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Abstract

Through the advance of technology, robots aren’t just objects from science fiction novels, but
they are becoming more and more part of our everyday life and are specially designed and
constructed to support us. From little household helper that finish domestic chores to big
industrial robots that assemble huge machines and automobiles, there are hundreds of different
types of robots.
Especially in interaction with humans it is important for a robot to react to environmental
changes. In case of upcoming difficulties the robots ought not to freeze in place and take a
lot of time to calculate their possibilities on how to avoid obstacles that might be in their way.
Rapidly-exploring random trees and other sampling-based methods are one way to solve this
problem, where robots are able to find a viable solution and execute it. However, the resulting
solutions were not efficient enough and post-processing consisting of optimization methods
had to be applied to smooth out the trajectories. The necessity of this optimization lead to a
new generation of planning methods that were based on optimization alone. In many domains,
these optimization-based motion planners constitute the state-of-the-art.

This thesis compares various optimization-based motion planners within an efficient common
environmental representation with respect to the following criteria: speed, accuracy, and
applicability. Through a variety of tests with arbitrary obstacles the methods will be compared
and the results presented. The document concludes with an outlook on further work and
possibilities.

Kurzfassung

Durch den technischen Fortschritt sind Roboter nichtmehr nur Objekte aus Science-Fiction
Büchern sondern Teile unseres Lebens. Sie werden zu einem immer größer werdenden Teil
unseres alltäglichen Lebens und werden speziell dazu entwickelt, uns bei vielen Aufgaben
zu unterstützen. Es gibt bereits eine Vielzahl an Robotern: von Haushaltshelfern, die kleine
Arbeiten verrichten, bis hin zu größeren, industriellen Robotern, die gewaltige Maschinen und
Automobile zusammenbauen.
Besonders in der Interaktion mit Menschen ist es für einen Roboter wichtig auf Veränderungen
in seinem Umfeld zu reagieren, zum Beispiel wenn ein Hindernis aufkommt, soll der Roboter
im Stande sein, in kürzester Zeit eine neue Route zu berechnen, und so die Aussetzzeit so
minimal wie möglich zu halten. Rapidly-exploring random trees und andere Abtastmethoden
sind nur ein Paar mögliche Methoden, bei denen Roboter eine Lösung finden, sie umsetzen
und so möglich entstandene Probleme beheben. Die dabei entstandenen Methoden sind jedoch
nicht immer effizient und erfordern eine Nachbesserung durch Optimierungsverfahren, um die
berechneten Bewegungen zu verbessern. Die Notwendigkeit solcher Optimierungen führt zu
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einer neuen Generation von Bewegungsplanern, die auf diese Methoden basieren. In vielen
Bereichen werden sie mittlerweile als Standard angesehen.

In dieser Arbeit werden verschiedene Bewegungsplaner, die auf Optimierungsverfahren auf-
bauen, in einer vordefinierten Umgebung verglichen. Dabei wird der Wert auf folgende
Faktoren gelegt: Geschwindigkeit, Genauigkeit und Anwendbarkeit. Durch eine Vielzahl von
Tests werden die Bewegungsplaner verglichen und die Resultate präsentiert. Abschließend
zeigen wir weitere Möglichkeiten auf, die in näherer Zukunft vielleicht durchführbar sein
werden.
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1. Introduction

1.1. Motivation

In robotics we try to develop artificial beings with human-like capabilities, which should be
involved in our everyday life. To reach this goal we have to solve many problems about the
entire concept of an autonomous machine, e.g. what and how many sensors are needed so the
robot can scan its environment sufficiently, or how to recognize obstacles and react to them as
quickly as possible. The faster technology evolves, robots become increasingly capable, able
to move around, grab things and interact with machines and humans in its environment. A
reason for that is the higher accuracy of newer sensors and overall faster hardware used to
build such robots.
Besides the evolution of sensors the motion planning methods have evolved as well. Even
though the sampling-based path planning algorithms, e.g. Rapidly-exploring random tree,
Probabilistic roadmaps, etc., are a working solution to motion planning in general, they are
not always the most efficient way to find a feasible path for certain problems [KF11], [Ran12].
Due to this problems, so called optimization-based motion planning algorithms were developed
to provide a better way on finding solutions for existing problems. But how can we find out
what the best method to plan a robot’s movement is and what the definition of a good motion
planner ought to have? The difficulty and complexity varies from task to task and it is not
guaranteed for a planner to work the same way for each of the tasks with the same efficiency.
Using optimization-based methods can bring huge advantages, however, depending on the
applied optimizer, complications might occur which would negate all the obtained benefits.
Depending on what optimizer we use the needed time to calculate a feasible path can be either
pretty small or enormously large. An Optimizer that requires lots of time is not appropriate for
robots to operate at interactive speed. There are boundaries for the mathematical optimizations
as well. It is not guaranteed that the resulting solution for an optimization problem is the global
(best) possible, but a local optimum which solves the problem sufficiently enough. On the
other hand this kind of motion planner produce a lot less overhead data which saves up storage
management. There are lots of data reviewing sampling-based methods about efficiency,
accuracy, and time but the newer optimization-based methods have not been reviewed to
be able to make a reasonable statement about their capability as general motion planner for
robots.

In this thesis we will experiment with various implementations of motion planner using certain
optimization techniques. We use an existing modeling framework to define a virtual robot and
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1. Introduction

implement an efficient distance field based environmental representation. Through adjustments
we want to find out if the resulting trajectories solve the problem with a valuable outcome.
To determine if a solution is feasible we will take a look at convergence conditions and how
close to the given goal position we can get. Through obstacles, e.g. shelves, tables and walls,
we want to observe how the behaviour of the robot is affected by the different methods and
the different environmental conditions. Time efficiency is another aspect that is important to
evaluate effective motion planner, that is why we want to avoid huge calculation times that
would force our robot to freeze for a long time.

1.2. Outline

The diploma thesis is outlined as follows:

chapter 2 – Equipment and methodology describes what techniques and methods were
used to set up the environment. It is divided in multiple subtopics. In the first part
we will talk about optimization and give a brief overview on the general problem and
take a closer look on some methods. After that we will talk about the framework we
implemented, tested, and visualized our experiments with. A short introduction of
the system with further technical information is given. At last we will talk about the
environment in which the tests took place; how we executed them and collected the data
for a further analysing purpose.

chapter 3 – Results and Discussions will show the final results of the experiments with math-
ematical analysis, e.g. calculating the median. After that a discussion including com-
parisons of results and pointing out significant or unusual results of certain methods is
following immediately.

chapter 4 – Conclusions completes this thesis and describes conclusions made through the
results and what future perspectives can be made. We will also describe possible adapta-
tions and changes that could lead to better algorithms and improve planning methods
even more.

1.3. Conventions

Names of authors or developers are written in capitals, e.g. NATHAN RATLIFF.

For vectors we will use lower case bold letters, e.g. x. If we want to talk about the i-th
component of a vector x we write xi.
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1.3. Conventions

A scalar function f of a vector x is called objective function and it is the function we want to
maximize or minimize. Objective functions for the optimization problem are differentiable
functions.

A function is m-times differentiable if for any x ∈ Rn the derivative ∇mf(x) can be calcu-
lated.

We differentiate between configuration space and workspace:

• The workspace is the Euclidean 3-space R3 with x =

 x1
x2
x3

 ∈ R3.

• The configuration space describes a set of possible transformations that could be applied
to the robot [LaV06].

A trajectory is a sequence of configurations describing a motion of a robot. Trajectories have
the following properties:

• ξ =


q1
q2
...

qn

 is a trajectory of length T , where qi, i ∈ 1, 2, ..., T is a multidimensional

vector describing a position of the robot.

• The resolution of trajectories is given by the number n. The higher n is, the finer the
trajectory becomes which leads to higher optimization times.

• A trajectory has two important points: qinit and qgoal. The former is the initial position
of the robot’s limb which is fixed and therefore it is not affected by the optimization
methods, while the latter one is given as the final position and used to determine if a
solution is found and if so, how precise it is.

• A feasible solution is found if the difference between φ(qT ) and qgoal is lower than a
certain threshold ∆:

|qgoal − φ(qT )| < ∆

To optimize methods we assume that the functions we are working with are twice differentiable
and therefore the gradient vector and Hessian matrix are given as followed:

• The gradient g is defined as ∇f (x) = g(f) =


∂f
∂x1
∂f
∂x2
...

