traverses the event
streams. It uses frequency-counters in order to create a socalled event-sequence probability
table, a lookup-table that holds the ratio that, after an input i has been read from the event
stream, the input j will follow. From that table, they create an event graph by assigning
a vertex to any event type and connect two vertices v and w with an edge if the event w
happens after v and the probability from the event-sequence probability table is over a
user-defined threshold. A splitting step then ensures that, given the rule of transitivity,
there are no sequences in the graph that would lead to an illegal sequence. Finally, the
event graph gets converted to a graph where the node from the new graph is labeled with
a unique transition from the event graph.
Figure 2.1 shows an example specification derived from the MARKOV-algorithm [Cook
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Figure 2.1. Graph created by the MARKOV algorithm from the event-stream
RCERCECRECRERCECRECRERCECRERCERCECRECR as seen in [Cook and Wolf, 1996].

and Wolf, 1996]. The traces that created the graph are a concatenation of the two substrings
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RCE and CRE. Thus, the graph starts with an R from state 6 and uses it to create RCE one
time and ends in state 3. From there, it can either go to state 1 and create CRE or to state 4
to create RCE.
The described method by Cook and Wolf [1996] works well and as one of the earliest
approaches on specification mining, it is quite sophisticated. It does prune rarely used
edges by a user-defined threshold, what makes the accuracy of the specification dependent
on the users choice of the threshold. Given that this thesis aims to create a probabilistic
specification instead of a deterministic one, the pruning step at the end would be removed
and thus, a probabilistic specification would be created.

2.2.2 Ammons, Bodík and Laurus (2002)

Ammons et al. [2002] created a specification miner that was especially designed to model
interactions between the program and abstract datatypes (ADT) or application program-
ming interfaces (API) [Ammons et al., 2002]. To achieve this goal, their algorithm first
collects traces from the program executions – either by rewriting and recompiling the
APIs source code or by applying changes directly to the binary file. Those traces then
are marked with flow dependencies and types to figure out those traces that belong to a
common scenario. A scenario extracter then uses those marked traces and user-specified
scenario-seeds to extract specific interaction scenarios. Using those scenarios, an automata
learning algorithm creates a probabilistic, non-deterministic finite automata (NFA) that
accepts only the language from the scenarios. In their paper, Ammons et al. [2002] used
the PFSA-Learner [Raman et al., 1998] that uses the k-tails algorithm. The algorithm builds
a retrieval tree using the input strings and generates, from every state, a set of strings with
length k. If two states are likely to generate the same set of strings, they are merged. The
algorithm terminates, when there are no more states to be merged. After the PFSA-learner
is done, the algorithm by Ammons et al. [2002] removes those edges whose probability is
below a certain threshold. From the remaining edges, the probability gets removed, so the
automaton is non-deterministic instead of probabilistic.
Figure 2.2 shows an example set of the traces that was collected during an execution of a

program that uses the Socket-API in C. Using their specification miner, they derived the
NFA. Using the automaton, it is clear that, after accept, a user can read and write on the
sockets as long as he wants, but after the usage the sockets both have to be closed. It can
also be seen, that the scenario extractor used in their approach realizes that, eventhough
in the traces it seems that read(fd=y) always comes right before write(fd=y), it didn’t put a
path of read(fd=y)Ñwrite(fd=y) followed by an edge back before read. They put a loop in the
specification that also allows runs where the user only writes to a socket before closing it
or write before he reads.
The approach in this thesis specifies at the usage of an API by using a probabilistic specifi-
cation. Thus, the approach described by Ammons et al. [2002] would not have been a bad
choice. To get a probabilistic specification instead of a non-deterministic one, all that would
have to do is to remove the corer. What would remain is a tracer to collect traces from
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2. Foundations and Technologies

1 socket(domain = 2, type = 1, proto = 0, return = 7)

2 bind(so = 7, addr = 0x400120, addr_len = 6, return = 0)

3 listen(so = 7, backlog = 5, return = 0)

4 accept(so = 7, addr = 0x400200, addr_len = 0x400240, return = 8)

5 read(fd = 8, buf = 0x400320, len = 255, return = 12)

6 write(fd = 8, buf = 0x400320, len = 12, return = 12)

7 read(fd = 8, buf = 0x400320, len = 255, return = 7)

8 write(fd = 8, buf = 0x400320, len = 7, return = 7)

9 close(fd = 8, return = 0)

10 accept(so = 7, addr = 0x400200, addr_len = 0x400240, return = 10)

11 read(fd = 10, buf = 0x400320, len = 255, return = 13)

12 write(fd = 10, buf = 0x400320, len = 13, return = 13)

13 close(fd = 10, return = 0)

14 close(fd = 7, return = 0)

socket
(return = x)

bind
(so = x)

listen
(return = x)

accept
(so = x,

return = y) read
(fd = y)

write
(fd = y)

close
(fd = y)

close
(fd = x)

Figure 2.2. Example for traces from the Socket-API in C alongside with the resulting NFA one gets
after applying the learning algorithm described by Ammons et al. [2002]. Example from [Ammons
et al., 2002]

executed methods, a flow dependence annotator, a scenario extractor and a PFSA-Learner.
The major reason for not taking this approach is that in this approach, the probabilistic
automaton that represends the specification would have to be deterministic if the proba-
bilistic factor would be taken away. This means, that the automaton would have to have
exactly one initial state and one transition for any state s and input f . Hence there were two
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Figure 2.3. Markov-Chain as seen in [Sen et al., 2004] to demonstrate the algorithm. The rate has the
value of the occurence count.

possible approaches: either take this approach and use the algorithm by Rabin and Scott
to determinize the resulting automaton, or use a different approach. Determinizing the
approach would result in states that contain numerous functions, thus for the simplicity of
traversing the automaton, this thesis takes another approach.

2.2.3 Sen, Viswanathan and Agha (2004)

The approach by Sen et al. [2004] aims at the creation of Continuous-time Markov Chains
(CTMCs) [Sen et al., 2004]. From a set of traces gained from sample executions, their
algorithm creates a prefix tree. Under the assumption of a lexicographic order, the
algorithm then searches this prefix tree for states that are equivalent in order to merge
them. For every new state observed, the algorithm checks its compatibility to all states
that have been previously observed. After two states si and sj have been merged, the
corresponding prefix tree might be non-deterministic, so a function determinizes it. This is
possible because the two states si and sj are equivalent. Thus, two states sk and sl , with
sk ‰ sl , both successors of si or sj, are by definition equivalent as well. Hence, they get
merged to one new state. Once this is done, the probability and rate of the whole tree gets
recalculated.
An example for a learned continuous-time markov chain can be seen on figure 2.3. Its

edges are labeled with a and b for the input function and a rate-value indicating how often
the path was taken. In the states 0 and 2, the probability of b is twice as high than the one
of a. But still, they differ in their actual rate.
The described algorithm works and the result can be used for model-checking. The
actual problem is just, that the web page for the reference implementation, that should
be availlable on http://osl.cs.uiuc.edu/ ksen/vesta/, has been unreachable during the time this
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thesis was written.

2.2.4 Weimer and Necula (2005)

Based on the idea that most bugs come from violations agains API specification, Weimer
and Necula [2005] tried to automatically create several temporal specifications in order to
attenuate this kind of bug in software [Weimer and Necula, 2005]. Quite simmilar to the
work of Engler et al. [2001], they tried to create a state machine that specifies event-pairs
ă a, b ą. The functions a and b are an event-pair, if, once a has been called, b has to be
called eventually for the program to work correctly.
Violations against those rules often lead to errors in Java. Especially in a try-catch-block
without finally statement, where after a an error prevents b from being executed, violations
against those rules can happen.
The presented algorithm uses a filering technique with certain rules that have to be followed
by the code. The authors defined four rules for any event-pair ă a, b ą:

ex: b is at least once in a cleanup code, where Eab, the amount of error traces where after
a, b is called, is positive.

oe: Ea has to be positive. This means, that a has been called at least once in an error
trace (a trace that ended with an error), where b was not.

sp: a and b must belong to the same package.
df: All parameters and return values from b have also to occur in a.

The result is a set of candidate specifications. Every candidate specification has to be ranked
based on how likely they satisfy the criteria. For any two functions a and b, the rank rab is
calculated by Nab

Nab+Na
with Nab being the amount of occurences where a is followed by b

and Na the amount of calls for function a without b following.
Figure 2.4 shows an observation table with 8 different candidate specifications. The first

Event a Event b Real Na Nab Ea Eab Filters rank
SF.openSession S.close X 3 100 1348 1040 ex oe sp df 0.971
S.beginTransaction S.close ? 2 56 1037 501 ex oe sp df 0.966
S.beginTransaction T.commit X 2 56 565 973 ex oe sp df 0.966
S.flush S.close ˆ 9 39 200 473 ex oe sp df 0.812
T.commit S.close ? 1 57 474 504 ex oe sp - - 0.983
S.beginTransaction s.save ˆ 4 54 37 1501 - - oe sp df 0.931
SF.openSession T.commit ? 47 56 1415 973 ex oe sp - - 0.544
SF.openSession println ˆ 82 21 2121 267 ex oe - - df 0.204

Figure 2.4. Observations from hibernate2 and the session class that is between the program and
hibernate2 made by Weimer and Necula [2005].

to columns display the event pairs a and b and on the third column, Weimer and Necula
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[2005] denoted if this candidate specification actually holds in the real program or not. A
questionmark denotes that it could be a valid event pair. The next column, Na, denotes the
amount of failure-free execcutions of a without b following, followed by Nab, the amount
of failure-free executions that have a being folowed by b eventually. The same rule goes
for paths that lead to an error in Ea with a being executed without b and Eab for a being
followed by b. The next column displays the applied filters the event-pair matches. The
filters were described earlier. The last column displays the rank. The maximum number a
rank can take is 1. The higher the rank, the more likely this candidate specification is valid.
The described approach by Weimer and Necula [2005] can actually help to prevent bugs
that come from false usage of an API, but only those that apply to the scheme of two
functions, where the second function has to be called after the first one in order to prevent
errors. Eventhough this was one of the targets for this thesis, the candidate specifications
don’t tell a programmer exactly how he has to use the given API. It only gives us a set
of rules, while lacking the tutorial factor that comes with an automaton. For example,
the approach by Ammons et al. [2002], displayed in figure 2.2, displays exactly how the
Socket-API has to be used in a way, that probably even programmers who haven’t used it
before would understand, what the candidate specifications infered here would not.

2.2.5 Kremenek, Twohey, Back, Ng and Engler (2006)

The work of Kremenek et al. [2006] was it to try to use factor graphs in order to infer
a specification especially for the right usage of pointers [Kremenek et al., 2006]. Their
algorithm first assigns annotations to specific functions that deal with pointers. The
two annotations are ro (returns ownership) for allocators and co (claims ownership) for
deallocators. From the source code, a set of possible annotations for the functions is created.
For all those annotations, there is also a logical counterpart, namely  ro and  co. A
function that handles a pointer has to be either ro/ ro depending on if it allocates the
pointer space or not, or co co depending on if it releases the pointer. Thus, for n functions
dealing with the same pointer, there are 2n different specifications. For every assignment,
a user can define factors, namely prior-beliefs, in terms of non-negative values indicating
how likely they think these specifications are. Using those prior-beliefs, the probabilities
for all specifications are calculated, indicating how likely it is that it is a valid one. A static
analysis tool then extracts behavorial signatures from the source code. The algorithm uses
them to perform a behavorial test. Based on the idea that correct signatures should lead to a
lower amount of errors, the beliefs that a behavorial signature may apply is being checked
if they match with any of the annotations.
As for the visualisation, the authors introduced Annotation Factor Graphs, an extended
version of the factor graphs where annotations are visualized for the functions. They also
visualize how one annotation can influence others from the same data flow.

