
INTEGRATION MANAGEMENT
A Virtualization Architecture for Adapter

Technologies

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart

zur Erlangung der Würde eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Ralf Wagner

aus Stuttgart

Hauptberichter: Prof. Dr.-Ing. habil. Bernhard Mitschang

Mitberichter: Prof. Dr. rer. nat. Frank Leymann

Tag der mündlichen Prüfung: 28.01.2015

Institut für Parallele und Verteilte Systeme (IPVS)

der Universität Stuttgart

2015

Abstract

There is an abundance of integration technologies and there still is no means to sys-
tematically deal with them. This leads to increasing complexity in IT environments
and also to increasing integration efforts and IT costs. Integration management
(IM) provides a means of systematically dealing with integration technologies. It ab-
stracts from integration technologies so that software development is shielded from
integration tasks. The achieved integration independence significantly alleviates
maintenance and evolution of IT environments and reduces the overall complexity
and costs of IT landscapes.

We designed and realized an IM system, the virtualization tier (VT), that allows
to reuse adapters of different integration technologies so that costly development
of new adapters from scratch can be avoided. The VT achieves integration inde-
pendence by means of a global access layer that supports transparent processing
independent of the access style chosen by a client system and independent of the
integration technology used in the VT to access a remote system. A client system
can access any remote system by means of the VT if there is a suitable adapter
deployed in the VT. The integration tasks that are related with accessing remote
systems can be completely encapsulated by means of the VT so that a software
developer can concentrate on the development of the core application logic.

Deployment and administration tasks in the VT are handled by different IT
roles, i.e. VT object deployer and adapter deployer, so that the complex use of inte-
gration technologies becomes practically manageable. The VT also enables different
architecture patterns to realize systematic integration solutions based on IM tech-
nology. The VT-based architecture patterns reuse parts of integration technologies
and provide for significantly less complex integration solutions than conventional
integration solutions do. Even SOA-based applications can benefit from the VT by
using the VT as a global ESB. IM technology can thereby become a critical driver
of Web service infrastructures. Finally, our performance evaluation of the VT shows
that IM technology can work efficiently and it shows that optimization effects can
even increase performance of IT scenarios.

Zusammenfassung

Einleitung

Die Aufgaben und Prozesse eines Unternehmens sind immer stärker mit seinen Soft-
waresystemen verbunden. Aus diesem Grund werden Softwaresysteme auch immer
stärker miteinander verknüpft und deshalb ist die Integration von Softwaresystemen
ein wichtiger Baustein für ein modernes und wettbewerbsfähiges Unternehmen. Die
Problematik bei der Integration von Softwaresystemen besteht darin, dass sie sehr
verschieden sein können, insbesondere aufgrund unterschiedlicher Technologien. Da-
durch entstehen Inkompatibilitäten zwischen den Softwaresystemen, die eine direkte
Interoperabilität verhindern. Hier setzen Integrationstechnologien an, die die tech-
nischen Heterogenitäten und Inkompatibilitäten von Softwaresystemen überbrücken
können. In diesem Zusammenhang tauchen verschiedene Begriffe auf:

• Middlewaretechnologie: Eine Middlewaretechnologie spezifiziert eine Ar-
chitektur, die verschiedenartige Softwaresysteme – die Remotesysteme – inte-
grieren kann und die anderen Softwaresystemen – den Clientsystemen – einen
einheitlichen Zugriff auf die Remotesysteme ermöglicht.

• Middlewaresystem: Ein Middlewaresystem ist ein Softwaresystem, das auf
Middlewaretechnologie basiert. Beispiele von Middlewaresystemen sind Java
EE Anwendungsserver, föderierte Datenbanksysteme und Message Broker.

• Adapter: Ein Adapter – auch bekannt als Konnektor, Wrapper, Gateway
o.ä. – ist ein Softwareartefakt, das von einem Softwaresystem, z.B. einem Mid-
dlewaresystem, dazu verwendet wird um auf ein Remotesystem zuzugreifen.
Beispiele von Adaptern sind J2EE-Konnektoren, SQL-Wrapper oder Message-
Broker-Adapter.

• Adaptertechnologie: Eine Adaptertechnologie spezifiziert eine Architektur
oder einen Teil einer Architektur zur Überbrückung technologischer Inkompat-
ibilitäten zwischen Softwaresystemen unter Verwendung von Adaptern. Bei-
spiele von Adaptertechnologien sind die J2EE Connector Architecture [Sun03]
oder SQL/MED [SQL08].

• Integrationstechnologie: Eine Integrationstechnologie spezifiziert eine Ar-
chitektur, die eine Middlewaretechnologie und eine von der Middlewaretech-
nologie verwendeten Adaptertechnologie umfasst. Beispiele von Integrations-

Zusammenfassung

technologien sind Java EE Anwendungsservertechnologie, föderierte Daten-
banktechnologie und Message-Broker-Technologie.

Den Kern zur Überwindung technologischer Inkompatibilitäten stellen Adapter
dar. Abbildung 1 zeigt das grundlegende Prinzip eines Adapters. Es gibt zwei Inter-
aktionskategorien: das Ausführen einer Anfrage und das Empfangen einer Antwort.
Kombinationen aus diesen beiden Kategorien resultieren in Interaktionsmustern,
wie sie beispielsweise auch in WSDL [CMRW07] oder REST [Fie00] zu finden sind.
Das bekannteste Interaktionsmuster ist das Anfrage-Antwort-Muster, das aus einer
Anfrage und einer darauf folgenden Antwort besteht.

Abbildung 1: Grundlegendes Prinzip eines Adapters.

Adaptertechnologien können sich stark voneinander unterscheiden, da sie für
verschiedenartige Middlewaresysteme und IT-Umgebungen konzipiert sind und in
verschiedensten Anwendungsszenarien unterschiedliche Remotesysteme integrieren.
Das heißt, Adaptertechnologien unterscheiden sich in den verwendeten Technolo-
gien, Programmiersprachen, Architekturen, Datenmodellen, Zugriffsmustern, An-
wendungsdomänen, Verwendungszwecken usw. Diese Unterschiede sind auch der
Grund, weshalb Integrationstechnologien inkompatibel zueinander sind und zum
unerwünschten Sachverhalt einer “Integration der Integration” führen. Basierend
auf der Vielfalt an Adaptertechnologien kann ein Unternehmen hunderte oder sogar
tausende von Adaptern für verschiedene Anwendungen, Services, Middlewaresys-
teme und Remotesysteme besitzen.

In dieser Arbeit verwenden wir zwei typische Vertreter von Adaptertechnologien
um unseren Integrationsmanagement-Ansatz zu evaluieren, nämlich die J2EE Con-
nector Architecture (J2EE/CA) [Sun03], die J2EE-Konnektoren spezifiziert, und
das SQL Management of External Data (SQL/MED) [SQL08], das SQL-Wrapper
spezifiziert. Diese beiden Adaptertechnologien vertreten jeweils entgegengesetzte
Verarbeitungsparadigmen, zum einen datenorientierte Verarbeitung (SQL/MED)
und zum anderen operationsorientierte Verarbeitung (J2EE/CA). Datenorientierte
Adaptertechnologien und operationsorientierte Adaptertechnologien unterscheiden

6

Zusammenfassung

sich grundsätzlich in Form von Architektur, Datenmodell, Zugriffsmustern, Anwen-
dungsdomäne und Verwendungszweck und stellen somit verschiedene Anforderungen
an unseren Integrationsmanagement-Ansatz.

Integrationsmanagement

Warum sollten wir Software für eine neue oder eine sich verändernde IT-Umgebung
von Grund auf neu entwickeln, wenn wir bereits existierende Software haben, die alle
wesentlichen Anforderungen erfüllt, aber technologische Inkompatibilitäten bezüg-
lich der neuen Situation aufweist? Wenn wir dazu in der Lage sind, diese Inkom-
patibilitäten zu überwinden, dann gibt es keinen Grund dazu. Wir verwenden die
existierende Software! Ein Weg, wie vorhandene Software wiederverwendet werden
kann und wie vorhandene technologische Inkompatibilitäten überwunden werden
können, ist Gegenstand dieser Arbeit.

Stellen wir uns folgendes Szenario vor: zwei Unternehmen fusionieren und in
diesem Zuge sollen auch die IT-Infrastrukturen beider Unternehmen zusammenge-
führt und vereinheitlicht werden. Betrachten wir die Human-Resources-Anwendun-
gen (HR-Anwendungen) der beiden Unternehmen etwas genauer (s. Abbildung 2).
Die HR-Anwendung von Unternehmen A ist im linken Teil der Abbildung dargestellt
und basiert auf Java EE-Technologie. Die HR-Anwendung verwendet Kundendaten
aus einem Customer-Relationship-Managementsystem (CRM-System) und Person-
aldaten aus einem LDAP-System (Lightweight Directory Access Protocol). J2EE-
Konnektoren sind Bestandteil der Java EE-Architektur und erlauben die Integra-
tion von heterogenen Softwaresystemen in Java EE-Anwendungsserver. Die HR-
Anwendung von Unternehmen A verwendet einen CRM-J2EE-Konnektor und einen
LDAP-J2EE-Konnektor um das CRM-System und das LDAP-System in den Java
EE-Anwendungsserver zu integrieren. Dadurch erhält die HR-Anwendung einen
einheitlichen Zugang zu den beiden Systemen.

Abbildung 2: Zusammenführen der IT-Infrastrukturen zweier Unternehmen.

7

Zusammenfassung

Unternehmen B hat ebenfalls eine HR-Anwendung, die jedoch auf einem SQL-
basierten föderierten Datenbanksystem (FDBS) aufbaut (s. rechte Seite von Abbil-
dung 2). Diese HR-Anwendung verwendet Angestelltendaten von einem Dateiserver
und aus einem objektorientierten Datenbanksystem (OODBS). Der SQL-Standard
definiert das Konzept von SQL-Wrappern um Softwaresysteme als externe Daten-
quellen in ein FDBS zu integrieren. Die HR-Anwendung von Unternehmen B greift
somit über den Dateiserver-SQL-Wrapper und den OODBS-SQL-Wrapper auf den
Dateiserver und auf das OODBS zu.

Das fusionierte Unternehmen möchte jetzt die beiden HR-Anwendungen zusam-
menführen, so dass eine daraus resultierende globale HR-Anwendung alle vier Soft-
waresysteme verwenden kann, also das CRM-System, das LDAP-System, den Datei-
server und das OODBS. Das Unternehmen entscheidet sich dafür die Java EE-
basierte HR-Anwendung so zu erweitern, dass auch der Dateiserver und das OODBS
in die globale Verarbeitung mit einbezogen werden können. Somit benötigen wir
zusätzlich einen Dateiserver-J2EE-Konnektor und einen OODBS-J2EE-Konnektor
wie in Abbildung 3 dargestellt. Damit kommen wir allerdings zu einem typischen In-
tegrationsproblem: bisher gibt es weder den Dateiserver-J2EE-Konnektor noch den
OODBS-J2EE-Konnektor, d.h. wir müssen die beiden J2EE-Konnektoren komplett
neu erstellen. Das ist jedoch ein kostspieliges Vorgehen, da wir dazu entsprechend
ausgebildete Softwareentwickler benötigen, die J2EE-Konnektoren für die Java EE-
Plattform entwickeln können. Diese Entwickler benötigen außerdem Wissen über
die Anwendungsumgebung und die verwendeten Softwaresysteme und sie benötigen
Zeit und Ressourcen, um die Konnektoren bis zur Produktionsreife und zum Einsatz
zu führen.

Abbildung 3: Entwicklung neuer J2EE-Konnektoren.

Auf der anderen Seite integriert die FDBS-basierte HR-Anwendung bereits den
Dateiserver und das OODBS mit den entsprechenden SQL-Wrappern. Die Inte-
grationsvorgänge im Dateiserver-SQL-Wrapper und im OODBS-SQL-Wrapper sind
recht ähnlich zu den Integrationsvorgängen im erforderlichen Dateiserver-J2EE-
Konnektor und OODBS-J2EE-Konnektor, z.B. das Lesen von Dateien vom Dateis-

8

Zusammenfassung

erver oder das Anfragen von Objekten im OODBS. Aus diesem Grund wäre es
sehr vorteilhaft, wenn wir die aufwändige Neuentwicklung der J2EE-Konnektoren
vermeiden und stattdessen die bereits vorhandenen SQL-Wrapper wiederverwen-
den könnten. Allerdings ist eine derartige Wiederverwendung nicht ohne Weit-
eres umzusetzen, da J2EE-Konnektortechnologie und SQL-Wrappertechnologie be-
trächtliche technologische Inkompatibilitäten aufweisen, z.B. bezüglich des Daten-
und Verarbeitungsmodells. Dies macht es unmöglich den Dateiserver-SQL-Wrapper
und den OODBS-SQL-Wrapper direkt im Java EE-Anwendungsserver wiederzuver-
wenden. Am Ende blieb bisher nur die konventionelle Lösung der Neuentwicklung,
d.h. in unserem Beispiel wären der Dateiserver-J2EE-Konnektor und der OODBS-
J2EE-Konnektor von Grund auf neu entwickelt worden (s.a. Abbildung 3). Wir
wären also gezwungen einen langen und aufwändigen Entwicklungsprozess zu durch-
laufen, obwohl die vorhandenen SQL-Wrapper bereits sehr ähnliche Integrationsvor-
gänge realisieren. Die Frage ist nun, ob das wirklich notwendig ist oder ob es doch
einen Weg gibt, um aus den bereits vorhandenen SQL-Wrappern einen besseren
Nutzen ziehen zu können.

In dieser Arbeit führen wir den Begriff Integrationsmanagement (IM) ein.
Wir definieren Integrationsmanagement-Technologie (IM-Technologie) als
ein Mittel zur systematischen Verwendung von Integrationstechnologien und zum
Bereitstellen von Integrationsunabhängigkeit, damit Anwendungsentwickler un-
abhängig von Integrationsvorgängen wie denen im Beispielszenario sind, d.h. IM-
Technologie abstrahiert von Integrationstechnologien. Ein Integrationsmanage-
ment-System (IM-System) ist ein Softwaresystem, das einen einheitlichen Zu-
gang zu Integrationsvorgängen der IT-Infrastruktur anbietet wie in Abbildung 4
dargestellt, d.h. ein IM-System ermöglicht das Extrahieren von Integrationsvorgän-
gen aus einer IT-Infrastruktur und seinen Anwendungen und stellt die extrahierten
Integrationsvorgänge zentral zur Wiederverwendung zur Verfügung.

Abbildung 4: Basisarchitektur eines IM-Systems.

9

Zusammenfassung

Wir haben ein IM-System entworfen, das Virtualization Tier (VT), das die
Wiederverwendung von Adaptern wie z.B. SQL-Wrappern oder J2EE-Konnektoren
ermöglicht und dadurch die Komplexität und die Kosten zur Umsetzung von Inte-
grationsvorgängen in IT-Infrastrukturen reduziert. Außerdem haben wir die Perfor-
manz unseres VT-Prototypen evaluiert um zu zeigen, dass IM-Technologie effizient
eingesetzt werden kann. Abbildung 5 skizziert unseren Integrationsmanagement-
Ansatz, das VT, und wie es auf das Integrationsszenario in Abbildung 2 angewendet
werden kann: das VT verwendet den Dateiserver-SQL-Wrapper und den OODBS-
SQL-Wrapper und erlaubt dadurch der Java EE-basierten HR-Anwendung den Zu-
griff auf den Dateiserver und das OODBS über die SQL-Wrapper anstelle einer
Neuentwicklung von entsprechenden J2EE-Konnektoren.

Abbildung 5: Wiederverwendung der SQL-Wrapper.

Adaptervirtualisierung

Das Virtualization Tier ist ein systematischer Integrationsmanagement-Ansatz, der
die einheitliche Verwendung unterschiedlicher Adaptertechnologien ermöglicht und
dem Softwareentwickler die Umsetzung der damit verbundenen Integrationsvorgänge
zur Verfügung stellt. Das VT ermöglicht die Wiederverwendung von Adaptern in
unterschiedlichen Integrationsszenarien und mit verschiedenen Middlewareplattfor-
men. Es virtualisiert Adapter und verwendet diese dadurch so als ob sie in ihrer jew-
eiligen Middlewareplattform ausgeführt würden. Virtualisierung bedeutet hierbei
die einheitliche Behandlung und Verwendung verschiedener Arten von Adaptern, so
dass Anwendungsentwickler sich nicht um Integrationsvorgänge kümmern müssen,
sondern unabhängig davon ihre Anwendungen entwickeln können. Das Konzept
der Integrationsunabhängigkeit ist beispielsweise analog zum Konzept der Datenun-

10

Zusammenfassung

abhängigkeit in Datenbankverwaltungssystemen, das den Anwendungsentwickler da-
vor schützt sich im Detail mit der Verwaltung und Behandlung von Daten befassen
zu müssen.

Abbildung 6 zeigt die Architektur des VT. Jede Adaptertechnologie benötigt
einen Adapter-Manager, der für die korrekte Ausführung der Adapter dieser Adap-
tertechnologie zuständig ist. Deshalb realisiert sowohl ein Adapter-Manager als
auch ein Middlewaresystem, das diese Art von Adaptern ausführen kann, dieselbe
Funktionalität. Damit ist es möglich, dass die bereits vorhandene Funktionalität
des Middlewaresystems zur Ausführung der Adapter als Grundlage zur Realisierung
eines entsprechenden Adapter-Managers verwendet werden kann. Das ist sogar sin-
nvoll, da diese Funktionalität einen großen Teil eines Adapter-Managers ausmacht.

Abbildung 6: Architektur des VT.

Die globale Zugriffsschicht des VT stellt einen einheitlichen Zugriff auf die ver-
schiedenen Adapter und Remotesysteme zur Verfügung. Abbildung 7 zeigt, wie die
VT-basierte Lösung unseres Integrationsszenarios aus Abbildung 5 aussieht. Das VT
verwendet einen SQL-Wrapper-Manager um SQL-Wrapper ausführen zu können,
z.B. den Dateiserver-SQL-Wrapper oder den OODBS-SQL-Wrapper. Außerdem ver-
wendet das VT noch einen Message-Broker-Adapter-Manager (MB-Adapter-Mana-
ger) um MB-Adapter ausführen zu können, z.B. den MB-Adapter der Customer-
Relationship-Management-Anwendung (CRM-Anwendung). Der J2EE-Konnektor-
Manager wiederum ist verantwortlich für die Ausführung von J2EE-Konnektoren
und so weiter. Die HR-Anwendung kann jetzt den VT-J2EE-Konnektor verwen-
den um das VT dazu zu verwenden die verschiedenen Adapter auszuführen, die im
VT installiert sind. Der große Vorteil dieses Lösungsansatzes ist, dass die beiden
SQL-Wrapper, der MB-Adapter und die anderen im VT installierten Adapter kom-
plett wiederverwendet werden können, wohingegen die konventionelle Lösung wie

11

Zusammenfassung

im Beispiel in Abbildung 3 immer wieder die Neuentwicklung von Adaptern, hier
J2EE-Konnektoren, erfordert.

Abbildung 7: VT-basierte Integrationslösung.

Architekturevaluation

Ein wichtiger Aspekt des VT-Ansatzes ist, dass im Einsatz befindliche Middle-
waresysteme nicht abgeändert werden müssen und dass im Einsatz befindliche An-
wendungen und Prozesse nicht durch die Verwendung des VT beeinträchtigt werden.
Das VT erweitert die Möglichkeiten von Middlewaresystemen auf nicht-invasive Art
und Weise, indem es eine Alternative zum Zugriff auf Remotesysteme anbietet. Diese
Alternative verwendet die native Adaptertechnologie einer Middlewareplattform um
auf das VT zuzugreifen, d.h. in Form eines VT-Middleware-Adapters. Der Java EE-
Anwendungsserver in unserem Integrationsszenario in Abbildung 7 verwendet zum
Beispiel einen VT-J2EE-Konnektor um auf das VT zuzugreifen.

Ein weiterer Vorteil des VT-Ansatzes ist eine Erhöhung der Flexibilität der IT-
Infrastruktur, da zukünftige Änderungen und Anforderungen bezüglich von Integra-
tionsvorgängen ebenfalls mit dem VT gelöst werden können. Abstrakt betrachtet

12

Zusammenfassung

kann das VT als ein Middleware-Multiplexer betrachtet werden, der einem Middle-
waresystem den Zugriff auf jeden im VT installierten Adapter ermöglicht. Wenn
m Middlewareplattformen n Remotesysteme ohne Verwendung des VT verwenden
sollen, dann würden wir potentiell m ∗ n Adapter benötigen, wie in Abbildung 8
dargestellt. Das VT reduziert diese Komplexität auf m + n Adapter, da jedes Mid-
dlewaresystem über das VT einen einheitlichen Zugriff auf alle im VT installierten
Adapter erhalten kann, wie in Abbildung 9 dargestellt (das sind m Adapter um von
den Middlewaresystemen auf das VT zuzugreifen und n Adapter um vom VT auf
die Remotesysteme zuzugreifen). In anderen Worten: ein konventioneller Integra-
tionsansatz ist immer mit einem spezifischen Middlewaresystem und einer spezifis-
chen Adaptertechnologie verbunden um ein Remotesystem zu integrieren. Das VT
hingegen erlaubt es mit dem gewählten Middlewaresystem jeden möglichen im VT
installierten Adapter zu verwenden, der auf dieses Remotesystem zugreifen kann.
Das VT ist ein systematischer und integrationstechnologieunabhängiger Ansatz, der
offen ist für jede Middlewareplattform und für jede Anwendung, die die Vorteile des
VT-Ansatzes nutzen möchte.

Abbildung 8: Konventionelle Integration: potentiell m ∗ n Adapter.

Bewertung

Es gibt eine Fülle von Integrationstechnologien und es gibt immer noch keine Mö-
glichkeit sie systematisch zu behandeln. Dies führt zu einer zunehmenden Kom-
plexität von IT-Umgebungen und zu zunehmenden Integrationsaufwänden und IT-
Kosten. Integrationsmanagement stellt eine Möglichkeit dar Integrationstechnolo-
gien systematisch und einheitlich zu verwenden. Es abstrahiert von Integrationstech-
nologien, so dass Integrationsvorgänge unabhängig vom Rest der Softwareentwick-
lung umgesetzt werden können. Die dadurch erzielte Integrationsunabhängigkeit
kann die Wartung und Fortentwicklung von IT-Umgebungen deutlich erleichtern
und damit die Komplexität und die Kosten von IT-Landschaften signifikant re-
duzieren. Außerdem zeigt unsere Performanzauswertung des VT-Ansatzes, dass IM-
Technologie auch effizient arbeiten kann. Damit ist IM-Technologie eine Schlüssel-

13

Zusammenfassung

Abbildung 9: VT als Multiplexer: nur m + n Adapter erforderlich.

technologie im einheitlichen Umgang mit Integrationstechnologien und zur Bewälti-
gung von Heterogenitäten in IT-Landschaften.

14

Contents

1 Motivation 27

2 Integration 31
2.1 Integration Architectures . 32
2.2 Adapter Technologies . 34
2.3 Integration Issues . 38
2.4 Generation and Reuse . 42
2.5 Adapter Virtualization . 43
2.6 Integration Management . 49
2.7 Summary . 51

3 Data Model 53
3.1 VT Objects . 53
3.2 Semantics . 54
3.3 Transactions . 55
3.4 Object Identity . 56
3.5 Non-Uniqueness . 58
3.6 Object References . 64
3.7 Summary . 68

4 Processing Model 69
4.1 Processing Transparency . 69
4.2 VTO Access Operations . 75

4.2.1 Read Operation . 75
4.2.2 Create Operation . 76
4.2.3 Update Operation . 78
4.2.4 Delete Operation . 79
4.2.5 Operation-Oriented Data Usage 80

4.3 VTQL Requests . 81
4.3.1 Read Requests . 81
4.3.2 Create Requests . 82
4.3.3 Update Requests . 82
4.3.4 Delete Requests . 83
4.3.5 Data-Oriented Data Usage . 83

15

Zusammenfassung

4.4 Query Execution . 84
4.5 Summary . 87

5 Deployment Model 89
5.1 VT Object Configurations . 89

5.1.1 Adapter Manager Information Chapter 92
5.1.2 Adapter Information Chapter 92
5.1.3 System Information Chapter 94
5.1.4 Object Information Chapter 95
5.1.5 Object Definition Chapter . 97

5.2 Example Requests . 101
5.3 Deployment Process . 105
5.4 Mapping Issues . 108
5.5 Reuse of Middleware Infrastructure 109

5.5.1 Reuse of Adapter Deployments 109
5.5.2 Reuse of Middleware Infrastructure 112

5.6 Summary . 118

6 Applicability 121
6.1 Architecture Patterns . 121

6.1.1 Implementation Pattern . 122
6.1.2 Connection Pattern . 123
6.1.3 Adapter Reuse Pattern . 125
6.1.4 Deployment Reuse Pattern . 128
6.1.5 Middleware Reuse Pattern . 128

6.2 Web Services . 131
6.2.1 Web Services & IM Technology 131
6.2.2 Web Service Infrastructures 132
6.2.3 The VT Acting as an ESB . 133

6.3 Summary . 136

7 Performance 139
7.1 Experiment Environment . 139
7.2 Experiment Execution . 142

7.2.1 Experiment Categories . 142
7.2.2 Query Considerations . 146
7.2.3 Experiment Architectures . 147
7.2.4 Experiment Notation . 147

7.3 Challenges . 150
7.4 Experiment Results . 151

7.4.1 Operations . 152
7.4.2 Reading Data . 153
7.4.3 Writing Data . 156
7.4.4 Queries . 158

16

Zusammenfassung

7.5 Optimization Effects . 168
7.6 Summary . 175

8 Conclusion 177

17

List of Figures

1.1 Merging IT Infrastructures. 27
1.2 Developing new J2EE Connectors. 28
1.3 Reuse of SQL Wrappers. 29

2.1 Integration Architecture Categories. 32
2.2 Basic Concept of an Adapter. 35
2.3 Extended Integration Scenario. 41
2.4 Reuse of the CRM App. MB Adapter. 44
2.5 Virtualization Tier Architecture. 45
2.6 VT-Based Solution. 46
2.7 VT-Based MB Solution. 47
2.8 Middleware Enhancement. 47
2.9 Conventional: Potentially m ∗ n Adapters Required. 48
2.10 VT as Multiplexer: Only m + n Adapters Required. 48
2.11 VT Scalability. 49
2.12 Integration Management System Architecture. 50

3.1 VT Object Mapping – First Request. 57
3.2 VT Object Mapping – Second Request. 58
3.3 VT Object Mapping – Update. 60
3.4 VT Object Mapping – Non-Unique (Mismatch). 61
3.5 VT Object Mapping – Non-Unique (Correct). 63
3.6 VT Object Mapping – Duplicates. 65
3.7 Dereferencing VT Objects. 66
3.8 Non-Explicitly Resolvable VT Object References. 67

4.1 VT Objects and VT Access. 72

5.1 VT Object Configuration. 90
5.2 Configuration Chapter Hierarchy. 91
5.3 Example Configuration Chapter Hierarchy. 91
5.4 SQL Wrapper Manager Information Chapter (case W). 92
5.5 J2EE Connector Manager Information Chapter (case C). 92
5.6 SQL Wrapper Information Chapter (case W). 93
5.7 SQL CREATE WRAPPER Statement (case W). 93

19

Zusammenfassung

5.8 J2EE Connector Information Chapter (case C). 93
5.9 J2EE Connector Deployment (case C). 94
5.10 CRM DBS Information Chapter (case W). 95
5.11 SQL CREATE SERVER Statement (case W). 95
5.12 CRM System Information Chapter (case C). 95
5.13 CRM EMPLOYEE Information Chapter (case W). 96
5.14 SQL CREATE FOREIGN TABLE Statement (case W). 96
5.15 RSEmp Information Chapter (case C). 97
5.16 Java Classes of the J2EE Connector (case C). 98
5.17 VTEmployee Object Definition (case W). 99
5.18 VTEmp Object Definition (case C). 100
5.19 Request Processing (SQL Wrapper Example). 101
5.20 Request Processing (J2EE Connector Example). 104
5.21 Deployment Responsibilities. 106
5.22 Deployment of an SQL Wrapper. 107
5.23 Deployment of a J2EE Connector. 108
5.24 Extended Deployment – VT Object Mapping Issues. 109
5.25 Reusing Adapter Deployments. 111
5.26 Reusing an FDBS Middleware Infrastructure. 114
5.27 FDBS Adapter Information Chapter. 115
5.28 FDBS System Information Chapter. 115
5.29 FDBS Object Information Chapter. 116
5.30 FDBS Table Representation. 116
5.31 FDBS Object Definition Chapter. 117
5.32 Reusing a Message Broker Infrastructure. 118