∂f
∂xn

.
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1. Introduction

• The Hessian matrix H is defined as ∇2f(x) = H(f)(x) =



∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n



The identity matrix of dimension n × n is called In and defined as In =


1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 · · · 1
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2. Equipment and methodology

2.1. Optimization Methods

Since the optimization methods are the central component about this type of planners, we want
to discuss what mathematical optimization is and how it concerns us with regard to robotics. In
the following subchapter we describe the general idea behind optimization and take a closer
look on some methods that we implemented and used for our experiments. It is based on the
books [NW06] and [JS96].

2.1.1. General problem

In optimization we are trying to minimize or maximize a function subject to equality and
inequality constraints [NW06]. If f is our objective function and x is a vector of variables then
we can write the constrained optimization problem as follows:

min
x∈Rn

f (x) s.t.
ci(x) = 0, i ∈ E ,

ci(x) ≤ 0, i ∈ I.
(2.1)

In (2.1) E and I stand for a set of indices of equality and inequality constrains respectively. If
these two constrain sets are empty, we talk about the unconstrained optimization problem.

In optimization we differentiate between two kind of solutions: local and global. In Figure 2.1
we can see a visualization of global and local solutions for a given one-dimensional function
f(x).

To determine a global solution for this problem, we have to find a vector x∗ that satisfies the
equation:

f (x∗) ≤ f (x), x ∈ Rn.(2.2)

If there is an x∗ that solves (2.2), then we call x∗ a global solution for the optimization
problem.
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2. Equipment and methodology

Figure 2.1.: Visual example of local and global optima of given function f

Now let N ⊂ Rn be a continuous set of vectors that are in the immediate neighbourhood of x∗,
then we call x∗ a local solution if the condition

f (x∗) ≤ f (x), x ∈ N(2.3)

is fulfilled. If one or more solution can be found for (2.3) then we talk about local solutions for
the optimization problem.

However, in constrained optimization both the local and global solution have to satisfy the
equality and inequality constrains from (2.1) to be considered as feasible solutions.

Now that we know what the general optimization problem is, let us talk about optimization
methods. An ideal optimization method gets an arbitrary starting point x ∈ Rn as input and
converges to a local or global solution after a certain amount of iterations. If no solution can
be found it has a termination condition which prevents the method from running indefinitely.
The main task of those methods is to decide what direction to take and how big of a step size
to take. Mathematically, it can be written as

xk+1 = xk + αkpk ,(2.4)

where αk is the step size and pk is the direction at the point xk. Every method has its distinctive
way of choosing a proper step size αk and direction pk. To ensure that we have a decrease
of f after every iteration, it is necessary for pk to be a descent direction, which means that
pT

k ∇f (xk) < 0 has to be valid. We formulate the general descent direction with
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2.1. Optimization Methods

pk = −B−1
k ∇f (xk),(2.5)

where Bk is a symmetrical and nonsingular matrix. Combined with (2.5) we can give a general
definition for descent direction through

pT
k ∇f (xk) = −∇f (xk)T B−1

k ∇f (xk) < 0.(2.6)

The main difference between various optimization methods is the choice of Bk .

The success and viability of an optimization method depends on its ability to find a suitable
step size αk, and a direction pk that results in the biggest decrease of f after every iteration.
Finding reasonable values for this two parameters might look easy at first, but it can take up a
lot of time and is bound to high computational costs.

Nonetheless, there are some optimization methods that solve this problem sufficiently enough
to be considered as possible methods for our motion planner. To decide if they are viable or
not, we want to take a closer look and figure out what advantages and disadvantages they
show.

2.1.2. Gradient Descent Method

The first method we want to take a closer look at is the gradient descent method, or sometimes
called steepest descent method. This optimization method requires the objective function to be
once differentiable because it is using the information of the derivative to make decisions about
the direction we have to take in each iteration. It is one of the simplest methods and can be
obtained from (2.5) by setting Bk to the identity matrix In which concludes to the following
equation:

pk = −In∇f (xk).(2.7)

From (2.7) we can easily see that this method uses the gradient −∇f (xk) as its direction for
the next iteration. If we take the definition of the direction given in (2.7) and insert it in (2.4),
we receive the iterative equation for the gradient descent method that can be formulated with

xk+1 = xk − αk∇f (xk).(2.8)
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2. Equipment and methodology

Figure 2.2.: Through the reduction of the gradient we reach the desired goal

Through Figure 2.2 we can see how the gradient descent method progresses towards a solution
xgoal from an initial point xinit.

Now that we defined the gradient descent method, let us talk about the advantages and
disadvantages of it. Due to (2.8) we have a direction pk that assures a decrease of the objective
function f , which is quite possibly the only advantage we can get from this method. With this
assurance we can say that if we can find a sufficient number of iterations k, we will eventually
reach a local optimum at xk = x∗. However, this leads us to the biggest disadvantage of this
method, time. Even under ideal conditions the convergence rate is impractical and takes up a
lot of time. To find a reasonable solution we need enormous numbers of iterations and lots
of calculations to converge to a local optimum. Another big disadvantage is that it is only
using information about the gradient, therefore it can not distinguish between an optima of
a function and a saddle point. These are mainly the reasons why this method is not a viable
solution for real time applications such as motion planner in robotics. But since it is one of the
simplest methods, we still want to make use of it and set it as basis for other motion planner.
Moreover we want to try out various adjustments to make this method applicable in terms of
robotics.

2.1.3. Newton’s Method

Unlike in the previous method, the objective function has to be twice differentiable for the
Newton’s method to be applied. This method uses information about the derivatives to determine
what direction to take at every iteration step. To get Newton’s method from the equation (2.5)
we simply set Bk to the Hessian matrix H(f)(xk). Because the objective function f is clear
from the context, we use the following short notation for the Hessian matrix at point xk:
H(f)(xk) = H(xk) = Hk. We can add the newly defined Bk to (2.5) and we get

pk = −H−1
k ∇f (xk) = −∇2f (xk)−1∇f (xk)(2.9)
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2.1. Optimization Methods

Figure 2.3.: Visualization of iterative search for optima with Newton’s method.

as the direction for Newton’s method. With this direction for the iteration, we combine (2.4)
with (2.9) and we have the iteration rule mathematically written as

xk+1 = xk − αk∇2f (xk)−1∇f (xk).(2.10)

Figure 2.3 shows the iterative progression of Newton’s method from the initial point xinit.

Since it is not guaranteed that the Hessian matrix H(f) is positive definite, direction pk is
not always a descent direction. That means, unlike the gradient descent method, we can not
assure that we have a decrease of the objective function f after every iteration. Therefore, we
adjusted this method by adding λIn to the Hessian matrix H

xk+1 = xk − αk(H + λIn)(xk)−1∇f (xk)(2.11)

to make sure that it is positive definite. This trick is called a Levenberg Marquardt update.

With this method we get better convergence than gradient descent’s, and therefore finding a
solution for the optimization problem is a lot faster. Gradient descent had problems with saddle
points and got stuck at them, because it could not distinct between optima and saddle points,
however, Newton’s method can distinguish between the two, but it is not able to necessarily
avoid them in any nice way.
Due to its fast convergence and low calculation cost, Newton’s method is a good fit as proceeding
for a motion planner used in robotics. Like with the gradient descent, we want to achieve
improvements by adjusting certain parameters on this method.
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2. Equipment and methodology

2.1.4. Optimization in robotics

The biggest question for now is: How to apply optimization to robotics?

In robotics we want to generate the shortest trajectory ξ from a given initial configuration qinit

to a goal configuration qgoal that is collision-free and smooth. This sentence can be formulated
mathematical as an optimization problem as:

min
q∈Rn

fq(q) s.t.
ci(x) = 0, i ∈ E ,

ci(x) ≤ 0, i ∈ I,
(2.12)

where fξ is the trajectory objective function, q ∈ Rn is a n-dimensional vector containing all
configurations of a trajectory, and ci for i = 1, 2, · · · , n are the constraints given through the
environment of the robot. Examples for constraints are obstacles that are on the robot’s way to
the goal configuration, or any constraint given through the physical appearance of the robot,
e.g. height, mobility, degree of freedom. Like in the general optimization problem, we want to
have an iterative function that takes an arbitrary trajectory ξstart ∈ Rn and returns a trajectory
ξ∗ ∈ Rn that defines a smooth and collision-free motion for the robot.