An example for an Annotation Factor Graph derived from a C-code can be seen on
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FILE * fp1 = fopen( "myfile.txt", "r" );

FILE * fp2 = fdopen( fd, "w" );

fread( buffer, n, 1, fp1 );

fwrite( buffer, n, 1, fp2 );

fclose( fp1 );

fclose( fp2 );

fopen: ret fread: 4 fclose: 1 fdopen: ret fwrite: 4

f<ro> f<co> f<co> f<ro> f<co>

f<check> f<check>

Figure 2.5. C code for opening a file alongside with an Annotation Factor Graph for the role of the
pointers. As seen in [Kremenek et al., 2006].

figure 2.5. The C-code opens two files, one of them with reading rights (fp1) and one of
them with writing rights (fp2). It then reads and writes on the right pointers and closes the
files.
The bipartite Annotation Factor Graph has circular nodes for variable nodes that are
internally mapped to annotation variables [Kremenek et al., 2006]. Rectangular nodes
represend factor nodes, that can be mapped to the factors that were assigned earlier. An
edge from a factor node to a variable node indicates that the variable is used as in input
for the factor. Complete paths within the graph from a variable node v to a variable node
w indicate that v can influence w and vice verca. For example, both fopen and fdopen have
a path to at fclose, indicating that there is a correlation.
For the approach described in this thesis, the Annotation Factor Graph isn’t of much
use. Java doesn’t use pointers like C does, and a basic check for the usage of unini-
tialized objects is already included to the Eclipse–Environment. A data-flow oriented
test would probably give us the same results. Also, very much like the approach by
Weimer and Necula [2005], this specification doesn’t give us an automaton that can be
used as a tutorial, but only points out a set of rules, pointing out what pointer has what role.

12
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2.2.6 Dallmeier, Lindig, Wasylkowski and Zeller (2006)

The approach by Dallmeier et al. [2006] aimed at the creation of a state machine from java
code. The machine should display the behavior of the observed object. To achieve this goal,
a state has to be previously defined by the user [Dallmeier et al., 2006]. The methods for the
observed class are defined as either inspectors or mutators. Inspectors return the gathered
information from the current state of the class, while mutators may change the state. The
decision if a function is a mutator or a inspector is made by static analysis procedures.
From any program run, abstract versions from all the inspectors of the corresponding class
can serve as part of the state. Once the state is defined, the algorithm forces the program to
update it before and after any mutator–method is executed. That way, it is made clear in
what way the mutator changes the state. In their prototype, Dallmeier et al. [2006] used the
Javassist-Framework described in section 2.5 to force a method to update the state before
and after the actual method is called. After the method call, the algorithm adds a transition
to the automata that goes from the previous state to the current one. Eventhough the
authors did not clearly mention it in their article, on some objects the prototype also uses
an occurence counter to indicate how often a state has been changed. From the gathered
traces, their program creates a non-deterministic finite automata (NFA) for every class
observed.

An example DFA for the Java Vector class can be seen on figure 2.6. For the state, the

isEmpty() ¬isEmpty()

init()

clear()

clear()

remove()

add()

add()

remove()

Figure 2.6. Example specification of the object behavior for the Java Vector class made by [Dallmeier
et al., 2006]

authors chose the inspector isEmpty(), a function indicating that there are no elements
stored within the vector object. After the initialisation of the object, that is displayed as the
edge going away from the empty circle, the vector is, obviously, empty. After adding an
object, it changes states to  isEmpty(). From there, the function remove() will either change
the state to isEmpty(), or let the function remain at the current state, depending on how
many elements are currently stored in the vector object. No matter what state the NFA is

13
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in, the method clear() always returns to isEmpty().
The derived NFA can again be quite useful for anyone trying to infer a specific set of rules
for the observed class or who wants to get a closer look to the general behavior of a certain
object. For the approach described in this thesis, however, the states are not quite useful to
determine the correct usage of the class. The automaton in figure 2.6 tells us, that clear()
makes the vector empty and that a programmer can’t call remove() after the initialisation
of the object. Also, the approach delivers us a non-deterministic automaton, what makes
traversing harder. There is no accepting state, thus a programmer can’t tell if a given set of
chronologically ordered traces would be likely or valid using our automaton, even after
using the occurence count to make the NFA a probabilistic automaton.

2.2.7 Chen and Roşu (2008)

Chen and Roşu [2008] presented an approach for mining a state-based deterministic finite
automaton, where the automaton has parameters [Chen and Roşu, 2008]. As an invariant,
the program that their algorithm uses to mine the specification has to be correct. This
means, that all the traces must lead to accepting states. Their goal was it to infer safety
properties from the probabilistic finite state automata. The authors describe the parameters
as "free parameters, that need to be instantiated at runtime". For their approach, they
are used as generalized objects, interfaces or abstract classes, that could have several
implementations.
To create the specification, the algorithm takes the traces collected from program execution
and slices them. Slicing means, that the program analyses the trace and binds the predefined
parameters to them if the objects they represend were used in this trace. Then, to attenuate
noise, the algorithm removes redundant traces. Traces are redundant, if they contain
parameters they don’t need.
A miner than takes those traces and first runs a PFSA-Learner on them. The PFSA-learner
the authors used uses the sk-string algorithm [Raman and Patrick, 1997]. This algorithm
creates a prefix tree that accepts the input strings and counts the occurence of every
arc. It then merges equivalent states to create a NFA. The resulting automaton from the
PFSA-Learner may accepts strings that shouldn’t be allowed, thus a refiner expands the
automaton in a way that for every incomming edge of a state, a new state is created, so
every state has only one incomming edge. Then, using the traces gathered earlier, the
algorithm traverses the extended automaton and marks all edges that have been used. Once
this is done, unused edges are removed. Then, the extended automata gets compressed by
the automaton refining algorithm called R. That algorithm merges states that are identical.
Figure 2.7 shows an example automaton for the two Java-Classes Collection and Iterator. A

collection is represented by the parameter c, an iterator by i. The states are labeled with
numbers. The bigger number indicates what state from the automaton this was before it
was expanded by the algorithm – initially, there were only four states. The index-number
is only added to keep the new states appart.
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update (c)
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Figure 2.7. Example for an automaton created for a Collection c and an Iterator i. The parameter on
a transition means that the representing object is affected with this change. As seen in [Chen and
Roşu, 2008].

The parameters that were bound to the functions are added in braces. For example, update(c)
only has a c as parameter, as it doesn’t make any changes to the iterator but only to the
collection. createIter(c,i) uses both the collection to create the iterator from and the iterator
to store the elements from the collection inside.
What can be seen from the automaton is, that once the iterator has been created from
the collection by calling the method createIter, it can only perform the reading functions
hasNext and next on the iterator. The moment an update happens to the collection, the
automaton moves to a trash state with no outgoing edges. This makes sense, as the iterator
is a read-only representation of the objects from the collection. After any update of the
collection (by adding or removing anything), the iterator would be outdated.
The resulting specification is, aside from the fact, that it doesn’t contain any probabilistic
value, very simmilar to the one that is aimed to be created at this thesis. Instead of
update(c), the specification from the SHERLOCK-Approach would contain Collection.update
as a transition. Very much alike the approach by Ammons et al. [2002], this approach
creates a probabilistic automaton using a PFSA-Learner and then determinizes it. The
automaton created by this approach has no accepting state, only an initial one. Thus,
it can’t be told if a given set of traces would lead to an accepting state or not, This is
probably due to the fact that every state is accepting, since the invariant here tells us that
the program code that is used to mine the specification has to be bug-free. Thus, as long as
there is an outgoing state for the current input, the usage would have to be correct.

15



2. Foundations and Technologies

2.2.8 Livshits, Nori, Rajamani and Banerjee (2009)

Merlin, the specification miner created by Livshits et al. [2009], aims at the creation of
a formal specification that displays the information flow between the observed methods
[Livshits et al., 2009].
Once the algorithm has the execution traces, a propagation graph is built. A propagation
graph is a graph that displays the information flow in a program. The methods of a
program are displayed as nodes, an edge indicates the flow of information between those
two methods. As described by Livshits [2006], nodes in a propagation graph are sources,
sanitizers, sinks or regular nodes. Merlin classifies the used methods to one of the node-types
mentioned above. The propagation graph then gets translated to a factor graph [Yedidia
et al., 2003]. A factor graph is a bipartite graph that has a node for every variable and every
function. An edge between a function node and a variable node indicates that the function
the node represends uses the variable. Using the factor graph, the algorithm creates a
probabilistic set of constraints by applying a probabilistic inference on the factor graph.
Figure 2.8 displays a test code with many information flowing between the functions and

the infered factor graph. Quite simmilar to the Annotation Factor Graph used by Kremenek
et al. [2006], the factor graph here consists of circular and rectangular nodes. Circular nodes
are variable nodes for the variables and rectangular nodes represend functions/methods of
the program. An edge between a function node and a variable node indicates the usage of
the variable that is represented by the variable node in the function from the function node.
Quite simmilar to the approach of Kremenek et al. [2006], the result of the algorithm is a
factor graph. The factor graph displays the information flow between methods. This can be
helpful to apply model checking techniques to the program, for the approach described in
this thesis, however, this is not really helpful – as it tries to create probabilistic specification
in form of a probabilistic automaton, that can be used by programmers to get familiar with
different APIs and classes.

2.2.9 Mao, Chen, Jaeger, Nielsen, Larsen and Nielsen (2011)

Mao et al. [2011] presented an algorithm to learn a probabilistic automata. Using this
automata, one can infer linear temporal logic properties and perform probabilistic linear
temporal logic (PLTL) model checking on the learned specification [Mao et al., 2011].
The algorithm starts by building a deterministic labeled markov chain (DLMC) from the
execution traces by applying a modified version of the Algeria-Algorithm [Carrasco and
Oncina, 1994]. Their version of the algorithm, Aalgeria, is basically the Algeria-algorithm as
described by Carrasco and Oncina [1994] but with a compatibility-criterion by Angulin.
The algorithm first creates a frequency prefix tree acceptor (FPTA) from the Dataset. A fre-
quency prefix tree acceptor is a tree where every state represends a string (i.e. a Word, Σ˚,
assuming that the program to be an automaton) from the prefix set. The states are labeled
with the number of strings with that prefix and the amount of occurences of this state.
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public void TestMethod1() { public void TestMethod2() {

string a = ReadData1(); string d = ReadData2();

string b = Prop1(a); string e = Prop2(d);

string c = Cleanse(b); string f = Cleanse(e);

WriteData(c); WriteData(f);

} }

XReadData1 XReadData2 XProp1 XProp2 XCleanse

fB3(XProp1)
fB2(XProp1,
XCleanse)

fB3(XProp2)
fB2(XProp2,
XCleanse)

fB3(XCleanse)

XWriteData

fB1(XReadData1,
XProp1,XWriteData)

fB1(XReadData1,
XProp1,XWriteData)

fB1(XReadData2,
XProp2,XWriteData)

fB1(XReadData1,
XProp1,XWriteData)

Figure 2.8. Example for a code and an infered factor graph using the described method. As seen in
[Livshits et al., 2009].

Using that tree, the algorithm creates a second FPTA. This FPTA is created by merging
states from the first FPTA. It does so by ordering the states into RED and BLUE states. RED
states will be included in the final version of the second FPTA, while BLUE states have to
be tested for compatibility with any of the RED states. If two states, qb PBLUE and qr P

RED are compatible (according to Angulins criteria), they are merged. The merge function
of the algorithm first redirects the incoming transition of qb, let’s say from qe, directly to
qr. Therefor, the frequency of qe Ñ qr gets set to the frequency of qe Ñ qb and then the
frequency of qe Ñ qb gets set to 0. This step then gets repeated for all the following states,
where the frequencies of the successors of qr get added to the ones of qb and after that, the
frequencies of qb’s successors get set to 0. The result is a deterministic probabilistic finite
automaton, that is used to create the desired Deterministic Linked Markov Chain (DLMC).
This happens by normalisation of the transition frequencies.
On figure 2.9, a DLMC for the simulation of a gambling game is shown [Mao et al., 2011].