6.1 Architecture Pattern Overview. 121
6.2 Developing new J2EE Connectors. 123
6.3 FDBS Integration. 124
6.4 Message Broker Integration. 125
6.5 Java EE Application Server Integration. 126
6.6 Reusing Adapters. 127
6.7 Reusing Adapter Deployments. 129
6.8 Reusing Middleware Infrastructure. 130
6.9 The VT, Web Services and more than Web Services. 132
6.10 HR BPEL Process (abstract representation). 134
6.11 HR BPEL Process Solved with ESB. 134
6.12 HR BPEL Process Solved with Middleware Systems. 135
6.13 HR BPEL Process Solved with VT. 136

7.1 VT Prototype Experiment Scenario. 140
7.2 TPC-H Tables. 141
7.3 OOApp Classes. 141
7.4 Overall VT Prototype Experiment Architecture. 143

20

Zusammenfassung

7.5 Experiment Categories Exec, Read, Write, and Query. 144
7.6 SQL Wrapper Experiments Architectures. 148
7.7 J2EE Connector Experiments Architectures. 149
7.8 Exec-DB2. 153
7.9 Exec-WS. 154
7.10 Read-DB2. 155
7.11 Read-WS. 155
7.12 Read-DB2: Leaps. 156
7.13 Read-WS: Leaps. 156
7.14 Read-DB2: Leaps (absolute execution time). 157
7.15 Read-WS: Leaps (absolute execution time). 157
7.16 Write-DB2. 159
7.17 Write-WS. 159
7.18 Write-DB2-File. 160
7.19 Write-DB2-File (absolute execution time). 160
7.20 Write-DB2-Derby. 161
7.21 Write-DB2-Derby (absolute execution time). 161
7.22 Write-DB2-OOApp. 162
7.23 Write-DB2-OOApp (absolute execution time). 162
7.24 Write-WS-Derby. 163
7.25 Write-WS-OOApp. 163
7.26 Write-WS-Derby (absolute execution time). 164
7.27 Write-WS-OOApp (absolute execution time). 164
7.28 Request and Data Pipelining Potential. 165
7.29 Query-R-DB2. 166
7.30 Query-R-WS. 166
7.31 Query-SP-DB2/WS (query processing in DB2 and in the WS client). . . . 166
7.32 Query-SP-DB2/WS-VT (query processing in DB2 and in the WS client). . 167
7.33 Query-SP-DB2-Derby (query processing in DB2). 167
7.34 Query-SP-WS-Derby (query processing in the WS client). 168
7.35 Query-SP-DB2-File/OOApp (query processing in DB2). 168
7.36 Query-SP-WS-File/OOApp (query processing in the WS client). 169
7.37 Query-SP-DB2/WS-VT (query processing in the VT). 169
7.38 Query-SP-DB2 (query processing in the VT). 170
7.39 Query-SP-WS (query processing in the VT). 170
7.40 Query-J-DB2 (query push-down). 171
7.41 Query-J-WS (query push-down). 171
7.42 Query-J-DB2 (query compensation in DB2). 172
7.43 Query-J-WS (query compensation in the WS client). 172
7.44 Degeneration Effect: Querying Derby directly. 173
7.45 Query-SPJ-DB2: Derby Degeneration Effect. 173
7.46 Query-SPJ-WS: Derby Degeneration Effect. 174

21

Abbreviations

Common Abbreviations

API Application Programming Interface
BPEL Business Process Execution Language
CCI Common Client Interface
CORBA Common Object Request Broker Architecture
CRM Customer Relationship Management
CRUD Create Read (also: Retrieve) Update Delete
DBMS Database Management System
DBS Database System
EJB Enterprise Java Bean
ESB Enterprise Service Bus
FDBS Federated Database System
HR Human Resources
IDL Interface Definition Language
IT Information Technology
J2EE Java 2 Enterprise Edition
Java EE Java Platform, Enterprise Edition
JBI Java Business Integration
JCP Java Community Process
JDBC Java Database Connectivity
JDO Java Data Objects
JMS Java Message Service
JSP Java Server Page
JVM Java Virtual Machine
LDAP Lightweight Directory Access Protocol
MB Message Broker
ODMG Object Database Management Group
OODBS Object-Oriented Database System
OQL Object Query Language
ORB Object Request Bus
PDM Product Data Management
REST Representational State Transfer
RPC Remote Procedure Call

Abbreviations

SOAP Simple Object Access Protocol
SPI Service Provider Interface
SQL/MED SQL Management of External Data
UDDI Universal Description, Discovery and Integration
WSDL Web Services Description Language
XML Extensible Markup Language

Abbreviations and Terms in this Work

Adapter Deployer Person who deploys adapters into a middleware system.
Adapter Information Chapter Part of a VT object configuration. Defines infor-
mation about the adapter that is used to resolve the associated VT object.
Adapter Manager Information Chapter Defines information about an adapter
manager. Used by the VT to properly handle adapters that are managed by the
adapter manager.
Additional VTO Access Operation Parameter A parameter that is correlated
with a specific remote operation. Part of the VTO operation structure that repre-
sents the associated remote operation.
Explicitly Resolvable VT Object Reference A VT object reference that con-
sists of a reference key and a reference operation. Used to explicitly resolve a refer-
enced VT object.
IM – Integration Management Systematic treatment of and abstraction from
integration issues. An IM system is a system that abstracts from integration issues
and that provides a systematic means of dealing with them. IM technology is a
technology that enables systematic treatment of and abstraction from integration
issues.
Inherent VTO Access Operation Parameter A parameter that is always re-
quired for the correlated VTO access operation type.
Non-Explicitly Resolvable VT Object Reference A VT object reference that
cannot be explicitly resolved, but has to be resolved when the referencing VT object
is resolved.
Non-Unique VT Object A VT object without a remote identity.
Object Definition Chapter Part of a VT object configuration. Defines the VT
object that is associated with the VT object configuration.
Object Information Chapter Part of a VT object configuration. Defines infor-
mation about the remote data and the remote operations that are mapped to the
associated VT object.
Remote Identity Identifies a remote entity that is associated with a VT object
instance.
System Information Chapter Part of a VT object configuration. Defines infor-
mation about the remote system that contains the data and the operations that are
mapped to the associated VT object.
Unique VT Object A VT object with a remote identity.
VT – Virtualization Tier An IM system. Our prototype that we realized to ex-

24

Abbreviations

emplify IM technology and that we used to perform a qualitative and quantitative
analysis of IM technology.
VT Data Model The data model employed in the VT to represent remote data
and remote operations.
VT Identity Uniquely identifies a VT object instance.
VT Object Part of the VT Data Model. Can represent remote data as well as
remote operations.
VT Object Class A VT object class is the definition of a VT object.
VT Object Configuration Defines a VT object and how data and operations
of a remote system are mapped via an adapter to the VT object and vice versa.
Consists of four configuration chapters: adapter information chapter, system infor-
mation chapter, object information chapter, object definition chapter.
VT Object Cursor A VT object that efficiently handles data, e.g. the result of a
VTQL read request.
VT Object Deployer Person who defines and deploys VT objects in the VT.
VT Object Instance A VT object instance contains data according to the asso-
ciated VT object class.
VT Object Operation Part of a VT object. Represents a remote operation.
VT Object Reference Used in a VT object to reference another VT object.
VTO Access Operation – VT Object Access Operation A standardized VT
object operation. There are four types: create, read, update, delete.
VTO Operation Structure – VT Object Operation Structure A data struc-
ture that represents additional operation parameters of a VTO access operation.
VTQL – VT Query Language Based on OQL. A declarative, set-oriented query
language that employs the VT data model. There are four types of VTQL requests:
create, read, update, delete.

25

Chapter 1

Motivation

Why should we develop software for a new or changing IT scenario from scratch
if we already have existing software that meets our overall requirements although
it bears some technological incompatibilities to the new situation? If we are able
to handle the incompatibilities, there is no reason. We reuse the existing software!
A way how we can reuse existing software and how we can deal with technological
incompatibilities in IT environments is subject of this work.

Imagine the following scenario: two companies merge and they also merge their
IT. We take a closer look at the human resources (HR) applications of the two
companies (see Figure 1.1). Company A has an HR application based on Java EE
technology (left part of Figure 1.1). The HR application handles customer data
from a customer relationship management (CRM) system and personnel data from
an LDAP (Lightweight Directory Access Protocol) system [LDA06]. The Java EE
architecture provides the concept of J2EE connectors to integrate heterogeneous
software systems into a Java EE application server. The HR application of company
A employs a CRM J2EE connector and an LDAP J2EE connector to integrate the

Figure 1.1: Merging IT Infrastructures.

1 Motivation

CRM system and the LDAP system into the Java EE application server so that the
HR application can uniformly access both systems.

Company B has an HR application, too. This HR application employs an SQL-
based [SQL08] federated database system (FDBS) (right part of Figure 1.1). The
HR application uses employee data from a file server and from an object-oriented
CRM DBS. The SQL standard defines the concept of SQL wrappers to integrate
software systems into an FDBS. The HR application of company B accesses the file
server and the CRM DBS via the file server SQL wrapper and the CRM DBS SQL
wrapper in the FDBS.

The merged company now also merges both HR applications, which means that
we need a global HR application that can deal with all four software systems, i.e.
the CRM system, the LDAP system, the file server and the CRM DBS. The merged
company decides to extend the HR application of company A and to integrate the
file server and the CRM DBS into the Java EE application server (see Figure 1.1).
Hence, we need a file server J2EE connector and a CRM DBS J2EE connector.
However, we face a typical integration problem: we do neither have a file server
J2EE connector nor do we have a CRM DBS J2EE connector. Consequently, we
have to develop the file server J2EE connector and the CRM DBS J2EE connector
from scratch (see Figure 1.2). This is a costly task since we need skilled developers
who are able to develop J2EE connectors for the Java EE platform. The developers
also need knowledge about the specific environment, i.e. the software and systems
that are involved in the integration tasks, and they need time and resources to
develop the connectors until they can use them productive.

Figure 1.2: Developing new J2EE Connectors.

On the other hand, the FDBS-based HR application of company B already in-
tegrates the file server and the CRM DBS by means of SQL wrappers. The in-
tegration tasks of the file server SQL wrapper and the CRM DBS SQL wrapper
are quite similar to that of the required file server J2EE connector and CRM DBS
J2EE connector, e.g. reading files from the file server or submitting object requests
to the CRM DBS. Therefore, it would be very appealing if we were able to avoid the

28

costly task of developing new J2EE connectors from scratch and if we could simply
reuse the existing SQL wrappers. However, it is not that easy since J2EE connector
technology and SQL wrapper technology bear considerable technological incompat-
ibilities, e.g. regarding data model or operation model, so that it is impossible to
directly employ the file server SQL wrapper and the CRM DBS SQL wrapper in
the Java EE application server. In the end, the conventional solution is to develop
the file server J2EE connector and the CRM DBS J2EE connector from scratch
(as shown in Figure 1.2) although they have much in common with the file server
SQL wrapper and the CRM DBS SQL wrapper. We are forced to go a long and
laborious way although the existing SQL wrappers already solve similar integration
tasks. But is this really necessary? Isn’t there a way to benefit from the existing
SQL wrappers?

In this work, we introduce and define integration management technology
(IM technology) as a means to systematically deal with integration technologies
and as a means to provide integration independence so that application developers
are shielded from integration tasks such as the ones in the merger example. We
develop an integration management system (IM system), i.e. the virtualization
tier (VT), which is based on IM technology. The VT allows to reuse adapters
such as SQL wrappers or J2EE connectors and thereby reduces complexity and
costs of integration tasks in IT infrastructures. Finally, the performance evaluation
of our VT prototype shows that IM technology can work efficiently. Figure 1.3
sketches our integration management approach, i.e. the VT, and how it applies to
our integration scenario: the VT reuses the file server SQL wrapper and the CRM
DBS SQL wrapper and thereby allows the Java EE-based HR application to access
the file server and the CRM DBS via the SQL wrappers instead of developing new
J2EE connectors.

Figure 1.3: Reuse of SQL Wrappers.

29

1 Motivation

In the next chapter (Chapter 2, Integration, also see [WM07d]), we discuss inte-
gration means in IT infrastructures. We give a detailed analysis of integration issues,
e.g. such as the ones sketched in this chapter, and we introduce the virtualization
tier and integration management as a systematic means to cope with integration
issues. Thereafter, we show how data and operations of integrated remote systems
are represented in the VT (Chapter 3, Data Model, also see [WM07d, WM07a])
and how access to data and operations in the VT is realized (Chapter 4, Processing
Model, also see [WM07d, WM07a]). The next important questions are how data
and operations in the VT are defined and how adapters are deployed into the VT
(Chapter 5, Deployment, also see [WM07b, WM09]). Finally, the most important
issues are how the VT can be applied to integration scenarios (Chapter 6, Applica-
bility, also see [WM07c, WM09]) and whether the VT approach is efficient (Chapter
7, Performance, also see [WM09]).

30

Chapter 2

Integration

Companies can have up to thousands of different software systems and applications
and they are usually spread over the whole company. The tasks and processes of
a company are more and more tightly coupled with these software systems. This
means that software systems have to be interconnected and orchestrated. Thus, the
integration of software systems is a key issue in a modern and competitive company.
The problem is that the software systems of a company have been bought, developed,
installed and maintained in different places, at different times, by different people,
for different purposes and they employ diverse technologies that are not compatible
to each other. There are different integration technologies and platforms to cope
with these challenging issues. They are subsumed under terms such as enterprise
application integration, data integration or process integration. Their common goal
is to bridge the heterogeneities of diverse software systems.

Middleware technology is a common means to achieve integration. A mid-
dleware technology specifies an architecture that can integrate diverse software
systems (we call them remote systems) and that allows other software systems
(we call them client systems) to uniformly access them (also see Figure 2.1). A
middleware system is a software system that realizes middleware technology. Ex-
amples of middleware systems are Java EE application servers, federated database
systems or message brokers. The integration tasks are usually performed by means
of adapters. An adapter∗ is a software artifact that is used by a software system,
e.g. a middleware system, to access another software system and/or vice versa. Ex-
amples of adapters are J2EE connectors, SQL wrappers or message broker adapters.
An adapter technology specifies an architecture or a part of an architecture to
overcome the heterogeneities of diverse remote systems by means of adapters, e.g.
SQL/MED [SQL08] or the J2EE connector architecture [Sun03]. An integration
technology specifies an architecture that comprises a middleware technology and an
adapter technology that is employed by the middleware technology. Examples of in-

∗Adapter functionality is used in diverse application domains, architectures and systems. There-
fore, there are different names in use such as adapter, connector, wrapper or gateway. We use the
term adapter since this it is not solely coined to a specific domain or architecture and since it is
in wide-spread use.

2 Integration

tegration technologies are Java EE application server technology, federated database
technology or message broker technology.

2.1 Integration Architectures

We categorize integration technologies into four categories of integration architec-
tures as depicted in Figure 2.1. The first category is the implicit integration ar-
chitecture. A client system simply interconnects with a remote system as needed.
For example, a decision support application (client system) needs the price of an
item and therefore calls the get price(item no) operation in a product data manage-
ment (PDM) system (remote system) via RPC. The decision support application
issues the RPC call directly in its application logic (application module). There is
no explicit distinction between the integration task and the application logic itself.
Clearly, this implicit integration task is not easily repeatable nor reusable for similar
situations since the integration logic is not separated from the application logic in
terms of a reusable software artifact.

Figure 2.1: Integration Architecture Categories.

32

2.1 Integration Architectures

The second category is the adapter-based integration architecture, which
makes use of an adapter module to perform an integration task. The adapter module
can be used by different client systems to access the targeted remote system. For
example, we evolve the decision support application and now put all PDM RPC
calls into a separate module. The resulting adapter module offers an interface for the
decision support system and hides from the RPC details. The application module
of the decision support application (client system) then always uses the adapter
module to access the PDM system (remote system). If a second client system wants
to access the PDM system too, it uses the same adapter module, e.g. as a library,
and calls the PDM operations via the interface of this module independent of any
RPC details. Such adapter modules can be proprietary and then are used for only
few applications within a specific application domain. Or they can comply to an
explicitly specified adapter technology so that they can be in wide-spread use, e.g.
JDBC drivers for uniformly accessing SQL DBS.

The third category is the middleware-based integration architecture. It
includes the use of a middleware system that hosts adapter modules and that pro-
vides services for handling and executing them. For example, we further evolve our
decision support system and add a Java EE application server (middleware system)
to the scenario. The decision support application now runs as a Java EE application
(application module plus a web browser as the client module) consisting of EJBs and
JSPs and it relies on a PDM J2EE connector (adapter module) that integrates the
PDM system (remote system) into the application server. The PDM J2EE connector
allows to perform operations on the PDM system according to interaction patterns
defined by the J2EE connector standard. These interaction patterns define how to
access and integrate remote systems via a Java EE application server. Moreover, the
J2EE connector standard also defines contracts between Java EE application server,
J2EE connectors and Java EE applications such as connection pooling, thread man-
agement, authentication or transactions. The goal of a middleware system is to
provide an environment where adapter modules can be handled and executed and
where the middleware system provides additional services for adapter modules and
application modules so that application modules and adapter modules do not need
to implement them on their own. For example, the J2EE connector standard de-
fines a connection pooling mechanism so that connections between connector and
remote systems are handled and controlled by the application server. Otherwise,
each application would have to handle these connections explicitly on its own.

The fourth and most sophisticated integration architecture category is the feder-
ation-based integration architecture, which offers a facility to combine data
and operations of different remote systems in the middleware. This extends an
integration task by a federation task: adapter modules allow to uniformly access
remote systems and to homogeneously deal with their data and operations, and
a federation module provides the facility to combine the retrieved data and the
executed operations in a uniform manner, e.g. in terms of a homogeneous interface
or a global schema. For example, we again evolve our decision support system and
we now additionally require access to the data of an object-oriented database system

33

2 Integration

(OODBS), which we have to combine with the data that we can already retrieve
from the PDM system. Thus, we have to implement some specific federation logic
that performs this combination step, which we would do in the application module so
far. However, this combination step is typical for integration tasks where more than
one remote system is involved. Therefore, it is desirable to extract and generalize
the federation logic and to put it into a separate federation module that can be
used by different application modules with different adapter modules and remote
systems. For example, a federated SQL DBS can process SQL queries that refer to
different foreign tables which in turn refer to data and operations in different remote
systems. The new version of our decision support system (client system) then can
issue a federated SQL query, which refers to two foreign tables, one that represents
the get price operation in the PDM system and one that represent an object type in
the OODBS. The SQL-DBS engine (federation module), resolves both foreign tables
by issuing corresponding calls to the SQL wrappers (adapter modules), which in turn
execute the requested operation in the PDM system (remote system) and retrieve
the requested data in the OODBS (remote system). The SQL wrappers transform
the retrieved data into tabular format and the SQL engine joins both tables for the
final result. The decision support application receives this result and does not need
to care about how the combination in the federation step works.

Our virtualization approach can potentially reuse adapters (adapter modules) of
integration architecture categories 2, 3 and 4, i.e. it can potentially employ any
systematic integration technology.

2.2 Adapter Technologies

The basic concept of an adapter is shown in Figure 2.2. There are two interaction
categories: executing a request and receiving a response. Combinations of them re-
sult in interaction patterns, e.g. see the interaction patterns in WSDL [CMRW07] or
REST [Fie00]. The most well-known interaction pattern is that of request-response,
i.e. a request that yields a response. The request interaction is initiated by a client,
e.g. the client of a middleware system (see Figure 2.2). The client issues a request
that is specific to the middleware, e.g. an operation call in case of an application
server. The adapter then has to transform the middleware-specific request into a
suitable request for the remote system, e.g. an SQL query in case of a DBS. The
response interaction works the other way round. In our example, the DBS processes
the SQL query, creates an SQL result set and returns it to the adapter. The adapter
transforms the remote system-specific response into a middleware-specific response,
e.g. some Java objects, and transfers them to the middleware system.

There are many industry standards that aim at establishing standardized in-
tegration architectures. There are much more integration products and software
suites providing integration technology solutions. There are numerous specific in-
house integration approaches that are heavily influenced by special requirements of
local application domains and IT environments. And there are lots of integration

34

2.2 Adapter Technologies

Figure 2.2: Basic Concept of an Adapter.

architectures that stem from research and academia and that contribute to the ad-
vent of integration technologies. Hence, adapter technologies can be quite different
in their details since adapters are employed in different middleware systems and IT
environments, they integrate different kinds of remote systems and they are used in
different contexts for different purposes. Similarly, different middleware technologies
are used in different environments and scenarios for different purposes. Thus, mid-
dleware systems and their associated adapter technologies may significantly differ
in terms of applied technologies, programming languages, architecture styles, data
models, access patterns, intended application domains, usage purposes, and so on.
Therefore, there is a considerable number of adapter technologies and a company
possibly has up to hundreds or even thousands of adapters for different middleware
systems to integrate diverse remote systems and software services.

Next, we give a brief description of prominent examples of standard integration
technologies to give an idea of the ubiquity of integration technologies in our today’s
IT landscape. Prominent examples of standard integration technologies (and the
supported integration architecture categories as shown in Figure 2.1) are:

J2EE Connector Architecture (Cat. 3) The J2EE connector architecture is
part of the Java EE platform and is tightly coupled with a Java EE application
server that handles J2EE connectors. The standard defines a contract between the
application server and the connector, based upon the service provider interface (SPI),
which is concerned with tasks such as connection pooling, life-cycle management,
security management, work management (thread management), and transaction
management [Sun03]. The common client interface (CCI) is the basis of the contract
between an application component in the application server and a connector so that
the application component knows how to access the connector and how the connector
behaves.

SQL Management of External Data (Cat. 4) The SQL standardization also
comprises a part that is concerned with accessing external data sources. It is called
SQL management of external data (SQL/MED) [SQL08]. The standard defines

35

2 Integration

how a DBS can act as a middleware system that uses adapters, i.e. SQL wrappers,
to integrate data from external data sources. An external data source does not
necessarily have to be a DBS, but it can be any remote system that delivers some
data. A DBS is thereby extended to an FDBS that is able to cope with heterogeneous
software systems.

Web Service Architecture (Cat. 4) The Web service architecture defines
and relies on standards such as XML, XML schema, WSDL, SOAP, and UDDI
[BHM+04]. Web services basically provide application-specific interfaces that are
specified by means of a common meta model, i.e. WSDL. Each Web service is
related to a specific implementation by means of a binding. The service imple-
mentation is not determined by the Web service architecture. However, this is the
actual integration task that a middleware system performs by means of an adapter.
Therefore, an Enterprise Service Bus (ESB) handles Web service requests and pro-
vides a middleware infrastructure and an adapter technology to realize Web service
implementations.

Java Business Integration (Cat. 4) The Java Business Integration (JBI) ini-
tiative of the JCP is a specification that attempts to establish a standardized integra-
tion platform as a service-oriented architecture [Sun05]. The integration platform
relies on Web service standards such as WSDL, SOAP or BPEL and supports a
message-driven component model. The JBI component model obeys defined con-
tracts (SPIs) and allows to plug-in and use different JBI components to build inte-
gration solutions. The JBI components that are concerned with accessing remote
systems are called binding components. They represent the adapters of the JBI
middleware.

Common Object Request Broker Architecture (Cat. 3) The Common Ob-
ject Request Broker Architecture (CORBA) is a standard that aims at providing
interoperability between different software systems. The CORBA standard defines
an object request bus (ORB) that allows to remotely execute objects. Each object
needs an interface that is commonly defined by means of the interface definition lan-
guage (IDL) [OMG08]. CORBA objects are registered with the ORB in a namespace
so that other CORBA objects can access them. Therefore, the ORB infrastructure
is the middleware system and the CORBA objects can act as adapters that access
remote systems.

Remote Procedure Call (Cat. 2) Remote Procedure Call (RPC) is a very
basic means of remote communication that allows to execute operations on other
computers and thereby can build distributed systems [Whi75].

Java Message Service (Cat. 3) Message brokers employ message adapters, e.g.
JMS providers, that receive and submit messages and that transform messages into

36

2.2 Adapter Technologies

suitable calls to software systems and vice versa. Message Queuing, e.g. the Java
message service (JMS) [Sun02], is the basis of message brokers. It defines message
exchange patterns and how messages are structured (header and body).

Java Database Connectivity (Cat. 3) The Java database connectivity (JDBC)
defines adapters that access data sources. JDBC offers an interface to locally or re-
motely connect to a DBS and to submit SQL statements to the DBS [Sun06b].

.NET framework (Cat. 4) The .NET framework provides a broad range of ser-
vices and connectivity with extensive integration capabilities, e.g. ADO.NET and
Web services, and it serves as the basis for applications and other software on the
Windows operating system [Mic10].

Industry products often, but not necessarily, rely on standards such as the ones
mentioned above. But even if they do so, vendors usually evolve their products
to provide additional functionality or other proprietary extensions. In the end,
such products often are incompatible to each other even if they originally relied on
the same standard. This kind of incompatibility problem is typical for products
that are based on standards, especially if standards are developed in parallel to
the products. For example, SQL, C or CORBA are prominent victims of this pro-
cedure. This becomes even worse if there are competing vendors or organizations
that follow different interests so that they finally create competing standards that
lead to further incompatibilities. There also are competing Web service approaches
and standards, e.g. for Web service coordination, Web service choreography or
Web service orchestration. There even are competing organizations such as OASIS
and W3C that publish Web service standards. Often, newer integration products
more or less employ Web services, but not all of them do so. Older integration
products don’t, but they are still in productive use. Especially, specific in-house
developments may not support known standards and further contribute to the di-
versification of integration approaches. Research and academia also contribute to
this diversification. Well-known research prototypes of integration technologies and
integration architectures that also influenced the development of commercial prod-
ucts are, for example, TSIMMIS [CGMH+94], Garlic [RS97], Information Manifold
[Lev98], XWRAP [LPH00], Nimble [DHW01], or Denodo [PRÁ+02]. Moreover, all
products, architectures and systems concerned with integration functionality employ
some integration technology, usually only one kind, seldom few and therefore they
are incapable of dealing with other integration technologies’ adapters. All these
characteristics strongly contribute to the diversification and fragmentation of IT
landscapes concerning their integration capabilities and thereby consequently lead
to problems such as as the one exemplified by our initial integration scenario in
Chapter 1.

Integration technologies and adapter technologies can be divided into different
categories according to their purpose, their employed technologies, etc. Our integra-
tion management approach, i.e. the VT, considers adapter technologies in general

37

2 Integration

and deals with them from a global perspective. Global treatment of adapter tech-
nologies basically has to take into account the two opposite processing paradigms:
data-oriented processing and operation-oriented processing. An operation-oriented
request execution can be an API call, an RPC, an object method execution, a mes-
sage submission, etc. A data-oriented request execution can be a complex request
such as an SQL query or an XQuery or it can be a bulk read or write operation or
other complex data-oriented operations based upon them. Data-oriented adapter
technologies and operation-oriented adapter technologies are quite opposite
to each other in terms of architecture style, operation model, access patterns, ap-
plication domains or usage purposes. Therefore, they place different requirements
on our integration management approach in terms of the data model that we use as
the global data model in the virtualization tier (Chapter 3) and in terms of how the
virtualization tier can be accessed (Chapter 4). Moreover, our experiments show
that the different paradigms of these two adapter technology categories can heavily
influence the efficiency of request executions (Chapter 7).