Being able to construct a motion planner that immediately designs a reasonable solution for
the prior mentioned problem would be ideal, since it would not only reduce planning and
calculation time but it also would be a huge step into the right direction for the future of
robotics. We would be able to develop and build robot systems capable of interacting in real
time with their environment and especially with humans. Artificial intelligence might not be
only part of science fiction novels but a possible future for the state of our current robotics.

2.1.5. Examples for optimization-based motion planner

We want to give a brief introduction to an optimization-based motion planner: Covariant
Hamiltonian Optimization for Motion Planning (CHOMP) [NRS09]. Unlike prior motion
planner, CHOMP was designed to directly generate trajectories that optimize a given problem
in respect to various criteria. As defined in 2.1.4, CHOMP uses information about derivatives
to generate a smooth and collision-free trajectory between a start configuration and a desired
goal configuration. It calculates derivatives via finite-differencing and uses them to solve
the problem. By defining obstacle cost function and using them to penetrate the resulting
solutions, CHOMP has a strict decision making process for finding the optimal solution. It uses
information about velocity and acceleration to distinctively decide when the robot is getting
too close to an obstacle. Through a distance field it can determine when certain constrains are
being violated and how the penalization has to be taken care of.
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2.2. ROS - Robot Operating System

Another approach to motion planning was taken through the following planning method:
Stochastic trajectory optimization for motion planning (STOMP) [KCETS11]. Even though the
name is some kind of similar to CHOMP, they differ in important ways. STOMP takes an
initial trajectory that might be noisy and uses iterative optimization to generate a smooth and
collision-free trajectory. With every iteration, STOMP takes the given trajectory and explores
the space around it to create a new trajectory and combines them to find a new updated
trajectory with overall lower cost function. Just like in CHOMP, the main optimization is
done to cost functions considering the obstacle and smoothness criteria. However, STOMP
strictly uses stochastic gradient approximations and does not require explicit cost derivative
calculations.
This are just two motion planner that use optimization as part of their planning process. Both
of them have their advantages and disadvantages respectively, and therefore either of them
can be applied to different problems and be better or worse than the other.

2.2. ROS - Robot Operating System

The main framework we used in this thesis to implement the packages for our experiments
is called Robot Operating System [Ros]. It is an open source system for personal robots and
provides all the needed services for developing. Various tools are included to ease up the
working process and speed up the development of robots. Other advantages of ROS are that
there is a big community behind it with a large number of free libraries that were specifically
developed for ROS and can be easily integrated. This operating system consists of different
distributions and for this thesis we used the ROS groovy distribution with Ubuntu 12.04 LTS.

2.2.1. Optimization framework

Over the past six moths, NATHAN RATLIFF has developed an optimization framework for Au-
tonomous Motion Department of the Max Planck Institute for Intelligent Systems (short: AMD
framework) that was conceptualized to implement and test optimization-based motion planner.
It consists of packages that are not ROS dependent, e.g. amd_motion, amd_optimization, etc.,
and packages that use ROS functionality.

Within this framework the user has access to already existing implementations of optimization
methods or can make use of the interfaces to implement more methods. After implementing his
needed functionality, he can use various ROS tools to run, test, and debug his implementations.
Due to the handy use of the AMD framework, we used it to implement our testing environment
and execute the experiments under several different conditions. The optimization framework
includes common constrained and unconstrained method implementations such as gradient
descent, Newton’s method with Levenberg Marquardt updates, and Augmented Lagrangian. To set
up a motion planner, all we have to do is define a trajectory objective function f consisting of
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2. Equipment and methodology

Figure 2.4.: The rviz ROS tool used to visualize our robot model

differentiable maps used to transform from workspace to configuration space and vice versa,
set the default configuration and a goal that has to be reached, and various parameters that
handle the penalization process while optimizing. Because AMD consists of ROS packages as
well as default C++ libraries, the user has the benefits of using all the existing ROS tools to
integrate his finished planner into an existing robotic system or test it with animated robots to
find out more about possible problems and bugs.

While working with this framework, we used an animated robot model called Apollo robot
that we have visualized with the ROS tool ROS visualization (rviz). We fed our planner
initial data and predefined parameters and it calculated an optimal trajectory solution for
the existing problem. Through messaging, we fed Apollo the trajectory data and it animated
the resulting motion within a given timeframe. Moreover, the visual feedback was used to
compare the different solutions of various planner settings, that we obtained through parameter
optimization.

2.3. Experiments

For the experiments to be convincing, we had to design a general environment and use it for
all methods under the same conditions. Therefore the following criterion has to be met for the
trajectory objective function:

• Robot’s definition has to be given (i.e. kinematics map, key points map, etc.),
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2.3. Experiments

• metric term to determine distances within environment,

• various other intermediate terms,

• and the parameter for these terms functions.

Due to the existing model of Apollo, the definition of the robot was already given. Within
this model we have a kinematics map and key points map that were used to perform the
transformation from a given point q in configuration space to a cartesian position x in
workspace:

(2.13) φ(q) = x.

Another important point are the intermediate terms, that are used to penalize motions that are
hurting our definition of viable solutions. Our methods used the following five intermediate
terms to calculate smooth and collision-free trajectories:

1. DerivativeNormTerm: Basic dynamics term in configuration space

2. PosVelRegularizer: Dynamics term in workspace

3. QuadraticJointPotential: Potential penalizing proximity to joint limits

4. DistanceFieldFunction: Obstacle cost term

5. SquaredPotentialInX: Biases movement to some default configuration to resolve redun-
dancy

Within his AMD framework, NATHEN RATLIFF has already implemented most of these needed
terms. However, we had to provide our own cost term to calculate distances to existing
obstacle in our surrounding. For this purpose we wanted to use Euclidean-distance [DD09]
and implemented a distance field (see: subsection 2.3.1 – Distance Field). All this cost terms
implemented the NDimDiffFunction interface and provided methods to calculate the objective
function value, gradient value, and the Hessian value at a given point x. We wanted to try out
different variants of this terms, so we created a wrapper IntermediateCostTermWrapper that
omits the calculated Hessian matrix. That will show us whether such changes can improve the
resulting trajectories or not.
There are a couple of bash scripts created mainly for the purpose to run our experiments fast
with different configurations. These scripts can provide our planners the parameters without
making changes to the code itself. If no parameters are set within a script, a collection of
default parameters are used instead.
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2. Equipment and methodology

Figure 2.5.: Main structure of the distance field package

2.3.1. Distance Field

Providing an accurate and efficient distance transform or distance field is mandatory for a
motion planner. A lot of time might be lost calculating proximity to the nearest obstacle.
MRINAL KALAKRISHNAN developed based on the paper from FELZENSZWALB & HUTTENLOCHER

[FH04] a distance field using the described distance transform algorithm.
Even though MRINAL KALAKRISHNAN’s work was a good basis for the distance field we needed,
some adaption had to be made. The main problem was that his distance field [Kal] had no
functionality to add obstacles to it. The motion planner had to be tested under real conditions
with obstacles in the robot’s environment. In regarding to this requirement we had to generate
an API for the user. It should be possible for him to add various obstacles (e.g. rectangles,
spheres, etc.) to the distance field. MRINAL KALAKRISHNAN’s distance field was unsigned. For
our planner to work properly, however, a signed distance field was needed. To reach this goal
we had to change up the base class and add functionality to assure correctness of the field.

Once the main changes have been applied to the distance field code, it could be added to the
AMD framework and it provided the following API for the user:

• getSignedDistance: Gets signed distance value from a given position x ∈ R3

• getSignedDistanceGradient: Gets signed distance gradient value from a given position
x ∈ R3
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2.3. Experiments

• addSquareObstacleToField: Adds a squared obstacle to the field and updates the dis-
tance field

• addSphereObstacleToField: Adds a sphere obstacle to the field and updates the distance
field

• addCylindricObstacleToField: Adds a cylindric obstacle to the field and updates the
distance field

• addShelfToField: Adds a shelf obstacle to the field and updates the distance field

• addTableToField: Adds a table obstacle to the field and updates the distance field

The getSignedDistanceGradient uses x ∈ R3 to calculate the corresponding cell within the
grid and uses finite differencing to get the gradient with

(2.14) ∇f
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y

z

 = (f

 x + 1
y + 1
z + 1

 − f

 x − 1
y − 1
z − 1

) · inv_twice_resolution

where x, y, z ∈ N are the coordinates of the cells within the grid, and inv_twice_resolution

is a constant to resolve errors concurring through the resolution.
In Figure 2.6 we can see a table obstacle that was added with the addTableToField function.
The red squares symbolize the distance value which means. The further away we are from the
table, the lower the opacity of the squares is, and therefore the robot would be penalized less
at these points. The blue squares represent the inside of the obstacle with a negative distance
field value.