The game works as follows: a player rolls a six-sided dice twice and then check. If he has a
total count of 7 or 11 points, he wins. If he has a count of 2, 3 or 12 points, he looses. If he
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Start Point

Won

Lost

0.7
364

0.6628

0.1124

0.22
48

0.0
96
2

0.1675

1

1

Figure 2.9. An example for a DLMC for a gambling game where a player rolls two dices with 6 sides
each and have to get a total count of 7 or 11 points. If he has 2, 3 or 12 points, he loose. On all the
other cases, he rolls again. if he get a total count of 7 with the second roll, he looses if he gets the
rolls from the first roll, he wins. The player rolls again until he either wins or looses. As seen in [Mao
et al., 2011]

has any other number, he rolls again until he either has the points from our first roll again,
meaning that he wins, or he gets a total of 7 points, what makes him loose.
Start is the initial state where the player haven’t been rolling any of the dices. A transition
indicates that he was rolling both dices again. Won is the state where he won the game, Lost
is the one where he didn’t. Point indicates that he has to reroll the dice to get our initial
points. The example was made by Mao et al. [2011] by using 65 observation sequences. As
can be seen is, that the sum of the probability for all the outgoing edges of any state always
equals 1.
The resulting specification has some similarities to the one that this thesis tries to infer.
While they use certain states to define their DLMC, like Win or Point from figure 2.9, and
uses transitions to mark the probability of a change, the approach presented in this thesis
aims to predict the next called function in any state with the probabilistic value.

2.3 LearnLib

LearnLib [Raffelt et al., 2009] is a framework with implementations of several automata
learning algorithms. It is developed by the Dortmunt University of Technology, Germany.
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2.3.1 Description

LearnLib started as a closed-source Java library [Howar et al., 2014c]. This version was
supported by the european union and featured implementations of learning algorithms
such as Observation packs algorithm and a graphical modelling tool called LearnLib studio
[Howar et al., 2014b].
The current version of LearnLib is completely re-implemented [Howar et al., 2014b]. The
new version is open-source under the licence of LGPLv3 [Howar et al., 2014a]. It features
other algorithms than the original, closed-source version, such as Random-Walk and Wp-
Methods.
As data-structures for the used automata, LearnLib uses the AutomataLib–Framework.
This framework is described in section 2.4.
LearnLib has a very modular structure. It uses Maven for its dependency- and plugin-
management. The overall project consists of many single projects that are being held
together by the learnlib-parent. This particular project specifies the overall project info for
every new module. Every project that is part of LearnLib inherrits from this project by
mentioning it as the parent in maven configuration file, pom.xml. Also, the parent projects
pom.xml holds all the other projects as modules.

2.4 AutomataLib

AutomataLib is a Java-framework developed by Malte Isberner from the Dortmund Uni-
versity of Technology [Isberner, 2014]. It offers models for storing graphs, automata and
transition systems.

2.4.1 Description

AutomataLib was originally designed as a framework especially for the usage of LearnLib
[Isberner, 2014]. It can also be used as a framework on its own, to offer classes for automata
and graphs. Like LearnLib, it is completely open-source and written under LGPLv3.

2.5 Javassist

Javassist is a Java-bytecode manipulating framework developped since 1999 by Shigeru
Chiba [Chiba, 2000]. Using Javassist, one can, during runtime, dynamically create new
classes and fields. It is also possible to manipulate an existing class and insert own code to
the beginning or the end of existing methods.
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2.5.1 Description

Javassist stands for Java programming assistant. It offers a framework that extends the Java
reflection API in a way it can deal with Java bytecode manipulation at runtime [Chiba, 2000].
Due to the fact that it uses an own compiler, that runs on every existing java architecture, it
can be used on every operating system with a working Java environment [Chiba, 2000]. It
can manipulate java classes on both compile-time and load-time.
Javassist uses an own compiler to insert the Java-code to the given class file, hence a user
using this API does not have to have any knowledge of Java bytecode itself. During the
implementation phase with Javassist, the user enters normal Java code, that Javassist then
compiles to Java bytecode. The compiled byte-code can be used as an own class or to
extend methods. On a method extension, the compiled byte-code gets inserted to the
previously compiled method.

2.5.2 Usage

Javassist controlls the byte-code manipulation in a class called ClassPool [Chiba, 2000–2012].
The code from listing 2.1 creates a ClassPool object called pool. In order to manipulate a

1 ClassPool pool = ClassPool.getDefault();

Listing 2.1. Create a ClassPool Object

class at load-time (when it’s loaded for the first time), Javassist creates a compile-time class
(CtClass)-Object. The ClassPool offers such CtClass Objects. Using the code displayed in
listing 2.2, the ClassPool returns a CtClass object for the given class name.

1 CtClass ctClass = pool.get(className);

Listing 2.2. Get the CtObject for a certain class

The CtClass-Object contains contains all the information of the original class file, but can
still be manipulated. Once the manipulation is done, the changes can be applied to the
original class object by applying the code displayed in listing 2.3. Using the code shown

1 Class newClass = ctClass.toClass();

Listing 2.3. Change the reflected CtClass to a Class-Object

in listing 2.4, it is also possible to export the class and write it to a file. That way, one can
reuse a class file once created on future runs without the need to compile it again.
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1 ctClass.writeFile();

Listing 2.4. Export a class to the hard drive.

Using the class pool, it is also possible to create a new class, fill it with methods, make it
inherrit another class and insert certain fields. The code from listing 2.5 produces a new
class named “Test”, inserts the method “doSomething()” and an integer for the state.

1 // Create class "Test".

2 CtClass testClass = pool.makeClass("Test");

3
4 // Update its superclass.

5 testClass.setSuperclass("Superclass");

6
7 // Create a new integer field and insert it to our class.

8 CtField newField = CtField.make("private int state = 0;", testClass);

9 testClass.addField(newField);

10
11 // Create a new method and insert it into our class.

12 CtMethod newMethod = CtNewMethod.make("public int doSomething()"

13 +"{state = state + 2; return state;}", testClass);

14 testClass.addMethod(newMethod);

15
16 // Now, we finalize it and get the class file.

17 Class newClass = testClass.toClass();

Listing 2.5. Create a test class, insert Method doSomething(), make it a subclass of Superclass and
give it an integer.

In order to manipulate any method of an existing class, probably the easiest method
in Javassist is it to implement the Translator-Interface that Javassist offers and insert it
to the ClassLoader. The methods of the Translator-Interface can be seen on listing 2.6.

1 public void start(ClassPool pool)

2 throws NotFoundException, CannotCompileException;

3 public void onLoad(ClassPool pool, String classname)

4 throws NotFoundException, CannotCompileException;

Listing 2.6. Methods of the Translator Interface

The function start is executed when the translator starts for the first time. The interesting
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function for our purpose is onLoad. This function is executed when the class specified
in className is being load from the class path for the first time. A specified class can

1 CtClass currentClass = pool.get(className);

Listing 2.7. Get the class specified in className from the classpool specified in pool

be load using the code from listing 2.7. Once the CtClass object is obtained, it can be
manipulated. In this case, neither the writeFile()-method, nor toClass() has to be called, as
the class automatically gets returned after the onLoad function.
The compile-time methds (CtMethod) for the loaded class can be obtained by code simmilar
to Javas built-in reflection, by calling the code shown in listing 2.8. For any CtMethod object

1 CtMethod[] methods = currentClass.getDeclaredMethods();

Listing 2.8. Get the CtMethods of a CtClass file called currentClass

representing an actual method from a Java class, the code can be inserted either before the
actual method body is being executed or after it. Therefor, a String is needed that contains
actual compilable Java-code. The example shown in listing 2.9 manipulates a method in a
way that a simple text output denotes the beginning and the end of a function. Note that

1 final String premethod = "{System.out.println(’Method begins’);}";

2 final String postMethod = "{System.out.println(’Method ends’)}";

3 currentMethod.insertBefore(preMethod);

4 currentMethod.insertAfter(preMethod);

Listing 2.9. Manipulate a method called currentMethod so the program knows that it begins or ends

both methods, insertBefore() and insertAfter(), can throw a CannotCompileException in case
the code specified in the String parameter can’t be compiled.
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Chapter 3

Approach Section

This thesis covers a topic that has yet to be fully researched. Thus, many questions
still remain unanswered. This chapter introduces the research questions (RQ), qualitative
research questions (QRQ) and the implementation requirements (IR) related to this thesis. The
implementation requirements are analysed in chapter 4, the research questions in chapter 5
and the qualitative research questions in chapter 6.
This chapter also contains the experimental setup for this thesis describing the experiments
done for the evaluation of the specification miner.

3.1 Description

Trace

Simulation

Real World
Software 
System

Specification
Miner

IR

RQ
QRQ

Figure 3.1. Image that describes the architecture of a specification miner and shows the connection
between the architecture and research questions / implementation requirements.

This section covers both the research questions and the implementation requirements.
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Figure 3.1 shows both the architecture of a specification miner and the connection between
the project and the implementation requirements and research questions.
The overall project works as follows: from simulations or from actual real world software
systems, the program gets the traces from program executions. Using the traces, a Spcifica-
tion Miner creates a formal specification. What comes out is a probabilistic automaton that
can also be drawn as a graph.
The implementation requirements are requirements to the specification miner that describe
and specify how the product has to be implemented. It therefor only covers the source code
of the specification miner itself. The research questions on the other hand cover the whole
project. They are open questions that research has not yet fully answered. The qualitative
research question covers the whole project, alongside with the research question.

3.2 Implementation Requirements

Most of the specification miners work by forcing the program to leave a trace at runtime.
Those traces later get analysed. Given that the may source code of the program that has to
be analysed may not be known, in order to change and recompile the program manually
on our own, the following implementation requirement comes up for many specification
miners:

IR1: Functions of specific classes have to be forced to leave a trace at runtime.

Most important of all is, that leaving traces must not, under any circumstances, change the
general behavior of the program.

A tracing method that works is to use an own class loader for the program that has to
be observed. The class loader should manipulate the program in a way that it leaves traces
when it is called. The problem here, is that any java program (especially when it uses the
probabilistic specification miner described in this thesis as an API) initially starts with the
generic Java-Classloader. After the creation of a new class loader, that works for the tracing
purposes, it can easily replace the generic class loader and run methods using the new
classoader. The problem then only is, that any method, any class and any object loaded
with the new class loader, even when it didn’t change anything from the actual class file,
can not be handed over to an object, method or class that was loaded with the generic class
loader. This leads to the next implementation requirement:

IR2: Information between two functions that are using a different class loader have to be
exchanged.

Naturally, it would be desirable to return a probabilistic specification object back to the
function that uses the specification miner. That means, that the specification miner has
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to return an object that was loaded using the generic Java class loader. Therefor, the
probabilistic specification has to be created using the generic Java class loader to avoid a
ClassCast-Exception. The probabilistic specification, however, can not be created without
having the traces. But the traces were created using an alternate class loader. This means,
that it isn’t possible to just hand them over to the function from the generic class loader.
Thus, a way of communication between functions that are using different class loaders has
to be found.

Once the specification miner created a probabilistic specification, the information has to
be stored somehow. Naturally, the person who ordered the program to create the proba-
bilistic specification planns to use it afterwards. This leads to the following implementation
requirement:

IR3: Given the specific data of a probabilistic specification, we have to store the proba-
bilistic automaton efficiently and have fast access to each node and edge.