In this work, we use two adapter technologies to extensively evaluate our integra-
tion management approach: J2EE connectors and SQL wrappers. J2EE connec-
tor technology is a representative of operation-oriented adapter technologies and
SQL wrapper technology is a representative of data-oriented adapter technolo-
gies. Both adapter technologies and corresponding middleware systems are opposite
to each other in terms of the employed paradigms and technologies. An FDBS
offers a built-in integration engine to execute federated SQL queries including an
optimizer that provides for an efficient execution. The Java EE application server
does not offer such a functionality by virtue, but each Java EE application must
provide this functionality on its own (or via a suitable framework). The FDBS and
the SQL wrappers execute SQL requests and deal with SQL data, i.e. tabular data.
The application server can execute enterprise Java beans (EJBs) that implement
application-specific data structures in terms of Java objects and the J2EE connec-
tors use Java objects too. Consequently, FDBS clients issue SQL requests whereas
Java EE clients have to rely on proprietary operations that are implemented by
Java objects. Moreover, J2EE connectors and SQL wrappers rely on different server
functionality, e.g. connection management, transaction management, security man-
agement, etc. and they offer different access mechanisms, e.g. SQL wrapper can
negotiate about SQL query fragments, J2EE connectors can also handle incoming
message calls. In summary, SQL wrappers and J2EE connectors and their respective
middleware technologies represent diverse and even opposite technologies and they
therefore provide a representative basis to show the applicability and the efficiency
of our integration management approach.

2.3 Integration Issues

Let us come back to our initial example in Chapter 1 (see Figure 1.1) and let us
take a closer look at it. The conventional solution is to develop the file server J2EE

38

2.3 Integration Issues

connector and the CRM DBS J2EE connector from scratch as shown in Figure 1.2
since we only have the file server SQL wrapper and the CRM DBS SQL wrapper.
This simply comes from the fact that there exists a number of different middleware
systems and much more different remote systems so that the number of adapters
resulting from all possible combinations of a middleware system and a remote system
is quite large. This in turn means that only a small portion of all potential adapters
do actually exist. Most of them have to be developed from scratch if they are
needed as it is the case for the file server J2EE connector and the CRM DBS J2EE
connector.

The problem of this approach is that developing an adapter generally is com-
plex and error-prone. There are three main issues. First, the adapter developer has
to know about the architecture and the different concepts of the adapter technol-
ogy such as adapter framework, programming model and application programming
interfaces (APIs), data model and data representation, processing model and com-
munication protocols, error model, quality of service requirements, etc. Second,
the adapter developer has to know about the middleware system that is used to
deploy and execute the adapter. The middleware system additionally comprises
concepts and mechanisms that are complementary or even different to the concepts
and mechanisms of the adapter technology. Third, the adapter developer has to
know about the remote system that the adapter has to integrate. The concepts and
mechanisms that belong to the remote system can be quite different to the concepts
and mechanisms of the middleware system and the adapter technology.

The different software systems, technologies and concepts that are involved in
the development of an adapter strongly increase the complexity of the adapter de-
velopment process. This imposes high requirements on the knowledge, skills and
experience of an adapter developer. A software developer who implements a module
in a software project or a software developer who implements a web application
usually does not have the required capabilities. Moreover, an adapter is more prone
to errors due to the different software systems, technologies and tools that are used
for adapter development and that the adapter depends on. Therefore, testing the
adapter implementation needs to be more extensive. The adapter implementation
has to be tested under different conditions and configurations of the middleware
system and the remote system, which requires additional administrative and orga-
nizational tasks. Errors can occur in relation to specific configurations and states of
the different systems, hosts and operating systems that are involved in processing
requests of the integration scenario. Maybe the combination of a specific state in
the remote system and a specific state in the middleware system creates an unpre-
dictable exception, maybe the load of the remote system host in combination with
the thread pooling mechanism of the middleware server reveals a memory leak on
the middleware host, and so on.

Debugging adapters is another issue, which is not as easy to perform as it is for
most other software implementations since an adapter usually is not executed in its
own operating system process, but as part of the middleware system. Debugging an
adapter means debugging the overall middleware operating system process using the

39

2 Integration

debugging facilities of the middleware system. Moreover, debug-and-fix steps take
much longer for adapter implementations than for most other software implementa-
tions since the involved software systems are distributed over two or more processes
or even hosts and have to be administrated and configured separately.

Another argument against developing a new adapter is that if there already ex-
ists an adapter that integrates the desired remote system and if this adapter is an
integral part of the existing system environment, it could be difficult if not almost
impossible to develop a new adapter for the desired remote system. For example, the
CRM application of the sales department is an old, legacy in-house implementation.
Client applications use the message broker (MB) and thus the CRM application MB
adapter to access the CRM application. The CRM application has been changed
several times in some way. There is only outdated documentation and there is no one
left who really knows about the CRM application and its internals. The knowledge
about the interaction patterns and constraints that hold for the CRM application
and its interfaces is coded in the CRM application MB adapter implementation and
nowhere else. Additionally, bug fixes and some minor changes of the application
logic or even extensions of the original functionality have not been realized in the
CRM application itself. Instead, the bug fixes and changes have been realized as
part of the CRM application MB adapter since there is personnel that can han-
dle the message broker and its adapter implementations, but there is no personnel
left that knows about the internals of the CRM application implementation. There
is no reliable documentation about the interaction patterns, constraints, bug fixes
and application logic changes that are buried in the CRM application MB adapter
implementation and thus implementing a new J2EE connector for the CRM appli-
cation would also require to substantially re-engineer the MB adapter and then to
re-implement and test the modifications in the J2EE connector again. In summary,
an adapter can encapsulate semantics such as consistency checking, integrity rules,
application knowledge, domain knowledge, knowledge about complex interfaces and
access patterns of the underlying remote system.

If we take a more global look at the problem of integrating remote systems into
middleware systems, we additionally have to consider the overall costs. We already
mentioned that it is not practically feasible to develop an adapter for each remote
system and for each middleware system and of course we surely do not need an
adapter for each possible combination of middleware system and remote system.
However, solving the adapter problem by developing a new adapter each time one
is needed places the overall complexity of m ∗ n adapters for m middleware systems
and n remote systems (where n À m). From a company’s strategic viewpoint this
is an unsystematic way of tackling integration issues. A company just reacts to
demands in current integration scenarios, but there is no global planning and no
global integration strategy. This further complicates management of IT projects
and proper calculation of IT budgets and future expenditures. For example, the HR
application of our initial example is extended half a year later to additionally access
the CRM application of the sales department. We have a MB adapter since the
sales department runs a message broker that integrates most of its software systems.

40

2.3 Integration Issues

However, the HR application is Java EE-based and needs a CRM application J2EE
connector to access the CRM application (Figure 2.3). The consequence is that
we have to develop the CRM application J2EE connector from scratch. Another

Figure 2.3: Extended Integration Scenario.

process of the company changes one year later and now the CRM system of the HR
department has to be integrated into the sales department IT infrastructure. This
means that we have to develop a CRM MB adapter from scratch (see Figure 2.3).
And so on. In that way each integration issue is unsystematically solved, on its own
and in a local, isolated situation, which is most likely sub-optimal from a global
perspective.

Additional complications can occur when a remote system changes. Changes in
a remote system mean upgrading the system to a new version, modifying the API
or other characteristics of the system, which enforce modifications in the integrating

41

2 Integration

adapter. If there is only one adapter for that remote system and if this adapter
is reused by other middleware systems and applications, we have to maintain and
modify only this adapter. If we however created several other adapters for the same
remote system, but for other middleware systems, we have to maintain and modify
each of them, which means that there are several modification tasks instead of only
one. For example, imagine that the CRM system in our example scenario in Figure
2.3 is modified, which means that both the CRM J2EE connector as well as the
CRM MB adapter have to be modified.

Considering all these arguments it actually becomes very appealing if it would
be possible to avoid developing new adapters. Generally, there are two means so
far that could avoid developing new adapters from scratch: software generation and
software reuse.

2.4 Generation and Reuse

Adapters are valuable because their development is expensive and because their
value is gradually increasing during the maintenance and the evolution they un-
dergo over time. There are numerous adapter generation approaches that usually
provide some kind of abstract high-level specification language to generate adapters
for remote systems, e.g. [BB97, BBH+08, BCG+05, GAD+05, GRVB98, HGMN+97,
LHB+99, RPÁ+02, BCMP13]. However, all these approaches are seriously limited
by their high abstraction level, which heavily restricts the addressed remote sys-
tems. Such specification languages either specify only parts of adapters or they do
not support a wide range of interfaces, operation models, data models, error han-
dling models, etc., but address only a specific application domain or scenario, e.g.
web sources or SQL sources. Thus, approaches that aim at semi-automatically gen-
erating or customizing adapters are only suitable for restricted scenarios, but not
as generic solutions. Consequently, adapters are usually developed in a complete
development cycle so far.

Software reuse is another means that avoids complete software development cy-
cles. Software reuse has a long tradition and ranges from the use of functions to
the concept of software components. An overview of software reuse can be found
in [Kru92, FT96, GAO09, GAO95]. Reuse of adapters sometimes is the only ap-
propriate way if an adapter is the only available access mechanism that contains
undocumented or lost knowledge about interaction patterns and constraints of the
integrated remote systems. Maybe even bug fixes and application logic changes of
the integrated remote system are realized in the adapter, but not in the remote sys-
tem. Moreover, adapters generally perform the same task, i.e. integrating remote
systems. Integration of a remote system by means of two different adapter tech-
nologies yields two different, incompatible adapters, but both adapters access the
same remote system and the same interfaces in the same or at least in a similar way.
Both adapters process requests, transform them into corresponding remote system
access and transform responses to the adapter technologies’ formats, models and

42

2.5 Adapter Virtualization

interfaces, respectively. This is different for both integration technologies, but the
methodology of processing requests and responses and the way the remote system is
accessed is similar for both adapters. In that sense, adapters perform similar inte-
gration tasks. Consequently, if we have an existing adapter that already integrates
the desired remote system, we should reuse this adapter instead of developing a new
one. The existing adapter has already been implemented and tested, it already is in
productive use, and it has become a reliable and trusted part of a running system.
If we can make use of this asset, why should we go a costly and laborious way and
realize a similar integration task again?

The problem with reusing adapters is that adapters of different integration tech-
nologies are incompatible to each other so that we cannot directly reuse them on
other middleware platforms. For example, we cannot use the CRM application MB
adapter in Figure 2.3 with the Java EE application server because the Java EE
application server employs different concepts, technologies and mechanisms than
the message broker does, i.e. different management and configuration, different
programming model and APIs, different data model and data representation, differ-
ent processing model and communication protocols, different error model, different
quality of service requirements, and so on. In other words, the message broker and
its adapter technology is incompatible to Java EE application servers and J2EE
connectors and vice versa.

In summary, existing approaches that generate adapters are not applicable to
most integration issues and direct reuse of adapters is not feasible at all. Therefore,
we propose a virtualization tier that is based on integration management technol-
ogy and that provides a generic and systematic means to indirectly reuse diverse
adapters.

2.5 Adapter Virtualization

Typical integration scenarios as exemplified by our example integration scenario
show an inherent need for uniformly and systematically using different adapter tech-
nologies. This need can also be perceived in existing and ongoing technology and
product evolution. Technology examples are Java EE [Sun06a], which defines ap-
plication server extensions for Web services and CORBA interoperation. More and
more middleware systems such as FDBSs or message brokers support Web services.
IBM’s WebSphere Application Server is a Java EE application server, but is also
able to natively access WebSphere Business Integration Adapters, which are part of
a message broker platform. Stonebraker [Sto02] discusses six classes of middleware
systems and concludes that middleware systems of different classes increasingly tend
to overlap in their functionality. Vinoski [Vin03] discusses the need for a “middle-
ware for middleware” and the difficulties and limitations that are imposed even if
Web service technology is employed. Such indicators show that there is a need for
uniformly and systematically using different adapter technologies, but existing mid-
dleware extensions such as the aforementioned ones only support one or at most

43

2 Integration

few adapter technologies, respectively, and they are proprietary and unsystemati-
cally designed. To the extent of our knowledge there is no systematic approach that
provides uniform and systematic access to different adapter technologies in a gen-
eral manner although it would drastically influence IT landscapes and significantly
increase cost-savings.

We designed a systematic integration management approach that can deal with
different adapter technologies and that shields developers from integration tasks.
Our approach employs a virtualization tier (VT) that allows to reuse adapters in
different integration scenarios and with different middleware platforms. The VT vir-
tualizes adapters and thereby uses and executes them as their respective middleware
platforms would do. Virtualizing means that we provide the capability to uniformly
handle and access different types of adapters so that application developers do not
need to care about integration tasks, but can work independent of integration issues.
For example, we deploy the CRM application MB adapter into the VT so that the
HR application (cf. Figure 1.3) can access the CRM application by accessing the
CRM application MB adapter in the VT (as sketched in Figure 2.4). Hence, there
is no need for developing a new CRM application J2EE connector. The VT thereby
alleviates and solves the drawbacks and problems of developing new adapters.

Figure 2.4: Reuse of the CRM App. MB Adapter.

Figure 2.5 shows the basic architecture of the VT. Each adapter technology
needs an adapter manager that is responsible for managing and properly executing
adapters of that adapter technology. Therefore, an adapter manager and a mid-
dleware system that both handle adapters of the same adapter technology have to
implement the same core functionality. It is even possible to use that part of a mid-
dleware system implementation that is concerned with management and execution
of adapters as a code basis for a corresponding adapter manager. This is actually

44

2.5 Adapter Virtualization

recommended since this functionality constitutes a considerable part of an adapter
manager.

Figure 2.5: Virtualization Tier Architecture.

The global access layer of the VT provides uniform access to the different adap-
ters. Figure 2.6 shows how the VT-based solution of the integration example in
Figure 2.4 looks like. The VT employs the SQL wrapper manager to handle SQL
wrappers, e.g. the file server SQL wrapper and the CRM DBS SQL wrapper, and
it employs the MB adapter manager to handle MB adapters, e.g. the CRM appli-
cation MB adapter. The J2EE connector manager is responsible for managing and
executing J2EE connectors and so on. The HR application now can use the VT
J2EE connector to access the VT, which in turn uses the different adapters that are
deployed in the VT. The benefit of this solution is that both SQL wrappers and the
MB adapter can be completely reused whereas the conventional solution shown in
Figure 2.3 requires to develop three J2EE connectors from scratch. The message
broker of the sales department uses the VT in the same way (see Figure 2.7): it
employs the VT MB adapter to access the VT and thereby all adapters that are
deployed in the VT, e.g. the CRM J2EE connector.

An important aspect of the VT approach is that existing middleware systems
do not have to be modified and that the operation of existing applications and
processes is not affected. The VT enhances middleware systems in a non-invasive
manner offering an additional means of accessing remote systems. The enhancement
is achieved by using a middleware’s native adapter technology to access the VT, i.e.
a VT middleware adapter. For example, the Java EE application server in our
example scenario in Figure 2.6 uses a VT J2EE connector to access the VT. Figure
2.8 abstractly shows how existing and new middleware applications coexist. On the
one hand, existing applications only use adapters in the middleware system that

45

2 Integration

Figure 2.6: VT-Based Solution.

are directly accessing remote systems. On the other hand, new applications can
additionally include the VT in their processing and additionally use other adapters.

Another benefit of the VT approach is that it increases the flexibility of an IT
infrastructure since future changes and requirements concerning such integration
tasks can be solved with the VT again. Abstractly seen, the VT can be considered
as a middleware multiplexer that allows a middleware system to access any adapter
that is deployed in the VT. If m middleware platforms have to access n remote
systems without using the VT, we would potentially need m ∗ n adapters as shown
in Figure 2.9. The VT reduces this complexity to m+n adapters due to the uniform
access that allows any middleware platform to use any adapter in the VT as shown
in Figure 2.10 (m adapters for accessing the VT and n adapters for accessing the
remote systems). Put in other words, a conventional integration approach that
relies on a specific middleware system and a specific adapter technology requires a
specific adapter to integrate a remote system whereas the VT allows to use the same
middleware system, but any adapter that is available for that remote system. The
VT is a systematic and integration technology-independent approach that is open
for any middleware platform or application that wants to benefit from the VT.

A basic idea of the VT is that of a multiplexer that allows diverse middleware

46

2.5 Adapter Virtualization

Figure 2.7: VT-Based MB Solution.

Figure 2.8: Middleware Enhancement.

47

2 Integration

Figure 2.9: Conventional: Potentially m ∗ n Adapters Required.

Figure 2.10: VT as Multiplexer: Only m + n Adapters Required.

systems to access diverse adapter technologies. Therefore, the VT is executed as
an independent and general-purpose service, i.e. in a separate server process, most
suitably on a dedicated host. Another consequence from the central role that the VT
plays is that we have to consider scalability issues. There are different distribution
patterns conceivable for the VT to enable scalability. We did not perform an in-
depth evaluation of different scalability approaches for the VT since techniques and
methods for achieving scalability are well studied and can be analogously applied
to the VT. A solution that is quite easy to achieve is to create VT instances on
different hosts (see Figure 2.11). We only have to extract the VT repository where
the VT object configurations and other configuration information is stored. The VT
repository then runs on a separate host as a service for the different VT instances.
The VT instances now access the VT repository for deployment and configuration
information via network. Any information from the repository can be cached so that
execution time is sped up. The separately hosted VT repository can additionally
rely on conventional DBMS technology that employs distribution and replication to
further increase scalability.

48

2.6 Integration Management

Figure 2.11: VT Scalability.

In the next section, we generalize from the VT approach. We introduce integra-
tion management technology and the class of integration management systems that
shield from integration tasks and that provide integration independence.

2.6 Integration Management

IT infrastructures use middleware systems and adapter technologies to overcome het-
erogeneities and to integrate diverse software systems. Applications depend on such
integration technologies to fulfill their functionality. Different middleware systems
employ different adapter technologies and therefore an IT infrastructure depends
on different integration aspects. For example, an IT infrastructure may contain
a Java EE application server and J2EE connectors, an FDBS and SQL wrappers,
and a message broker and message broker adapters. Applications may use one or
more of them and thereby access different middleware systems, different adapters
and different remote systems. An IT infrastructure also obeys different organiza-
tional, administrative and technical aspects that are involved in integration issues,

49

2 Integration

e.g. system authorities, system management responsibilities, licensing and software
distribution. Integration management technology is a means to systematically deal
with these integration issues. Figure 2.12 shows the basic architecture of integration
management systems. An integration management system (IM system) is a
software system that extracts integration issues from an IT infrastructure and its
applications and that provides a single point of access, i.e. the integration abstrac-
tion layer, independent of any integration tasks that have to be performed beyond
this point. We call the underlying technology integration management technol-
ogy (IM technology). An integration task in this context is a component that
realizes one or more steps to interconnect remote system and integration manage-
ment system and to overcome the heterogeneities between them. An IM system such
as the VT provides uniform access means to diverse software systems and shields
an IT infrastructure and its applications from integration aspects. We call this
integration independence†.

Figure 2.12: Integration Management System Architecture.

On the one hand, a middleware system employs an adapter technology to offer an
integration means. On the other hand, the VT is an IM system that handles integra-
tion technologies to provide integration independence. IM technology abstracts from
integration technologies in the sense that an IM system is independent of specific
integration technologies. Therefore, the VT cannot be compared to a middleware
system or an integration technology. A software system or an application that uses a
middleware system depends on the corresponding integration technology. A software
system or an application that uses the VT is independent of a specific integration

†The term integration independence is differently used, e.g. see [Noe05, McG06, HMKH10,
Mil10]. We define the term integration independence in the sense of integration handling abstrac-
tion as the term data independence is defined in the sense of data handling abstraction [Cod70] or
as the term flow independence is defined in the sense of flow handling abstraction [LR00]

50

2.7 Summary

technology and completely shielded from the integration tasks. Consequently, an
IM system such as the VT is not intended to replace an integration technology and
it can not be replaced by a middleware system and an integration technology. The
task of an IM system is to deal with integration issues and other heterogeneity as-
pects of an IT infrastructure so that the development and maintenance of software
systems and applications is alleviated and more homogenized.

In the rest of this work, we discuss and evaluate IM technology by means of the
VT as a representative IM system. We take a closer look at the data model (Chapter
3) and at the processing model (Chapter 4) of the VT, we discuss deployment
and configuration of integration tasks in the VT (Chapter 5), and we evaluate the
applicability (Chapter 6) and the performance (Chapter 7) of the VT.

2.7 Summary

From a global perspective, the problem of integrating remote systems into middle-
ware systems creates the overall complexity of m ∗ n adapters for m middleware
systems and n remote systems. It is not practically feasible to develop an adapter
for each remote system and for each middleware system because of this complexity
and since developing an adapter generally is complex and error-prone. Therefore, we
designed a systematic integration management (IM) approach that can deal with
different adapter technologies and that shields developers from integration tasks.
Our approach employs a virtualization tier (VT) that allows to reuse adapters in
different integration scenarios and with different middleware platforms. The VT vir-
tualizes adapters and thereby uses and executes them as their respective middleware
platforms would do. Virtualizing means that we provide the capability to uniformly
handle and access different types of adapters so that application developers do not
need to care about integration tasks, but can work independent of integration issues.
The VT can be considered as a middleware multiplexer that allows a middleware
system to access any adapter that is deployed in the VT. The VT thereby reduces
the complexity of m ∗ n adapters to m + n adapters.

51

Chapter 3

Data Model

The adapter managers of the VT are responsible for properly managing and execut-
ing adapters (see Figure 2.5). The global access layer has to provide a suitable data
model that can uniformly deal with data and operations of the remote systems that
are integrated by the adapters in the VT.

3.1 VT Objects

The advantage of an object-oriented data model is that it can support data aspects
by means of objects as well as behavior by means of object methods. This is a
crucial aspect for the VT data model since it has to adequately support different
adapter technologies, which may be data-oriented or operation-oriented. Put in
other words, we need a means to represent and access remote data and we need
a means to represent and execute remote operations. Additionally, we have to be
able to access data in terms of bulk operations or complex requests, e.g. in a set-
oriented way. Therefore, the VT data model has to support data structures and
operations as well as a declarative, set-oriented query language. These requirements
lead us to an object-oriented data model that can represent complex data structures
as well as behavior and that is suitable for executing data-intensive queries as well
as computational operations. The ODMG object model [CBB+00] meets the given
requirements. The ODMG standard provides a semantically rich data model that
supports object-oriented mechanisms such as inheritance, relationships and behavior
and it also offers a declarative query language for processing data-intensive requests.
It is programming language-independent so that it can be adopted to different pro-
gramming languages (by means of so-called “bindings”), e.g. see [ABCB+01] for a
discussion of the Java language binding. Moreover, the ODMG standard has been
specified and accepted by a large community in industry as well as in academia and
it has been successfully used in integration projects, e.g. Garlic [CHS+95], IRO-DB
[GGF+95], and Lore [AQM+97]. It evolved and matured in more than 15 years and
it has been adopted in other object models, e.g. JDO [Sun10], and software prod-
ucts, e.g. Hibernate [KBA+10]. Hence, the ODMG object model provides a firm
basis and is most suitable to serve as the basis for the VT data model. We also use

3 Data Model

the associated set-oriented, declarative object query language (OQL) of the ODMG
standard as the basis for the VT query language (VTQL).

The ODMG object model is based on the OMG object model which is the object
model of CORBA [OMG08]. Object instances obey types, i.e. classes or interfaces,
and they comprise properties, i.e. attributes or relationships, as well as operations
and exceptions. Operations are executed on behalf of the objects and they can
raise exceptions. The VT data model is based on the ODMG object model and
defines VT objects that can represent remote data as well as remote operations
and that can be directly accessed in a navigational manner or by means of complex
VTQL requests in a set-oriented, declarative manner. A VT object does not exist
on its own, i.e. it does not exist independently, but is always correlated with some
remote data or remote operation via an adapter that is deployed in the VT. This
in turn means that any VT object access results in a corresponding access on a
remote system. Data and operations of remote systems are reflected as VT objects
and VT object methods in the VT. For example, a VT object class can represent
a relational table or a Java class in a remote system. It is defined by means of
a configuration chapter and can have one or more instances that represent data
entities in the remote system. For example, a VT object instance can represent a
tuple of a relational table or a Java object. The VT object concept is based on the
interface and class constructs of the ODMG object model. If it is not necessary to
distinguish between a VT object class and its instances or if it is clear from the
context what is meant, we just use the term VT object. A VT object operation
is an operation that is associated with a VT object class analogous to operations
in the ODMG data model where an operation is a method of a class or interface.
A VT object operation represents an operation in a remote system. If a VT object
operation is executed, the corresponding remote operation is executed.

3.2 Semantics

The VT data model can basically represent remote data and remote operations by
means of its structural properties, i.e. data structures. This is sufficient to properly
access VT objects. The semantics of remote systems that are reflected as con-
straints on data or as implementations of operations usually cannot be completely
represented in the VT (nor in a middleware system). Actually, it is even not neces-
sary to represent any constraints of remote data or semantics of remote operations
in the VT since VT objects only act as representations of remote data and remote
operations and therefore the VT does not need to enforce constraints. Constraints
and other semantics are already automatically enforced by the remote systems and
maybe by the adapters that integrate the remote systems. From that point we only
need the information about the constraints so that a VT client application can prop-
erly deal with VT objects, but we do not need to enforce the constraints itself in
the VT. Nevertheless, the VT allows to specify information about the constraints
of remote data or remote operations in terms of VT object constraints analogous to

54

3.3 Transactions

ODMG constraints such as data types or relationships.

Any constraint checking comes at some costs, especially the more complex con-
straints become. If we redundantly enforce constraints in the VT in addition to the
remote system, the processing of a VT request is generally slowed down to some
extent. However, if this enforcement detects an error in the VT request, the re-
quest is not submitted to the remote system, but immediately rejected by the VT.
Otherwise, the VT would not check the constraints of the VT request and it would
submit the VT request to the remote system where the error is finally detected and
the request is rejected. It would take more time to submit the request to the remote
system than to check some constraints in the VT and thus it can be beneficial to
pre-enforce constraints in the VT. It is a trade-off whether constraints should be pre-
enforced in the VT or not. If constraint violations seldom occur, it is most probably
not beneficial to redundantly check them in the VT. The VT administrator has to
decide on whether a constraint is pre-enforced in the VT or not, i.e. whether the
overhead of pre-enforcing a constraint does pay off. Therefore, constraints defined
in the VT can be additionally tagged with <unchecked> so that these constraints
are not pre-enforced by the VT, but only act for documentation purposes. A good
reason why the VT should be able to define and enforce constraints is that the
VT can be used to place additional, new constraints, e.g. constraints that cannot
be expressed in a remote system or constraints that span multiple remote systems.
Finally, it can be very useful to define constraints in the VT for documentation
purposes only either as constraints that are tagged as <unchecked> or in terms of
annotations that are attached to the elements of VT object definitions and that de-
scribe the semantics, e.g. “age must be between 18 and 99” for VT object attribute
age or “this operation sums up the monthly turnovers of the given year” for VT ob-
ject operation computeSum(int year). These constraints are not enforced in the VT,
but they serve VT administrators, VT client application developers and VT users
as a global documentation so that they don’t have to use specific remote system
documentation, if there is someone at all. In that way, the VT can serve as a global
documentation repository that is uniformly accessible and that delivers semantic
information about the remote data and remote operations that are represented as
VT objects in the VT.

3.3 Transactions

Every VT client application can access VT objects only within a transaction so
that different VT client applications work isolated from each other. A VT client
application must use a VT transaction even if a remote system does not support
any kind of transactions. If a VT client application, e.g. a middleware system,
accesses more than one remote system, the VT transaction is distributed among the
participating remote systems. A remote system can either support distributed trans-
actions (<distributed>), standard transactions (<standard>) or no transactions at
all (<none category=”...”>). Remote systems that do not offer transactions are

55

3 Data Model

not intended for competing access patterns (although concurrent access might be
possible). Nevertheless, such remote systems can be used by the VT too. They are
divided into three categories. The first category (<none category=”read only”>)
are remote systems that do not allow to modify data, i.e. they are read-only, e.g.
some kind of data warehouse or a documentation or encyclopedia resource. The VT
can access such a remote system without any restrictions, i.e. read-only. The second
category (<none category=”single user”>) are remote systems that are only used
by the VT, i.e. there is no concurrent access. However, if the VT transaction rolls
back on behalf of the VT client application or if an error occurs in the remote system
during the execution of a VT transaction, the remote system is not automatically
rolled back. Operations that have already been executed on the remote system must
be explicitly compensated, e.g. by the VT client application or another administra-
tive mechanism. It is the responsibility of the VT client application developer to
consider such cases in the same way as an application developer would do if he is
developing an application that directly operates on this remote system. The third
category (<none category=”uncertain”>) are remote systems that are not only ac-
cessed by the VT, but by other systems too. Nevertheless, it seems not to be critical
(for whatever reason) when two systems concurrently access such a remote system,
e.g. a system with slowly changing data or a system that only collects data. For
example a booking system shows that there is one place left in the plane, but when
you try to book it, it is already booked by someone else or a monitoring system that
logs events from other systems.