This distance field was implemented as NDimDiffFunction and given to the motion planner.
Unlike other functions, it can only generate the gradient vector g and returns a zero matrix as
the Hessian H.

2.3.2. Set-up of experiments

After all these preparations have been made, we were ready to create our motion planner for
the desired experiments. We created different scenarios in which the robot has to determine
the best possible trajectory or motion. The scenarios are divided as follows:

• Scenario 1: Robot stands in front of a wall and has to touch his nose. The wall is 1.0m

in front of the robot, and its measurements are 2.0m × 1.0m × 2.0m.
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2. Equipment and methodology

Figure 2.6.: Table obstacle within distance field visualized with rviz.

• Scenario 2: Robot stands in front of a table with its hand under the table. It has to move
the hand to a position above the table. The table is 0.5m in front of the robot, and its
measurements are 1.0m × 1.0m × 1.0m.

• Scenario 1: Robot stands in front of a shelf with its hand in the bottom part. It has to
move his hand to a position in the top part of the shelf. The shelf is 0.5m in front of the
robot, and its measurements are 1.0m × 1.0m × 2.0m. It has a two symmetrical shelfs, a
bottom and a top shelf.

Our main goals is to compare various implementations of the Gradient descent method and New-
ton’s method. We distinguish between method adaptations and objective function adaptations.

As method adaptations we understand:

• Initial step size: Using a variety of starting step sizes

• Step size update: Adjust update rule for step sizes

• Iterations: Maximal number of iterations a method has to find a feasible solution

• Waypoints adjustment: Changing the amount of trajectory waypoints

For the objective function adaptations we generated three test cases that use different inter-
mediate terms to determine an ideal trajectory. In section 2.3 we presented a list of various
terms and talked about a wrapper for them. In our tests we systematically wrapped some of
this terms and omitted the Hessian matrices. Therefore, following trajectory objective functions
were used for the optimization experiments:
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2.3. Experiments

• Default Newton’s method: We maintain all five cost terms

• Full dynamic Hessian approximation: We keep only the Hessian of the first and second
term.

• Configuration space dynamic Hessian approximation: We remove the Hessian of all terms
except the first.

To get a convincing improvement for the optimization-base motion planner is our main goal
here. Through the several test cases and set ups we want to find out what might be the best
solution and which set-ups lead to worse solutions.

The motion planner had to work under the same conditions, and therefore we prepared a
virtual machine. This computer had Ubuntu 12.04 LTS installed and we had 8 GB RAM for our
calculations.

Set-up for Gradient descent method

• Initial step size: Started at ss = 0.000125 and went up to ss = 0.000175 in 0.000025
steps, which lead to three different variants for the initial step size.

• Step size update: Due to existing problems with adjustable step sizes, we used only
fixed step sizes for Gradient descent method.

• Iterations: Set to fixed i = 30000 because of the bad convergence rate of this method.

• Waypoints adjustment: n = 30, n = 100, and n = 200 were chosen for the amount of
waypoints.

After running some initial tests with the gradient descent method it was easy to see that this
was no reasonable and feasible motion planner to be used in robotics. Therefore, this motion
planner was used only on Scenario 3 as a viable comparison to the results of Newton’s method.
Only three tests were executed with this method with the different amount of waypoints.

Set-up for Newton’s method

• Initial step size: Started at ss = 0.05 and went up to ss = 0.95 in 0.05 steps, which lead
to 19 different variants for the initial step size.

• Step size update: Unlike Gradient descent method the Newton’s method had a problem
with fixed step sizes which forced us to use only adjustable step sizes for this method.

• Iterations: Set to fixed i = 100. Within this range it was quite possible for the Newton’s
method to find a feasible solution.
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2. Equipment and methodology

• Waypoints adjustment: n = 30, n = 100, and n = 200 were chosen for the amount of
waypoints.

For the Newton’s method we were able to run all the planned versions with the various
combinations. So with this planner we executed nine tests resulting from the combination of
the scenarios with the differing amount of waypoints n.
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3. Results and Discussions

In this chapter we want to present the results from the test we ran with our motion planner
and discuss the meaning of them. To give a reasonable representation of the the data we want
to use some mathematical definitions to describe the quality of a given test. We are using
the median, average (3.1), and standard deviation (3.2) to display the quality of the resulting
data.

Let N be the number of existing test results, then the average is calculated with

(3.1)
1
N

N∑
i=1

(xi),

where xi is the i-th result. Under the same assumption we get the formula for the standard
deviation:

(3.2)

√∑N
i=1(xi − xavg)

(N − 1) .

3.1. Experimental results

For the presentation of the results we are referencing to the tables in the Appendix A. We are
taking the median, average, and standard deviation from the tables and take a closer look on
certain values. To determine if a feasible solution was found, we are setting ∆ = 0.01 in the
equation of 1.3. This means, that the final configuration qT of the generated trajectory ξ has
to be lower than ∆ for us to have a reasonable solution. If the final configuration qT violates
this condition then ξ is not solving the given problem sufficiently and it is not accepted.

3.2. Examination

We are going through each scenario from 2.3.2 and present median (M), average (A), and
standard deviation (S). Additionally, we will examine data that is standing out in either a
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3. Results and Discussions

positive, or in a negative way. Moreover, as mentioned in the same chapter, we are applying
the various adjustments on the intermediate cost terms for each of the scenarios.
As mentioned in 2.3.2, the scenarios 1 and 2 were omitted for the gradient descent because
of the lacking performance of the gradient descent method. But to have some comparable data,
we executed an experimental optimization on Scenario 3 using the gradient descent method.

Scenario 1: Wall experiment – 30 Waypoints

First version Second version Third Version
Time (s) Distance (m) Time (s) Distance (m) Time (s) Distance (m)

A 0,476315789 0,010575479 0,476315789 0,010383555 0,472105263 0,023514458
M 0,48 0,0100648 0,48 0,0100646 0,47 0,0100662
S 0,009551339 0,002023507 0,008950808 0,001425991 0,007873265 0,039934892

Table 3.1.: First scenario with 30 waypoints

Through this table we have all the needed information to inspect this test case. For each of
the three versions of the motion planner, the required time in average is around 0.47s which
is quite reasonable for our cause. The average distance for the first two versions is close to
our convergence value ∆ = 0.01 but does not fall below it, which means we have not found a
feasible solution. The third version gives us a median close to ∆ = 0.01 but it does not fall
below it either. Additionally its average distance is way over 0.023m which means we are
approximately 2.3cm from our goal point away. With a standard derivation around 3.9cm it is
the worst planner with this set-up.
If we take a look at the entire table A.1, we can see why the third version is giving us those
bad results. If we use an initial step size that is close to ss = 1.0, the final robot position is
≈ 13.7cm away from the goal position which is an undesirable result. However, it is fascinating
to know that if we use ss = 0.1 and ss = 0.85 as initial step sizes, the third version of the
motion planner generates a solution where the robot is less than 1.0cm away from the desired
position.
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3.2. Examination

Scenario 1: Wall experiment – 100 Waypoints

First version Second version Third Version
Time (s) Distance (m) Time (s) Distance (m) Time (s) Distance (m)

A 1,553157895 0,007941839 1,558421053 0,007807503 1,560526316 0,030632445
M 1,54 0,00784141 1,54 0,0076171 1,54 0,00806611
S 0,025397426 0,001007865 0,037603658 0,000756215 0,033578049 0,044706032

Table 3.2.: First scenario with 100 waypoints

At the cost of some calculation time we reached already improvement for the optimizations.
The first two versions of the motion planner reach an average distance from ≈ 0.7cm to our
destined goal. The standard deviations are with values around and below 0.1cm ideal for
our purposes. We want to point out that the second version of the motion planner solves the
problem in average faster with higher precision.
Like in the first test with 30 waypoints, the third version is giving unsatisfying results. The
average and standard deviation are over 3.0cm even though the median is at 0.8cm. By taking
a look at the whole table A.2 we see that step size ss > 0.75 leads to results that are more
than ≈ 10.5cm away from our main goal. If we keep this in mind and use only step sizes
ss ≤ 0.75 then the third version is giving us convincing results that satisfy our conditions. With
the summarized data we can make some assumption about the collected data but we need to
inspect it closer to decide if a motion planner is viable or not.