This requirement is a soft requirement, but it is anything but trivial. A probabilistic automa-
ton can have quite a lot of nodes and edges, If they are to be stored in a way that it needs
linear time to access any node and edge, let’s say, by holding them in a list, iterating over a
complete probabilistic automaton of m nodes and n edges would result in a complexity
level of O((m ¨ n)2), meaning that it would take a lot of time. Even a logarithmic time
would take us O((m ¨ n) log(m ¨ n)). That’s why it is desirable to store the information in a
way that it needs a constant access time to every node and edge. That way, iterating over
the whole automaton can be done in O(m ¨ n)

3.3 Research Questions

Once the specification miner calculated an automata that is designed as a mealy automaton,
meaning that the edges form words over our input alphabet Σ (with every s P Σ being
a function name in our case), the edges have to be labeled with certain costs. The costs
are not costs in a traditional way, they are a probabilistic real value telling us for every
edge connecting two states v and w how likely it is that, once we’re in state v, we will
use the transition to state w in the next round. Those values have to be calculated using
the traces that were used earlier to create the automaton alongside with a certain formula.
The probabilistic values have to be a real value between 0 and 1 and for any node in our
specification the invariant has to hold, that the sum of probabilities of all outgoing edges
has to be 1.0, meaning that any path has to be taken. Finding a formula that assigns
accurate values to the edges leads us to the second research question:
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RQ1: Given an automata and a set of traces leading to accepting words, how can the
probability be calculated that any transition is to be taken?

Naturally, there are several ways to achieve this. This point covers the question of which
way is decirable for our purpose.

The probabilistic specification should also be as accurate as possible. Therefor, it is
good to know if the specification the algorithm described in this thesis actually creates a
specification that describes the behavior of the API the specification miner had to mine.
Given that the traces are just comming from a sample of executions, there can always be
false positives and false negatives. A false positive in our context would mean, that there is
a collection of function calls that leads to an accepting state in our automaton, but that
would lead to an error if it would actually be applied to the real program in that order.
Simmilarly, a false negative leads to a non-accepting state in our automaton, but wouldn’t
throw any compile errors or lead to bugs the coded version.
Once there is an algorithm that can mine probabilistic specifications, the following research
question comes up:

RQ2: Given an algorithm that creates a probabilistic specification from sample execution
traces, how can its functionality be verified?

3.4 Qualitative Research Questions

The overall target of any thesis is it to create something that helps either making existing
tasks easier/better, or making entirely new tasks that were not possible before.
This thesis aims at automatically creating a probabilistic specification for any API. To give
this topic a practical relevance, the final research question comes up:

QRQ1: How can a probabilistic specification of an API be used to improve software?

3.5 Experimental Setup

As for the evaluation, this thesis uses the metrics described by Lo and Khoo [2006], QUARK,
to evaluate the automaton-based specification. The miner from the SHERLOCK-Approach
offers three different methods to calculate the transition probabilities, namely a Lightweight
Adaptive Filter, the Ratio and the Keep Alive Models with Implementation-Approach. All
of them offer different mechanisms to infer transition probabilities for a given deterministic
automaton together with traces from the language the automaton represends.
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The Lightweight Adaptive Filter works in rounds. On every round, the filter measures
the transitions taken from the automaton and then uses the latest measurement to update
the estimation matrix. The filter adapts to changes from the previous measurements
by constantly changing the weight that is put on the latest measurement. That way, it
successfully attenuates noise.
The Ratio simply increases a counter for any edge taken. At the end, the probability of
every edge connecting the states s and t is calculated by dividing the measured counter by
the amount of times the automaton was at state s.
The Keep Alive Models with Implementations (KAMI) Approach takes an initial, Dirichlet-
distributed transition matrix and puts a weight on the measurement of the latest round.
Using that weight, it adjusts the measurement. Unlike the Lightweight Adaptive Filter, the
weight that is calculated here is only based on the amount of times a transition has been
taken.
A more detailed description of the three probabilities can be found in section 4.1.3
For the three probability approaches, let L be the Lightweight Adaptive Filter, R the Ratio
and K the Keep Alive Models with Implementation Approach, L, R, K P P with P being the
set of Probability Functions implemented in this specification miner.
For any probability function x P P, let M(x) be the metrics that evaluates the automaton
A(x) that was created using the probability function x.
For any of recreated automata Y, the input automaton X is used to measure both the trace
similarity and the probability similarity.
The trace similarity, X(Y), holds the per centage of accepting traces that can be created from
automaton X and that are accepted by Y. Y(X) holds the conter-value, meaning the per
centage of accepting traces that can generated with automaton Y and that also lead to an
accepting state in X [Lo and Khoo, 2006].
Probably the most interesting value for the validation of the probability function from
the QUARK-Framework is the probability similarity PS(X, Y). To calculate it for the input
automaton X and any of the recreated automata Y, Lo and Khoo [2006] first define the
Co-emission of the two automata as PCE(X, Y) = ∑sPL(XXY)(PX(s) ¨ PY(s)). It takes the all
the sentences that can be created with both automata X and Y and calculates the product
of the probabilities for each automaton to create this sentence. After that, it sums up over
all the sentences that both automata can create.
Using the Co-Emission, the authors then define the probability similarity as

PS(X, Y) =
2 ¨ PCE(X, Y)

(PCE(X, X) + PCE(Y, Y))

The comparisson of the probabilities uses those three metrics. For all three probabilities,
a given Specification has to be recreated by running the miner with an interpreter that
pretends to be a program from the given specification. For the original specification X and
the recreated specification Y the metrics are applied and analysed.
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3. Approach Section

Using the same technique, an hypothesis-test is performed afterwards. From 1.000 runs,
every metrics M is saved as a sample for the hypothesis test. For any automaton Y
recreating a given automaton X, the metrics M is defined as

M(X, Y) = X(Y) ¨Y(X) ¨ PS(X, Y)

This means, the amount of words accepted by one automaton but that are declined by
the other counts as much as the probability simmilarity. The evaluation from section 5.1
showed that, when using enough runs from the input automaton, one can force both values
X(Y) and Y(X) to be 1; this updates the used metrics to

M(X, Y) = PS(X, Y)

An hypothesis test as described by Arcuri et al. [2012] now tests the assumption that, no
matter what probability we use, the resulting metrics is always the same.
This leads to the following hypothesisses:

HK,L
0 : M(KAMI) = M(LAF) HK,L

1 : M(KAMI) ‰ M(LAF)
HL,R

0 : M(LAF) = M(RATIO) HL,R
1 : M(LAF) ‰ M(RATIO)

HR,K
0 : M(RATIO) = M(KAMI) HR,K

1 : M(RATIO) ‰ M(KAMI)

For the macro-evaluation, the automata X and Y are mined from real projects, Y with all of
those projects used for X and some more. Given that, during the macro evaluation, all the
automata A(L), A(R) and A(K) are created using the same traces, it is clear that the X(Y)
and the Y(X) values for any automata X and Y created using the approach described in
this thesis is 100%. Thus, the value for M(z) for any z P P is defined as

M(z) = PS(X(z), Y(z))

This means, for any of the used probability, the Probability Similarity after Lo and Khoo
[2006] is measured to see, how much the probability has changed using the probability.
To compare the used probabilities, a small analysis-step is performed. There, the goal is
it to see how much the probability simmilarity changes on otherwise completely equal
probabilistic specifications X and Y from the usage of a certain probability.
Let x, y P P be two different probabilities. Then

M(x, y) = abs(PS(X(x), Y(x))´ PS(X(y)´Y(y))

is the metric that measures the change in their probability simmilarity.
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Chapter 4

Approach

This chapter describes how the goals mentioned in section 1.2 and the implementation
requirements from section 3 were handled. Also, it introduces the approach from this
thesis, called Sherlock. Sherlock stands as an akronym for Specification-Mining Handy
Enrichment for the Re-implemented LearnLib Open-Source Computational-learning Kit.

4.1 Description

This section describes the Sherlock-approach used in this thesis to create a probabilistic
specification.

4.1.1 Collect traces

SHERLOCK first has to collect traces from the executions of Unit-Tests. To achieve this,
Sherlock uses the JAVASSIST-Framework [Chiba, 2000] that manipulates every function
from the observed classes.
The framework is used to insert tracing code to any method of every class that has to be
observed as follows: before the byte-code of the actual method body, JAVASSIST inserts
code that forces the function to leave a trace that contains both the class- and the function
name. There are currently two different functions to choose from, one that leaves a trace in
an internal list and one that writes traces to a temporary file. The reason for that will be
explained later.
Due to Implementation Requirement 1, Sherlock is using the manipulated classes to run
the Unit-Tests. Those tests then use the manipulated classes and hence leave a trace for
every called method. This closes IR 1 from section 3.2, as we now can force methods of any
class to leave a trace whenever it is called.
Sherlock also uses the Javassist-Framework to plant an init-function at the beginning of
every unit test class, so the specification miner knows when a new test starts. Without this
code, for two testing functions s and t, where s is executed right before t, Sherlock would
insert a transition from the last observed function that s uses to the first observed function
from t.
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4.1.2 Creating an automaton
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Figure 4.1. Example for an initial DFA created by three traces t1 = a Ñ b Ñ c, t2 = a Ñ b,
t3 = c Ñ b Ñ a and t4 = a Ñ b Ñ a.

Sherlock uses those traces to create a deterministic finite automaton that uses new states
for any new path that hasn’t been taken before. For the transitions, the function names are
used. For example, for four sets of traces, t1, t2, t3, and t4, with t1 = a Ñ b Ñ c, t2 = a Ñ b,
t3 = c Ñ b Ñ a and t4 = a Ñ b Ñ a, the resulting automaton is displayed in figure 4.1.
Every new trace gets an own path and the last state of a set of traces is made an accepting
state.
The Sherlock-implementation uses the CompactDFA-class provided by the AutomataLib
for this initial automaton.
Sherlock then uses Angulins L‹-Algorithm [Angulin, 1987] provided by the LearnLib-
Framework to merge equivalent states.
The result is a deterministic finite automaton. This automaton then gets to be translated to
a probabilistic specification object from the ProbabilisticSpecification-Class. It represends
the automaton internally as a graph by assigning an integer value to every state and then
using arrays for offsets, targets, input and the probability for every edge.
Every edge of the probabilistic specification is labeled with both the input value, namely
the function name that belongs to this transition, and a floating point value indicating the
probability that, once the automaton reaches the source state, this transition will be taken.
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4.1. Description

4.1.3 Calculate the probability

At this point, the probabilities for any transition is at 0.0. To calculate them, the Sherlock-
implementation offers three different mechanisms: a Lightweight Adaptive Filter, the Ratio
and the Keep Alive Models with Implementations.

Lightweight Adaptive Filter

The Lightweight Adaptive Filter described by [Filieri et al., 2014] was designed to auto-
matically adapt to changes from periodic measurements when measuring a signal. This
approach is based on the assumption that our program represends the original signal, and
with the traces, the filter is trying to recreate its transition probabilities.
The described algorithm uses several rounds for the measurement. After every round, an
estimation is updated by using the latest measurements using adaptive filtering mecha-
nisms.
For the probabilistic specification with n states, the filter creates a nˆ n Matrix mnˆn to
use as occurence count for the current round. To fill them, Sherlock reuses the traces it
collected earlier. To do that, it traverse the graph according to the traces and raises the
counters on our matrix for any transition it takes. Due to inflicted code in the testing
methods, Sherlock knows when a test is done, hence it knows when a round is over. After
any round, the latest measurement data is used to update our estimation accordingly.
Once the final estimation matrix mnˆn has been calculated, for any edge connecting to
states i and j, i, j P N and i, j ď n Sherlock takes the probability of mij from our matrix and
assign it to the probability of the current edge.