3.4 Object Identity

The VT object manager is part of the global access layer. It is responsible for
properly handling VT object instances in the VT object cache of the global access
layer. The VT object manager loads VT object instances via adapters from remote
systems into the VT and it writes VT object instances via adapters from the VT
into the corresponding remote systems. The VT object manager is also responsible
for properly executing VT object operations via adapters on remote systems. Each
VT object instance is uniquely identified in the VT, i.e. each VT object instance can
be uniquely addressed and accessed. VT object instances can be compared either
as VT object instances or as representatives of remote data entities. The former
case compares whether two VT object instances are the same or not. A VT object
instance is identified by means of the VT identifier (vtid). If two VT object instances
have the same VT identifier, they actually are identical, i.e. there is only one VT
object instance with this VT identifier. We call this kind of identity VT identity.
The VT identity only holds for the VT. If we deal with a VT object instance as
a representative of a remote data entity, it is not identified by means of the VT
identity, but by means of the identity of the corresponding remote data entity. For
example, a VT object instance that represents the tuple of a relational table is
identified by the primary key of the table. A VT object instance that represents

56

3.4 Object Identity

a Java object could be identified by means of the main memory address where the
Java object is allocated or by means of an internal object identifier. We call this
kind of identity the remote identity of a VT object.

Figure 3.1: VT Object Mapping – First Request.

If a VT object instance has a remote identity, we call it a unique VT object
instance (and its associated VT object class correspondingly unique VT object
class). If a VT object instance does not have a remote identity, we call it a non-
unique VT object instance (and its associated VT object class correspondingly
non-unique VT object class). The VT uses the remote identity to ensure that a
VT object instance is always correlated with the same remote data entity and that
a remote data entity is represented only by one VT object instance. Consequently,
there cannot be two or more VT object instances of the same VT object class that
represent the same remote data entity. For example, Figure 3.1 shows how remote
data is mapped to VT objects.∗ VT object class VTEmployee represents a relational
table in a DBS. The table is named Employee and its primary key is EMPID.
VTEmployee has two parameter sets: VTEmployee.lastname(String lastname) and
VTEmployee.dept(String dept).† Now, we perform a VT object read operation, i.e.
VTEmployee.lastname(”Wagner”) (1), which locates two tuples in the Employee
table as the requested remote data (2). The DBS returns the data and the VT

∗We omit the adapter manager and the adapter since we only want to show the “final” corre-
lation between remote data and VT objects independent of any intermediate steps in the adapter
manager and in the adapter.

†Details about VT object operations and parameters can be found in Chapter 4.

57

3 Data Model

object manager allocates two VT object instances of VTEmployee (3) and returns
them as the result of the request (4). Next, we perform a second retrieval (see Figure
3.2), VTEmployee.dept(”AS”) (1), which locates three tuples in the Employee table
as the requested remote data. The DBS returns the data, but in this case the VT
object manager allocates only one VTEmployee instance (3) since the VT object
manager uses the primary key values of table Employee as the remote identity of
VTEmployee to determine whether a tuple of this table is already represented as a
VTEmployee instance in the VT object cache. Indeed, the primary key values 7151
and 3265 already belong to two VTEmployee instances and therefore the VT object
manager only creates one further VTEmployee instance. Finally, the VT object
manager returns the requested VTEmployee instances (4).

Figure 3.2: VT Object Mapping – Second Request.

3.5 Non-Uniqueness

Changes of a VT object instance are reflected in the correlated remote data at
the end of a VT transaction. For example, we retrieve one VTEmployee instance
via VTEmployee.empid(7151) as shown in the update step in Figure 3.3, (1 - 3).
Thereafter, we modify the id attribute of this VTEmployee instance (4, 5) and
commit the VT transaction so that the modified value is written to the remote
DBS. This works fine as long as we preserve the correlation between a VT object
instance and its associated remote data entity, e.g. a tuple in a table. However, in

58

3.5 Non-Uniqueness

this case we changed the value of an attribute that is part of the remote identity,
i.e. the id attribute, and therefore we cannot any longer correlate this VTEmployee
instance with the associated tuple in table Employee. The solution is to keep the
original remote identity of each VT object instance so that changes to the remote
identity of a VT object instance can be still properly reflected in the correlated
remote data entity. The original remote identity of a VT object instance is also
used for properly identifying remote data entities that are retrieved later in the VT
transaction. For example, the id attribute of VTEmployee instance inst1 changed
from 7151 to 2946. In this case, we did not commit so far, i.e. our transaction is still
running. We issue the next request that retrieves all employees of department AS
(see retrieval step in Figure 3.3): VTEmployee.dept(”AS”). The VT object cache
now uses the original id values of the VT object instances to determine whether a
tuple has already been loaded into the VT earlier. Hence, the VT object cache does
not compare the empid value of the Employee tuple (7151, Wagner, Frank, AS) to
the current id value of VTEmployee instance inst1, i.e. 2946, but to it’s original id
value, i.e. 7151, thus realizing that the tuple is already correlated to VTEmployee
instance inst1 although its remote identity value has been changed in the VT (but
not committed yet).

The situation becomes more complicated if a remote data entity does not have an
identifier, e.g. the tuple of a relational table that does neither define a primary key
nor a unique constraint. A remote data entity could be potentially represented more
than once in the VT by different VT object instances of the same VT object class.
Modifications on two or more of these VT object instances would then cause unex-
pected results. For example, Figure 3.4 shows how non-unique remote data entities
are mapped to VT object instances without considering their non-uniqueness. VT
object class VTPayment represents the relational table Payment in the DBS. There
is no unique constraint and no primary key. VTPayment has two VT object read
operations: VTPayment.payedBy(String dept) and VTPayment.category(String cat-
egory). We now want to decrease all payments issued by department IAAS by 150
and thereafter we want to increase all payments of category 3 by 20 percent. First
of all, the VT transaction uses VTPayment.payedBy(”IAAS”) to read two tuples
from table Payment (1, 2). The VT object cache is empty and therefore two VT
object instances are allocated for the two tuples (3). Finally, the VT transaction
decreases the amount values of both VTPayment instances by 150 (4, 5).

The second part of the VT transaction executes VTPayment.category(3), which
reads two tuples from table Payment, too (6, 7). The two tuples are mapped to cor-
responding VTPayment instances (8) although one of the tuples has already been
read by the previous request, i.e. VTPayment.payedBy(”IAAS”). Now we have
four VT object instances representing three tuples in table Payment. Tuple (2934,
900, IAAS, 3) is represented by two different VTPayment instances, i.e. inst2 and
inst4. There is no means to determine whether a tuple of table Payment is already
represented by a VTPayment instance or not because table Payment does neither
have a primary key nor a unique constraint, which would be necessary to uniquely
identify a tuple and an associated VTPayment instance. Even comparison of all

59

3 Data Model

Figure 3.3: VT Object Mapping – Update.

60

3.5 Non-Uniqueness

Figure 3.4: VT Object Mapping – Non-Unique (Mismatch).

61

3 Data Model

values would fail since VTPayment instance inst2 has already been modified and
therefore now contains different values than VTPayment instance inst4 does. If
the VT transaction updates the two VTPayment instances returned by VTPay-
ment.category(3), i.e. amount = amount * 1.2, the outdated amount value of inst4
is used to calculate it’s new amount value. The correct solution would be to use the
modified amount value of inst2 to calculate the new amount value of inst4 since
inst2 is the most recent representation of Payment tuple (2934, 900, IAAS, 3) at
that point. However, the VT transaction commits 1080 as the new amount value of
Payment tuple (2934, 900, IAAS, 3) instead of the correct result 900. This example
shows the necessity that a remote data entity is always represented by only one VT
object instance at a time.

The reason of this incorrect behavior is that the VT is out of sync with the
accessed DBS. There is no means of uniquely identifying a tuple in table Payment
since there is no unique constraint and no primary key. The missing of a remote
data identity can lead to decorrelation between remote data entities and VT object
instances. Put in other words, the VT is not able to uniquely correlate a tuple of
table Payment with its associated VTPayment instance all the time. Consequently,
the VT needs to explicitly synchronize between the VT and the remote system if
VT object instances have to be retrieved from the remote system and if VT object
instances of the same VT object class have been modified before. This holds for
VT object classes representing remote data entities that have no identity, e.g. Java
classes without unique attributes or relational tables without unique constraints and
primary keys. The synchronization can be realized in different ways. For example,
changes can be explicitly synchronized with a remote system by writing each change
to the remote system so that VT and remote system always stay synchronized. The
usually more suitable solution is to keep the original values (see Figure 3.5, update
step, 5) where each non-unique VT object instance retains its original version that
has been mapped from the remote system. There is only one VT object, i.e. inst2,
representing tuple (2934, 900, IAAS, 3) in table Payment (see Figure 3.5, retrieval
step, 11) opposite to the example in Figure 3.4. In that way, VT objects in the VT
object cache can be modified as desired and VT objects that are mapped from a
remote system can be uniquely identified by means of the original versions of the
VT objects in the VT object cache. The VT object cache replaces the original
versions of the VT object instances by the current versions when the VT object
instances are written to their correlated remote systems, e.g. when committing the
VT transaction or for every write operation.

VT object classes representing remote data that owns an identity, e.g. a Java
class with uniquely identifying attributes or a relational table with a primary key,
are affected by the same behavior, if an attribute of a VT object instance that is part
of the remote identity has been modified. In that case the correlation between the
VT object instance and its remote data entity is lost either and must be explicitly
preserved by correcting actions too. If attributes are modified that do not belong
to the remote identity, operations are not critical.

One issue still remains. The missing of a remote identity (non-unique remote data

62

3.5 Non-Uniqueness

Figure 3.5: VT Object Mapping – Non-Unique (Correct).

63

3 Data Model

entities, non-unique VT object instances) means that even all available properties
of a remote data entity potentially are not sufficient for uniquely identifying it,
i.e. there can be duplicates. A duplicate remote data entity of course cannot be
unambiguously correlated with a VT object instance and vice versa. Access to a
specific duplicate remote data entity is possible, if an order criterion is placed on the
duplicates, e.g. retrieving duplicates into an array so that the array indexes make
the duplicates distinguishable. The mapping from duplicate remote data entities
to VT object instances and vice versa basically obeys the ambiguity of duplicates.
The VT object cache checks for every non-unique remote data entity that a VT
object operation retrieves whether a corresponding VT object instance has been
instantiated earlier, i.e. whether the remote data entity has already been retrieved
by another VT object operation earlier. If this is the case, the VT object cache
uses the matching VT object instance as the representative of this remote data
entity. Otherwise, it instantiates a new VT object instance based on the values of
the remote data entity.

If a VT object operation returns a set of non-unique remote data entities that
contains duplicate remote data entities, the VT object cache clearly has to provide a
separate VT object instance for every duplicate remote data entity (see Figure 3.6)
(3). If the VT object cache already contains VT object instances that represent the
duplicate remote data entities, the VT object cache first maps the duplicate remote
data entities to them, e.g. the first duplicate remote data entity to that duplicate
VT object instance with the smallest vtid, the second to the duplicate VT object
instance with the second smallest vtid, etc. and thereafter allocates new VT object
instances if necessary, e.g. if there are only two duplicate VT object instances, the
third duplicate remote data entity requires to allocate a new VT object instance.
Updating or deleting one of the VT object instances results in updating or deleting
one of the associated duplicate remote data entities (see Figure 3.6) (5 - 8). The
actual correlation between a VT object instance and a specific duplicate remote
data entity is not relevant (and also not possible, either) from the viewpoint of the
VT since the missing of a remote identity, i.e. the non-uniqueness of a remote data
entity, is intended by the remote system (or adapter) and thus it is the responsibility
of the application, i.e. the VT client application in this case, to properly deal with
non-unique remote data entities and non-unique VT object instances.

3.6 Object References

VT objects can reference other VT objects to build complex structures. A VT
object reference is used as an attribute type in a VT object class to reference
another VT object class. For example, VT object class VTEmployee contains an at-
tribute called dept that references VT object class VTDepartment. If attribute dept
is accessed in a VTEmployee instance it dereferences to the proper VTDepartment
instance.

There are two different kinds of VT object references: explicitly resolvable VT

64

3.6 Object References

Figure 3.6: VT Object Mapping – Duplicates.

object references and non-explicitly resolvable VT object references. An explicitly
resolvable VT object reference comprises a reference key and a reference oper-
ation. They are used to resolve the reference by means of a remote operation. The
reference key consists of identifying attributes of the referenced VT object. The
reference operation is a VT object read operation‡ and uses the attribute values
in the reference key as parameters to resolve the referenced VT object instance. Fig-
ure 3.7 shows an example. Attribute dept in VTEmployee instance inst1 contains
the name of the department, i.e. ”AS”, as its reference key (1). Its reference opera-
tion is VT object read operation getDept of VT object VTDepartment (2). When a
VT client application accesses attribute dept in VTEmployee instance inst2, the VT
object manager uses the reference operation and the reference key value, i.e. ”AS”,

‡Refer to Section 4.2.1 for details about VT object read operations.

65

3 Data Model

to resolve the associated VTDepartment instance from the remote system via VT-
Department.getDept(”AS”). In this case, the DBS returns the requested department
tuple (3) and the VT object manager creates a new VTDepartment instance based
on these values (4). The VTDepartment reference of VTEmployee instance inst2
(1) is now resolved to a VT-internal reference based on the VT identity of VTDe-
partment instance inst3 (5) so that a VT client application now directly references
inst3 via inst2 (6) in succeeding access operations on the department attribute of
inst2.

Figure 3.7: Dereferencing VT Objects.

The VT object manager uses the VT identity within the VT to uniquely identify
VT object instances and VT object references. It uses the reference key and the
reference operation of explicitly resolvable VT object references only in the mapping
process when the reference is resolved from the remote system and when it is written
back to the remote system. If the reference key consists of the remote identity of the
referenced VT object, the VT object manager first looks for a VT object instance in
the VT object cache with the same remote identity. If there is such an instance, the
VT object manager uses this instance, otherwise the VT object manager resolves
the reference from the remote system.

66

3.6 Object References

The reference operation of a VT object reference can be omitted. In that case,
the VT object manager automatically uses the default unique VT object read oper-
ation of the referenced VT object. The prerequisite is that the reference key must
correspond to the parameters of this VT object read operation. A unique VT object
read operation of a VT object allows to uniquely identify and resolve a VT object
instance of this VT object class, i.e. it returns only one VT object instance for a
given reference key. If the reference operation is omitted and the default VT object
read operation is used, the parameter of the operation usually is the remote identity
of the VT object.

A non-explicitly resolvable VT object reference cannot be resolved by
means of explicitly calling a remote operation, but is rather handled as an inherent
part of a remote data entity. Hence, the reference must be resolved and transmitted
together with the accessed VT object instance that contains the reference. This
implicates that all VT object instances that are directly or indirectly referenced
by a VT object instance have to be resolved if we only access this one VT object
instance. For example, VT object class VTNode recursively references itself and
thereby creates a tree structure (see example in Figure 3.8). If VT object class
VTNode represents a Java class in the remote system and if the recursive references
of VTNode represent Java references in the remote system, the Java references can-
not be explicitly resolved because only the remote system implicitly knows the refer-
enced Java objects and how they can be accessed, but the VT does not. This means
that the directly and indirectly referenced VTNode instances and the corresponding
Java objects have to be automatically resolved when the referencing, top-level Java
object is resolved. For example, if we retrieve VT object instance VTNode3, the VT
automatically retrieves the VTNode instances 3, 5, 6, and 7 since the references in
VT object class VTNode cannot be explicitly resolved.

Figure 3.8: Non-Explicitly Resolvable VT Object References.

67

3 Data Model

An explicitly resolvable VT object reference comprises a reference key and a ref-
erence operation or the vtid, i.e. the VT identity, if the reference has already been
resolved. A non-explicitly resolvable VT object reference always contains the vtid of
the referenced VT object instance since a non-explicitly resolvable VT object refer-
ence is automatically resolved when the referencing VT object instance is resolved.
The concept of VT identity is also needed for transferring VT object instances to VT
client applications without completely deserializing and serializing reference graphs
of VT object instances.

3.7 Summary

The VT data model defines VT objects and VT object operations that represent data
and operations in remote systems. VT objects can be compared either as VT objects
or as representatives of remote data entities. The former case uses the VT identity
for the comparison, the latter case uses the identity of the associated remote data
entity, i.e. the remote identity. VT objects with a remote identity are unique VT
objects, VT objects that do not have a remote identity are non-unique VT objects.
The VT data model defines VT object references to build complex object structures.
There are two different kinds of VT object references. An explicitly resolvable VT
object reference comprises a reference key and a reference operation that are used to
resolve the reference by means of a remote operation. A non-explicitly resolvable VT
object reference cannot be resolved by means of explicitly calling a remote operation,
but has to be resolved and transmitted together with the accessed VT object that
contains the reference.

68

Chapter 4

Processing Model

There are two basic processing paradigms that we already identified in Section 2.2:
data-oriented processing and operation-oriented processing. The VT represents re-
mote data and remote operations as VT objects and allows to handle and process
them in both ways. VT objects contain data as well as operations so that VT objects
can be used in an operation-oriented manner by calling VT object operations and
they can be used in a data-oriented way either by directly dealing with VT objects
and their attributes or by means of VTQL, a set-oriented query language to retrieve
and manipulate VT objects. In this chapter, we use the VT Java language binding
to access VT objects via Java classes. VT client applications can use the VT Java
language binding to programmatically access the VT.

4.1 Processing Transparency

The first example shows how operation-oriented processing works with the VT.
The API of a CRM system offers a set of procedures written in C and corresponding
C data structures, i.e. struct Emp and struct Dept :

struct Emp { struct Dept {
int id; int id;
string lastname; string name;
string firstname; int budget;
int salary; };
struct Dept* dept;

};

struct Emp** get_emps();
struct Emp** get_emps(char* dept);
struct Emp* get_emp(int emp_id);
void add_emp(struct Emp* emp);
void add_emp(struct Emp* emp, char* msg);
void update_emp(struct Emp* emp);
void update_emp(struct Emp* emp, char* msg);
void replace_emp(int emp_id, struct Emp* emp);
void replace_emp(int emp_id, struct Emp* emp, char* msg);

4 Processing Model

void remove_emp(int emp_id, bool history);

struct Dept** get_depts();
struct Dept** get_depts(char* dept);
struct Dept* get_dept(int dept_id);
void add_dept(struct Dept* dept);
void add_dept(struct Dept* dept, char* msg);
void update_dept(struct Dept* dept);
void update_dept(struct Dept* dept, char* msg);
void replace_dept(int dept_id, struct Dept* dept);
void replace_dept(int dept_id, struct Dept* dept, char* msg);
void remove_dept(int dept_id, bool history);

We now integrate the CRM system into the VT by means of a J2EE connector
and define suitable VT objects (via the VT Java language binding) to represent the
given data and operations of the CRM system:

public class VTEmp { public class VTDept {
long id; long id;
String lastname; String name;
String firstname; long budget;
long salary; }
VTDept dept;

}

public class VTCRMAccess {
static DCollection<VTEmp> getEmps();
static DCollection<VTEmp> getEmps(String dept);
static VTEmp getEmp(long empId);
static void addEmp(VTEmp emp);
static void addEmp(VTEmp emp, String msg);
static void updateEmp(VTEmp emp);
static void replaceEmp(long empId, VTEmp emp, String msg);
static void removeEmp(long empId, boolean history);
...

}

VT object class VTCRMAccess represents the remote operations, i.e. the C
procedures, and VTEmp and VTDept represent the remote data, i.e. the C data
structures Emp and Dept. Now, we can access the CRM system via the VT in an
operation-oriented manner:

VTEmp emp = new VTEmp("Wagner", "Frank", 2000);
VTCRMAccess.addEmp(emp, "check was okay");
DCollection<VTEmp> emps = VTCRMAccess.getEmps();
...
emp.setSalary(emp.getSalary() * 1.2);
VTCRMAccess.replaceEmp(emp.getId(), emp, "good guy");
VTCRMAccess.removeEmp(emp.getId(), true);

70

4.1 Processing Transparency

The second example shows how data-oriented processing works with the VT.
The remote system is a relational DBS with two tables, i.e. Employee and Depart-
ment, which contain the same data as the CRM system of the operation-oriented
example does:

CREATE TABLE EMPLOYEE (CREATE TABLE DEPARTMENT (
empid INT, deptid INT,
lastname VARCHAR(30), name VARCHAR(20),
firstname VARCHAR(30), budget INT
salary INT,);
deptid INT

);

We integrate the DBS into the VT by means of an SQL wrapper and represent
the two tables as suitable VT objects (via the VT Java language binding), i.e.
VTEmployee and VTDepartment :

public class VTEmployee { public class VTDepartment {
long id; long id;
String lastname; String name;
String firstname; long budget;
long salary; }
VTDepartment dept;

}

Now, we can access the DBS via the VT in a data-oriented manner by means of
VTQL requests:

INSERT INTO VTEmployee
VALUES (’Wagner’, ’Frank’, 2000)
...
SELECT *
FROM VTEmployee
WHERE lastname = ’Wagner’ AND firstname = ’Frank’
...
UPDATE VTEmployee
SET salary = salary * 1.2
WHERE lastname = ’Wagner’ AND firstname = ’Frank’
...
DELETE FROM VTEmployee
WHERE lastname = ’Wagner’ AND firstname = ’Frank’

The VT does not only offer operation-oriented processing and data-oriented pro-
cessing, but additionally allows to handle and process VT objects independent of the
processing paradigm of an adapter technology or remote system (see Figure 4.1). A
client system, e.g. a middleware system, can choose the access style (specific access
style), i.e. whether it wants to access the VT by means of VTQL requests or by
means of VT object operations. The VT transparently processes the desired VTQL
requests or VT object operations underneath (transparent access style) independent
of the access styles of the underlying adapters and remote systems (specific access

71

4 Processing Model

styles). For example, the SQL-FDBS in Figure 4.1 chooses to transform SQL re-
quests to VTQL requests and the Java EE application server chooses to transform
Java method calls to VT object operation calls (specific access styles). The VT
has to cope with both access styles (transparent access style) and in turn suitably
accesses the required remote systems either in an operation-oriented manner or in
a data-oriented manner (specific access styles). For example, if the VTQL request
of the SQL-FDBS accesses a remote system via a J2EE connector, the J2EE con-
nector still requires Java method calls, i.e. operation-oriented requests, but not a
data-oriented request as it is given by the VTQL request. Therefore, the VT has
to provide a means that can overcome the paradigm change from data-oriented pro-
cessing to operation-oriented processing. Analogous considerations hold for the Java
EE application server. For example, if the VT object operation calls of the Java EE
application server access a remote system via an SQL wrapper, the SQL wrapper
still requires SQL requests, i.e. data-oriented requests, but not operation-oriented
requests as given by the VT object operation calls. Here, the VT provides paradigm
transparency and internally performs a paradigm change from operation-oriented
processing to data-oriented processing or vice versa if necessary.

Figure 4.1: VT Objects and VT Access.

If the VT was not able to perform paradigm changes between operation-oriented
processing and data-oriented processing, each client system would have to explicitly
regard the processing paradigm of the currently accessed adapter. For example, each
client system would have to issue VT object operation calls, if it wants to access
a J2EE connector and each client system would have to issue VTQL requests, if it

72

4.1 Processing Transparency

wants to access an SQL wrapper. Therefore, the VT supports transparent processing,
i.e. paradigm transparency, which means that the VT provides an operation-oriented
view to data-oriented processing and a data-oriented view to operation-oriented
processing. The VT realizes transparent processing by transforming VTQL requests
and VT object operations into equivalent CRUD representations.

A CRUD representation is the bridge between VTQL requests and VT object
operations and is realized by VT object access operations and VT object operation
structures. Data-oriented processing relies on the CRUD principle, i.e. creating,
reading, updating and deleting data. We represent the CRUD principle by means
of VT object access operations. A VT object access operation (short: VTO
access operation) is a standardized VT object operation for handling VT objects
and their attributes in an operation-oriented manner. There are four types of VTO
access operations according to the CRUD principle: create, read, update, delete.

Operation-oriented processing relies on operations and operation signatures. An
operation signature consists of an operation name and input and output parameters.
We represent remote operations by means of VT object operation structures. A
VT object operation structure (short: VTO operation structure) is a data
structure that consists of attributes analogous to data structures and attributes of
VT objects. VTO operation structure attributes represent VTO access operation
parameters that are not an inherent part of a VTO access operation type, i.e. they
are not necessarily required for a VTO access operation of that type, but they belong
to a specific VTO access operation only (more on VTO access operations and VTO
operation structures in the next section).

We evolve the operation-oriented example, i.e. VTEmp, VTDept and VTCR-
MAccess and map the C procedures and the C data structures Emp and Dept to a
CRUD representation in the VT using VTO access operations and VTO operation
structures:

public class VTEmp {
long id;
String lastname;
String firstname;
long salary;
VTDept dept;

// VTO access operations
@AccessOperation static DCollection<VTEmp> read();
@AccessOperation static VTEmp create(DMap<String, Object> empValues);
@AccessOperation void update();
@AccessOperation void delete();

// VTO operation structures
@OperationStructure(type="read", card="single")

static void getEmp(long empId);
@OperationStructure(type="read", card="multiple")

static void getEmpsOfDept(String dept);
@OperationStructure(type="read", card="multiple")

static void getAllEmps();

73

4 Processing Model

@OperationStructure(type="create", card="single")
static void addEmp();

@OperationStructure(type="create", card="single")
static void addEmp(String msg);

@OperationStructure(type="update", card="single")
static void updateEmp();

@OperationStructure(type="update", card="single")
static void replaceEmp(String msg);

@OperationStructure(type="delete", card="single")
static void removeEmp(boolean history);

...
}

public class VTDept {
long id;
String name;
int budget;

}

VT object VTCRMAccess is no longer necessary since VT objects VTEmp and
VTDept now contain standardized VTO access operations and VTO operation struc-
tures instead of the custom VT object operations in VTCRMAccess.

Next, we evolve the data-oriented example, i.e. VTEmployee and VTDepart-
ment, and use VTO access operations and VTO operation structures so that we
achieve a CRUD representation in the VT:

public class VTEmployee {
long id;
String lastname;
String firstname;
long salary;
VTDepartment dept;

// VTO access operations
@AccessOperation static DCollection<VTEmployee> read();
@AccessOperation

static DCollection<VTEmployee>
create(DCollection<DMap<String, Object>> empValues);

@AccessOperation void update();
@AccessOperation void delete();

// VTO operation structures
@OperationStructure(type="read", card="multiple")

static void selectEmps();
@OperationStructure(type="create", card="multiple")

static void insertEmps();
@OperationStructure(type="update", card="multiple")

static void updateEmps();
@OperationStructure(type="delete", card="multiple")

static void deleteEmps();
...

}

74

4.2 VTO Access Operations

public class VTDepartment {
long id;
String name;
int budget;

}

VT objects VTEmployee and VTDepartment now additionally contain standard-
ized VTO access operations and VTO operation structures. All VTO operation
structures are empty since we do not need additional VTO access operation param-
eters.

Now, we have transformed an operation-oriented representation of VT objects
as well as a data-oriented representation of VT objects into VT objects in CRUD
representation so that we can transparently process them without considering their
original representation in the remote systems. In this way, the VT can transparently
handle different access styles from client systems, i.e. data-oriented requests as well
as operation-oriented requests, and the next sections shows how this actually is done.
In the rest of this chapter we refer to the code fragments in this section, i.e. VT
objects VTEmp, VTDept, VTEmployee, VTDepartment and the associated CRM
System API and the SQL tables.

4.2 VTO Access Operations

Each type of VTO access operation is mapped to a remote operation by means of a
mapping pattern that is specific to the respective VTO access operation type, which
is described in this section.