Scenario 1: Wall experiment – 200 Waypoints

First version Second version Third Version
Time (s) Distance (m) Time (s) Distance (m) Time (s) Distance (m)

A 3,24 0,008157897 3,221052632 0,007915012 3,231052632 0,032473457
M 3,23 0,00808522 3,22 0,00780167 3,21 0,00834295
S 0,035276684 0,001042863 0,040674144 0,000904518 0,051628452 0,041480754

Table 3.3.: First scenario with 200 waypoints

For all these results the required time is with more than 3.22s too high. The accuracy got
worse compared to the case with 100 waypoints. Investing twice the time for the calculations
and losing accuracy is a bad trade-off for this case. Remarkable is the fact, that for all the
motion planner applied on the various test cases, the initial step size ss = 0.05 leads always to
a non-optimal solution.
Through table A.3, we see clearly that the third version is still the least reliable. If we are
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using an optimization with more waypoints, a smaller step size ss is mandatory to solve the
problem with a feasible solution. The motion planner can not generate a usable trajectory with
ss ≥ 0.75.

Scenario 2: Table experiment – 30 Waypoints

First version Second version Third Version
Time (s) Distance (m) Time (s) Distance (m) Time (s) Distance (m)

A 0,491578947 0,046372944 0,471052632 0,061000942 0,475789474 0,010800905
M 0,48 0,00601621 0,47 0,00577956 0,48 0,00469523
S 0,040724434 0,06291398 0,008093026 0,075467118 0,033385923 0,026843648

Table 3.4.: Second scenario with 30 waypoints

Change of environment has no effect on the speed of the motion planner. With ≈ 0.48s it has
generated a feasible trajectory. However, if we take a look at the standard deviation for the
distance, we can see that we had a fall off there. The values for the first version are fluctuate
with ≈ 6.3cm around the average, but its median is with 0.6cm the best result we got so far.
This means that there are certain solutions that are standing out negatively. Our second version
of the motion planner is generating even worse results. Surprisingly this time the third versions
was the most successful. With a median of ≈ 0.5cm, and therefore it is closest to our desired
position.
By inspecting the entire table, we see that our motion planners have certain step size values
generating almost perfect trajectories. With a step size ss = 0.6, the second version is only
0.2cm off, while using ss = 0.55 leads to a solution that is ≈ 21.3cm off from the required
position. The third version got an ideal solution for every step size except for ss = 0.8, and
therefore it is the most viable one for this scenario.

Scenario 2: Table experiment – 100 Waypoints

First version Second version Third Version
Time (s) Distance (m) Time (s) Distance (m) Time (s) Distance (m)

A 1,561578947 0,006572154 1,552105263 0,004043997 1,557368421 0,006401402
M 1,56 0,00370381 1,55 0,00370833 1,56 0,00402259
S 0,02167004 0,011636142 0,019882697 0,000873756 0,026841532 0,009800045

Table 3.5.: Second scenario with 100 waypoints
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At ss = 0.95 the first motion planner has a 5.4cm offset to the goal and that is the only solution
that has not converged for this test case. All other step sizes lead to feasible solutions for all
three planner. With calculation times around 1.55s it is debatable if it is reasonable to use so
many waypoints.

Scenario 2: Table experiment – 200 Waypoints

First version Second version Third Version
Time (s) Distance (m) Time (s) Distance (m) Time (s) Distance (m)

A 3,225789474 0,009713417 3,260526316 0,008047844 3,227894737 0,005909818
M 3,22 0,00566804 3,25 0,00558847 3,23 0,00574177
S 0,036562851 0,018906997 0,05264912 0,01131687 0,028003759 0,000377053

Table 3.6.: Second scenario with 200 waypoints

Like in the previous scenario, all motion planner solved the problem and generated trajectories
reaching the goal position. The average of the first two planners is just below 1.0cm and
therefore they converged properly. Using 200 waypoints for a trajectory leads always to a
calculation time over 3.0s. Freezing time of 3s is significantly high for robotics’ purposes. Our
robot would not be fully interactive if he stops for several seconds to determine his next motion
or movement.
Our first version of the motion planner has a value that is falling off the grid for ss = 0.7 and
the second planner has one at ss = 0.75. Aside from that we have reached ideal convergence
for every step size.

Scenario 3: Shelf experiment – 30 Waypoints

First version Second version Third Version
Time (s) Distance (m) Time (s) Distance (m) Time (s) Distance (m)

A 0,413157895 0,010218312 0,430526316 0,006787773 0,464736842 0,006677118
M 0,47 0,00662503 0,47 0,00662263 0,47 0,00662083
S 0,08698995 0,014660317 0,068513882 0,000439549 0,026534761 0,000277742

Table 3.7.: Third scenario with 30 waypoints

As we can see, the difference between table and shelf is not recognizable. The standard
deviation for the first method is around 1.0cm due to a spiking value at ss = 0.9. The average
for this method is above our threshold value ∆ = 0.01, but has no greater meaning when you
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take a look at A.7.
The two other versions have standard deviations that lie at ≈ 0.03 − 0.04cm, which means
that all results are close to each other. In average the distance to our goal position is 0.6cm

and therefore we have convergent solutions. To optimize a trajectory with 30 waypoints our
motion planner require less than 1s, which would be more than ideal for a viable solution in
robotics.

Scenario 3: Shelf experiment – 100 Waypoints

First version Second version Third Version
Time (s) Distance (m) Time (s) Distance (m) Time (s) Distance (m)

A 1,565789474 0,017076666 1,551578947 0,028872566 1,542631579 0,011382859
M 1,55 0,00628406 1,55 0,00604228 1,53 0,00695569
S 0,045131387 0,046453594 0,02733804 0,067590153 0,029597692 0,019445054

Table 3.8.: Third scenario with 100 waypoints

As we have seen in the previous results, the averages and standard deviations of all the motion
planners are not convincing. To determine if a planner is viable or not, we have to take a closer
look at all the results generated during an experiment. You can see in A.8 that solutions are not
converging and getting stuck at some points that are more than 20.0cm away from our goal
position. If the step sizes leading to this bad results were omitted, our motion planners would
be ideal for robotics’ purposes. Without the spiking values, planners generate trajectories with
final configuration that are closer to the desired position.

Scenario 3: Shelf experiment – 200 Waypoints

First version Second version Third Version
Time (s) Distance (m) Time (s) Distance (m) Time (s) Distance (m)

A 3,304210526 0,045546636 3,332631579 0,041123423 3,323684211 0,029157883
M 3,3 0,00877765 3,32 0,00861207 3,31 0,00860566
S 0,018653504 0,044659174 0,031418697 0,042495214 0,031659741 0,089719925

Table 3.9.: Third scenario with 200 waypoints

Using 200 waypoints for this scenario leads to the worst outcome. The averages for all three
planners are higher than 2.9cm while the standard deviations are between 4.2cm and 8.9cm.
The first version of the motion planner produces for step sizes ss ≤ 0.45 feasible solutions.
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Aside from that, all the solutions are off by at least ≈ 4.3cm. For the second one the step
size ss = 0.5 is the upper threshold. Step sizes above 0.5 are not sufficient enough for us to
use. By far the best results are provided by the third version of our planner. Until reaching
a step size of 0.8 it is solving the optimization problem adequately. Its biggest fall-off is with
ss = 0.95 where the calculated solution is ≈ 40.0cm off the main goal position. This value is
not bearable.

Now that we covered the nine test case for the Newton’s method let us take a look at the
solutions generated through gradient descent method.