Ratio

The ratio uses the statistics of the measurements as probabilistic factor. It works like the
lightweight adaptive filter, but with only one round.
Simmilar to the approach on the lightweight adaptive filter, for counting purposes Sherlock
creates a nˆ n Matrix mnˆn to use it as an occurence counter. Also, an array with n entries,
an, works as state counter. Whenever the automaton reaches state i and takes the transition
to state j, Sherlock increases both the state counter for ai and the occurence counter mij.
Once a new round beginns, Sherlock resets the current state to the initial state and uses the
remaining traces to continue our count.
Once Sherlock is done with all our traces, it assigns for any edge connecting the states i
and j the probability p(e) =

mij
ai

.
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Keep Alive Models with Implementations

The Keep Alive Models with Implementations Approach, short KAMI, was described by
Epifani et al. [2009] and Filieri et al. [2012]. It was one of the earliest approaches for infering
probabilities of a discrete time markov chain (DTMC) that uses parameter adaptation for
the measurement [Filieri et al., 2014].
KAMI uses a Bayesan-based inference for the measurements [Filieri et al., 2012]. For d sets
of traces, all starting from a common state sinit, Sherlock measures the amount of times the
automaton took the edges in the h-th run from a state i to a state j in N(h)

ij [Epifani et al.,
2009]. The goal is to get is an estimation matrix Mnˆn that holds on Mij the probability
that the edge leading to state j is taken, once the automaton is in state i. Initially, the matrix
M has a Dirichlet distribution. With any of the d sets of traces, we update the estimation
matrix Mij to M1

ij with the following formulas [Filieri et al., 2012]:

α1 = α + Ni

M1
ij =

α

α1
¨Mij +

Nij

α1

α and α1 serve as weight, indicating how much trust is put in the latest measurement. Ni is
the amount of times the automaton has been at state i so far, which can be calculated by
Ni = ∑

j
Nij or counted separately.

As stated out by Filieri et al. [2012], those updates are fast to calculate. After every step, the
value of α1 gets assigned to α and the posterior Matrix M1 is the new prior distribution M.
One can show that, if M is a Dirichlet distribution, the Matrix M1 that is calculated using
those updates is a Dirichlet distribution as well [Filieri et al., 2012].

4.1.4 Remove redundant information

Figure 4.2 shows a probabilistic specification that was created using the Sherlock-approach
until this point. The automaton represends a program that offers the functions a, b and c.
The specification still has a lot of redundant information. For example, the transition from
state 1 to state 4 has a probability of 0%.
That’s why Sherlock removes redundant information from the automaton. During the
calculation of the probability, it traverses the automaton using the collected traces. While
doing so, it marks every edge used in the automaton. Sherlock then removes all unmarked
edges, as they have not been used. Note that, eventhough in figure 4.2 they are drawn
as one edge each, some edges contain of multiple edges that were just summarized. For
example, the edge that goes from state 0 to state 1 would actually have to be drawn as
two separate edges, both starting at state 0 and ending at state 1, both with the probability
of 99.999964%, but one of them labeled with b as input and one of them with c. Hence,
marking used edges and removing unmarked ones can lead to smaller inputs for the
transitions.
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Figure 4.2. A probabilistic specification made using the described methods. Note that there i a lot of
redundant information left.

Once the edges have been removed, Sherlock checks for the incoming transitions of every
state. Any state except for the initial state has to have at least one incomming edge. If it
does not, Sherlock removes both the state and all its outgoing transitions. Given the fact
that due to the removal of the outgoing edges, other states could become useless, Sherlock
checks for states to remove until there is one whole loop where no new state is marked as
useless.
The pruned version of the probabilistic specification from figure 4.2 can be seen at figure

4.3. Unnessecary transition have been removed, hence for all of the remaining transitions
the probability now is bigger than 0.
While the automaton from figure 4.2 had to be stored using 5 states and 15 edges, the
pruned version from figure 4.3 has 5 states and only 8 edges, without losing any informa-
tion compared to the original one from figure 4.2.

4.1.5 Store the Specification in the ProbabilisticSpecification-Object

After Sherlock successfully calculated and pruned the probabilistic specification, it has to
store it in the object – according to IR 3, it has to be stored in a way that we can access
information fast. The probabilistic specification object serves as a class that can be extended
if needed. The Sherlock-Approach uses extensions for the different probability objects.
The overall ProbabilisticSpecification Object can store the probabilistic automaton using
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Figure 4.3. The probabilistic specification from figure 4.2, after Sherlock removed the redundant
information.

several arrays. Any of the n states from the automaton is represented by the integers 1 . . . n.
The state has a state type that is stored in an array called stateTypes. For any of the n states,
the i-th entry denotes the state type of the i-th state by using an enum-type. For the m
edges, there are three arrays of m entries. Any edge has a target, so the target-array points
at the state this edge leads to. The edge also has a probability, thus a probability-Array holds
the floating point valued probability for any of the m edges. The functionName Array holds
the input function this edge represends.
To assign the m edges to the n states, an offset-array with n + 1 inputs holds on the i-th
input the index of the first edge that has the i-th state as a source. The indices of the edges
that belong to state i are all j P N with o f f set[i] ď j ă o f f set[i + 1]. All edges of index j
have state i as a source.
This method offers a constant access time for any edge. To iterate over the full automaton
takes a complexity-level of O(m). This closes IR 3 from section 3.2, as the probabilistic
specification class now offers fast access to any node and edge.

4.2 Usage of Javassist

The Java-bytecode manipulation framework Javassist [Chiba, 2000] has been used in this
project to force functions to leave a trace. To achieve this, a translator inserts the new code
to the class files whenever the desired class is loaded. From the input parameters, Sherlock
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has a list of regular expressions for classes it has to manipulate. Whenever the manipulated
ClassLoader loads a new class, it checks first if the class one of the classes Sherlock wants
to observe. If it is, Sherlock creates a prefunction, a String containing Java-code that calls the
tracer. The AbstractTranslator forces any class that extends it to implement a function that
returns java code that the Javassist-Compiler can compile for the prefunction.
The newly created translator that inserts the tracing code into the functions only works with
a new ClassLoader that differs from the default Java-classloader. As described in IR 2, any
internally used trace now can’t be handed back to the generic Java class loader and thus,
can’t be used to create and return a probabilistic specification to the function that is using
the generic class loader. To overcome this problem, the final version of Sherlock contains
two different translators, both of them extending the abstract class AbstractTranslator.
The first translator is called ListTranslator. The ListTranslator uses an internal list of Strings
to keep track of the traces. That way, the traces never leave the main storage and thus this
is the more efficient translator. This also means, that Sherlock can’t hand the traces back
to the generic Java class loader the parent function probably uses. Thus, the probabilistic
specification only is created internally. The only possible thing to do is to export it to the
hard drive at a location specified by the user.
In case the programmer wants to do more with the probabilistic specification than just
exporting it, Sherlock offers the function ProbabilisticSpecification createProbabilisticSpecifica-
tion(...). It creates a ProbabilisticSpecification object according to the parameters and then
returns it, so the programmer can use it. To overcome the ClassLoader-Problem mentioned
above, this function uses the second translator: a FileTranslator. Like the ListTranslator, it
manipulates class files, but the inserted code forces a BufferedWriter to write an index num-
ber representing the current trace together with a mapping table to a file in the temp-folder
(on Unix-Systems /tmp) and then, once the traces are completely collected, to read those
file using the generic class loader Java uses. Using it, Sherlock can create a probabilistic
specification and return it to the user. Naturally, this approach takes slightly more time,
as file operations usually take more time than operations completely in the RAM. Also,
for bigger sets of traces, Sherlock is bounded by the amount of free space left in the temp
folder. This might seem trivial, but can be a real problem.
Using those two translators, Sherlock offers two different ways to enable a communication
between functions that use a different class loader. Thus, it closes IR 2 from section 3.2.
For the evaluation, it is also nessecary to know when a new test function from the Unit-tests
starts. Not only does the LAF-Probabilistic described above work in rounds, where one
round equals one test-function, the init function is also needed to prevent transitions that
weren’t in the actual code, but that would occur when test-function t is executed right after
test-function s. Sherlock would create a transition from s’s last observed function to the
first observed function executed by t. Hence, the translators also put code at the beginning
of every test-function, so the method tells the tracer that a new round starts now. The
translator then also leaves a special trace indicating the beginning of a new round.
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4.3 Internal Class Structure

The projects contains of several classes. Figure 4.4 contains the packets used in this project
and their classes.

4.3.1 Packets

de.learnlib.algorithms.prospecmi.translator
+ AbstractTranslator

+ FileTranslator
+ ListTranslator

de.learnlib.algorithms.prospecmi.trace

+ TempWriter
+ Traces

de.learnlib.algorithms.prospecmi.probability

+ IProbabilityFunction
+ LAFProbability

+ RatioProbability
+ KAMIProbability

de.learnlib.algorithms.prospecmi.probabilisticspecification
+ FileType

+ ProbabilisticSpecification
+ ProbabilisticSpecificationCreator
+ ProbabilisticSpecificationMiner

+ StateType
+ StringWord

de.learnlib.algorithms.prospecmi.junit

+ Tests

Figure 4.4. Packet diagram for the project.

The following subsections contain the packets names and describe their functionality.

de.learnlib.algorithms.prospecmi.junit

The packet de.learnlib.algorithms.prospecmi.junit contains the file that is needed to run
the JUnit tests with our modified class loader. The file contains a main method, where the
additional arguments array hols the names of the JUNIT-files Sherlock has to execute.

de.learnlib.prospecmi.probability

This packet contains all the classes needed for the calculation of the probability for our
probabilistic specification. The IProbabilityFunction serves as an interface for the probability
functions. It holds both the calculateProbability()-function that calculates the probability for
the given probabilistic specification and the getUsedEdges()-Function. During the calculation
of the probabilities, Sherlock traverses the automaton using the traces. While doing so, it
marks those edges that were used. The function getUsedEdges() returns an array that holds
a boolean-type value for every edge indicating if it was used during the calculation of the
probability or not. The three classes LAFProbability, RatioProbability and KAMIProbability all
contain different implementations of the interface. The approach of the probabilities are
described in section 4.1.3.
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de.learnlb.algorithms.prospecmi.probabilisticspecification

The packet holds classes for everything Sherlock needs to create a probabilistic specification.
Any instance of the ProbabilisticSpecification-class holds a probabilistic specification as a
finite-state probabilistic automaton. The ProbabilisticSpecificationCreator serves as an own
class that creates a probabilistic specification once the traces from the JUnit-Package have
been collected. The ProbabilisticSpecificationMiner is the class that any user calls when they
want to create the probabilistic specification. It doesn’t have to be instantiated, as the
functions inside are static. From there, the specification miner initializes the translator and
the classloader and calls the creator to create the ProbabilisticSpecification-Object.
The StateType-class holds an enumeration for the type of any state, telling us for example if
the current state is an accepting state or an initial state. The StringWord is needed by the
AutomataLib framework. It extends the net.automatalib.words.Word-interface-class for the
usage Strings. This is needed for the input alphabet Σ of AutomataLibs automaton. The
FileType-enum holds information on accepted file types our export function understands.

de.learnlib.algorithms.prospecmi.trace

This packet holds all the classes needed for collecting traces. As described in section 4.2,
Sherlock contains two different ways to temporarly store the traces. The TempWriter holds
the BufferedWriter needed to write to the temp file with our traces. The Traces class holds
a List for the same purpose.

de.learnlib.algorithms.prospecmi.translator

The translator-packet holds anything needed for translators. In it are the abstract class any
translator has to implement, namely AbstractTranslator. In there it is defined what classes
are changed. The code that gets plugged in to the methods has to be implemented by
the other classes. Sherlock offers two implementations of the class, a FileTranslator and a
ListTranslator.

4.4 Embedding it to LearnLib

The LearnLib has, as described in Section 2.3, a very modular structure. Embedding the
new module into the LearnLib framework was really easy. First, the project had to be a
maven project. This was already given for the project. Maven projects have a configuration
file called pom.xml. This file configures the build path for the whole project as well as
general settings like the used character encoding. In here, the parent project had to be set
to Learnlib-Parent, so general settings get inherited.
The source code of the LearnLib comes from a Github-Repository. The root folder contains
the pom.xml for the LearnLib-parent. In there, a folder for every project included to the
LearnLib-Framewrk exists. They are all mentioned as Modules in the LearnLib-Parents
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pom.xml file. The learnlib-algorithms project has some subprojects itself, like the L‹-
Algorithm by Angulin [Angulin, 1987] that was used for this project.
The probabilistic specification miner is a subproject of learnlib-algorithms. To embed it
there, the whole projects folder had to be copied to the learnlib/algorithms folder and the
project had to be mentioned as a module in the learnlib/algorithms/pom.xml so it gets loaded
automatically when someone imports the learnlib-parents pom.xml.