4.2.1 Read Operation

A read operation is always called via a read VTO access operation and a suitable
VTO operation structure of type “read”, i.e. type="read". For example, we first
initialize VTO operation structure VTEmp.getEmpsOfDept(”AS”) and then we call
VTO access operation VTEmp.read() to retrieve one or more VTEmp instances
from the CRM system:

// initialize VTO operation structure of type "read"
VTEmp.getEmpsOfDept("AS");
// call read VTO access operation
DCollection<VTEmp> vtemps = VTEmp.read();
// process returned VTEmp instances
Iterator<VTEmp> iter = vtemps.iterator();
while (iter.hasNext()) {
VTEmp emp = iter.next();
if ((vtemp.getLastname().equals("Wagner"))

&& (vtemp.getFirstname().equals("Frank"))) {
...

}
}

75

4 Processing Model

VTEmp defines three read VTO operation structures and thereby three variants
of the read VTO access operation. The first read VTO operation structure is named
getEmp and returns one VTEmp instance (card="single"), the second and the
third one return a collection of VTEmp instances (card="multiple"). The three
VTO operation structures are mapped from the three C procedures get... of the
CRM system.∗

The only inherent parameter of a read VTO access operation is the result param-
eter, e.g. struct Emp* or struct Emp** in the get... procedures of the CRM system,
which are mapped to one or more VTEmp instances in the VT. An inherent VTO
access operation parameter is a parameter that is always required for the VTO
access operation. For example, every read VTO access operation always requires a
result parameter that returns either a collection of VT object instances of the calling
VT object class or a single VT object instance. A VTO access operation can also
have additional parameters. An additional VTO access operation parameter
is a parameter that is correlated with a specific remote operation and therefore is
defined as an attribute of the VTO operation structure that represents this remote
operation. For example, the first get emps(...) remote operation of the CRM system
does not have a parameter (except the result parameter, which is inherent), but the
second one does, i.e. char* dept. Therefore, we map the dept parameter to a corre-
sponding VTO operation structure attribute in the VTO operation structure named
getEmpsOfDept, i.e. String dept. Analogously, we define a VTO operation struc-
ture attribute int empId in the read VTO operation structure getEmp(...), which is
mapped from the parameter int emp id of remote operation get emp.

If we now want to retrieve all employees of department AS (see code frag-
ment above), we first have to properly initialize VTO operation structure getEmp-
sOfDept(...), i.e. by calling VTEmp.getEmpsOfDept(”AS”). Then we can call the
read VTO access operation, i.e. VTEmp.read(), which maps the previously initial-
ized VTO operation structure, i.e. with value ”AS”, to the corresponding remote
operation call, i.e. get emps(”AS”). Finally, the VT maps the returned Emp array
as the only inherent parameter of the read VTO access operation to a collection of
VTEmp instances as the result of the VTEmp.read() call. Next, we can iterate over
the returned collection of VTEmp instances and access a specific one, e.g. the one
with lastname = ”Wagner” and with firstname = ”Frank”.

4.2.2 Create Operation

A create operation is always called via a create VTO access operation and a suitable
VTO operation structure of type “create”, i.e. type="create". For example, we
first initialize VTO operation structure VTEmp.addEmp(”check was okay”). Then
we call VTEmp.create(...) with attribute values for the new VTEmp instance to
be created and thereby also create a corresponding Emp data entity in the CRM
system:

∗The mapping and other details of VT object configurations are extensively discussed in Chapter
5.

76

4.2 VTO Access Operations

DMap<String, Object> empVals = new DMap<String, Object>();
empVals.put("lastname", "Wagner");
empVals.put("firstname", "Frank");
empVals.put("salary", 2000);
...
VTEmp.addEmp("check was okay");
VTEmp vtemp = VTEmp.create(empVals);

VTEmp defines two create VTO operation structures and thereby two variants of
the create VTO access operation. The create VTO operation structures are named
addEmp and create one VTEmp instance (card="single"), respectively. The first
VTO operation structure is empty, i.e. it contains no additional parameters, whereas
the second VTO operation structure defines an additional parameter, i.e. VTO op-
eration structure attribute String msg. Moreover, a create VTO access operation has
two inherent parameters. A result parameter that returns one VT object instance
or a collection of VT object instances. The other inherent VTO access operation
parameter are the data values of the VT object instance or instances to be cre-
ated. There are three alternatives. The first alternative defines one parameter for
each VT object attribute. The second uses a DMap parameter to specify the VT
object attribute values in an associative array where the index names conform to
the attribute names. Both alternatives create one VT object instance. The third
alternative takes a parameter that holds a collection of DMap objects so that one or
more VT object instances can be created in one step. There are other alternatives,
e.g. a parameter that contains another VT object instance of the same VT object
class or a parameter that contains a collection of VT object instances of the same
VT object class. The new VT object instances are then created as a copy of these
VT object instances.

The two create VTO operation structures, i.e. addEmp(...), are mapped to
the two C procedures add emp(...) of the CRM system. The empty VTO oper-
ation structure is mapped to remote operation add emp(struct Emp* emp). The
second VTO operation structure with attribute String msg is mapped to remote
operation add emp(struct Emp* emp, char* msg) where char* msg is mapped from
VTO operation structure attribute String msg. Parameter struct Emp* emp of
both remote operations is mapped from the inherent VTO access operation pa-
rameter DMap<String, Object> empValues and the inherent VTO access operation
result parameter maps the returned VTEmp instance from the struct Emp* emp
parameter, too.

If we want to create a new employee data entity in the CRM system, we first cre-
ate the necessary DMap input parameter (see code fragment above), then we initial-
ize a create VTO operation structure, e.g. VTEmp.addEmp(”check was okay”) and
finally we can perform the create VTO access operation: VTEmp.create(empVals).
The VT then performs an adapter interaction that maps both operation calls to a
corresponding CRM system call, i.e. add emp(emp, ”check was okay”) where emp
is of type struct Emp and contains the values given by empVals in the VT. The VT
also internally creates a VTEmp instance from the same values and returns it as the
result of the create VTO access operation.

77

4 Processing Model

4.2.3 Update Operation

An update operation is always called via an update VTO access operation and a
suitable VTO operation structure of type “update”, i.e. type="update". For ex-
ample, we first initialize VTO operation structure VTEmp.replaceEmp(”good guy”).
Then we call vtemp.update() where vtemp is a VTEmp instance that has been
previously changed in the transaction by means of a VT object operation, e.g.
vtemp.setSalary(vtemp.getSalary() * 1.2). Finally, the VT changes the associated
Emp data entity in the CRM system too:

VTEmp.getEmpsOfDept("AS");
DCollection<VTEmp> vtemps = VTEmp.read();
Iterator<VTEmp> iter = vtemps.iterator();
while (iter.hasNext()) {
VTEmp vtemp = iter.next();
if ((vtemp.getLastname().equals("Wagner"))

&& (vtemp.getFirstname().equals("Frank"))) {
vtemp.setSalary(vtemp.getSalary() * 1.2);
VTEmp.replaceEmp("good guy");
vtemp.update();
break;

}
}

VTEmp defines two update VTO operation structures and thereby two vari-
ants of update VTO access operations. The first update VTO operation structure is
named updateEmp and does not contain attributes, i.e. there are no additional VTO
access operation parameters, the second update VTO operation structure is named
replaceEmp and has one attribute, i.e. String msg. An update VTO access operation
has one inherent parameter to identify the remote data entity to be updated and to
deliver the modified values of the VT object to the remote data entity. The whole
information is contained in the VT object instance itself. For example, VTO opera-
tion structure updateEmp is mapped to remote operation update emp(struct Emp*
emp) and the inherent parameter vtemp is mapped to remote operation parame-
ter struct Emp* emp. VTO operation structure replaceEmp is mapped to remote
operation replace emp(int emp id, struct Emp* emp, char* msg) and the inherent
parameter vtemp is mapped to the remote operation parameters int emp id and
struct Emp* emp. The first remote operation parameter identifies the remote data
entity to be modified and the second remote operation parameter determines the
modified values. The third remote operation parameter, i.e. char* msg, is mapped
from VTO operation structure attribute String msg.†

If we want to modify employee data in the CRM system, we first of all have
to retrieve the remote data that we want to modify as VT object instances (see
code fragment above). Therefore, we perform a read request as described above, i.e.
VTEmp.getEmpsOfDept(”AS”) and VTEmp.read(). Then we look up the VTEmp
instance identified by lastname = ”Wagner” and firstname = ”Frank” and perform

†For details about mappings refer to Chapter 5.

78

4.2 VTO Access Operations

the desired changes on the selected VTEmp instance, e.g. vtemp.setSalary(vtemp.
getSalary() * 1.2). Thereafter, we initialize an update VTO operation structure, e.g.
VTEmp.replaceEmp(”good guy”), and finally we perform the update VTO access
operation, i.e. vtemp.update(). The VT uses the associated adapter and calls the
corresponding CRM system operation, i.e. replace emp(37, emp, ”good guy”), where
37 is the id value extracted from the unaltered vtemp version and where emp is the
mapping from the modified vtemp version.

4.2.4 Delete Operation

A delete operation is always called via a delete VTO access operation and a suitable
VTO operation structure of type “delete”, i.e. type="delete". For example, we
first initialize VTO operation structure removeEmp, i.e. VTEmp.removeEmp(true).
Then we call vtemp.delete() where vtemp is a VTEmp instance and the VT deletes
the VTEmp instance from the VT object cache and the associated remote data
entity from the CRM system:

VTEmp.getEmpsOfDept("AS");
DCollection<VTEmp> vtemps = VTEmp.read();
Iterator<VTEmp> iter = vtemps.iterator();
while (iter.hasNext()) {
VTEmp vtemp = iter.next();
if ((vtemp.getLastname().equals("Wagner"))

&& (vtemp.getFirstname().equals("Frank"))) {
VTEmp.removeEmp(true);
vtemp.delete();
break;

}
}

VTEmp defines one delete VTO operation structure, which is named removeEmp
and which contains one attribute, i.e. boolean history, as an additional parameter
for the delete VTO access operation. The only inherent VTO access operation pa-
rameter of a delete VTO access operation is the VT object instance to be deleted,
i.e. a VTEmp instance in this case. The VTO operation structure is mapped to the
remove emp C procedure of the CRM system. The procedure has two parameters,
int emp id and bool history. The latter parameter is mapped from VTO opera-
tion structure attribute boolean history, the former parameter is mapped from the
inherent VTO access operation parameter, i.e. vtemp. The inherent parameter is
necessary to identify the remote data entity to be deleted. In this case, we only need
the identifier, which the VT maps from vtemp.id to emp id.

If we want to delete employee data from the CRM system, we first have to
retrieve the VT object instances to be deleted via VTEmp.getEmpsOfDept(”AS”)
and VTEmp.read() (see code fragment above). Then we select the VTEmp instance
identified by lastname = ”Wagner” and firstname = ”Frank”, initialize the delete
VTO operation structure, i.e. VTEmp.removeEmp(true), and perform the delete
operation, i.e. vtemp.delete(). The VT correspondingly calls the remote operation,

79

4 Processing Model

i.e. remove emp(37, true), where 37 is the id value extracted from vtemp. Finally,
the VT object manager deletes vtemp from the VT object cache as well.

4.2.5 Operation-Oriented Data Usage

The CRUD representation of the DBS tables, i.e. VTEmployee and VTDepartment,
integrated by the DBS SQL wrapper as shown in Section 4.1 allows us to access them
in the same way, i.e. operation-oriented, despite the fact that the SQL wrapper only
provides data-oriented access:

DMap<String, Object> empVals = new DMap<String, Object>();
empVals.put("lastname", "Wagner");
empVals.put("firstname", "Frank");
empVals.put("salary", 2000);
...
VTEmployee.insertEmps();
VTEmployee vtemp = VTEmployee.create(empVals);
...
VTEmployee.selectEmps();
DCollection<VTEmployee> vtemps = VTEmployee.read();
Iterator<VTEmployee> iter = vtemps.iterator();
while (iter.hasNext()) {
vtemp = iter.next();
if ((vtemp.getLastname().equals("Wagner"))

&& (vtemp.getFirstname().equals("Frank"))) {
vtemp.setSalary(vtemp.getSalary() * 1.2);
VTEmployee.updateEmps();
vtemp.update();
...
VTEmployee.deleteEmps();
vtemp.delete();
break;

}
}

A more convenient way of accessing VT objects can be used if a VTO operation
structure does not contain additional parameters, i.e. only inherent ones, and if its
name is unique among the VTO operation structures of the VT object. Then the
VTO operation structure initialization can be completely omitted when accessing
VT objects:

DMap<String, Object> empVals = new DMap<String, Object>();
empVals.put("lastname", "Wagner");
empVals.put("firstname", "Frank");
empVals.put("salary", 2000);
...
VTEmployee vtemp = VTEmployee.create(empVals);
...
DCollection<VTEmployee> vtemps = VTEmployee.read();
Iterator<VTEmployee> iter = vtemps.iterator();

80

4.3 VTQL Requests

while (iter.hasNext()) {
vtemp = iter.next();
if ((vtemp.getLastname().equals("Wagner"))

&& (vtemp.getFirstname().equals("Frank"))) {
vtemp.setSalary(vtemp.getSalary() * 1.2);
vtemp.update();
...
vtemp.delete();
break;

}
}

We can now achieve transparent processing by employing CRUD representa-
tions of remote data and remote operations and thereby enable operation-oriented
processing as well as data-oriented processing. Right now, we have seen operation-
oriented processing on VT objects in CRUD representation independent of the em-
ployed adapter technology and remote system. In the next section we show how
data-oriented processing is achieved by means of VTQL requests on VT objects in
CRUD representation.

4.3 VTQL Requests

VTQL is based on OQL, which in turn is based on SQL. OQL only provides a re-
trieval part, i.e. SELECT queries (also see [CBB+00]). We additionally include the
three other CRUD principles in VTQL, i.e. create, update and delete requests, anal-
ogously to SQL. Thereby, VTQL requests provide a data-oriented way of accessing
the VT.

4.3.1 Read Requests

A VTQL read request retrieves remote data entities using a VTO operation structure
if necessary analogous to the operation-oriented way shown in Section 4.2.1. For
example, data-oriented access to VTEmp (see definition on page 73) uses VTO
operation structure getEmpsOfDept(...) to properly access the CRM system in a
data-oriented way:

SELECT *
FROM VTEmp.getEmpsOfDept("AS")
WHERE lastname = ’Wagner’ AND firstname = ’Frank’

Note that this is possible although the CRM J2EE connector only provides
operation-oriented access! The FROM clause now contains the suitable VTO oper-
ation structure initialization, i.e. VTEmp.getEmpsOfDept(”AS”), that is the basis
for the read VTO access operation. The read VTO access operation is implicitly
executed by the FROM clause so that one or more VTEmp instances are retrieved
from the CRM system as output for the FROM clause. The selection and projection
in the WHERE and SELECT clauses then perform as usual.

81

4 Processing Model

4.3.2 Create Requests

A VTQL create request creates one or more new remote data entities and corre-
sponding VT object instances using a VTO operation structure if necessary. For
example, data-oriented instantiation of VTEmp can use VTO operation structure
addEmp(...) to properly access the CRM system in a data-oriented way:

INSERT INTO VTEmp.addEmp(’check was okay’)
VALUES (’Wagner’, ’Frank’, 2000)

The INSERT INTO clause contains the proper VTO operation structure initial-
ization, i.e. VTEmp.addEmp(”check was okay”), which is the basis for the create
VTO access operation. The VALUES clause specifies the attribute values of the
new VTEmp instance to be created so that the overall INSERT statement can be
executed as a create VTO access operation.‡

4.3.3 Update Requests

A VTQL update request writes one or more modified VT object instances to the
associated remote data entities. For example, data-oriented modification of VTEmp
can use VTO operation structures getEmpsOfDept(...) and replaceEmp(...) to
properly access the CRM system in a data-oriented way:

UPDATE VTEmp.getEmpsOfDept("AS")
SET salary = salary * 1.2
WHERE replaceEmp("good guy")

AND lastname = ’Wagner’
AND firstname = ’Frank’

The UPDATE clause does not contain the initialization of an update VTO op-
eration structure, but requires a read VTO operation structure, which is respon-
sible for retrieving the VTEmp instances to be changed in the CRM system, e.g.
VTEmp.getEmpsOfDept(”AS”). VTO operation structure getEmpsOfDept(...) al-
lows the UPDATE clause to perform a corresponding read VTO access operation
and to retrieve a set of VTEmp instances, which are further selected by the WHERE
clause, i.e. lastname = ’Wagner’ AND firstname = ’Frank’. The selected VTEmp
instances are then changed corresponding to the SET clause, i.e. salary = salary *
1.2. The last step is the use of an update VTO operation structure in the WHERE
clause, e.g. replaceEmp(”good guy”), which provides the necessary information for
the update VTO access operation that is finally performed by the overall UPDATE
statement.

‡The values in the VALUES clause are mapped by the VT object manager to a corresponding
DMap input parameter that is required for the VTEmp.create(...) operation.

82

4.3 VTQL Requests

4.3.4 Delete Requests

A VTQL delete request deletes one or more VT object instances and the associated
remote data entities. For example, data-oriented deleting of VTEmp can use VTO
operation structures getEmpsOfDept(...) and removeEmp(...) to properly access
the CRM system in a data-oriented way:

DELETE FROM VTEmp.getEmpsOfDept("AS")
WHERE removeEmp(true)

AND lastname = ’Wagner’
AND firstname = ’Frank’

The DELETE FROM clause does not contain the initialization of a delete VTO
operation structure, but refers to a read VTO operation structure, which is respon-
sible for retrieving the VTEmp instances to be deleted from the CRM system, e.g.
VTEmp.getEmpsOfDept(”AS”). The VTO operation structure allows the DELETE
FROM clause to perform a corresponding read VTO access operation and to retrieve
a set of VTEmp instances, which are further selected by the WHERE clause, i.e.
lastname = ’Wagner’ AND firstname = ’Frank’. Finally, a delete VTO operation
structure is suitably initialized in the WHERE clause, i.e. removeEmp(true), and
the delete VTO access operation is performed by the overall DELETE statement.

4.3.5 Data-Oriented Data Usage

The CRUD representation of the DBS tables, i.e. VTEmployee and VTDepartment,
integrated by the DBS SQL wrapper as shown in Section 4.1 of course allows us to
access them in a data-oriented way, too:

INSERT INTO VTEmployee.insertEmps()
VALUES (’Wagner’, ’Frank’, 2000)

SELECT *
FROM VTEmployee.selectEmps()
WHERE lastname = ’Wagner’ AND firstname = ’Frank’

UPDATE VTEmployee.selectEmps()
SET salary = salary * 1.2
WHERE updateEmps()

AND lastname = ’Wagner’
AND firstname = ’Frank’

DELETE FROM VTEmployee.selectEmps()
WHERE deleteEmps()

AND lastname = ’Wagner’
AND firstname = ’Frank’

First, we create a new VTEmployee instance, then we retrieve all VTEmployee
instances, next we perform an update and finally we delete one or more VTEmployee
instances.

83

4 Processing Model

We can syntactically simplify the VTQL requests since VTEmployee has only
one VTO operation structure for each VTO access operation type and since all
VTO operation structures are empty. Therefore, we can omit the VTO operation
structure names as well as the parameters so that we come up with a semantically
equivalent, but syntactically simplified form of VTQL requests:

INSERT INTO VTEmployee
VALUES (’Wagner’, ’Frank’, 2000)

SELECT *
FROM VTEmployee
WHERE lastname = ’Wagner’ AND firstname = ’Frank’

UPDATE VTEmployee
SET salary = salary * 1.2
WHERE lastname = ’Wagner’ AND firstname = ’Frank’

DELETE FROM VTEmployee
WHERE lastname = ’Wagner’ AND firstname = ’Frank’

Actually, the syntactically simplified form is identical to the original syntax
shown in Section 4.1.

The result of the last two sections is that VTEmployee and VTDepartment as
well as VTemp and VTDept can be accessed in an operation-oriented way as well as
in a data-oriented way since they conform to the CRUD representation independent
of the employed adapter technology or the underlying remote system. Now, we have
shown how operation-oriented remote systems and adapter technologies as well as
data-oriented remote systems and adapter technologies can be mapped to VT objects
in CRUD representation. The CRUD representation of a VT object, i.e. its VTO
access operations and VTO operation structures, enables transparent processing, i.e.
operation-oriented processing as well as data-oriented processing on the same VT
object, so that the access paradigm of a client system becomes independent from
the access paradigm of an adapter or remote system.

4.4 Query Execution

VTQL requests can not always be directly mapped to corresponding requests on
remote systems. This is the case if an adapter technology or a remote system does
not support data-oriented processing. For example, the CRUD representation of
our operation-oriented example on page 73, i.e. VTEmp and VTDept, does not
allow to directly map a VTQL read request or a VTQL update request to the
CRM system since we have C procedures that only perform single operation steps.
Therefore, the read request on page 81 is executed in two steps. The VT first
executes the FROM clause, i.e. VTEmp.getEmpsOfDept(”AS”) and the implicit
read VTO access operation, which is mapped to C procedure call get emps(”AS”).
The VT then compensates for the rest of the read request, i.e. the SELECT clause
and the WHERE clause.

84

4.4 Query Execution

Similar considerations hold for the update request on page 82. It is executed in
three steps. The VT first executes the UPDATE clause, i.e.
VTEmp.getEmpsOfDept(”AS”) and the implicit read VTO access operation, which
is mapped to C procedure call get emps(”AS”). The VT then compensates for the
selection criteria in the WHERE clause, i.e. lastname = ’Wagner’ AND firstname
= ’Frank’, and performs the changes determined by the SET clause on the selected
VT object instances, i.e. salary = salary * 1.2. Finally, the VT writes the modified
data to the CRM system using the given update VTO operation structure, i.e.
replaceEmp(”good guy”), which is mapped to one or more replace emp(...) procedure
calls in the CRM system, e.g. replace emp(37, emp, ”good guy”).

On the other hand, the CRUD representation of our data-oriented example on
page 74, i.e. VTEmployee and VTDepartment, allows to directly map the read
request or the update request to the remote system since it is a DBS. The VT
translates the read request and the update request on page 83 into corresponding
SQL requests and can therefore directly submit them to the DBS so that the DBS
internally executes them without any further execution or compensation in the VT.

Thus, we have to consider two important execution aspects. The first one is that
the VT does not only need the capability to transform complex VTQL requests into
complex data-oriented requests on remote systems, e.g. SQL requests or XQuery
requests, but it also requires the capability to compensate for missing request exe-
cution capabilities in remote systems or adapter technologies. This means that the
VT has to be able to determine which adapter and which remote system is able
to execute which part of a VTQL request. This can be done either by defining
the query capabilities in VT object configurations or by dynamically negotiating
about VTQL queries and query fragments that an adapter and a remote system are
willing to execute. The second execution aspect is that the VT has to be able to
optimize VTQL requests that span more than one remote system. This means that
the VT does not only need to decide on VTQL queries and query fragments for one
remote system, but for two or more. The query evaluation and optimization mech-
anisms thereby become more complicated, which usually requires a sophisticated
query optimization approach, typically a cost-based one, e.g. [HKWY97, LPL96].
Our experiments in Chapter 7 show that query negotiation, optimization and push-
down of VTQL requests actually is very important since it can significantly speed
up execution time.

Efficient query execution can also be significantly influenced by the internal rep-
resentation of VT object instances. VT object instances are handled as explicit
entities, which results in memory overhead and performance overhead as it is typi-
cal for object-oriented data models and languages. For example, the Java language
binding of the VT represents VT object instances as Java objects, which contain
additional internal object management information. Moreover, Java objects have to
be separately handled in network communication, e.g. transfer of VT objects from
the VT host to a client host, which can decrease performance. This is of special
importance when we deal with large data sets, e.g. thousands of tuples in an SQL
table. Therefore, we have to provide an efficient representation of VT objects so

85

4 Processing Model

that memory overhead and performance overhead is reduced. This is achieved by
means of the VT cursor concept, which employs similar mechanisms as, for exam-
ple, a JDBC driver does. A VT object cursor is a VT object that is created and
managed by the VT and that efficiently handles data. Therefore, a VTQL read
request returns a VT object cursor. For example, the VTQL read request on page
83 returns a collection of implicit VTEmployee instances that are represented by a
VT object cursor, which is defined by VT object class VTObjectCursor :

public class VTObjectCursor {
// iterator
boolean next();
// get and set
Object get(String attrName);
void set(String attrName, Object value);
// operation structures
void setOpStruct(String osName, DMap<String, Object> attrValues);
// access operations
void read();
void create(DMap<String, Object> objValues);
void delete();
void update();

}

A VT object cursor contains the result set of a VTQL read request. It provides
a next() operation to iterate over the implicit VT object instances of the result
set. The get(...) operation and the set(...) operation allow to read and write the
attributes of the VT object instance the cursor currently points to. The setOp-
Struct(...) operation provide a means to initialize the necessary VTO operation
structures and the read, delete, update and create operations represent the VTO
access operations that can be performed on the VT object instances. The read op-
eration (re-)executes the cursor, the delete operation deletes the implicit VT object
instance the cursor currently points to, the update operation writes the modified
values of the current VT object instance, and the create operation inserts a new
implicit VT object instance at the position the cursor points to.

A VT object cursor can be created in two ways. The data-oriented alternative
is to issue a VTQL read request, e.g.:

VTObjectCursor vtempC;
vtempC = VT.execute("SELECT * FROM VTEmployee", true);

The operation-oriented alternative is to explicitly define a VT object cursor for
the desired VT object class and to perform a read operation, which is executed as
a read VTO access operation:

VTObjectCursor vtempC;
vtempC = new VTObjectCursor(VTEmployee.class, true);
vtempC.read();

86

4.5 Summary

while (vtempC.next()) {
if (vtempC.get("lastname").equals("Wagner"))

&& (vtempC.get("firstname").equals("Frank")) {
vtempC.delete();
DMap<String, Object> empVals = new DMap<String, Object>();
empVals.put("id", 2937);
empVals.put("lastname", "Wagner");
empVals.put("firstname", "Frank");
empVals.put("salary", 2000);
vtempC.create(empVals);
...
vtempC.set("salary", vtempC.get("salary") * 1.2);
vtempC.update();

}
}

The cursor, i.e. vtempC, contains the result of the read operation: vtempC.read(),
and vtempC.next() allows to iterate over the implicit VTEmployee instances in the
cursor result set and to modify (vtempC.set(”salary”, vtempC.get(”salary”) * 1.2)
and vtempC.update()), insert (vtempC.create(empVals)) or delete (vtempC.delete())
implicit VT object instances.

4.5 Summary

The VT supports both basic processing paradigms, i.e. data-oriented processing
and operation-oriented processing. The VT represents remote data and remote op-
erations as VT objects and allows to handle and process them in both ways. VT
objects contain data as well as operations so that VT objects can be used in an
operation-oriented manner by calling VT object operations and they can be used in
a data-oriented way either by directly dealing with VT objects and their attributes
or by means of VTQL, a set-oriented query language to retrieve and manipulate
VT objects. Moreover, the VT does not only offer operation-oriented processing
and data-oriented processing, but additionally allows to handle and process VT ob-
jects independent of the processing paradigm of an adapter technology or remote
system. A client system, e.g. a middleware system, can choose the access style, i.e.
whether it wants to access the VT by means of VTQL requests or by means of VT
object operations. The VT transparently processes the desired VTQL requests or
VT object operations underneath independent of the access styles of the underlying
adapters and remote systems. The VT internally performs a paradigm change from
operation-oriented processing to data-oriented processing or vice versa if necessary
and thereby provides paradigm transparency. The VT realizes paradigm changes
by transforming VTQL requests and VT object operations into equivalent CRUD
representations, which are realized by means of VTO access operations and VTO
operation structures

Finally, the VT has to be able to transform complex VTQL requests into complex
data-oriented requests on remote systems, e.g. SQL requests or XQuery requests,

87

4 Processing Model

and it has to be able to compensate for missing request execution capabilities in
remote systems or adapter technologies. The VT also has to be able to optimize
VTQL requests that span more than one remote system. Therefore, the VT requires
a sophisticated query optimization approach to support query optimization, query
negotiation and push-down of VTQL requests.

88

Chapter 5

Deployment Model

Now, we know how the VT data model looks like and how operations and requests
are processed in the VT. Next, we show how VT objects are defined and mapped to
remote data and remote operations, how adapters are deployed and handled in the
VT and how the VT can be applied to integration scenarios in terms of configurations
and deployments.