Scenario 3: Shelf experiment (gradient descent) – 30 Waypoints

First version Second version Third Version
Time (s) Distance (m) Time (s) Distance (m) Time (s) Distance (m)

A 124,3666667 0,0119849 124,7033333 0,0119849 124,8266667 0,0119849
M 124,38 0,0119849 124,58 0,0119849 124,94 0,0119849
S 0,1106044 0 0,26727015 0 0,287286152 0

Table 3.10.: Third scenario with 30 waypoints (gradient descent)

The first thing that we see is the time required for this motion planner. With over 120s they
needed 250× more calculation time than the planners using Newton’s method. And even
with 30.000 iterations, they have not converged to a feasible solution. However, the most
remarkable part of these planners are the similar results. No matter what step size you choose,
all the motion planner return a solution that is ≈ 1.2cm off from the goal position. Because
gradient descent ignores information about the Hessians, the three versions are identical for
this optimization method.

Scenario 3: Shelf experiment (gradient descent) – 100 Waypoints

First version Second version Third Version
Time (s) Distance (m) Time (s) Distance (m) Time (s) Distance (m)

A 421,0633333 0,0121689 421,39 0,0121689 422,7766667 0,0121689
M 421,39 0,0121689 421,4 0,0121689 422,74 0,0121689
S 1,496974727 0 1,065035211 0 0,875576001 0

Table 3.11.: Third scenario with 100 waypoints (gradient descent)
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With 100 waypoints it needs 280× more time than the Newton’s method with the same number
of waypoints. By increasing the number of waypoints we got a loss in accuracy. Aside from
that, everything is the same as with 30 waypoints.

Scenario 3: Shelf experiment (gradient descent) – 200 Waypoints

First version Second version Third Version
Time (s) Distance (m) Time (s) Distance (m) Time (s) Distance (m)

A 856,74 0,0121663 858,3833333 0,0121663 859,5866667 0,0121663
M 855,68 0,0121663 857,92 0,0121663 859,24 0,0121663
S 2,691393691 0 0,811192538 0 1,314736983 0

Table 3.12.: Third scenario with 200 waypoints (gradient descent)

Like before, increasing the number of waypoints did not improve the outcome of the solutions.
With ≈ 855s for the calculations, this method is not sustainable for our purposes. A robot can
not freeze in place for more than 2s to calculate its motions.
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Through the collected data we can say that our motion planner were mostly successful.
Adapting the step sizes iteratively has revealed some unbearable occurrences leading to non-
converging optimization methods. The three different versions of our motion planner displayed
exactly what was expected: various tasks require a diversity of motion planners. While in the
first scenario the results of the third motion planner were questionable, its solutions for other
scenarios were astounding. The same goes for the other planners, which have their pros and
cons themselves.

In regard to robotics, we can say that motion planner based on gradient descent are not a viable
option at all. The time such a motion planner takes up to get a solutions is unbearable and
undesirable. Even with the lowest number of waypoints these planners needed at least 120s to
determine the optimal solution. Additionally, the given 30.000 iterations were not enough to
make the solution converge.
However, the Newton’s method based motion planners were a big success. Even for trajectories
consisting of 200 waypoints, these planners did not need more than 3.5s in average. Aside
from spiking divergent values, they were able to determine converging solutions to all of the
three scenarios. The most important part about them though, is to pick the right initial step
size. Our tests have shown that the best step sizes for one task might be the worst for another
task.

4.1. Future perspective

Due to time issues, we were only able to run our tests with unconstrained motion planners.
However, in robotics we have to take account of other constraints than just obstacles. The
physical appearance of the robot forces joint constraints on us, that were neglected by our
motion planners. To consider them properly, we have to implement a motion planner using a
constraint optimization method (e.g. Augmented Lagrangian method). Such a motion planner
would not violate joint constraints, and therefore could be applied to real robots.
Because our technology is advancing with enormous speed, this research field will get more
attention in the near future. It is relatively new and has big potential to grow even more.
Building robots that are able to interact with humans efficiently would ease our everyday lives
a lot. It might even be, that someday we will go to a restaurant and a robot is bringing us our
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4. Conclusions

meals using motion-based planners to avoid other customers’ tables and chairs. Until then we
have to invest more time on researching such methods to find more powerful planners.
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A. Appendix

A.0.1. Test data

To assure completion of collected test data, we attach the collected data that was created
during the tests with the motion planner.
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Time Distance Time Distance Time Distance
0,05 0,47 0,0189112 0,48 0,016271 0,46 0,011386

0,1 0,48 0,0106575 0,48 0,00994725 0,47 0,00959152
0,15 0,47 0,0102731 0,46 0,0100414 0,48 0,0100488

0,2 0,49 0,0101262 0,48 0,0100462 0,46 0,0100732
0,25 0,49 0,0100749 0,48 0,0100555 0,47 0,0100672

0,3 0,48 0,0100635 0,46 0,0100618 0,48 0,0100662
0,35 0,47 0,0100616 0,48 0,0100636 0,46 0,0100673

0,4 0,48 0,0100628 0,47 0,0100681 0,48 0,011349
0,45 0,48 0,0100626 0,48 0,0100614 0,47 0,0100649

0,5 0,49 0,010058 0,48 0,0100428 0,47 0,0100623
0,55 0,49 0,0100682 0,47 0,0100641 0,47 0,0100174

0,6 0,47 0,0100681 0,48 0,01007 0,48 0,0100691
0,65 0,47 0,0100667 0,48 0,0100646 0,47 0,0100657

0,7 0,48 0,0100691 0,47 0,0100692 0,48 0,0100641
0,75 0,46 0,0100596 0,48 0,0100733 0,47 0,0100632

0,8 0,47 0,0100639 0,47 0,010076 0,48 0,0100739
0,85 0,47 0,0100648 0,47 0,0100678 0,48 0,00998188

0,9 0,46 0,0100641 0,48 0,0100726 0,46 0,137022
0,95 0,48 0,0100582 0,5 0,0100709 0,48 0,136641

Average 0,476315789 0,010575479 0,476315789 0,010383555 0,472105263 0,023514458
Median 0,48 0,0100648 0,48 0,0100646 0,47 0,0100662
S. deviation 0,009551339 0,002023507 0,008950808 0,001425991 0,007873265 0,039934892

Step size First version Second version Third version

Figure A.1.: Robot touches his nose with a wall in front of him. Trajectory consisting of 30
waypoints.
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Time Distance Time Distance Time Distance
0,05 1,56 0,0118806 1,57 0,0106394 1,59 0,00991183

0,1 1,54 0,0081277 1,54 0,00762281 1,54 0,00783408
0,15 1,57 0,00783261 1,57 0,00761206 1,52 0,00774957

0,2 1,58 0,00777038 1,53 0,0075898 1,54 0,00770248
0,25 1,53 0,00771643 1,54 0,00755702 1,54 0,00766302

0,3 1,56 0,00770253 1,54 0,0076171 1,54 0,00766675
0,35 1,57 0,0077038 1,55 0,00761299 1,62 0,00763528

0,4 1,54 0,00784141 1,53 0,00781902 1,54 0,00797945
0,45 1,53 0,0079057 1,54 0,00767664 1,53 0,00798911

0,5 1,54 0,00791806 1,57 0,00726061 1,56 0,00800083
0,55 1,54 0,00796235 1,62 0,00734494 1,61 0,00806611

0,6 1,53 0,0080302 1,55 0,00804394 1,55 0,00817191
0,65 1,58 0,0080489 1,65 0,0080621 1,54 0,00840271

0,7 1,53 0,00790182 1,54 0,00813057 1,59 0,00841436
0,75 1,63 0,00724818 1,54 0,00805447 1,57 0,00978397

0,8 1,56 0,0070809 1,64 0,00718591 1,54 0,11838
0,85 1,53 0,00790228 1,53 0,00810302 1,54 0,117917

0,9 1,55 0,00732147 1,53 0,00723133 1,64 0,105804
0,95 1,54 0,00699963 1,53 0,00717883 1,55 0,116944

Average 1,553157895 0,007941839 1,558421053 0,007807503 1,560526316 0,030632445
Median 1,54 0,00784141 1,54 0,0076171 1,54 0,00806611
S. deviation 0,025397426 0,001007865 0,037603658 0,000756215 0,033578049 0,044706032