4.5 Conclusion

The Sherlock-Approach had to fullfil three Implementation Requirements (IR):

Ź Force methods of classes to leave a trace whenever they are called.

Ź Exchange information between functions that use a different class loader.

Ź Store the probabilistic specification in a way that it offers fast access to nodes and edges.

The first IR has been achieved by using the JAVASSIST-Framework. This bytecode-
manipulation framework is capable of manipulating classes from precompiled .class-Files.
By inserting code to the beginning of every function that has to be observed, the function
calls another function telling it that it is about to be executed before running the actual
method body.
For the second IR, Sherlock offers a way of communication for the two functions with
different class loaders by letting them both access the same file. That way, function a that
uses class loader A can write to the file, that an other function b from class loader B ‰ A
then reads.
To achieve the third IR and allow fast access to the data stored in the probabilistic specifi-
cation, Sherlock uses an offset array approach to store both edges and states efficiently –
accessing any information stored in a java array has a time efficiency of O(1).
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Chapter 5

Evaluation

This chapter holds the evaluation of the Sherlock approach described in chapter 4. Section
5.1 holds the description and the results of the the comparison performed for the proba-
bilities, while section 5.2 holds the description and the results of the hypothesis-test that
has been performed for the micro-validation. Section 5.3 holds the description for and the
results of the macro-validation. Section 5.4 show the threads to validity.

5.1 Comparison

This section contains the comparison of probabilities performed for the Sherlock-Approach.
Section 5.1.1 describes how the comparison was done and section 5.1.2 presends the results.

5.1.1 Description

0

42%
test.a, test.b

1

45%

test.a

55%
test.c

2
58%

test.c

Figure 5.1. An example graph representing a probabilistic automaton. Every transition is marked
with a per centage value, indicating how likely this transition is to be taken once the automaton
has reached the source state, alongside with an input indicating what functions can be called if this
tranisition is taken.

In order to validate the functionality of the probabilistic specification miner, the follow-
ing evaluation procedure has been done:

39



5. Evaluation

First, a probabilistic specification was created. The classes/api the probabilistic specification
specifies only have methods without any specific body. The unit-tests used to create the
probabilistic specification consist of random method calls. That way, it is ensured that the
methods are not called in a specific order. Once the probabilistic specification has been
created using any of the three probabilities described in section 4.1.3, the created automaton
is used to simulate the underlying program while leaving traces for any simulated method
call. Those traces then are used to create new probabilistic specifications for all of the
availlable probabilities. If the program works like it should, the resulting specification
should look similar to the one that was created earlier.
As described in section 3.5, the QUARK-Framework offers three different metrics: X(Y),
Y(X) and PS(X, Y) [Lo and Khoo, 2006]. X(Y) stands for the per centage of sets that would
lead to an accepting state in autoomaton X, that also lead to an accepting state in Y, Y(X)
is the same metrics vice verca. PS(X, Y) offers a comparison of the transition probabilities
of two probabilistic automata X and Y.

To run the evaluation from the program, there are two different tests that have to be run
separately. The first one is to create and export the sample probabilistic specification from
the random tests described above. The results then are exported as a .csv-file in the temp
folder. Due to restrictions of the Javassist–Framework, the second part has to be executed
on its own, in a new java environment and can not be executed on the same execution as
the other test class. The second execution first reads the probabilistic specification that
has been exported in the first run and then uses the Javassist–Framework to dynamically
create a code that uses the probabilistic specification to simulate an execution under equal
conditions using random variables to simulate the transition probabilities. The class itself
is made entirely using Javassist, thus it is an executable class instead of a Unit-test. Instead
of executing the functions directly, the function only leaves traces using the FileTranslator
written for the Javassist–Framework. Those traces then are treated as if they were from an
execution with the FileTranslator, thus Sherlock creates a probabilistic automaton with the
desired probability using the temp-file.
Figure 5.1 shows an example for a probabilistic automaton. There, the transition that goes
from state 1 to state 2 has two input functions that can be taken. In the testing environment,
they are assumed to be equally distributed.
The resulting run function for the probabilistic specification from figure 5.1, that simulates
one transition and leaves the trace as return value, is shown in listing 5.1, while listing 5.2
shows the other functions of the class.
The code works as follows: the program holds the current state locally for the object in our
state integer. The run()-Method now simulates one transition. Therefor, the program first
gets two double-valued random variables. The first random variable is used to decide the
next state. To do that, it first figures out what state the automaton currently is in and then
compares the random variable with the probabilities of the outgoing transitions to take one.
Note that the program compares against the cumulated outgoing frequencies of the other
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states, so the last comparison (if the state has outgoing states) always holds a 1 – otherwise
the automaton might end up not doing anything at all.That way, eventhough Javas random
function gives us an equally distributed value between 0.0 and 1.0, the simulator can still
prefer those transitions that have a higher probability. After finding the next transition,
the simulator updates the state for the next round. A transition can have more than one
function to take us to the desired state. As mentioned before, it is assumed that they are
equally distributed. The second random value to decides which of the functions from
the current transition is taken. Since this is just a simulation and not a real execution, the
function isn’t executed – it merely returns their names as String. An interpreter then can
take those returned values and treat them as if they were actually coming from the tracer.

The interpreter class then creates an object from the test class using the constructor
from line 29 of listing 5.2. It then defines two variables, rounds and depth, to configure how
exactly the test is to be simulated. Given two parameters of type integer, rounds and depth,
the code from listing 5.3 creates the traces.

The integer-value rounds specifies how many rounds are simulated. Every round starts
at the initial state and ends either in an accepting state or in a trash state, from where the
automaton can’t reach any accepting state anymore. If the automaton ends in an accepting
state, the round is treated as if they were actual traces from a sample execution. If it ends
in a trash-state, the traces from the last round are dumped.
In every round, the depth-parameter is taken as the maximum amount of transitions
for the minimal depth. This means, the simulator simulates at least i rounds for any
i P [1, depth]. After the i rounds, the simulation is continued until the automaton reaches
either an accepting- or a trash-state. That way, the interpreter can also collect paths
Π = p1, p2, p3, . . . , pn with pj being an accepting state for j ă n, instead of stopping once
the automaton has reached an accepting state.
A simulation round now works as follows: the interpreter holds a traceList, where it
collects the Strings that represend the function names are collected. The program then runs
i rounds of the simulation, where i is bounded by the depth variable, and then continues
until the automaton is in an accepting or failing state. If the automaton is in an accepting
state, the interpreter writes all the elements stored in the TraceList to the temp file, as if
they were from a real execution that uses the FileTranslator for Javassist. After that, it
removes all the contents of the traceList and reset the simulation, so the next round starts
at the initial state.
The function ProbabilisticSpecificationCreator.createProSpecWithTmpFile(...) then works as if
the traces were collected from actual Unit-Tests and creates a probabilistic specification out
of them.
The resulting specifications then are to be evaluated as described above.
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1 public String run(){

2 double r = rand.nextDouble();

3 double r2 = rand.nextDouble();

4 if(state==0){

5 if(r<=0.42){

6 state=1;

7 if(r2 <= 1d/2d){

8 return "test.a";

9 }else if(r2 <= 2d/2d){

10 return "test.b";

11 }

12 }else if(r<=1.0){

13 state=2;

14 if(r2 <= 1d/1d){

15 return "test.c";

16 }

17 }

18 }else if(state==1){

19 if(r<=0.45){

20 state=1;

21 if(r2 <= 1d/1d){

22 return "test.a";

23 }

24 }else if(r<=1.0){

25 state=0;

26 if(r2 <= 1d/1d){

27 return "test.c";

28 }

29 }

30 }else if(state==2){

31 return "";

32 }

33 state=3;

34 return "error";

35 }

Listing 5.1. Java code for the test classes run code that simulates the next round of the automaton
from fig. 5.1.

5.1.2 Results

Figure 5.2 shows a probabilistic specification that was mined from a testing program. The
program had the functions a and b, that were called in a different order. The mined
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1 private int state;

2 private final java.util.Random rand;

3
4 private void write(java.util.List list){

5 for (int i = 0; i < list.size(); i++){

6 de.learnlib.algorithms.prospecmi.trace.TempWriter.instance.write(

7 (java.lang.String)list.get(i));

8 }

9
10 de.learnlib.algorithms.prospecmi.trace.TempWriter.instance.testDone();

11 }

12
13 public void newRound(){

14 this.state=0;

15 }

16
17 public void close(){

18 de.learnlib.algorithms.prospecmi.trace.TempWriter.instance.close();

19 }

20
21 public boolean done(){

22 return state == 1 || false;

23 }

24
25 public boolean failed(){

26 return state == 2 || false;

27 }

28
29 public Test() {

30 state = 0;

31 rand = new java.util.Random();

32 }

Listing 5.2. Other needed functions of the testing class, alongside with the run functin from 5.1.

specification is good for testing purposes, as there are many transitions with a very low
probability. Note that the transition from state 5 to state 1 only has a probability of 0.01%,
the same value that the transition from state 1 to state 5 has.
State 4 has no outgoing edges to any states other than itself. Given that the testing
framework only uses traces that end in an accepting state, none of them ever visited state 4
in an accepting run. This means, that all the specifications are created without knowing
about that state. Hence one can not expect to find it in any of the specifications that were
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1 Test test = new Test();

2 java.util.List traceList = new java.util.ArrayList();

3 for (int i = 0; i < rounds; i++) {

4 for (int j = 0; j < depth; j++) {

5 for (int k = j; k >= 0; k--) {

6 traceList.add(test.run());

7 }

8 while (!test.done() && !test.failed()) {

9 traceList.add(test.run());

10 }

11 if(test.done()) {

12 test.write(traceList);

13 }

14 traceList.clear();

15 test.newRound();

16 }

17 }

18 test.close();

19 ProbabilisticSpecification ps = ProbabilisticSpecificationCreator

20 .createProSpecWithTmpFile(0.01, 0.99, 0.002, 100);

Listing 5.3. Simulation of the interpreter for given integer-type variables rounds and depth
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Figure 5.2. Mined probabilistic specification for a program with the functions a and b that other
functions try to copy using the interpreter described in section 5.1.1.
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created using the simulation. This also means, that the states from the new specifications
will have other numbers, what makes a comparison a little harder.

Lightweight Adaptive Filter

Table 5.1. Table containing the calculated probabilities for the recreated probabilistic specification
from figure 5.2 using the lightweight adptive filter described by Filieri et al. [2014]. Specification 0 is
the original one. The first column shows the index of the specification. The second one, δ, holds the
depth parameter and the third one, ρ, holds the assigned parameter for the rounds. Then the actual
values the mined specification had on its edges are displayed. A – symbol indicates that the edge
did not exist in the specification, if an edge has 0% then it exists, but has a probability so close to 0,
that by rounding it after 2 digits it becomes 0. It is nessecary to mention that on test 7, the transition
from state 0 to state 1 was labeled with both a and b, while on the other specifications – including the
original one –, it was only labeled with an a.