5.1 VT Object Configurations

A VT object configuration defines how remote data and remote operations are
represented as VT objects and how VT objects and the correlated remote data and
remote operations are accessed. The VT uses VT object configurations to properly
execute operations and requests on VT objects, e.g. VT object operations and
VTQL requests. A VT object configuration consists of four configuration chapters
(also see Figure 5.1):

• The adapter information chapter defines information about an adapter.
The associated adapter manager uses an adapter information chapter to deploy
and access the adapter properly, e.g. where to find the adapter libraries or
which parameters to apply to the adapter.

• The system information chapter defines information about a remote sys-
tem. An adapter needs a system information chapter to properly access the
remote system, e.g. authentication information or connection management
information.

• The object information chapter defines information about the remote data
and the remote operations that are correlated with the VT object defined
by the object definition chapter, e.g. which API operation to call or which
database table to access in the remote system.

• The object definition chapter defines VT object attributes, VT object
operations, e.g. VTO access operations, as well as VTO operation structures.

5 Deployment Model

Figure 5.1: VT Object Configuration.

The object definition chapter also defines how the attributes, operations and
operation structures are mapped to the remote data and the remote operations
that are defined in the object information chapter.

Additionally, each adapter manager is initially configured by an adapter man-
ager information chapter, which specifies information on how to initialize the
adapter manager and global properties that hold for all adapters that are associated
with this adapter manager. Configuration chapters depend on each other as de-
picted in Figure 5.2. An adapter manager (adapter manager information chapter)
is responsible for handling and executing adapters (adapter information chapter).
An adapter integrates a specific remote system, e.g. a software system or a service,
which can be instantiated on different hosts or with different parameters so that
the adapter can access different instances of the same remote system (system infor-
mation chapter), e.g. two instances of a DBS on different hosts. Finally, a remote
system can contain a number of remote data entities or remote operations (object
information chapter) that are correspondingly represented as VT objects (object
definition chapter).

In the next subsections we take a closer look at VT object configurations and
their configuration chapters. We use the CRM DBS and VT object VTEmployee
for the SQL wrapper example (case W) and we use the CRM system with the C
procedures and data structures and VT object VTEmp for the J2EE connector ex-
ample (case C). Figure 5.3 shows the configuration chapter hierarchy of our example
scenario.

The SQL wrapper manager and the J2EE connector manager are associated with
one adapter, one remote system and two remote data entities, respectively. Config-

90

5.1 VT Object Configurations

Figure 5.2: Configuration Chapter Hierarchy.

Figure 5.3: Example Configuration Chapter Hierarchy.

uration chapters are expressed in XML. However, we use a graphical representation
since it is more compact and easier to understand than the underlying XML rep-
resentation. Each adapter manager provides a separate configuration schema, i.e.
XML schema, defining the properties that can be used in the different configuration
chapters. For example, the SQL wrapper manager provides the options and option
properties that are used in the different SQL wrapper statements and the J2EE con-
nector manager provides the interaction spec, input record and output record prop-
erties that represent the J2EE connector interaction parts.

91

5 Deployment Model

5.1.1 Adapter Manager Information Chapter

The SQL wrapper manager information chapter shown in Figure 5.4 specifies that it
can execute SQL wrappers that conform to the DB2 II 9 API. The J2EE connector
manager information chapter shown in Figure 5.5 specifies that it can execute J2EE
connectors of version 1.0. The SQL wrapper manager generally negotiates about
VTQL requests and potentially allows push-down of VTQL fragments (vtql). The
J2EE connector manager categorically rules out negotiating about VTQL requests
(no vtql). Hence, the VT has to compensate for VTQL requests that are targeted
at remote systems integrated by J2EE connectors.

Figure 5.4: SQL Wrapper Manager Information Chapter (case W).

Figure 5.5: J2EE Connector Manager Information Chapter (case C).

5.1.2 Adapter Information Chapter

The SQL wrapper information chapter of the CRM DBS SQL wrapper shown in
Figure 5.6 specifies the wrapper name, the employed wrapper base library and an
option that defines the wrapper hook. The SQL wrapper information chapter pro-
vides the information that is necessary to deploy the SQL wrapper into the VT. This
information is the same as it is given by the original DB2 II CREATE WRAPPER
statement (see Figure 5.7), which is used to deploy the same SQL wrapper into its
native middleware system, i.e. DB2 II.

The J2EE connector information chapter of the CRM J2EE connector shown
in Figure 5.8 specifies the connector name and the interfaces and implementation
classes that are required for the interaction between application server (or J2EE
connector manager) and J2EE connector. Further information concern transaction
behavior and security issues. The J2EE connector information chapter provides

92

5.1 VT Object Configurations

Figure 5.6: SQL Wrapper Information Chapter (case W).

Figure 5.7: SQL CREATE WRAPPER Statement (case W).

the information that is necessary to deploy the J2EE connector into the VT. This
information is the same as it is specified by the original J2EE connector deployment
in a Java EE application server. Figure 5.9 shows the J2EE deployment descriptor
of the CRM J2EE connector. There is additional deployment information about
the remote system, which is handled by the system information chapter in the next
subsection.

Figure 5.8: J2EE Connector Information Chapter (case C).

93

5 Deployment Model

Figure 5.9: J2EE Connector Deployment (case C).

5.1.3 System Information Chapter

The system information chapter of the SQL wrapper scenario shown in Figure 5.10
specifies the name of the remote system and the host where the CRM DBS instance
runs and where the CRM DBS SQL wrapper has to connect to. This information is
the same as it is given by the original DB2 II CREATE SERVER statement shown
in Figure 5.11.

The system information chapter of the J2EE connector scenario shown in Figure
5.12 analogously specifies the name of the remote system and the host where the
CRM system instance runs and where the CRM J2EE connector has to connect to.
The same information is also specified by the original J2EE connector deployment
descriptor of the CRM J2EE connector shown in Figure 5.9.

94

5.1 VT Object Configurations

Figure 5.10: CRM DBS Information Chapter (case W).

Figure 5.11: SQL CREATE SERVER Statement (case W).

Figure 5.12: CRM System Information Chapter (case C).

5.1.4 Object Information Chapter

The object information chapter of the SQL wrapper scenario shown in Figure 5.13
specifies the name and the columns of one of the tables that the CRM DBS SQL
wrapper provide. The options elements determine how the CRM DBS SQL wrap-
per maps the given FDBS table to the corresponding table in the CRM DBS, i.e.
CRM EMPLOYEE maps to EMPLOYEE (not shown here: CRM DEPARTMENT
maps to DEPARTMENT). This information is the same as it is given by the original
DB2 II CREATE TABLE statements shown in Figure 5.14.

The object information chapter of the J2EE connector scenario shown in Figure
5.15 specifies Java class rs.RSEmp (not shown here: Java class rs.RSDept), and the
possible Java method calls given by the interaction elements that can be used to
properly access the CRM system via the CRM J2EE connector. The same informa-
tion is also specified by the original J2EE connector deployment of the CRM J2EE
connector and its associated Java classes shown in Figure 5.16.

95

5 Deployment Model

Figure 5.13: CRM EMPLOYEE Information Chapter (case W).

Figure 5.14: SQL CREATE FOREIGN TABLE Statement (case W).

96

5.1 VT Object Configurations

Figure 5.15: RSEmp Information Chapter (case C).

5.1.5 Object Definition Chapter

Adapter information chapters, system information chapters and object information
chapters contain the deployment information that is required when an adapter is

97

5 Deployment Model

Figure 5.16: Java Classes of the J2EE Connector (case C).

deployed into its native middleware system. Now, we use object definition chapters
to map remote data and remote operations to VT objects. This mapping is intended
to syntactically homogenize data and operations of diverse remote systems and to
uniformly access them via VT objects. Further mapping issues, especially structural
or semantic mappings can be additionally applied on top of the defined VT objects
(also see Section 5.4). A VT object class consists of attributes, i.e. data structures,
VT object operations, e.g. VTO access operations, and VTO operation structures.

The object definition chapter of the SQL wrapper scenario shown in Figure 5.17
defines VT object class crmdbs.VTEmployee (not shown here: VT object class cr-
mdbs.VTDepartment). All VTO operation structures (beneath element access) are
empty, i.e. they don’t have parameters, which means that the VTO access op-
erations do not require further parameterization. The mapping identifiers (mid)
determine, which elements of the associated object information chapter are mapped
to the elements in the object definition chapter. More complex mappings are explic-
itly expressed by the mapping element, e.g. mapping the foreign key relationship
between CRM EMPLOYEE and CRM DEPARTMENT to reference attribute dept
of type VTDepartment in VTEmployee. The reference attribute, i.e. attribute dept,
also contains an empty ref op and ref key element, which means that the default

98

5.1 VT Object Configurations

read VTO operation structure (element default) and the default identity (element
identity) are used to resolve the reference.

Figure 5.17: VTEmployee Object Definition (case W).

The object definition chapter of the J2EE connector scenario shown in Figure
5.18 defines VT object class crmsys.VTEmp (not shown here: VT object class crm-
sys.VTDept). Its attributes map to the attributes of the Java class in the associated
object information chapter by means of the mapping identifiers (mid). The VTO
operation structures (element access) conform to the definitions of the interaction
elements in the associated object information chapters and the mappings in the
mapping elements determine the exact mapping of the parameters. For example,
VTO operation structure getAllEmps does not have attributes and only maps the
output record of the interaction element in the associated object information chapter

99

5 Deployment Model

to the result parameter of the read VTO access operation. VTO operation struc-
ture getEmp works analogously but additionally contains an attribute, i.e. empId,
which is mapped to the input record in the associated interaction element, i.e. the
parameter with name id.

Figure 5.18: VTEmp Object Definition (case C).

100

5.2 Example Requests

5.2 Example Requests

Next, we discuss two example requests of our example scenario, e.g. see Figure 2.6,
to show how the overall processing in an integration scenario works. One example
request uses the CRM DBS SQL wrapper in the VT and the other one uses the
CRM J2EE connector. The first request processing is illustrated in Figure 5.19.

Figure 5.19: Request Processing (SQL Wrapper Example).

1. A user opens a web browser and logs in to the HR application via a web page.
The user wants to access some employee information about Frank Wagner and
submits a corresponding HTML form request to the HR application.

2. The HR application calls an EJB method to resolve the desired employee
information. The EJB in turn issues an interaction request to the VT J2EE
connector. An interaction request is a Java method call with input parameters

101

5 Deployment Model

and output parameters. There are two different means of interactions: either
to issue a VTQL request or to call a VT object operation. If we want to call
a VT object operation, the EJB would have to issue an interaction with the
following parameters:

• Input parameter access op and value read for the VTO access operation.

• Input parameter obj name and value VTEmployee for the VT object to
access.

• Output parameter emps, which contains all VTEmployee instances.

This will yield a quite inefficient processing since the read VTO access op-
eration does not use additional parameters and therefore the interaction will
retrieve all employee information from the CRM DBS and returns them to the
HR application, which in turn has to select the desired VTEmployee instance.

An efficient means is to use a VTQL request so that we drive an interaction
with one input parameter and one output parameter:

• Input parameter vtql req and value

SELECT *
FROM VTEmployee
WHERE lastname = ’Wagner’ AND firstname = ’Frank’

• Output parameter emps now contains only the desired tuples since we do
not have to process and transfer the whole CRM Employee table from the
CRM DBS via the VT up to the application server. Consequently, the
HR application does not need to perform any intermediate processing.

3. Next, the VT J2EE connector submits the VTQL request given by this inter-
action request.

4. The VT checks the repository for the VT object configuration of VTEmployee
and then identifies the SQL wrapper manager as the responsible adapter man-
ager (via object definition chapter, object information chapter, system infor-
mation chapter and finally adapter information chapter, also see Section 5.1).

5. The VT hands over the VTQL request to the SQL wrapper manager, which
actually is capable of handling it (which would not be the case for the J2EE
connector manager so that the VT would have to compensate for it).

6. The SQL wrapper manager now translates the VTQL request into an SQL
query accessing foreign table CRM Employee:

SELECT *
FROM CRM_EMPLOYEE
WHERE LASTNAME=’Wagner’ AND FIRSTNAME=’Frank’

102

5.2 Example Requests

7. The CRM DBS SQL wrapper translates the SQL query into a suitable request
for the remote system, which incidentally is an SQL DBS, i.e. the CRM DBS.
Therefore, we have to translate the SQL query into an SQL query for the CRM
DBS, which is quite similar since we applied a direct and natural mapping
from the SQL wrapper to the CRM DBS in the VT object configuration of
VTEmployee:

SELECT *
FROM EMPLOYEE
WHERE lastname=’Wagner’ AND firstname=’Frank’

8. The CRM DBS executes the SQL query and returns the selected employee tu-
ples to the CRM DBS SQL wrapper, which can directly map the EMPLOYEE
tuples to tuples of CRM EMPLOYEE as the result of the SQL query issued
by the SQL wrapper manager in step 6.

9. Next, the SQL wrapper manager transforms the tuples of CRM EMPLOYEE
into VT object instances according to the VTEmployee object definition chap-
ter as requested in step 5 and returns them to the VT.

10. The VT transfers the VT object instances to the calling VT J2EE connector,
which transforms them into suitable Java objects in output parameter emps
of the J2EE connector interaction in step 3.

11. Finally, the EJB processes the employee Java objects and the enterprise appli-
cation creates a suitable HTML response document answering the initial user
request.

If we access the file server via the file server SQL wrapper (also see Figure 2.6),
the example request would work in the same way except that the file server SQL
wrapper would transform the SQL query issued by the SQL wrapper manager into
corresponding file access operations.

The second request processing uses the CRM J2EE connector in the VT and
works analogously although quite different to the first request processing with the
SQL wrapper (see Figure 5.20). Actually, it could be a better option to directly
deploy the CRM J2EE connector into the Java EE application server instead of the
VT, we just use it for a discussion of a typical example processing and show the
general usage of the VT and its mapping and processing architecture.

1. The user now wants to access some other employee information about Frank
Wagner, which is located in another remote system, i.e. the CRM system, and
which we integrated via the CRM J2EE connector into the VT. Therefore, the
user submits a corresponding HTML form request to the HR application.

2. The HR application again calls an EJB method to resolve the desired employee
information.

103

5 Deployment Model

Figure 5.20: Request Processing (J2EE Connector Example).

3. The EJB in turn issues an interaction request to the VT J2EE connector that
contains a suitable VTQL request in the vtql req interaction input parameter:

SELECT *
FROM VTEmp.getAllEmps()
WHERE lastname = ’Wagner’ AND firstname = ’Frank’

Output parameter emps this time contains VTEmp instances which are re-
trieved from the CRM system.

4. The VT J2EE connector extracts the VTQL request from the interaction and
submits it to the VT.

5. The VT checks the repository for the VT object configuration of VTEmp and
then identifies the J2EE connector manager as the responsible adapter man-
ager (again, via object definition chapter, object information chapter, system

104

5.3 Deployment Process

information chapter and finally adapter information chapter, also see Section
5.1). This time, the VT does not hand over the VTQL request to the J2EE
connector manager since J2EE connectors cannot handle VTQL requests (also
see Figure 5.5). Therefore, the J2EE connector manager can only submit the
read VTO access operation and the read VTO operation structure to the CRM
J2EE connector: VTEmp.getAllEmps() and VTEmp.read().

6. The J2EE connector manager translates the read VTO access operation into
a suitable interaction request according to the object information chapter (see
Figure 5.15) with functionName get emps, an empty input record and an out-
put record that contains RSEmp Java objects.

7. The CRM J2EE connector in turn translates the interaction request into a C
procedure call for the CRM system: get emps().

8. The CRM J2EE connector translates the returned C data structures, i.e. struct
Emp, into RSEmp Java objects and returns them via the interaction output
record to the J2EE connector manager.

9. The J2EE connector manager transforms the RSEmp Java objects into corre-
sponding VTEmp instances and hands them over to the VT.

10. The VT now first has to compensate for the rest of the VTQL request, i.e. the
WHERE clause.

11. Then the VT transfers the remaining VT object instances to the calling VT
J2EE connector, which transforms them into suitable Java objects in output
parameter emps of the J2EE connector interaction in the Java EE application
server.

12. Finally, the EJB processes these employee Java objects and the enterprise
application creates another HTML response document answering the initial
user request.

Also refer to Chapter 4 for further details about the different means of processing
requests in the VT.

5.3 Deployment Process

The skills required to specify VT object configurations, i.e. to define VT objects and
to deploy adapters into the VT, comprise knowledge about the VT, i.e. about the VT
data model and the VT processing model, as well as knowledge about the involved
adapter technologies. Clearly, the complexity of the whole deployment process must
be reduced to make the VT practically manageable. Therefore, the goal is to divide
the deployment process into two steps performed by different persons (as depicted
in Figure 5.21): adapters are deployed in the first step (1) and suitable VT objects

105

5 Deployment Model

are defined in the second step (2). Deploying an adapter into the VT requires the
same deployment information as if the adapter is deployed into its native middleware
system (see Section 5.1).

Figure 5.21: Deployment Responsibilities.

An adapter deployer is a person who is responsible for deploying adapters
into a middleware system, e.g. a J2EE connector deployer or an SQL wrapper
deployer. An adapter deployer has to be familiar with the middleware system,
i.e. he knows how to deploy adapters and how to define middleware-specific data
and operations that are representing data and operations in the integrated remote
systems. Therefore, the first step of the deployment process is performed by the cor-
responding adapter deployer. The adapter deployer deploys an adapter into the VT
(adapter information chapter), correlates a remote system with the adapter (sys-
tem information chapter) and specifies suitable middleware-specific data definitions
and operation definitions (object information chapter). The information specified
by the adapter information chapter, the system information chapter, and the object
information chapter corresponds to the information that an adapter deployer has to
specify if he wants to deploy an adapter, e.g. an SQL wrapper or a J2EE connector,
into the corresponding middleware system, e.g. an FDBS or a Java EE application
server.

For example, an FDBS administrator deploys the CRM DBS SQL wrapper into
the FDBS (see right part of Figure 1.1) and defines information about the CRM
DBS and the integrated CRM DBS tables by means of the SQL statements in
Figures 5.7, 5.11 and 5.14. The FDBS administrator is most suitable to act as an
SQL wrapper deployer in the VT scenario as shown in Figure 5.22 where he has to
specify the same information as in the FDBS scenario, i.e. he deploys the CRM DBS
SQL wrapper into the VT (adapter information chapter in Figure 5.6) and defines
information about the CRM DBS (system information chapter in Figure 5.10) and
the CRM DBS tables to be integrated into the VT (object information chapter in
Figure 5.13).

106

5.3 Deployment Process

Figure 5.22: Deployment of an SQL Wrapper.

The J2EE connector scenario works analogously. The Java EE administrator
deploys the CRM J2EE connector into the Java EE application server (see left part
of Figure 1.1) by means of the deployment information shown in Figures 5.9 and 5.16.
The Java EE administrator is most suitable to act as a J2EE connector deployer in
the VT scenario as shown in Figure 5.23 where he has to specify the same information
as in the Java EE scenario, i.e. he deploys the CRM J2EE connector into the VT
(adapter information chapter in Figure 5.8) and defines information about the CRM
system (system information chapter in Figure 5.12) and the procedures and data
structures of the CRM system to be integrated into the VT (object information
chapter in Figure 5.15).

Again, the information that is used for an adapter deployment in the VT, i.e.
the configuration chapters, is the same information that is used for an adapter
deployment in the respective middleware system. An adapter deployer does not
need further skills or knowledge beyond that. He only uses the adapter deployment
facility of the VT to enter the same information as he would do with the middleware
system.

A VT object deployer performs the second step of the deployment process,
i.e. to define VT objects by means of object definition chapters. She creates VT
object definitions according to the middleware-specific data definitions and operation
definitions specified by adapter deployers during the first step. For example, the VT
object deployer creates the VT object definitions in Figures 5.17 and 5.18 according
to the object information chapters defined by the adapter deployers (see Figures 5.13
and 5.15). The VT object deployer does not have to specify VT object definitions
from scratch. Adapter managers comprise functionality to automatically generate
basic VT object definitions from given object information chapters. The VT object
deployer can then start on such a basic VT object definition and further customizes
it if necessary. Thereby, the VT object deployer does not need to know much about
the different adapter technologies.

107

5 Deployment Model

Figure 5.23: Deployment of a J2EE Connector.

In this way, the deployment process in the VT is significantly alleviated and
becomes practically manageable: the adapter deployer is doing his job as usual. He
is only concerned with the middleware-specific part of VT object configurations, i.e.
adapter deployment and definition of middleware-specific data and operations, but
he does not need further knowledge about the VT. The VT object deployer is only
concerned with the VT-specific part, i.e. VT object definitions, but she does not
need to know about adapter technology-specific deployment tasks.

5.4 Mapping Issues

The mapping from object information chapters to object definition chapters as ex-
emplified in Section 5.1 is intended to provide a uniform representation of remote
data and remote operations in the VT. More complex mappings that are typically
performed by structural or semantic mapping approaches are not subject of VT
object configurations. Future work could enhance the mapping between object in-
formation chapters and object definition chapters to additionally employ algorithms
and approaches in the area of schema matching, schema mapping and schema inte-
gration (see Figure 5.24). A schema integration facility on top of the existing VT
object configurations allows to apply additional mapping configurations. The global
access layer provides the original VT objects as usual according to the mappings in
the VT object configurations. A schema integrator can create additional mapping
configurations based on the original VT objects. The mapping configurations rely
on advanced schema integration techniques and map the original VT objects to new
VT object definitions in global schemas and finally in export schemas (views). VT
client applications then can deal with VT objects more suitable and more comfort-
able in a global schema or in an export schema. An overview of advanced schema
matching approaches and mapping issues can be found in [RB01, Noy04].

108

5.5 Reuse of Middleware Infrastructure

Figure 5.24: Extended Deployment – VT Object Mapping Issues.

5.5 Reuse of Middleware Infrastructure

The co-existence of middleware infrastructures and VT bears optimization potential
in terms of eliminating redundancies by applying different levels of reuse.

5.5.1 Reuse of Adapter Deployments

So far, we discussed that the content of adapter deployments in the VT is the
same as the content of adapter deployments in the respective native middleware
system. Therefore, adapter deployers can easily deploy adapters into the VT since
they only need to specify the same information about the adapters as if they deploy
the adapters in the respective middleware system. An important conclusion from
this point is that we create and manage redundant adapter deployment information,
once in the original middleware system and once in the VT. If we deploy an adapter
only in the VT, we don’t have this problem, but if we want to reuse an adapter
that is already deployed and used in a middleware system, we have to come up with
a second deployment of this adapter in the VT. If we deploy the same adapter a
second time, changes to one adapter deployment have to be applied to the other
adapter deployment too. This process is not automated and thus error-prone and it
requires additional organization and communication across different administration
responsibilities. It also requires additional work and thus more personnel. Therefore,
it would be better to have only one adapter deployment. But if we already have
adapter deployments in a middleware system and if we also want to reuse these

109

5 Deployment Model

adapters in the VT, we also need two or more adapter deployments. For that
reason, we provide a more effective and efficient way of handling redundant adapter
deployment information.

Automatic Extraction & Transformation

Let us come back to our integration scenario in Figure 1.1 where the Java EE
application server has to access the file server and the CRM DBS. There are only
SQL wrappers, the necessary J2EE connectors are not available. The originally
proposed solution shown in Figure 2.6 requires that the FDBS administrator deploys
the file server SQL wrapper and the CRM DBS SQL wrapper a second time, i.e.
into the VT. However, we do not want to do the same work a second time as already
discussed above. We just want to take the deployments from the FDBS and transfer
them in a suitable manner to the VT such that all necessary configuration chapters
are automatically created.

The general process of transferring adapter deployments is shown in Figure 5.25
where the deployment information is extracted from the FDBS, transformed into
configuration chapters, i.e. adapter information chapters, system information chap-
ters, object information chapters, and automatically generated object definition
chapters that are derived from the object information chapters. Finally, the gen-
erated configuration chapters are applied to the VT resulting in proper adapter
deployments of the file server SQL wrapper and the CRM DBS SQL wrapper. The
dashed box on the left side of Figure 5.25 represents the original deployment infor-
mation of the SQL wrappers, remote systems and SQL tables. The dashed box on
the right side represents the configuration chapters in the VT, which are derived
from the original deployment information on the left side. This basically allows the
Java EE application server to access the same entities on the file server and in the
CRM DBS as the FDBS does.

Deployment Transformation Wizards

The deployment transformation process is realized by means of deployment transfor-
mation wizards, which are associated with adapter managers. An adapter manager
provides a generic plug-in API so that deployment transformation wizards can be
associated with an adapter manager. The VT repository stores all registered wizards
and a VT administrator can choose among them to start a transformation process.
In our example, an FDBS deployment transformation wizard is associated with the
SQL wrapper manager. The transformation process here works as follows:

• A VT administrator starts the wizard, enters the IP address and the port num-
ber of the FDBS, a login name and a password, and some other information
which is necessary for properly accessing the FDBS.

• The wizard then connects to the FDBS, looks up the FDBS catalog and dis-
plays the SQL wrappers deployed in the FDBS as well as the registered remote

110

5.5 Reuse of Middleware Infrastructure

Figure 5.25: Reusing Adapter Deployments.

systems and the tables that represent data and operations of the remote sys-
tems (which have been defined by SQL statements like the ones shown in
Figures 5.7, 5.11 and 5.14).

• The VT administrator selects the entries of the file server SQL wrapper and
the CRM DBS SQL wrapper, the file server and the CRM DBS as well as
some tables that represent files on the file server and tables in the CRM DBS.
Finally, the VT administrator starts the extraction process.

• The wizard retrieves the deployment information of the two SQL wrappers,
the deployment information of the two remote systems and the deployment
information of the selected tables from the FDBS catalog.

• The wizard transforms the retrieved FDBS catalog data into suitable configu-
ration chapters (like the ones shown in Figures 5.6, 5.10 and 5.13).

111

5 Deployment Model

• The wizard transfers the wrapper libraries of the two SQL wrappers and other
resources that are required for proper SQL wrapper execution, e.g. remote
system API libraries, to the VT host.

• The wizard deploys the configuration chapters into the VT. This deploys the
two SQL wrappers into the VT, registers the two remote systems in the VT
and creates VT object definitions analogous to the tables in the FDBS.

Another example of a transformation wizard is the J2EE connector manager with
a registered Java EE application server deployment transformation wizard that ex-
tracts J2EE connector deployments from a Java EE application server, transforms
them into configuration chapters and finally deploys them into the VT.

Changes in correlated adapter deployments, i.e. in a middleware system or in
the VT, can be monitored by deployment transformation wizards and thereby main-
tained in the same way as deployments are generated. An adapter deployment in
the VT that has been extracted from an adapter deployment in a middleware sys-
tem then can be automatically modified by the deployment transformation wizard if
the adapter deployment in the middleware system is modified (and vice versa). The
result of this transformation process is that redundant adapter deployments are auto-
matically generated and maintained. They do not need to be manually handled any
longer. The adapter deployer can completely stay in the middleware environment
and use the native middleware’s deployment facility. He does not need to use the
VT deployment utility to deploy an adapter from scratch into the VT because a VT
administrator can use a suitable deployment transformation wizard to automatically
import adapter deployments from the middleware system. In contrast to the auto-
matic transformation process, the solution in Figure 2.6 requires new adapter de-
ployments even if corresponding deployments already exist in a middleware system.
This introduces the disadvantages discussed above: manual, error-prone changes in
redundant adapter deployments, additional organization and communication across
different administration responsibilities, additional administrative work and person-
nel. Automatic extraction avoids these disadvantages and provides a more effective
and efficient way of handling redundant adapter deployments.

5.5.2 Reuse of Middleware Infrastructure

If an adapter is automatically deployed into the VT by means of a deployment
transformation wizard, still two adapter instances of the same adapter are available
in the IT infrastructure, one adapter instance in the original middleware system and
one adapter instance in the VT. That is, the VT has to incorporate functionality
for executing the adapter, which basically is the same functionality that is required
for executing the adapter in the middleware system. Put in other words, we use
redundant middleware infrastructure, one in the original middleware system and
one in the VT.