Step size First version Second version Third version

Figure A.2.: Robot touches his nose with a wall in front of him. Trajectory consisting of 100
waypoints.
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Time Distance Time Distance Time Distance
0,05 3,23 0,0121387 3,24 0,0112243 3,36 0,010074

0,1 3,24 0,00837103 3,22 0,00800442 3,26 0,00815338
0,15 3,23 0,00808522 3,16 0,0079693 3,19 0,00808669

0,2 3,21 0,008009 3,17 0,00789533 3,2 0,00799041
0,25 3,3 0,00794127 3,19 0,00780167 3,26 0,00791225

0,3 3,2 0,00788096 3,18 0,00778032 3,18 0,00784758
0,35 3,2 0,00783342 3,2 0,00774474 3,3 0,00774733

0,4 3,26 0,00802895 3,25 0,00802205 3,19 0,00823197
0,45 3,29 0,00809917 3,21 0,00791733 3,21 0,00816476

0,5 3,19 0,0081262 3,27 0,00756866 3,22 0,00822704
0,55 3,2 0,00816339 3,27 0,00760079 3,29 0,00834295

0,6 3,3 0,00820652 3,17 0,00828402 3,28 0,00849696
0,65 3,21 0,00831229 3,24 0,00835223 3,17 0,00874162

0,7 3,26 0,00784435 3,23 0,00837342 3,26 0,00884195
0,75 3,28 0,00728238 3,19 0,0071652 3,18 0,0997885

0,8 3,26 0,00719409 3,23 0,00737719 3,18 0,10031
0,85 3,22 0,00843968 3,28 0,00684959 3,2 0,0996402

0,9 3,23 0,00693111 3,3 0,00718255 3,21 0,0999741
0,95 3,25 0,00811231 3,2 0,00727211 3,25 0,100424

Average 3,24 0,008157897 3,221052632 0,007915012 3,231052632 0,032473457
Median 3,23 0,00808522 3,22 0,00780167 3,21 0,00834295
S. deviation 0,035276684 0,001042863 0,040674144 0,000904518 0,051628452 0,041480754

Step size First version Second version Third version

Figure A.3.: Robot touches his nose with a wall in front of him. Trajectory consisting of 200
waypoints.
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Time Distance Time Distance Time Distance
0,05 0,48 0,0066207 0,46 0,0065949 0,47 0,00469523

0,1 0,48 0,00601621 0,46 0,00577956 0,48 0,00578056
0,15 0,47 0,00533426 0,47 0,00511464 0,47 0,00499597

0,2 0,46 0,00469981 0,47 0,00447197 0,49 0,00430806
0,25 0,56 0,00432677 0,47 0,00426847 0,49 0,00413877

0,3 0,47 0,00425888 0,48 0,00416351 0,47 0,00405881
0,35 0,47 0,00416054 0,47 0,00413749 0,49 0,00415274

0,4 0,47 0,00414205 0,48 0,00412046 0,56 0,00413054
0,45 0,61 0,00413216 0,46 0,00575044 0,47 0,00413243

0,5 0,48 0,00365721 0,48 0,00411019 0,46 0,00532224
0,55 0,47 0,0419604 0,47 0,213171 0,47 0,00553614

0,6 0,46 0,0349336 0,47 0,00214196 0,48 0,00473246
0,65 0,46 0,00403885 0,47 0,128702 0,48 0,00397766

0,7 0,53 0,136242 0,48 0,136565 0,48 0,00574192
0,75 0,48 0,0859767 0,48 0,0659358 0,49 0,00319797

0,8 0,48 0,0532668 0,46 0,0829655 0,49 0,121613
0,85 0,48 0,174833 0,48 0,17081 0,46 0,00527424

0,9 0,48 0,194655 0,46 0,198636 0,37 0,00528634
0,95 0,55 0,107831 0,48 0,111579 0,47 0,00414211

Average 0,491578947 0,046372944 0,471052632 0,061000942 0,475789474 0,010800905
Median 0,48 0,00601621 0,47 0,00577956 0,48 0,00469523
S. deviation 0,040724434 0,06291398 0,008093026 0,075467118 0,033385923 0,026843648

Step size First version Second version Third version

Figure A.4.: Robot moves arm from under the table to top of the table. Trajectory consisting
of 30 waypoints.
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Time Distance Time Distance Time Distance
0,05 1,57 0,00659244 1,57 0,00653982 1,53 0,00578198

0,1 1,61 0,00564408 1,55 0,00595382 1,54 0,0056552
0,15 1,59 0,0051465 1,56 0,00505329 1,56 0,00483729

0,2 1,56 0,00443786 1,55 0,00426972 1,62 0,00402259
0,25 1,53 0,00394664 1,55 0,00388516 1,6 0,00360914

0,3 1,56 0,00377144 1,58 0,00372801 1,55 0,00356645
0,35 1,56 0,00366407 1,54 0,00363367 1,55 0,00364976

0,4 1,58 0,00358797 1,54 0,00353234 1,56 0,00368179
0,45 1,57 0,00358004 1,54 0,00352573 1,56 0,00341853

0,5 1,54 0,00352941 1,55 0,00365958 1,56 0,00316161
0,55 1,56 0,00369366 1,55 0,00370833 1,58 0,00358896

0,6 1,53 0,0036464 1,57 0,00367138 1,59 0,004388
0,65 1,57 0,00372529 1,6 0,00365245 1,52 0,00479588

0,7 1,54 0,00372237 1,53 0,00370775 1,53 0,00400297
0,75 1,56 0,00323926 1,53 0,00424465 1,53 0,00387949

0,8 1,58 0,00357338 1,53 0,00371335 1,53 0,00427218
0,85 1,55 0,0012439 1,56 0,00371526 1,58 0,0467652

0,9 1,53 0,00370381 1,52 0,00335819 1,54 0,00415997
0,95 1,58 0,0544224 1,57 0,00328345 1,56 0,00438964

Average 1,561578947 0,006572154 1,552105263 0,004043997 1,557368421 0,006401402
Median 1,56 0,00370381 1,55 0,00370833 1,56 0,00402259
S. deviation 0,02167004 0,011636142 0,019882697 0,000873756 0,026841532 0,009800045

Step size First version Second version Third version

Figure A.5.: Robot moves arm from under the table to top of the table. Trajectory consisting
of 100 waypoints.
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Time Distance Time Distance Time Distance
0,05 3,22 0,00668646 3,28 0,00676355 3,19 0,00589557

0,1 3,25 0,00592657 3,26 0,00573169 3,22 0,0057346
0,15 3,25 0,00546804 3,25 0,00529161 3,24 0,00553267

0,2 3,21 0,00536017 3,25 0,00520343 3,2 0,00559538
0,25 3,32 0,00547038 3,33 0,00541913 3,23 0,00564249

0,3 3,19 0,00557052 3,21 0,00558847 3,27 0,0057678
0,35 3,21 0,00570431 3,28 0,00565662 3,22 0,00588392

0,4 3,22 0,0057089 3,26 0,00567819 3,21 0,00586177
0,45 3,2 0,00569318 3,23 0,00560181 3,21 0,00569208

0,5 3,17 0,00561577 3,23 0,00556739 3,26 0,00554632
0,55 3,22 0,00561469 3,22 0,00556814 3,21 0,00572433

0,6 3,21 0,00572544 3,23 0,00554087 3,2 0,00679353
0,65 3,21 0,00317354 3,24 0,00563151 3,23 0,00564558

0,7 3,23 0,0876872 3,43 0,00565825 3,31 0,00564083
0,75 3,22 0,00571883 3,26 0,054666 3,23 0,00574177

0,8 3,23 0,00561107 3,23 0,00573879 3,23 0,00622679
0,85 3,31 0,00576969 3,21 0,00557994 3,21 0,00652015

0,9 3,22 0,00566804 3,23 0,00244298 3,23 0,00629285
0,95 3,2 0,00238213 3,32 0,00558067 3,23 0,00654811

Average 3,225789474 0,009713417 3,260526316 0,008047844 3,227894737 0,005909818
Median 3,22 0,00566804 3,25 0,00558847 3,23 0,00574177
S. deviation 0,036562851 0,018906997 0,05264912 0,01131687 0,028003759 0,000377053

Step size First version Second version Third version

Figure A.6.: Robot moves arm from under the table to top of the table. Trajectory consisting
of 200 waypoints.
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Time Distance Time Distance Time Distance
0,05 0,48 0,00858674 0,48 0,00833613 0,48 0,00683878