δ ρ 0 Ñ 1 0 Ñ 2 1 Ñ 2 1 Ñ 3 3 Ñ 2 X(Y) Y(X) PS(X, Y)
0 – – 98,93% 1,07% 98,93% 1,07% 100% – – –
1 1 5 100% – – – – 25% 100% 67,37%
2 4 5 98,81% 1,19% 100% – – 75% 100% 99,99%
3 16 5 100% 0% 100% 0% 100% 100% 100% 99,97%
4 1 20 100% – – – – 25% 100% 67,37%
5 4 20 100% 0% 100% 0% 100% 100% 100% 99,98%
6 16 20 100% 0% 100% 0% 100% 100% 100% 99,98%
7 1 400 100% – – – – 50% 100% 50,80%
8 4 400 100% 0% 100% 0% 100% 100% 100% 99,98%
9 16 400 100% 0% 100% 0% 100% 100% 100% 99,98%

Table 5.1 shows the probabilities for the recreated probabilistic specification that was
created using the Lightweight Adaptive Filter created by Filieri et al. [2014]. The original
specification had 5 states and 6 edges. The variables for recreating it were thus chosen
as follows: the depth is chosen in correlation to the amount of states. For n states, the
depth was chosen as ni for i P {0, 1, 2}. The amount of rounds was chosen in correlation
to the amount of edges and states. In the example from figure 5.2, there were 5 edges,
hence the smallest rounds parameter was set to 5. For m edges and n states, the remaining
parameters are a product of (m ¨ n)i for i P {1, 2}.
What can be seen from the results is that, when the depth is set to 1, the automaton never
visits any states whose path is going through an accepting node and then takes a transition
that leads them to a non-accepting one. That is, because the testing algorithm just takes
transitions until it reaches an accepting state and when it found an accepting state, it stops.
Thus, the only paths taken there are a and b. The algorithm by Angulin [1987] then merges
a and b together. Hence, many transitions and states are missing.
Tests with other assignments of depth have all the transitions, eventhough the probability
of them doesn’t match the one of the original specification. Assuming that Javas random
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variable really offers equally distributed random values, the obvious conclusion here is
that the used probabilistic function prefers high probabilities and makes them even higher,
while low probabilities from the original specification – like the transition from state 1 to
state 4 – are even closer to 0. That is, because the described algorithm by Filieri et al. [2014]
treats changes that occur not so often as noise and due to the adaptive nature of both e and
ethr, those changes don’t get to much weight on the estimation.
In most cases, the transition from state 0 to state 2 and the transition from state 1 to state 3
have a per centage of 0%. This is mainly due to the fact that in this paper, I round after
two digits – the actual values the filter calculated were at a size of 1´120.
Watching at the value of PS(x, Y), one can see that, whenever the depth δ is not 1, the
probability simmilarity is above 99%. The value of Y(X) seems to be constantly 100%,
meaning that Sherlock doesn’t mistakingly create new accepting words that wouldn’t be
accepted in the original specification.

Ratio/Frequency

Table 5.2. Table containing the calculated probabilities for the recreated probabilistic specification
from figure 5.2 using the ratio as probability. Specification 0 is the original one. The first column
shows the index of the specification. The second one, δ, holds the depth parameter and the third one,
ρ, holds the assigned parameter for the rounds. Then the actual values the mined specification had
on its edges are displayed. A – symbol indicates that the edge did not exist in the specification, if
an edge has 0% then it exists, but has a probability so close to 0, that by rounding it after 2 digits it
becomes 0. It is nessecary to mention that on Test 7, the transition from state 0 to state 1 was labeled
with both a and b, while on the other specifications – including the original one –, it was only labeled
with an a.

δ ρ 0 Ñ 1 0 Ñ 2 1 Ñ 2 1 Ñ 3 3 Ñ 2 X(Y) Y(X) PS(X, Y)
0 – – 98,93% 1,07% 98,93% 1,07% 100% – – –
1 1 5 100% – – – – 25% 100% 67,37%
2 4 5 95% 5% 100% – – 75% 100% 99,89%
3 16 5 97,50% 2,5% 93,15% 6,85% 100% 100% 100% 99,77%
4 1 25 100% – – – – 25% 100% 67,37%
5 4 25 100% – 100% – – 50% 100% 99,97%
6 16 25 98,44% 1,56% 98,99% 1,01% 100% 100% 100% 99,99%
7 1 400 100% – – – – 50% 100% 50,80%
8 4 400 99,00% 1,00% 99,16% 0,84% 100% 100% 100% 99,99%
9 16 400 99,08% 0,92% 98,86% 1,13% 100% 100% 100% 99,99%

In table 5.2, the recalculated probabilities from the probabilistic automaton displayed
in figure 5.2 with the usage of the ratio as a probabilistic factor can be seen. Simmilar to
the results from using the Lightweight Adaptive Filter, the parameters δ for the depth and
ρ for the rounds have to have a certain value for the specification to cover all edges there
are. The values for the rounds and depth were chosen similar to the ones described for the
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lightweight adaptive filter.
By using the ratio to get a probabilistic value, the received values are much closer to the
original specification than they were after using the LAF. The reason for that is, that the
ratio treats every received measurement as equal instead of binding a weight to every round
like the LAF did. Hence, edges that had a low probability on our original specification now
don’t seem to be noise that the filter is trying to attenuate by assigning a higher weight
to our past measurements. On every round, the trace increases the occurence counter for
both the transition and the state.
Eventhough the absolute difference for the transition probabilities between the original
specification and the recreated ones are much less, the probability similarity doesn’t really
differ that much from the one that was calculated for the LAF-Filter.
What can also be seen from the results is, that for this filter, the parameters for depth and
rounds have to have a certain minimum, but the accuracy doesn’t nessecarly increase with
higher values, nor does it decrease.

Keep Alive Models with Implementations

Table 5.3. Table containing the calculated probabilities for the recreated probabilistic specification
from figure 5.2 using the KAMI-approach to calculate the probability. Specification 0 is the original
one. The first column shows the index of the specification. The second one, δ, holds the depth
parameter and the third one, ρ, holds the assigned parameter for the rounds. Then the actual values
the mined specification had on its edges are displayed. A – symbol indicates that the edge did not
exist in the specification, if an edge has 0% then it exists, but has a probability so close to 0, that by
rounding it after 2 digits it becomes 0. It is nessecary to mention that on Test 7, the transition from
state 0 to state 1 was labeled with both a and b, while on the other specifications – including the
original one –, it was only labeled with an a.

δ ρ 0 Ñ 1 0 Ñ 2 1 Ñ 2 1 Ñ 3 3 Ñ 2 X(Y) Y(X) PS(X, Y)
0 – – 98,93% 1,07% 98,93% 1,07% 100% – – –
1 1 5 100% – – – – 25% 100% 67,37%
2 4 5 100% – 100% – – 50% 100% 99,98%
3 16 5 100% – 98,65% 1,35% 100% 75% 100% 99,99%
4 1 20 100% – – – – 25% 100% 67,37%
5 4 20 98,73% 1,27% 100% – – 75% 100% 99,99%
6 16 20 100% – 99,33% 0,67% 100% 75% 100% 99,99%
7 1 400 100% – – – – 50% 100% 50,80%
8 4 400 98,62% 1,38% 98,73% 1,27% 100% 100% 100% 99,99%
9 16 400 98,95% 1,05% 98,85% 1,15% 100% 100% 100% 99,99%

Table 5.3 shows the calculated probabilities for the KAMI-Specification. Once again, δ
holds the parameter for the depth, while ρ holds the amount of rounds that were used to
mine the original automaton.
Watching only at those specifications with X(Y) = 100% and Y(X) = 100%, meaning that
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L(X) = L(Y), it is clear that the estimations were very accurate and a lot better than the
ones calculated from the LAF-Filter.
The calculated values for the probability similarity, PS(X, Y), are not so different from the
Ratio. In fact, they don’t even differ so much from the values the LAF-Filter gave us.

5.2 Micro-Validation

This section contains the hypothesis test as described in section 3.5. Section 5.2.1 contains a
description of the hypothesis test. The results are shown in section 5.2.2.

5.2.1 Description
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Figure 5.3. Template of the probabilistic specification that is recreated by the three probabilities for
the hypothesis test.

To perform the Hypothesis-Test, for every probability, 1.000 probabilistic specifications
are mined. As template, the specification shown in figure 5.3 is used the same way figure
5.2 was used for the analysis part. For every of the 3.000 specifications, a metric is calculated
to measure the accuracy of the specification. As described in section 3.5, the used metrics
for the hypothesis test that validates a probabilistic x is

M(x) = X(Y) ¨Y(X) ¨ PS(X, Y)

The results from the analysis-based Micro-Validation, presented in section 5.1.2, showed
that when using depth δ = 16 and rounds ρ = 400 – adjusted for the 8 states and 10 edges
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to δ = 64 and ρ = 6400 – both the values of X(Y) and Y(X) are 100% – 1.0 as a decimal.
Thus, using the defined values for δ and ρ, the calculated metrics is

M(x) = PS(X, Y)

Using this metrics, the hypothesis-test tests against the hypothesisses described in section
3.5.

5.2.2 Results

A two-sided hypothesis-test has been performed the following way:
The significance-level α has been set to α = 0.05. Based on the assumption of an underlying
Gaussian distribution – what has only been verified by analysing the values –, this results
in zα = 1.96. The expected value is µ = n ¨ p, with n = 1.000 and p = p, the arithmetic
mean of the samples. The standard deviation σ has been estimated using the algorithm
by Knuth [2005] that estimates the variance σ2. That same algorithm was also used in the
Lightweight Adaptive Filter to calculate the thresholding parameter [Filieri et al., 2014]. A
Java-Version of this algorithm is printed in listing 5.4. Using it, the standard deviation can
be calculated with sigma = Math.sqrt(variance(data)).
The hypothesis-test now takes the 1.000 calculated metrics for every probability. For two

1 private double variance(final double[] data) {

2 double n = 0;

3 double mean = 0d;

4 double m2 = 0;

5 double delta;

6
7 for (final double d : data) {

8 n++;

9 delta = d - mean;

10 mean += delta / n;

11 m2 += delta * (d - mean);

12 }

13
14 // Avoid dividing with 0.

15 if (n > 1) {

16 return m2 / (n - 1);

17 } else {

18 return 0;

19 }

20 }

Listing 5.4. Java-Version of Knuth’s algorithm to estimate the variance of a given set of data.

49



5. Evaluation

Table 5.4. Results of the hypothesis-test.

Hypothesis µ σ zlow zhigh z Status
HK,L

0 999,997167 2, 625 ¨ 10´6 999,997162 999,997172 426,605863 rejected
HL,R

0 426,605863 0,163769 426,284879 426,926850 999,997167 rejected
HR,K

0 999,997167 2, 624 ¨ 10´6 999,997162 999,997172 999,997167 failed
to rej

probabilities x and y, the hypothesis-test calculates the expected value µ and expects a
value z with (µ´ zα ¨ σ) ď z ď (µ + zα ¨ σ). The value of z is calculated by taking the sum
of the metrics taken from all 1.000 samples for the probabilistic. If the calculated value is
outside the calculated border, the null-hypothesis is rejected, otherwise it is accepted.
The results of the hypothesis-test are shown in table 5.4.
The results show that all null-hypothesisses that contain the Lightweight Adaptive Filter

have been rejected. This points out the fact that the LAF calculates the probabilities in a
different way than KAMI and RATIO do. This comes as no surprise, given that LAF treats
every new sample that occurs the first time as noise, which it tries to attenuate by assigning
a very low weight to it compared to earlier measurements. The RATIO on the other hand
treats every new sample equal, while KAMI uses a bayessian technique to estimate those
transition probabilities that would leave the measured traces, meaning that they also get
treated about equally.
The hypothesis-test also showed that KAMI and RATIO had an estimated standard devia-
tion σ of 2, 62 ¨ 10´6, meaning that the calculated values all were very much equal, while
the LAF had 0,16. This makes out a range of 16% for the calculated LAF probabilities. Also,
the mean µ for the LAF is 426,61. Given the fact that there were 1.000 samples, the average
per value has been 0,43 or 43% accuracy, while both LAF and RATIO were very close to
100%.

5.3 Macro-Validation

This section presends the Macro-Validation performed to evaluate the Sherlock-Approach.
Section 5.3.1 describes the appraoch. The results are presented in section 5.3.2.