112

5.5 Reuse of Middleware Infrastructure

Redundant Middleware Infrastructure

For example, the scenario in Figure 5.25 allows to access a file server SQL wrap-
per instance via the FDBS (shown on the left), but it also allows to execute the
other file server SQL wrapper instance via the VT (shown on the right). The same
holds for the CRM DBS SQL wrapper. This kind of redundant middleware in-
frastructure is not always intended from a global viewpoint. Intended redundant
middleware infrastructure is used for purposes such as high availability, replication
or distribution of computation, which is not the case here. The usage of redundant
middleware infrastructure in cases like the given integration scenario leads to some
disadvantages:

• higher software costs if functionality is implemented twice,

• higher hardware costs since more hardware is needed for executing the addi-
tional software, i.e. the redundant functionality,

• higher maintenance costs since this software and hardware also has to be main-
tained.

Hence, we don’t want to provide a second middleware infrastructure for executing
adapters if we already have one. It is beneficial to reuse the existing middleware in-
frastructure for executing adapters. For example, we would like to use the FDBS for
executing the file server SQL wrapper and the CRM DBS SQL wrapper. Therefore,
we employ an FDBS VT adapter to integrate the FDBS into the VT as shown in
Figure 5.26. The dashed box indicates the middleware infrastructure that we reuse
in this scenario. The VT uses the FDBS VT adapter to access the FDBS, which in
turn executes the file server SQL wrapper and the CRM DBS SQL wrapper since
they are deployed only in the FDBS, but no longer redundantly in the VT. In con-
trast, Figure 5.25 shows the former solution where the VT uses the SQL wrapper
manager to execute the file server SQL wrapper and the CRM DBS SQL wrapper
directly, i.e. in the VT.

The VT adapter technology is not necessary for the VT to work as an IM system,
but it provides some additional flexibility for integration issues such as the integra-
tion of middleware systems. Thus we can develop future adapters as VT adapters
that directly fit into the VT and that directly support the VT architecture, which
makes integration processes more efficient and uniform. Therefore, we use the VT
adapter technology to natively and thereby more efficiently integrate any kind of
remote system, e.g. other middleware systems, into the VT. VT adapters natively
cope with VT objects, VT object operations and VTQL requests, which is not nec-
essarily supported by all other adapter managers, e.g. the J2EE connector manager
does not execute VTQL requests, but the VT has to compensate for them.

VT Adapter Deployments

Reusing the FDBS infrastructure leads to a different adapter deployment than di-
rectly reusing the SQL wrappers. The VT adapter manager and the FDBS VT

113

5 Deployment Model

Figure 5.26: Reusing an FDBS Middleware Infrastructure.

adapter use different configuration chapters than the SQL wrapper manager and
the corresponding SQL wrappers do. The VT adapter manager and the FDBS
VT adapter do not need to know about how SQL wrappers are executed because
the FDBS is executing the SQL wrappers. Thus, the VT administrator creates an
adapter information chapter for the FDBS VT adapter as shown in Figure 5.27. The
file server and the CRM DBS as well as the files on the file server and the tables
in the CRM DBS are no longer visible to the VT, but only to the FDBS, which
is responsible for properly accessing them via the file server SQL wrapper and the
CRM DBS SQL wrapper and which represents them as foreign tables in the FDBS.
Therefore, the system information chapters and object information chapters of the
integration scenario in Figure 5.25 are not applicable here. Instead, the VT only
accesses the FDBS so that we need a system information chapter for the FDBS as
shown in Figure 5.28 and it accesses the foreign tables in the FDBS, but the files on

114

5.5 Reuse of Middleware Infrastructure

the file server and the tables in the CRM DBS are not any longer visible for the VT.
Figure 5.29 shows one of the corresponding object information chapters. It specifies
information about the foreign table in the FDBS that represents the EMPLOYEE
table in the CRM DBS. However, the part of the foreign tables in the FDBS that
is concerned with information about the CRM DBS, especially the options (see
Figure 5.14), are not relevant for the FDBS VT adapter since it directly accesses
the FDBS and its SQL tables. The FDBS VT adapter therefore only considers the
SQL-related part of the foreign table definitions which can be considered as normal
table definitions as exemplified in Figure 5.30. Actually, this is the information that
is represented in the FDBS object information chapter in Figure 5.29.

Figure 5.27: FDBS Adapter Information Chapter.

Figure 5.28: FDBS System Information Chapter.

The object definition chapter in Figure 5.31 is mapped from the object informa-
tion chapter in Figure 5.29 and is almost the same as the object definition chapter
that is mapped from the CRM DBS SQL wrapper in the VT (see Figure 5.17). The
only difference is that the latter VT object definition is based on the foreign table
defined by the CRM DBS SQL wrapper in the VT, whereas the former VT object
definition is based on the table provided by the FDBS. This is reflected in a different
namespace and description in both object definition chapters.

We also need a different FDBS deployment transformation wizard than the one
associated with the SQL wrapper manager in the previous section. The new FDBS
deployment transformation wizard is associated with the VT adapter manager. It
extracts only information about the FDBS tables and transforms them into corre-
sponding object information chapters. It does not care about whether a table is a
regular table in the FDBS or whether a table is a foreign table that represents data
and operations of an integrated remote system, e.g the file server or the CRM DBS.
It just accesses tables according to their columns and constraints.

115

5 Deployment Model

Figure 5.29: FDBS Object Information Chapter.

Figure 5.30: FDBS Table Representation.

The system information chapter is created on the basis of the information about
the FDBS that the VT administrator entered into the wizard. The adapter informa-
tion chapter does not change for this FDBS type at all. However, if we deploy the
SQL wrappers directly into the VT, we need different system information chapters
as well as different adapter information chapters. Another benefit of integrating
the FDBS into the VT is that the heterogeneity of the remote systems is hidden
by the FDBS. The VT only needs the information about the tables in the FDBS,
e.g. table name, column names and column types (object information chapter) and
information about the FDBS itself (system information chapter). The VT admin-
istrator does not need to consider details about the remote systems and their data
and operations, e.g. files in the file server or tables in the CRM DBS, any longer
since they are completely handled by the FDBS and the FDBS administrator.

Other middleware systems are analogously integrated into the VT. For example,
the message broker of the integration example in Figure 2.3 is integrated by means
of an MB VT adapter so that the Java EE application server can finally also access
the CRM application and other remote systems integrated by the message broker
via the VT (see Figure 5.32). The SQL wrappers and the MB adapters remain in
their respective middleware system. The middleware infrastructure, i.e. the FDBS,
the message broker and the deployed adapters, is reused as far as possible.

116

5.5 Reuse of Middleware Infrastructure

Figure 5.31: FDBS Object Definition Chapter.

Now we can reuse adapter deployments in the VT and we can even reuse whole
middleware systems, i.e. available middleware infrastructure concerning adapter ex-
ecution, so that we have only one adapter execution infrastructure and no longer
redundant infrastructure parts. An adapter is only deployed into the correspond-
ing middleware system, but not into the VT. The VT only holds the deployment
information that is necessary for accessing the middleware system and its data and
operations via a suitable VT adapter. The main benefit is that we can employ
VT adapters for other middleware systems so that we can finally homogenize the
existing middleware infrastructure.

117

5 Deployment Model

Figure 5.32: Reusing a Message Broker Infrastructure.

5.6 Summary

A VT object configuration defines how remote data and remote operations are repre-
sented as VT objects and how VT objects and the correlated remote data and remote
operations are accessed. A VT object configuration consists of four configuration
chapters: adapter information chapter, system information chapter, object informa-
tion chapter, and object definition chapter. Additionally, each adapter manager is
initially configured by an adapter manager information chapter. The deployment
process is divided into two steps that are performed by different persons: adapters
are deployed by an adapter deployer and suitable VT objects are defined by a VT
object deployer. In this way, the deployment process in the VT is significantly alle-
viated and becomes practically manageable: the adapter deployer is doing his job
as usual, i.e. adapter deployment and definition of middleware-specific data and
operations, and the VT object deployer is only concerned with the VT-specific part,
i.e. VT object definitions.

118

5.6 Summary

The co-existence of middleware infrastructures and VT bears optimization po-
tential in terms of eliminating redundancies by applying different levels of reuse:
reuse of adapter deployments by means of deployment transformation wizards and
reuse of middleware infrastructures so that adapters are executed only in one envi-
ronment, respectively.

119

Chapter 6

Applicability

In this chapter, we discuss and evaluate architecture patterns that can be applied to
different kinds of integration scenarios and we show how Web service infrastructures
can considerably benefit from IM technology, i.e. by means of the VT.

6.1 Architecture Patterns

There are several architecture patterns using IM technology to resolve heterogenei-
ties in middleware infrastructures, i.e. adapters and middleware systems. We will
discuss two conventional architecture patterns that solely employ adapters and mid-
dleware systems and three architecture patterns that are based on the VT and that
we already introduced in Section 5.5. Figure 6.1 gives an overview of the architecture
patterns. The conventional architecture patterns have a high degree of adapters to
be potentially developed whereas the VT-based architecture patterns require only
a low degree of adapters, which is the main benefit. The number of layers in the
overall processing stack of the VT-based architecture patterns is slightly higher,
but introduces only negligible performance overhead as shown in the performance
evaluation in Chapter 7.

Figure 6.1: Architecture Pattern Overview.

6 Applicability

6.1.1 Implementation Pattern

The most obvious solution of our initial integration scenario in Figure 1.1 is shown
in Figure 6.2. We just develop a file server J2EE connector and a CRM DBS J2EE
connector to integrate the file server and the CRM DBS into the Java EE application
server. The disadvantages of this approach are quite obvious and show that this ar-
chitecture pattern does not obey a systematic integration approach. Developing new
adapters is a complex, lengthy and error-prone task and thus expensive. Moreover,
from a global viewpoint there are a lot of adapter technologies and much more re-
mote systems and thus the number of possible combinations of adapter technologies
and remote systems is quite high. The overall number of adapters that must be po-
tentially provided in an IT infrastructure using the implementation pattern is m ∗n
for m middleware systems and n remote systems, where usually n À m. The more
remote systems have to be integrated and the more suitable adapters are missing,
the less efficient and applicable the implementation pattern becomes. This becomes
even worse, if we have existing adapters that already perform the desired integra-
tion tasks, just for a different integration technology. These adapters already are in
productive use and work properly. In that case, reuse becomes very appealing. An-
other point is that changes in integrated remote systems can also affect the adapters
that integrate the remote systems. For example, a remote system is upgraded to a
new version or the APIs or other characteristics of the remote system are modified.
This of course requires to modify the adapters too. If we apply the implementation
pattern and develop a second or even more adapters for the same remote system,
but for different adapter technologies, we have to modify all adapters if the remote
system is modified. If we apply one of the other architecture patterns so that we
rely on only one adapter, e.g. the one we also reuse in the VT, we have to modify
only this adapter. Last, but not least, we need highly skilled software developers for
developing new adapters and the more middleware systems and adapter technologies
we want to support and the more new adapters we want to develop, the more highly
skilled personnel we need, which becomes quite expensive. Moreover, highly skilled
personnel is not easy to find and hire.

The disadvantages so far are very strong. Nevertheless, there also are some
advantages. If we use only one middleware system in an IT infrastructure, then
there clearly is only one middleware system incorporated in integration tasks within
this IT infrastructure. Consequently, we have only a small middleware infrastructure
footprint, at least when compared to the other architecture patterns. We can stick
to one specific middleware system and adapter technology and we don’t need to cope
with other middleware systems and adapter technologies. This kind of specialization
requires less personnel, software, hardware, administration and maintenance. The
three layer architecture, i.e. client system, middleware system, remote system, of this
monolithic environment also potentially provides for a better performance compared
to the environments of the other architecture patterns, which require a four or even
five layer architecture. Moreover, a monolithic environment also contributes to a
more stable and reliable environment, which is more difficult to achieve with the

122

6.1 Architecture Patterns

Figure 6.2: Developing new J2EE Connectors.

other architecture patterns, which comprise more layers and more software systems
and components. However, the assumption of such a monolithic IT infrastructure
is not very realistic, especially not for larger IT infrastructures and therefore the
implementation pattern will be the best choice only for few integration scenarios.

In general, the implementation pattern can be a good choice if integration is-
sues only rarely occur so that the initial overhead of the VT-based architecture
patterns weighs more heavily than the disadvantages of the implementation pat-
tern. Additionally, there may be organizational or administrative reasons why the
implementation pattern is applied. For example, strictly separated departmental
competences, maybe due to different security policies or due to different legal re-
quirements, may lead to disjunct IT infrastructures that solve integration issues
independently of each other. All these reasons may not occur very often and seem
not to be very likely, but there is another reason for applying the implementation
pattern, which is the dominating reason: the fact that the implementation pattern at
first sight seems to be the easiest and directest way of handling integration issues so
far, i.e. “just integrate this system”. Actually, the VT-based architecture patterns
are more complicated from an architecture viewpoint, but their benefits definitely
outweigh this aspect and the disadvantages of the implementation pattern usually
have a very undesirable and long-lasting impact on the overall IT infrastructure.
Unfortunately, IM technology is unknown so far so that the implementation pattern
has been the common integration solution and still is. This shows that IM technol-
ogy has a very high potential to significantly alleviate integration issues in today’s
IT infrastructures.

6.1.2 Connection Pattern

A possible solution that allows the Java EE application server to use the file server
SQL wrapper and the CRM DBS SQL wrapper is to interconnect the application
server with the FDBS (see Figure 6.3). In this case, we avoid the development of

123

6 Applicability

the file server J2EE connector and the CRM DBS J2EE connector, but we have to
develop the FDBS J2EE connector that realizes the bridge between the Java EE
application server and the FDBS.

Figure 6.3: FDBS Integration.

The disadvantage of the connection pattern is that it is not systematic. If the
Java EE application server wants to access another CRM system, e.g. the CRM
application (see Figure 2.3), and only the CRM application MB adapter exists, we
have to implement an MB J2EE connector so that the application server can access
the message broker, which in turn uses the CRM application MB adapter (see Figure
6.4). This means that the pattern places an m ∗m complexity on interconnecting
each middleware system with each other one for m middleware systems since each
middleware system requires an adapter to connect to another middleware system,
e.g. the FDBS J2EE connector and the MB J2EE connector in Figure 6.4 (dashed
lines) or the Java EE application server SQL wrapper for interconnecting the FDBS
with the Java EE application server (see Figure 6.5, dashed line). This means that
we still need highly skilled software developers for developing and maintaining the
different middleware adapters. An additional problem is that the connection pattern
adds a fourth layer to the integration architecture since we have to deal with two
middleware systems instead of only one in the architecture of the implementation
pattern. This places higher requirements on personnel, administration and mainte-
nance and potentially reduces performance and the stability and reliability of the
whole environment.

The advantage is that the Java EE application server can use any SQL wrapper

124

6.1 Architecture Patterns

Figure 6.4: Message Broker Integration.

in the FDBS via the FDBS J2EE connector. We do not have to develop a new J2EE
connector for each existing SQL wrapper, but we can use the existing adapters that
already are in productive use and that work properly. Another advantage is that
changes in integrated remote systems affect only one adapter since we do not develop
adapters for other middleware systems to integrate the same remote system as it is
done with the implementation pattern.

The connection pattern can be a good choice if frequent interconnections between
two dedicated middleware systems are needed. For example, if only the FDBS and
the Java EE application server have to be interconnected so that the FDBS can
use some J2EE connectors, the Java EE application server could be directly inter-
connected with the FDBS by means of a Java EE application server SQL wrapper.
However, if other middleware systems and additional interconnections are needed,
the VT-based architecture patterns offer significant benefits.

6.1.3 Adapter Reuse Pattern

Systematically reusing adapters and even whole middleware systems requires more
abstract considerations, which lead us to IM technology. In our example scenario,

125

6 Applicability

Figure 6.5: Java EE Application Server Integration.

we reuse the file server SQL wrapper and the CRM DBS SQL wrapper by deploying
them into the VT (see Figure 6.6). The Java EE application server then uses the
VT and the deployed SQL wrappers to properly access the file server and the CRM
DBS. The Java EE application server uses the VT J2EE connector to access the
VT, which is similar to the connection pattern where the application server needed
the FDBS J2EE connector to access the FDBS server. The benefit of the adapter
reuse pattern is that the m ∗m complexity of the connection pattern and the m ∗ n
complexity of the implementation pattern is reduced to m, i.e. m VT middleware
adapters, so that every middleware system can access the VT. Each middleware
system now solely connects to the VT as some kind of multiplexer, but does not
need to directly access remote systems or other middleware systems.

Each of the VT-based architecture patterns allows to reuse existing adapters
that already are in productive use. This avoids the expensive and error-prone devel-
opment of new adapters. The big advantage of the VT-based architecture patterns
is that the VT allows to systematically reuse adapters which simply means that
there are no restrictions regarding the reuse of adapters. Any adapter, any adapter
technology and any number of adapters can be potentially reused in the VT and any
middleware system or other software system can employ the VT to access remote

126

6.1 Architecture Patterns

Figure 6.6: Reusing Adapters.

systems that have been integrated into the VT. We need only one adapter for a
remote system so that any software system can access this remote system because
every software system just needs to access the VT and thereby the adapter and
the remote system. We do not any longer need software developers for developing
new adapters in every integration scenario. We just reuse the existing adapters by
deploying them into the VT.

The VT-based architecture patterns employ the VT as an IM system and there-
fore introduce a fourth layer to the integration architecture. The VT is a core system
that represents a central component in an IT infrastructure. From that point, the
VT can contribute to a stable and reliable environment and it can also simplify
management and administration of adapters when they are deployed into the VT
instead of deployments in different middleware systems. The only disadvantage of
the fourth layer compared to the three architecture layers of the implementation pat-
tern are performance issues. However, we addressed this issue in our experiments,
which we discuss in Chapter 7 and which show that performance actually is not as
critical as considered at first sight.

127

6 Applicability

6.1.4 Deployment Reuse Pattern

So far, we employ the file server SQL wrapper and the CRM DBS SQL wrapper
in the FDBS as well as in the VT. This means that both SQL wrappers and their
deployments have to be maintained twice in different places, maybe even by differ-
ent administration authorities. The deployment reuse pattern avoids this problem
and additionally reuses adapter deployments as described in chapter 5. We use the
FDBS deployment transformation wizard to automatically extract the deployment
information of both SQL wrappers, transform them into suitable deployment infor-
mation for the VT and finally automatically deploy both SQL wrappers into the
VT (see Figure 6.7). The dashed boxes indicate the adapter deployments of the two
SQL wrappers including information about the remote systems and the remote data
and remote operations integrated by the SQL wrappers. Thus, only the adapter
deployments in the respective middleware systems have to be maintained, e.g. the
SQL wrapper deployments in the FDBS in this example. The difference between the
adapter reuse pattern and the deployment reuse pattern is that the deployment reuse
pattern is based on deployment transformation wizards, which must be additionally
provided. However, the advantage is that a VT administrator can automatically
and systematically deploy adapters into the VT on the basis of adapter deploy-
ments in existing middleware systems. Additionally, if these adapter deployments
are changed, they can be again automatically transferred to corresponding adapter
deployments in the VT by means of the deployment transformation wizards. Note
that adapter deployments do not only contain proper configuration of the adapters
itself, but also comprise information about the integrated remote system and the
integrated data and operations, which can result in a considerable amount of speci-
fication information. For example, a remote system may export a number of table
definitions to an FDBS consisting of a number of column definitions for each table.
Another remote system may export a number of operations to a Java EE server
consisting of a number of parameters and object definitions. Therefore, the adapter
reuse pattern is most suitable for an IT infrastructure with a fixed set or with an al-
most fixed set of existing adapters and adapter deployments. However, this is not a
very realistic assumption since IT infrastructures typically change over time. There-
fore, deployment transformation wizards provide an excellent means for managing
adapter deployments, which otherwise would have to be manually and unsystem-
atically handled by different middleware administrators. Of course, if adapters are
only deployed into the VT, the adapter reuse pattern is the best choice since there
are no existing adapter deployments that we could reuse.

6.1.5 Middleware Reuse Pattern

We also discussed in the last chapter that reuse of adapters in the VT requires suit-
able middleware functionality for handling and executing adapters. For example,
the two SQL wrappers in the VT in Figure 6.7 are executed by the SQL wrapper
manager. This middleware functionality is the same as the functionality for execut-

128

6.1 Architecture Patterns

Figure 6.7: Reusing Adapter Deployments.

ing SQL wrappers in the FDBS. Therefore, we apply the middleware reuse pattern
and reuse the FDBS instead of employing an SQL wrapper manager. All we need is
the VT adapter manager that uses the FDBS VT adapter to access the FDBS (see
Figure 6.8). In that way, we no longer deploy the SQL wrappers into the VT, but
we indirectly reuse the SQL wrappers by means of the FDBS. This is similar to the
connection pattern. However, the connection pattern is unsystematic whereas the
middleware reuse pattern employs the VT in a systematic reuse architecture and
with all the advantages a VT-based architecture pattern comes with. Additionally,
we reduce the complexity of m ∗ m adapters of the connection pattern to m + m
for the middleware reuse pattern: m VT middleware adapters, i.e. each middleware
system can access the VT, and m middleware VT adapters in the VT, i.e. the
VT can access each middleware system. For example, we no longer need to deploy
SQL wrappers into the VT if they are already deployed in the FDBS: the VT indi-
rectly reuses any SQL wrapper that is deployed in the FDBS. Another advantage is
that we do not have to buy, develop, employ and maintain parts of our middleware
infrastructure twice.

The disadvantage of the middleware reuse pattern is the same as for the connec-
tion pattern, i.e. we introduce an additional layer to the integration architecture.
Therefore, the middleware reuse pattern should be applied if an IT infrastructure fre-

129

6 Applicability

Figure 6.8: Reusing Middleware Infrastructure.

quently needs specific interconnections between two dedicated middleware systems,
i.e. situations as the one sketched for the connection pattern.

Another reason for applying the middleware reuse pattern are heterogeneities
within an adapter technology. For example, the J2EE connector architecture defines
contracts between Java EE application server and J2EE connector, but the client
interface is open to other operations and data structures and different Java EE appli-
cation server products differently handle J2EE connector deployments, especially via
vendor-specific extensions. This leads to insidious interoperabilities between J2EE
connectors of different vendors so that the standard-conform J2EE connector man-
ager might not be able to correctly handle all J2EE connectors. In such a case, the
middleware reuse pattern can be a good alternative to reuse standard-degenerated
adapters indirectly via the respective middleware system and not directly in the VT.

130

6.2 Web Services

6.2 Web Services

Web services are becoming more and more ubiquitous and more and more middle-
ware systems offer Web service access. Therefore, the question is how Web services
are related to IM technology and whether the Web service approach can make IM
technology superfluous?

6.2.1 Web Services & IM Technology

First of all, Web services are an integration technology, but not an IM technology.
Moreover, Web services are the currently predominant integration technology, but
they still are yet another integration technology with the same heterogeneity prob-
lems as any other integration technology. The most important issue is to cope with
the heterogeneities of different remote systems. A Web service architecture typically
relies on an ESB and corresponding adapters where we again have to develop new
adapters or handle different adapter technologies when we want to integrate other
remote systems via Web services. Another point is the supposition that the whole
world is using Web services and only Web services. Web services undoubtedly are a
considerable improvement over existing integration approaches, but they still do not
make the world homogeneous. The last decade introduced, developed and employed
Web services and there surely is substantial progress in making IT infrastructures
more interoperable. But there still is much heterogeneity left, which clearly shows
that Web services are not the final solution. Actually, it is even not realistic to strive
for a homogeneous IT landscape because of the overall complexity and heterogene-
ity that comes from the real world and the real world requirements that finally
determine IT infrastructures and the resulting heterogeneities. Put in other words,
the world is complex and heterogeneous by virtue. We cannot homogenize it and
therefore we cannot completely homogenize IT infrastructures. We simply have to
deal with heterogeneities, but we can deal with them in a way that makes it feasible
to handle heterogeneities as easy as possible. IM technology is an excellent means
to do so since it shields from integration issues and substantially alleviates access
to heterogeneous software systems. An IM system employs integration technologies
and abstracts from them so that integration issues are hidden. An IM system acts
on a higher abstraction layer than an integration technology does, which simply
means that an IM system such as the VT neither is in competition with Web ser-
vices nor does it make sense to compare them with each other (also refer to Section
2.6 for a discussion of IM technology). For example, the VT can employ Web service
technology as another integration technology. We employ a Web service manager
in the VT that can deal with Web services and that makes them available for other
systems and technologies (see 1© in Figure 6.9). The other way round, the VT Web
service facility allows to access the VT via Web services so that the Web service
architecture can benefit from the integration independence that the VT provides
(see 2© in Figure 6.9). An important characteristic of the VT is that it does not re-
strict remote system access to Web services solely. Web services are only one means

131

6 Applicability

of accessing them. The VT provides integration independence to any system that
accesses the VT since VT access means to support different access paradigms and
technologies, not only Web services. Figure 6.9 exemplifies that an FDBS can use
a VT SQL wrapper and set-oriented, declarative SQL queries to access the VT and
any remote system that is integrated into the VT. A Java EE application server can
use a VT J2EE connector and operation-oriented requests to access the VT and so
on. We can use Web services to access the VT, but we can also use other means.
We stay heterogeneous if it is desired or necessary and we also provide a much easier
way to deal with integration issues that deal with heterogeneous software systems.

Figure 6.9: The VT, Web Services and more than Web Services.

6.2.2 Web Service Infrastructures

SOA-based applications consist of service compositions, e.g. Business Process Exe-
cution Language (BPEL) processes, that realize certain business logic [SvdAB+03].
These processes call Web services to access remote data or to execute remote opera-
tions. A WSDL specification determines how to bind to a service provider and how
to drive the Web service [CMRW07]. This part of a Web service is visible to the
process modeler. It is standardized and it provides uniform access to the different
Web services. What is not seen by the process modeler are the Web service imple-
mentations itself, which are performing the actual work: accessing the desired data

132

6.2 Web Services

and executing the desired operations in remote systems. The infrastructure part
of Web services that is concerned with accessing remote data and remote opera-
tions lies underneath a BPEL process and underneath a Web service call. This Web
service infrastructure part is a heterogeneous world that still suffers from system-
atic and viable solutions in terms of how to uniformly access heterogeneous remote
systems. The way a remote system is called and accessed is not standardized, but
completely depends on the characteristics of the accessed remote system. Web ser-
vice access to remote systems is often done by means of an Enterprise Service Bus
(ESB), i.e. the middleware system in the Web service infrastructure. An ESB tackles
the heterogeneities in the very same way as other middleware systems and adapter
technologies do. From this viewpoint, the Web service architecture represents yet
another middleware solution and Web services are adapters that integrate remote
systems into Web service-based applications. Previous discussions on Web service
development and Web service infrastructures clarify that the coding part of Web
service implementations is based on contemporary middleware systems or that Web
service implementations at least require the implementation of integration compo-
nents, i.e. adapters, in the same way as heterogeneous remote systems usually are
integrated into middleware systems [PH07, LCL06, Lee05, Hai07, APvS03]. Next,
we take a closer look at how the VT can improve a Web service infrastructure and
how the VT can make it more flexible.

6.2.3 The VT Acting as an ESB

Figure 6.10 shows a simplified, graphical representation of an example BPEL pro-
cess that realizes an HR application case. The core of the four activities are Web
service calls that access data and operations in the remote systems of our integration
scenario, i.e. the file server, the CRM DBS, the CRM application and the CRM
system. The crucial point about this process is that it is not clear how access to
the different remote systems is actually realized. This is of no concern to the pro-
cess modeler at the BPEL and WSDL level, but it is the task of the infrastructure
provider to offer Web service access to remote systems. The Web service architec-
ture represents interfaces, but does not tell how to actually access heterogeneous
remote systems, i.e. how to integrate them. Access to Web services is provided in
a homogeneous manner whereas the underlying access to the remote systems still is
heterogeneous and needs to be solved in an individual, remote system-specific man-
ner, i.e. we have diverse Web service implementations. An ESB typically provides
the necessary integration technology that allows to develop suitable Web service
implementations, which therefore rely on adapters as other middleware systems do.
In our example, the ESB would need four adapters to access the remote systems of
the BPEL process as shown in Figure 6.11. However, we do not have these adapters,
but we have to develop them from scratch. On the other hand, the given remote
systems are already integrated into the other middleware systems of our integra-
tion scenario. From that viewpoint it would be very appealing to reuse the existing
adapters instead of developing four new ESB adapters.