0,1 0,49 0,00783564 0,47 0,00757114 0,46 0,0075814
0,15 0,47 0,00724094 0,47 0,00700342 0,48 0,00712617

0,2 0,47 0,00686887 0,47 0,00669975 0,48 0,00669651
0,25 0,47 0,00671328 0,47 0,00666817 0,46 0,00663167

0,3 0,48 0,00668753 0,47 0,00667785 0,47 0,00662251
0,35 0,48 0,00666014 0,48 0,00664064 0,46 0,00660005

0,4 0,48 0,00664353 0,46 0,00661909 0,47 0,00661637
0,45 0,49 0,00662503 0,3 0,00658292 0,36 0,00661727

0,5 0,34 0,00661749 0,41 0,00662263 0,46 0,00620967
0,55 0,41 0,00662133 0,33 0,00662275 0,48 0,00660513

0,6 0,36 0,00662118 0,3 0,00658139 0,48 0,00655835
0,65 0,42 0,00662195 0,48 0,00663677 0,47 0,00663836

0,7 0,33 0,00661618 0,41 0,00661555 0,46 0,00662083
0,75 0,21 0,00661618 0,48 0,00661904 0,48 0,00643333

0,8 0,37 0,00661628 0,47 0,00662121 0,47 0,00666541
0,85 0,23 0,00662167 0,46 0,00661648 0,47 0,00654539

0,9 0,48 0,0707203 0,3 0,00661557 0,47 0,00661528
0,95 0,39 0,00661367 0,47 0,00661718 0,47 0,00664277

Average 0,413157895 0,010218312 0,430526316 0,006787773 0,464736842 0,006677118
Median 0,47 0,00662503 0,47 0,00662263 0,47 0,00662083
S. deviation 0,08698995 0,014660317 0,068513882 0,000439549 0,026534761 0,000277742

Step size First version Second version Third version

Figure A.7.: Robot reaches from bottom shelf to top shelf. Trajectory consisting of 30 way-
points.
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Time Distance Time Distance Time Distance
0,05 1,65 0,00872496 1,63 0,00850544 1,53 0,00760263

0,1 1,53 0,00771915 1,56 0,00764055 1,53 0,00739212
0,15 1,53 0,00680345 1,55 0,00672227 1,52 0,00668857

0,2 1,52 0,00649942 1,55 0,00642172 1,52 0,00654466
0,25 1,62 0,00636026 1,62 0,00635837 1,53 0,00625791

0,3 1,61 0,00633131 1,54 0,00619026 1,52 0,0063549
0,35 1,61 0,00632593 1,53 0,006125 1,54 0,00633137

0,4 1,54 0,00611909 1,54 0,00603215 1,6 0,00679456
0,45 1,56 0,00632989 1,54 0,00602254 1,52 0,00677872

0,5 1,54 0,00628406 1,55 0,00600501 1,52 0,00694371
0,55 1,58 0,00618127 1,53 0,00595552 1,58 0,00696847

0,6 1,55 0,00604115 1,54 0,00603504 1,55 0,00695569
0,65 1,65 0,00600212 1,55 0,00595452 1,52 0,00703663

0,7 1,52 0,00593954 1,54 0,206644 1,53 0,00690035
0,75 1,52 0,0055763 1,53 0,00604228 1,55 0,0916623

0,8 1,52 0,00601361 1,53 0,00602903 1,52 0,00707092
0,85 1,54 0,00618359 1,55 0,00603932 1,62 0,00708413

0,9 1,61 0,208884 1,55 0,233824 1,57 0,00794822
0,95 1,55 0,00613755 1,55 0,00603173 1,54 0,00695847

Average 1,565789474 0,017076666 1,551578947 0,028872566 1,542631579 0,011382859
Median 1,55 0,00628406 1,55 0,00604228 1,53 0,00695569
S. deviation 0,045131387 0,046453594 0,02733804 0,067590153 0,029597692 0,019445054

Step size First version Second version Third version

Figure A.8.: Robot reaches from bottom shelf to top shelf. Trajectory consisting of 100 way-
points.
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Time Distance Time Distance Time Distance
0,05 3,31 0,00877765 3,36 0,00861207 3,31 0,00762306

0,1 3,3 0,00772349 3,29 0,00757812 3,31 0,00737272
0,15 3,29 0,00737093 3,29 0,00691608 3,36 0,00744362

0,2 3,28 0,00762408 3,33 0,00725421 3,34 0,00816527
0,25 3,32 0,00806367 3,32 0,00781658 3,3 0,00831187

0,3 3,29 0,00834496 3,3 0,00822697 3,32 0,00860566
0,35 3,3 0,00851412 3,32 0,00848035 3,36 0,00863699

0,4 3,3 0,00858841 3,39 0,00860718 3,41 0,00869954
0,45 3,3 0,00863489 3,31 0,00852695 3,3 0,00863713

0,5 3,31 0,0438068 3,39 0,00853317 3,34 0,00858645
0,55 3,31 0,0706042 3,36 0,0797251 3,29 0,00859155

0,6 3,31 0,0515243 3,37 0,0875162 3,31 0,00861668
0,65 3,3 0,00856159 3,32 0,0643891 3,31 0,00859357

0,7 3,37 0,0911449 3,35 0,0682229 3,3 0,00853491
0,75 3,3 0,0986779 3,32 0,0734994 3,3 0,00877172

0,8 3,3 0,107093 3,36 0,00870865 3,3 0,00877223
0,85 3,31 0,115237 3,32 0,0836358 3,3 0,010189

0,9 3,29 0,0775102 3,32 0,140579 3,37 0,0102048
0,95 3,29 0,127584 3,3 0,0945172 3,32 0,399643

Average 3,304210526 0,045546636 3,332631579 0,041123423 3,323684211 0,029157883
Median 3,3 0,00877765 3,32 0,00861207 3,31 0,00860566
S. deviation 0,018653504 0,044659174 0,031418697 0,042495214 0,031659741 0,089719925

Step size First version Second version Third version

Figure A.9.: Robot reaches from bottom shelf to top shelf. Trajectory consisting of 200 way-
points.
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Time Distance Time Distance Time Distance
0,000125 124,25 0,0119849 125,01 0,0119849 124,94 0,0119849

0,00015 124,38 0,0119849 124,58 0,0119849 125,04 0,0119849
0,000175 124,47 0,0119849 124,52 0,0119849 124,5 0,0119849

Average 124,3666667 0,0119849 124,7033333 0,0119849 124,8266667 0,0119849
Median 124,38 0,0119849 124,58 0,0119849 124,94 0,0119849
S. deviation 0,1106044 0 0,26727015 0 0,287286152 0

Step size First version Second version Third version

Figure A.10.: Robot reaches from bottom shelf to top shelf. Trajectory consisting of 30 way-
points.
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Time Distance Time Distance Time Distance
0,000125 422,37 0,0121689 422,45 0,0121689 423,67 0,0121689

0,00015 419,43 0,0121689 421,4 0,0121689 421,92 0,0121689
0,000175 421,39 0,0121689 420,32 0,0121689 422,74 0,0121689

Average 421,0633333 0,0121689 421,39 0,0121689 422,7766667 0,0121689
Median 421,39 0,0121689 421,4 0,0121689 422,74 0,0121689
S. deviation 1,496974727 0 1,065035211 0 0,875576001 0

Step size First version Second version Third version

Figure A.11.: Robot reaches from bottom shelf to top shelf. Trajectory consisting of 100
waypoints.
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Time Distance Time Distance Time Distance
0,000125 854,74 0,0121663 859,32 0,0121663 859,24 0,0121663

0,00015 855,68 0,0121663 857,92 0,0121663 861,04 0,0121663
0,000175 859,8 0,0121663 857,91 0,0121663 858,48 0,0121663

Average 856,74 0,0121663 858,3833333 0,0121663 859,5866667 0,0121663
Median 855,68 0,0121663 857,92 0,0121663 859,24 0,0121663
S. deviation 2,691393691 0 0,811192538 0 1,314736983 0

Step size First version Second version Third version

Figure A.12.: Robot reaches from bottom shelf to top shelf. Trajectory consisting of 200
waypoints.
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