5.3.1 Description

The Sherlock Approach has been validated with a real example the following way:
First, real projects have been added to the validation project using Maven. Therefor, es-
pecially the tests have been of interest. Thus, listing 5.5 imports especially the compiled
class files of the tests for the Apache Commons Math3 project. Those tests are then used to
calculate a Probabilistic Specification using the Specification Miner described in this thesis
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and the testing classes from the imported dependencies.
In this case, the observed API is Java.util.Random. Given that it is an internal API, there

1 <dependency>

2 <groupId>org.apache.commons</groupId>

3 <artifactId>commons-math3</artifactId>

4 <version>3.3</version>

5 <type>test-jar</type>

6 <scope>compile</scope>

7 </dependency>

Listing 5.5. Maven-Code that is used to import the compiled Unit-Test files for Apache Math3.

were some extra-steps that had to be done first:
Java first loads the files from its generic JVM [Chiba, 2000–2012]. So in order to avoid
that, the whole Java Virtual Machine (JVM) had to be unpacked a new folder. For the
Macro-Validation, a 64-Bit Linux machine has been used. The JVM of the used OpenJDK-7
version was stored in /usr/lib/jvm/java-7-openjdk-amd64. Every jar file that was stored in
there was unpacked to a special folder. In there, the class file of Java.util.Random has been
overwritten using the code from Sherlocks FileTranslator.
For the next step, the content of the junit.Tests File has been copied to an own project with
a Main function that reads in the names of the test files we have as a dependency and then
executes them as JUnit-Tests. The project (that has to have all the Maven-Dependencies
of the test classes) then has to be exported as a .jar-File. This file then is unpacked in
exactly the same folder the JVM was unpacked to earlier. The file of the project that has
the main method, let’s say org.test.Main, then lies in it’s own subfolder org/test/Main.class.
The file then has to be executed using only the files stored in the current folder, using the
command java -Xclasspath/p:. org/test/Main (in case the temp-folder is too small for the trace
files, it is recommended to also use -Djava.io.tmpdir=.). This project then runs the Unit-Tests
and leaves a trace whenever any function calls a method from the Random-Class.
A second project now calls ProbabilisticSpecificationCreator.createKAMIProSpecWithTmpFile().
The method then uses the proSpec and proSpecMap from the temp folder to calculate a
probabilistic specification. After that, the resulting probabilistic specification is exported.
The same procedure happens for RATIO and LAF.
Using a different amount of tests each run for the same probabilistic function, the specifica-
tion miner exports two probabilistic specifications for each probability: One with traces
from all tests and one with fewer tests. Using the same metrics that have also been used
in the analysis-based Micro-Validation from section 5.1, the two specifications then get
compared. Note that X(Y) and Y(X) won’t change from the usage of an other probability,
thus they are only mentioned once.
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Table 5.5. Result of the execution of the Macro-Validation

Probability X(Y) Y(X) PS(X, Y)
LAF 95, 00% 90, 48% 99, 99%
KAMI 95, 00% 90, 48% 99, 67%
RATIO 95, 00% 90, 48% 99, 66%

Table 5.6. Results of the Analysis from the Macro-Validation.

Metrics Difference
M(LAF, RATIO) 0.33
M(LAF, KAMI) 0.32
M(KAMI, RATIO) 0.01

5.3.2 Results

Let X(z) and Y(z) be the two specifications mined for the Macro-Validation from the
usage of the Java.util.Random-Package and let z be the used probability. X(z) is the smaller
probabilistic specification. It was mined using 1.783 test-classes that left 104.746.384 traces.
The bigger probabilistic specification, Y(z), was created using 1.877 test-classes, leaving
104.762.624 traces.
Specification X(Y) has 67 states and 116 edges. Y(X) has 75 states and 123 edges.

Table 5.5 shows the result of the Macro-Validation. Specification X was created using
1.783 test-classes, while specification Y was created using 1.877 test-classes. Given that
specification Y contains all the test classes that were in specification X before, specification
Y gives us 94 test files to validate the specification – a little more than 5%.
Table 5.5 shows that the least changes in the transition-probabilities for those paths that
were in both X and Y were made by using the Lightweight Adaptive Filter. This is possibly
due to the fact that changes from what was mined before are treated as noise there, while
giving those transitions with a previously high probability a bigger weight.
For KAMI and RATIO, the transition probabilities also hardly changed at all.
The calculated value for X(Y) shows, that for some reason, specification Y doesn’t seem to
accept every word that specification X accepts. Also, specification Y accepts words that
specification X does not, which is easily explainable by the fact that specification Y was
mined with more testing-methods that specification X.
The results of the analysis described in section 3.5 can be seen at table 5.6. The table shows
that all the difference of the probability similarity between the old and the new specification
is not so big when comparing the RATIO and KAMI, while anything containing the LAF
has – due to the fact that the probabilities are almost the same – the biggest difference to
the others.
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5.4 Threads to validity

The experiments from sections 5.1 and 5.2 were conducted using the example specifications
– the ones shown in figure 5.2 and 5.3. The results displayed in tables 5.1, 5.2, 5.3 and
5.4 may depend on the used input automaton – results may change when using other
specifications as input, maybe even the value of X(Y).
The validation performed in section 5.3 was conducted using several different Unit-Tests
from different projects. However, most of the test classes came from Apache Commons
Projects (like Apache Commons Math3 or Apache Commons Logging). This may result in
projects using the same API in the same way, eventhough there would be other possibilities
to use the API correctly. Thus, the result mainly depends on both the API to mine and the
Unit-Tests. Changing the preconditions surely will alter the result.

53





Chapter 6

Discussion

This chapter offers a brief discussion related to the qualitative research question from
chapter 3.

6.1 Qualitative Research Question 1

The question asked in section 3.4 was how a probabilistic specification can be used to
improve software projects in the future. As stated by Weimer and Necula [2005], a lot of
bugs from software projects come from false usage of APIs. The reason that people use apis
in a false way is that they often are poorly documented. Thus, a probabilistic specification
infered from other – in case bug-free – projects that use the same API can surely help for
the programmers to get to know the API-usage a little more.
Current Software Projects rarely come from only one programmer – usually, there are
several teams. Given a scenario, where several teams have to use the same API at different
states of the development, it is more likely that – especially when the part where a team
uses the API isn’t very long – the programmer makes an error. In that case, using the own
project to infer a probabilistic specification may also give hints about where the API has
been used falsely. It is a lot easier for the team that successfully used the API to validate an
automaton than to read in on the whole source code, especially when we consider that a
false usage of the API would lead to a low transition probability if other parts of the same
project used the API correctly.
Raffelt et al. [2009] also stated that most projects suffer from a bad documentation because
of last-minute changes, where the deadline doesn’t leave to much time for a complete
specification. A common result is that, once the project team decides to update the
documentation, people probably don’t remember all of the changes made since the last
specification was written. In that case, there are only a few things a programmer can do to
track the changes their project has made since that, like reading the commit messages of
their git- or svn repository. A probabilistic specification could help in that case: Given that
the project was already used as an API in other projects, the programmers could create
a probabilistic specification for both the old version and the new version of the API and
compare them. That way, they’d see the new functions that have been added.
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Chapter 7

Conclusions and Future Work

This chapter introduces the conclusions for this thesis and gives thoughts about future
work.

7.1 Conclusions

In the context of this thesis, a probabilistic specification miner was written and added
to the LearnLib-Framework. A probabilistic specification miner does not only return a
deterministic automaton with paths showing how a certain API has been used by the projects
the specification was mined from, it also points out how likely any transition s Ñ t is, given
that the automaton is currently in state s.
The probabilistic specification miner has been described as the Sherlock-Approach and
implemented in Java. The implementation first uses the Javassist-Framework [Chiba, 2000]
to manipulate the class files that have to be observed in a way, that they leave execution-
traces. Those traces then are connected to a deterministic automaton. On this automaton,
the L˚-Algorithm that was described by Angulin [1987] and implemented in the LearnLib-
Framework is applied to merge states wherever it is possible. The resulting automaton still
is deterministic. To make it a probabilistic one, Sherlock offers three different methods
to infer the transition-probabilities: the Lightweight Adaptive Filter (LAF) described by
Filieri et al. [2014], the Keep Alive Models with Implementation Approach as described by
Calinescu et al. [2011] and the ratio of every state.
The implemented specification miner has been validated in two different ways.
The first method is called Micro-Validation. To perform this kind of a validation, a
predefined probabilistic specification has been given to the specification miner as input.
An interpreter then simulated the execution of the underlying program and traversed the
specification. Whenever a transition has been taken, the simulator returned the function
name the simulated program just took. Those returned values then have been taken as
traces for the specification miner to infer one probabilistic specification for every of the
three probabilities. A comparison of the original specification and the rebuilt one has been
done by using the metrics from the QUARK-Framework described by Lo and Khoo [2006].
The probability simmilarity showed, that for the used example, all three probability types
gave a good representation of the original transition probabilities.
The second method is called Macro-Validation. The target of a Macro-Validation is it to

57



7. Conclusions and Future Work

mine a probabilistic specification for any API using a set real free and open-source software.
The specification then gets validated by other free and open-source software that has not
been used to create the specification in the first place. Applying this technique showed,
that specifications can get big very fast. The metrics from the QUARK-Framework also
revealed that the Lightweight Adaptive Filter had the least changes in probability for the
validated software. KAMI and the Ratio both had a very high probability simmilarity as
well and were close together. A hypothesis-test showed that the changes KAMI and the
Ratio made were somewhat simmilar, while the LAF returned an other metrics causing the
two hypothesis that included the Lightweight Adaptive Filter to decline.

7.2 Future Work

The following section presends suggestions for future work.
The current version of the specification miner forces the user to download the free and
open-source software himself using maven, jars with source code or by downloading the
project directly from the git- mercurial- or svn-repository. A possible future work could
automate the repo-mining in a way, that the specification miner automatically searches
Github, Bitbucket, the Software Infrastructure Repoistory or any other repository for
projects that use the API in their Unit-Tests.
To specifically get projects with the desired API, there are two different ways: the user
could cataloguerize the project in a way that any used API is mentioned somewhere, or a
code analysis tool could check for imported packages. That way, the specification miner
could search directly for projects that use the API without having the programmer search
for it manually.
The current probabilistic specification miner only returns (and exports) a probabilistic
specification. As of now, it can’t be used to validate the usage of certain APIs. A plugin
(for example for the eclipse framework) could take a probabilistic specification and then
check on a new project if the usage of the API is correct and offer suggestions for the next
method to call, ordered by the probability taken from the probabilistic specification.

58



Bibliography

[Ammons et al. 2002] G. Ammons, R. Bodík, and J. R. Laurus. Mining specifications.
In Proceedings of the 29th AVM SIGPLAN-SIGACT symposium on Principles of program
languages, pages 4–16. ACM, 2002.

[Angulin 1987] D. Angulin. Learning regular sets from queries and counterexamples.
Information and Computation, 75:87–106, 1987.

[Arcuri et al. 2012] A. Arcuri, M. Z. Iqbal, and L. Briand. Random testing: Theoretical
results and practical implications. IEEE Transactions on Software Engineering, 38(2):258–277,
2012. ISSN 0098-5589. doi: http://doi.ieeecomputersociety.org/10.1109/TSE.2011.121.

[Bierman and Feldman 1972] A. Bierman and J. Feldman. On the synthesis of finite state
machines from samples to their behavior. IEEE Trans. on Computers, 21(6), 1972.

[Calinescu et al. 2011] R. Calinescu, K. Johnson, and Y. Rafiq. Using observation ageing
to improve markovian model learning in qos engineering. In ICPE’11 – Second Joint
WOSP/SIPEW International Conference on Performance Engineering, Karlsruhe, Germany, 2011,
pages 505–510. ACM, 2011.

[Carrasco and Oncina 1994] R. C. Carrasco and J. Oncina. Learning stochastic regular
grammars by means of a state merging method. In International Colloquium Grammatical
Inference and Applications (ICGI ’94), volume 862. Springer, 1994.
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