133

6 Applicability

Figure 6.10: HR BPEL Process (abstract representation).

Figure 6.11: HR BPEL Process Solved with ESB.

If we assume that the existing IT infrastructure completely supports Web ser-
vices, we can reuse the existing adapters via their respective middleware systems
that have to be able to act as local ESBs as shown in Figure 6.12. The disadvantage
is that we have to deal with different middleware systems and their corresponding
Web service facilities, i.e. how to access the middleware system via appropriate
Web services. The FDBS then provides SQL table-based Web services, the Java EE
application server provides Java-based Web services, and so on. Consequently, the
SOA-based application still has to deal with these remaining heterogeneities. The

134

6.2 Web Services

other question is whether all of the middleware systems can actually act as local
ESBs and provide suitable Web services. Maybe some of them even don’t support
Web service technology at all. Apart from that, we already discussed a more suitable
and more beneficial approach, i.e. the use of IM technology. One facet of the VT is
that it can act as a global ESB that is able to provide Web service access to any
remote system that is integrated into the VT (see Figure 6.13). This means that
we do not need any longer different local ESBs, i.e. middleware systems, that are
restricted considering their employed integration technologies and remote systems,
but we can rely on the integration independence of the VT, i.e. to uniformly reuse
diverse adapters.

Figure 6.12: HR BPEL Process Solved with Middleware Systems.

135

6 Applicability

Figure 6.13: HR BPEL Process Solved with VT.

6.3 Summary

There are several architecture patterns using IM technology to resolve heterogenei-
ties in middleware infrastructures, i.e. adapters and middleware systems. We dis-
cussed two conventional architecture patterns that solely employ adapters and mid-
dleware systems and three architecture patterns that are based on the VT. The
most important point of the architecture patterns is the number of adapters that
potentially have to be developed. Here, the VT-based architecture patterns clearly
are superior to the conventional architecture patterns. None of the patterns is the
best in every integration scenario, but the adapter reuse pattern and the deployment
reuse pattern most probably suitably apply to a large part of integration scenarios
especially if the VT is employed in an IM-oriented IT infrastructure.

136

6.3 Summary

The VT supports Web services as another integration technology. The VT com-
pletely hides integration issues from the upper part of the Web service infrastructure
and can act as a global ESB. SOA-based applications can seamlessly access any re-
mote system via the VT and we avoid the overhead of developing Web service
implementations as ESB adapters. The result is that the heterogeneous world be-
neath the homogeneous Web service architecture becomes integration-independent
and the VT thereby considerably alleviates the constitution of a uniform Web service
infrastructure.

137

Chapter 7

Performance

So far, we discussed the benefits of the VT such as software reuse, integration in-
dependence, higher stability and flexibility of IT infrastructures, reduced costs for
software, hardware and maintenance. These benefits do not come for free. We al-
ready mentioned that a potential disadvantage of the VT approach could be the
additional VT layer in the overall processing stack. The question is whether this
additional layer will significantly decrease performance or not. Therefore, we pro-
totypically implemented the VT and systematically evaluated our IM approach in
extensive experiments. The experiment results show that the VT decreases perfor-
mance at an acceptable rate and that the VT surprisingly even improves performance
in some settings. But even the performance decrease is negligible when we consider
the benefits of the VT.

7.1 Experiment Environment

We selected representative middleware platforms, adapter technologies and remote
systems for our experiments to show that the VT approach is applicable in a wide
range of integration scenarios. We chose representatives for the most frequently
occurring cases: data-oriented adapter technologies, i.e. SQL wrapper technology,
and operation-oriented adapter technologies, i.e. J2EE connector technology (also
refer to the discussion of representative adapter technologies in Section 2.2). We used
IBM DB2 Information Integrator 9.1 (short: DB2) to execute the SQL wrappers
and IBM WebSphere Application Server 6.1 (short: WebSphere or WS) to execute
the J2EE connectors. Furthermore, we used typical kinds of remote systems for
our experiments: Derby, a relational DBS that is accessed via SQL requests (case
Derby), a legacy object-oriented application system implemented in Java, which
offers an API to retrieve and manipulate personnel data (case OOApp), and comma-
separated files that are read and written by means of simple file operations (case
File). Figure 7.1 shows the resulting experiment scenario with the VT prototype.

The Derby case represents data-oriented, data-intensive processing in remote
systems and it represents scalable application systems. The OOApp case represents
operation-oriented processing and it represents non-scalable application systems.

7 Performance

The non-scalability simply comes from the object graph that set-oriented requests
return since the object graph is locally handled and therefore it has to be passed
in one chunk. Hence, the larger the result set, i.e. the object graph, the larger are
the required system resources, especially main memory, which clearly does not scale
for very large object graphs. The File case represents small systems or dependent
system components such as local access to files, e.g. plain text or XML, input from
sensors, e.g. temperature or humidity, or access to controls, e.g. status of a door or
window (open, closed) or controls in a factory. The Derby case and the File case

Figure 7.1: VT Prototype Experiment Scenario.

rely on data of the TPC-H benchmark that is intended for benchmarking decision
support systems in complex application scenarios and with large data volumes. We
use the lineitem table and the orders table for our experiments (see Figure 7.2). The
OOApp case relies on a different data set since it requires to span a densely linked
object graph. We therefore created a typical employee-department dependency (see
Figure 7.3) where an employee is associated with a department and a manager and
where a department is associated with a manager. A manager also is an employee
so that we even have a recursive relationship.

Figure 7.4 shows the overall VT prototype experiment architecture and the dif-
ferent layers of the integration architecture that are executed on separate hosts,
respectively. The File case is a special case since the file adapters directly access the
files in the adapter operating system process and not as a stand-alone remote sys-

140

7.1 Experiment Environment

Figure 7.2: TPC-H Tables.

Figure 7.3: OOApp Classes.

tem. The architectures of the native adapter execution environments comprise three
layers according to the implementation pattern of Section 6.1.1, i.e. the adapters
are directly executed in their native middleware systems: the file SQL wrapper, the
Derby SQL wrapper, the OOApp SQL wrapper are executed in DB2 and the file
J2EE connector, the Derby J2EE connector and the OOApp J2EE connector are
executed in WebSphere. The VT-based architectures comprise four layers accord-

141

7 Performance

ing to the adapter reuse pattern of Section 6.1.3. These architectures additionally
include the VT: the SQL wrappers and the J2EE connectors are executed in the
VT, and DB2 and WebSphere access the VT and thereby the other adapters only
indirectly. The client applications, the middleware systems and the remote systems
run on separate hosts. The VT also runs on a separate host as a generally available
IM system. The client host, the middleware host and the VT host have the same
hardware and software configuration, i.e. a dual core processor with 1.53 GHz, 1
GB RAM and Windows XP Professional SP 3. The DB2 experiments employ a DB2
client on the client host, DB2 on the middleware host and the VT prototype on the
VT host. The WebSphere experiments correspondingly employ a WebSphere client
on the client host, the WebSphere application server on the middleware host and
the VT prototype on the VT host. The experiments use different remote systems
according to the Derby, OOApp and File cases, and they access different remote
system instances according to the different scale levels. Therefore, we run the Derby
server instance and five OOApp server instances (each one with a different scale
level, i.e. a different object graph base) on a bigger machine. This gave us a greater
flexibility for managing the single server instances and for handling single experi-
ments in sequence. The remote system host has four dual core processors with 1
GHz, 32 GB main memory and CentOS 4. Important is that the VT and the middle-
ware systems run on hosts with identical hardware and software configuration since
we compare the execution of DB2 or WebSphere plus the VT versus the execution
of DB2 or WebSphere only, and we compare file access on the VT versus file access
on DB2 and on WebSphere for the File case.

7.2 Experiment Execution

In this section, we discuss the experiment categories and the different experiment
architectures that we use for our prototype evaluation. We evaluate the VT approach
according to the execution time that the VT additionally introduces to the overall
execution time of the experiment requests. We measure the additionally introduced
execution time relative to the overall execution time in percent and call it VT
overhead (or overhead only if it is clear from the context that VT overhead is
meant).

7.2.1 Experiment Categories

The experiments comprise four categories, which represent basic access types: exe-
cuting operations (category Exec), reading data (category Read), writing data (cat-
egory Write) and executing set-oriented queries (category Query) (also see Figure
7.5).

142

7.2 Experiment Execution

Figure 7.4: Overall VT Prototype Experiment Architecture.

Exec Category

The Exec category refers to the execution of remote operations which do not incorpo-
rate data transfer, neither reading nor writing. They just use execution parameters
and they are intended for side-effects or computational issues, e.g. a time service
operation that delivers the current time or a reservation operation that allows a
person to book cinema tickets. The representative remote operation of the Exec
category is a simple wait operation in a remote system with a parameter for the
number of ms that an operation execution lasts. The wait operation thereby sim-
ulates an operation in a remote system that performs some work. The Derby case
uses a stored procedure that waits for x ms and then returns, the OOApp case offers

143

7 Performance

an RMI method that waits for x ms before it returns and the File case is directly
executed in the file adapter, either in the middleware or in the VT, just by calling a
wait routine to wait for x ms. The simulated remote operation execution duration
is 1, 10, 100, 1,000 and 10,000 ms to show how the VT overhead decreases with
increasing operation execution duration.

Figure 7.5: Experiment Categories Exec, Read, Write, and Query.

Read Category

The Read category refers to reading single data items, e.g. tuples or objects, which
involve a few input parameters for identifying the data item to be read. For example,
a CAD system requests single objects or a movie web application allows to look up
information about movies, e.g. a user chooses a movie so that a web page is displayed
with further information about this movie. The input parameters are required to
identify the data item to be read from the remote system. The Derby case reads
one tuple per request from the lineitem table identified by the linenumber and the
orderkey of the lineitem tuple. The File case reads one comma-separated line from
the lineitem file given two parameters, the linenumber and the orderkey. The OOApp
case reads a plain Employee object, i.e. no object graph, given the Employee’s id.
The experiments read an increasing number of data items (succeeding, single data
item requests), i.e. 1, 10, 100, 1,000 and 10,000 data items, to show that the VT
overhead remains constant.

Write Category

The Write category refers to writing single data items, e.g. tuples or objects, which
involve transfer of the data item in the request. For example, a CAD system writes
single objects to the data store or a movie web application allows to store information
about a movie. There are no parameters required since the complete data item is
transferred to the remote system. The Derby case inserts a new lineitem tuple into
the lineitem table, the File case appends a comma-separated lineitem line to the
lineitem file, and the OOApp case inserts a new, plain Employee object into the
object graph. The experiments write an increasing number of data items to the
remote systems (succeeding, single data item requests), i.e. 1, 10, 100, 1,000 and
10,000 data items, to show that the VT overhead remains constant.

144

7.2 Experiment Execution

Query Category

The Query category refers to set-oriented queries that require complex processing
and that retrieve data sets. Typical examples are SQL queries or XQuery queries.
The experiment queries have no parameters, but comprise a query expression that
simulates a more or less complex retrieval request. This experiment category is the
most complex and extensive one since there are different queries to be evaluated.
The queries are differently evaluated by the different middleware systems and remote
systems, which can drastically influence execution time. We chose representative
queries that are typically and often used in application systems:

• Complete retrieval of all data, i.e. like

SELECT *
FROM table

• Retrieving only a small subset of the data, i.e. like

SELECT col1, col2
FROM table
WHERE col1 = x

We choose a selectivity factor of one percent compared to the retrieval of the
whole data set and we project only few columns so that the resulting data is
less than one percent of the whole data in the table.

• Joining two data sets and retrieving the complete result set, i.e. like

SELECT *
FROM table1, table2
WHERE table1.pk = table2.fk

• Joining two data sets and retrieving only a small subset of the join result, i.e.
like

SELECT col1, col2, colX, colY
FROM table1, table2
WHERE table1.pk = table2.fk AND col1 = x

We again chose a selectivity factor of one percent compared to the retrieval of
all data in the join result and we further project only few columns so that the
resulting data is less than one percent of all data in the join result.

The Derby case actually performs SQL queries like the ones sketched above.
The queries use the lineitem and the orders tables. The File case needs analogous
processing on the lineitem and the orders files, which of course cannot be only
performed by means of simple file operations. The file data has to be explicitly
postprocessed in a higher layer, e.g. in the middleware or in the client. The OOApp
case needs similar processing on Employee objects and on Department objects, which
cannot be performed by the OOApp remote system itself, either. The objects have
to be explicitly postprocessed in a higher layer, too, e.g. in the middleware or in
the client.

145

7 Performance

7.2.2 Query Considerations

Thus, the big question is where the processing of the different queries is actually
performed. The answer is simple for the WebSphere scenario since WebSphere and
the J2EE connector architecture cannot handle set-oriented queries that contain
selections, projections or joins. Therefore, the WebSphere client has to retrieve the
required data sets and then performs the necessary processing on its own. The only
exception is the Derby case since the Derby J2EE connector can push down an SQL
query to the Derby server thereby avoiding any query processing in the WebSphere
client. The DB2 client can submit the different queries as SQL queries to DB2
since SQL is powerful enough to express such queries. DB2 in turn performs the
necessary processing on the data retrieved from the remote systems, but, again, the
Derby case is an exception since DB2 can push down all queries to the Derby server.

We can already see the advantages that DB2 comes along with for the Query
category since DB2 handles all necessary processing whereas the WebSphere client
has to handle query processing on its own. Similar considerations hold for the VT
because if we add the VT to the processing stack without any query capabilities,
it breaks the push-down mechanism that facilitates more efficient processing in the
Derby case. If the VT however offers query capabilities that comprise at least the
power of the queries in the Query category, we are able to push down queries to the
VT or even further. This does not only mean that we can push down queries to the
Derby server as in the DB2 and WebSphere scenarios, but we can also offer the VT
query capabilities to the WebSphere case so that the WebSphere client pushes down
all its queries to the VT. This provides for a more efficient execution of set-oriented
queries in the VT-based experiments. We will discuss this in more detail later.

The experiments in the Query category are performed on different databases of
exponentially increasing size (factor 10 for each scale level) ranging from very small
data sets (scale level 1) up to large data sets (scale level 6). The TPC-H benchmark
especially targets very large data sets. We extend the defined scale levels to very
small data sets so that the smallest scale level (scale level 1) contains six tuples in
the lineitem table (Derby case) and in the comma-separated lineitem file (File case)
and one tuple in the orders table (Derby case) and in the comma-separated orders
file (File Case). The highest scale level (scale level 6) contains 600,000 tuples and
150,000 tuples, respectively. Requests on this data set can last quite long, even up
to a few hours so that we did not include higher scale levels in our experiments.
Higher scale levels are even not necessary since the experiments yield clear results
for the given scale levels. The OOApp case is based on object graphs that have
to be completely managed in main memory and that additionally have a higher
memory consumption due to the inherent object management overhead. Therefore,
our experiments have only five scale levels. Scale level 1 contains 15 objects for the
Employee class and 1 object for the Department class. Scale level 5 contains 150,000
Employee objects and 10,000 Department objects. We could not apply scale level 6
with 1,500,000 objects. The reason was not a too long execution time, but simply
the main memory of the hosts, which was not sufficient enough to deal with such

146

7.2 Experiment Execution

a large number of objects in one chunk. This is not surprising, but even desired
since the OOApp case represents non-scalable application systems. Moreover, the
experiments yielded clear results for the given scale levels so that we did not need
higher scale levels.

7.2.3 Experiment Architectures

Figure 7.6 shows the three and four layer architectures of the SQL wrapper integra-
tion scenarios that we use for the experiments. Each layer is executed on a separate
host, which requires up to four hosts for each experiment scenario. We compare the
execution time of the native SQL wrapper execution in DB2 (shown on the left side)
with the SQL wrapper execution in the VT (shown on the right side) to determine
the overhead that the VT places for SQL wrappers. We additionally compare the
execution time of the native SQL wrapper execution with the J2EE connector ex-
ecution in the VT (shown in the lower part). We do so since we are interested in
the behavior and in the execution times of different adapter technologies in the VT.
For example, if we assume that we already have the file J2EE connector, but no file
SQL wrapper, we can compare how the execution time of the file J2EE connector
in the VT, which obeys the adapter reuse pattern, relates to the execution time of
a new, recently developed file SQL wrapper in DB2, which obeys the implementa-
tion pattern. Note that the VT is able to handle SQL wrappers as well as J2EE
connectors, but that the DB2 server can only handle SQL wrappers.

Figure 7.7 correspondingly shows the three and four layer architectures of the
J2EE connector integration scenarios that we use for the experiments. Again, each
layer is executed on a separate host, which requires up to four hosts for each ex-
periment scenario. We compare the execution time of the native J2EE connector
execution in WebSphere (shown on the left side) with the J2EE connector execution
in the VT (shown on the right side) to determine the overhead that the VT places
for J2EE connectors. We also additionally compare the execution time of the native
J2EE connector execution with the SQL wrapper execution in the VT (shown in the
lower part). The reason why we do this is analogous to the SQL wrapper scenario.
For example, if we assume that we already have the file SQL wrapper, but no file
J2EE connector, we can compare how the execution time of the existing file SQL
wrapper in the VT, which obeys the adapter reuse pattern, relates to the execution
time of a new, recently developed file J2EE connector in WebSphere, which obeys
the implementation pattern. Note that the VT is able to handle SQL wrappers
as well as J2EE connectors, but that the WebSphere server can only handle J2EE
connectors.

7.2.4 Experiment Notation

Now we can establish a notation for the different experiments we perform. An
experiment name constitutes in the following way:
<operation>-<mode>-<compensation>-<mw>-<vt adapter>-<rs>-<scalelevel>

147

7 Performance

Figure 7.6: SQL Wrapper Experiments Architectures.

The single elements stand for:

• <operation>: Exec, Read, Write, Query ; the operation category.

• <mode>: R, SP, J, SPJ ; the query mode with R as retrieval, S as selection,
P as projection, J as join; this only applies to the Query case.

• <compensation>: Comp; if missing processing capabilities in the VT have to
be compensated by another system, otherwise omitted; this only applies to
the Query case.

• <mw>: either WS or DB2 ; the middleware system, i.e. WebSphere or DB2
Information Integrator.

• <vt adapter>: VT-W or VT-C ; the adapter employed in the VT, i.e. the VT

148

7.2 Experiment Execution

Figure 7.7: J2EE Connector Experiments Architectures.

executing an SQL wrapper or the VT executing a J2EE connector if it is a
VT-based scenario, otherwise omitted.

• <rs>: File, Derby, OOApp; the remote system, i.e. files or Derby or the
object-oriented application system.

• <scalelevel>: the scale level; 1, 2, 3, 4, 5, 6 for the Query category; 1, 10,
100, 1000, 10000 for the other categories.

Examples of experiment names are Exec-WS-File-100, Read-WS-VT-W-Derby-
10, Query-R-DB2-OOApp-3 or Query-SPJ-Comp-WS-VT-C-OOApp-2. An exper-
iment name that omits the scale level represents the whole experiment series in-
cluding all scale levels, e.g. Exec-WS-File implicitly comprises Exec-WS-File-1,
Exec-WS-File-10, Exec-WS-File-100, Exec-WS-File-1000, Exec-WS-File-10000 ; and

149

7 Performance

Query-R-DB2-OOApp comprises Query-R-DB2-OOApp-1, Query-R-DB2-OOApp-
2, Query-R-DB2-OOApp-3, Query-R-DB2-OOApp-4, Query-R-DB2-OOApp-5. An
experiment name that omits the remote system and the scale level represents the
whole experiment series of all remote systems including all scale levels, e.g. Exec-WS
implicitly comprises Exec-WS-File, Exec-WS-Derby, Exec-WS-OOApp and Query-
R-DB2 comprises Query-R-DB2-File, Query-R-DB2-Derby, Query-R-DB2-OOApp.
An experiment consists of a corresponding request that is successively executed a
number of times to yield a reliable and stable result. A request execution starts
and ends in the client application, i.e. from request submission until the response is
completely processed, which is especially important when reading data.

Each experiment without the VT is compared to a corresponding experiment that
additionally employs the VT, i.e. one experiment that only uses DB2 or WebSphere,
e.g. Exec-WS-File-1, and one that additionally employs the VT, e.g. Exec-WS-VT-
C-File-1. The comparison result is the overhead in percent that the VT causes,
e.g.

tExec-WS-V T -C-File-1 − tExec-WS-File-1
tExec-WS-File-1

∗ 100.

7.3 Challenges

The execution of experiment requests is subject to different disruptive influences
which come from the software systems, operating systems, network communication
and other system processes and software running on the hosts. We spent consid-
erable time and efforts to reduce these factors to a minimum where possible, but
there still are some relevant system characteristics and influences that cannot be
completely eliminated since they are crucial for proper execution or since they even
are an inevitable part of the system environment. Examples are security software,
network load caused by other users and systems, operating system and hardware
components, e.g. reading and writing files, sockets for network communication, es-
sential DBS reorganization procedures or JVM management functionality such as
garbage collection.

Important to note is that every host runs a JVM since we implemented the
VT prototype and the SQL wrappers and J2EE connectors in Java. Therefore, the
JVMs played a major role in the infrastructure of our experiment scenario. A JVM
is a complex software that dynamically allocates memory in cooperation with the
operating system. The allocated memory is managed by a garbage collection facility
that automatically reserves and frees object memory. Therefore, some experiments
typically degenerated due to memory consumption and corresponding garbage col-
lection actions, especially in the OOApp case, which deals with large object graphs.
This behavior especially influences experiments with higher scale levels, but also
holds for lower scale levels since we executed experiment requests consecutively and
with high repetition rates to even out execution time deviations so that the JVM
earlier or later had to start over with inevitable garbage collection procedures. This
restricted the number of consecutive request executions. Typically, the faster a se-

150

7.4 Experiment Results

ries of succeeding request executions was affected by degeneration effects, the less
precise the final execution time result got so that we had to re-execute such exper-
iments more than once. Reasons for fast degenerating series of succeeding request
executions are long running requests, i.e. experiments with high scale levels.

The waiting time between request executions has also shown to be significant
since some experiments tended to yield oscillating execution times for succeeding re-
quest executions. Such behavior established patterns like x, y, x, y, ... or x, x, y, x, x,
y, ... or x, x + c, x + 2c, x + 3c, ..., x + 8c, x, x + c, x + 2c, x + 3c, ..., x + 8c, ... (with
x, y and c standing for some ms of execution time). This behavior partially im-
proved with longer waiting times between two succeeding request executions. The
reasons partially were garbage collector behavior, but it also had other reasons like
operating system caching. Other experiments continually decreased execution time
for succeeding request executions so that we partially had to execute some hundred
requests until the execution time results became stable. Here, the JVM just-in-time
compiler (JIT) played a major role, but also prefetching and caching mechanisms
of operating systems or database systems contributed to the decreasing execution
time of succeeding request executions.

The effects of these influences became even worse since we used up to four hosts
for each experiment with corresponding systems and communication between them.
Additionally, the final execution time results of our experiments are the compari-
son between two experiments, i.e. one experiment with the VT and one without,
to determine the overhead of the VT so that we even have up to seven hosts that
contribute to the final execution time results and thus to the final deviation too.
Therefore, we repeatedly executed the same request consecutively up to a few thou-
sand times in the worst cases to yield precise execution time results, especially for
series of request executions that took quite long to improve execution time due to
JVM JIT compilers, caching effects, etc. Higher scale levels of course did not al-
low to repeat a request execution very often. Therefore, we had to start over with
request executions several times for long-running requests, i.e. restart systems and
clients. Deviations here were relatively less significant due to the longer execution
times. JIT phenomena also applied faster to longer running request executions. In
summary, the execution time results slightly deviate to some extent, typically up to
only one percent overhead in the worst case. This contributes to a sound picture of
the yielded experiment results.

7.4 Experiment Results

The main result of the experiments is that the longer a request execution lasts and
the larger the data sets are that are read or written, the better performs the VT, i.e.
the lower is the overhead. If request executions have a very short execution time or
if very small data sets are read or written, the VT creates some overhead. However,
this can be usually neglected in integration scenarios since the overhead is only up
to a few hundred ms in the worst cases. The overall result of the experiments is

151

7 Performance

that the VT actually is practically applicable. Another important result is that
the execution times of SQL wrappers in the VT basically do not significantly differ
from the execution times of J2EE connectors in the VT. This resumes from two
facts: the already stated fact that adapters for the same remote system basically
perform the same integration tasks, e.g. reading or writing data from or to the
remote system, and the fact that the whole integration scenario, its complexity and
partially suboptimal request executions lead to significant influences on execution
times so that the time differences in the execution of adapters of different adapter
technologies only contribute a small part to the overall execution time. This means
that the VT can efficiently handle diverse adapter technologies independent of the
context where it is used.

In the next four subsections, we discuss the experiment results of the four ex-
periment categories, respectively. At the beginning of each subsection we first give
a rough estimation of what we expect from the results. In the second part of each
subsection we discuss the actual results of the experiments and the deviations from
the estimations if there are significant ones.

7.4.1 Operations

An experiment of the Exec category consists of a request that executes a remote
operation. The remote operation is a simple wait operation that waits for a given
number of ms and thereby simulates a remote operation with an execution time of
1, 10, 100, 1,000 or 10,000 ms (cf. Section 7.2).

Expectations

An operation execution time of 1 ms is quite short compared to the overall request
execution time, which includes the execution of the request in the client, in the
middleware and in the VT, and the execution of the remote operation in the remote
system, which either is the Derby stored procedure, the OOApp RMI method or
the local wait routine in the file adapter (also see Figure 7.4). The processing in
the different systems and the communication between them takes at least a few ms.
Therefore, the VT introduces some overhead for the low scale levels, i.e. operation
execution times of 1 ms and 10 ms, and a significantly decreasing overhead for higher
scale levels, i.e. operation execution times of 100 ms and higher. The VT overhead
is higher for the File case compared to the Derby case and the OOApp case since the
File case has one layer less than the other cases: the File case has two layers with
DB2 or WebSphere only and three layers with the VT, the other cases have three
layers with DB2 or WebSphere only and four layers with the VT. The File case has
one network connection with DB2 or WebSphere only and two with the VT, the
other cases correspondingly have two network connections with DB2 or WebSphere
only and three with the VT. Therefore, a rough estimation of how the requests will
behave expects about 50 to 100 percent VT overhead for the File case (about 100
percent overhead for communication and about 50 percent overhead for processing),

152

7.4 Experiment Results

and about 33 to 50 percent VT overhead for the other two cases (about 50 percent
overhead for communication and about 33 percent overhead for processing) for low
scale levels. The higher the scale levels get, the more the VT overhead will decrease.

Experiments

And indeed, there is some overhead for requests with operation execution times of
1 and 10 ms (see Figures 7.8 and 7.9). Especially, the File case shows a higher
overhead due to the worse relation of 2:3 in contrast to 3:4 in the Derby case and in
the OOApp case. Nevertheless, the time for processing the request in the systems
except the remote operation execution time, i.e. the waiting time, always is only a
few ms, i.e. between 2 and 5 ms. This means that processing and routing the request
through the different systems of the integration scenario takes a constant time of only
a few ms and therefore is independent of the overall request execution time, which
in turn is proportionally increasing corresponding to the remote operation execution
time of 1 to 10,000 ms. This in turn means that the remote operation execution
time is the dominating factor of the Exec category experiments and therefore the
VT overhead of the 1 ms and 10 ms execution requests is absolutely seen only a
few ms, which in most cases will not seriously affect performance. The experiments
with a request execution time of 100 ms or higher yield a low VT overhead of less
than one percent and therefore such requests are applicable to any environment.

Figure 7.8: Exec-DB2.

7.4.2 Reading Data

The Read category reads single data items from a remote system, i.e. 1, 10, 100,
1.000 or 10.000 tuples from the Derby lineitem table, lines from the lineitem file or
Employee objects from the OOApp (cf. Section 7.2).

153

7 Performance

Figure 7.9: Exec-WS.

Expectations

Reading only few data items will result in a very short execution time so that the
preparations for executing the request in the different systems will considerably
influence the execution time. Reading more than few data items will reduce the
preparation part. The task of retrieving, processing and transferring the data items
will consume most of the request execution time. Therefore, the VT overhead will
be higher for reading only few data items, but it will be lower and also constant for
more than few data items. We roughly expect about 50 to 100 percent VT overhead
for the File case and about 33 to 50 percent VT overhead for the other two cases,
analogous to the Exec category, but for all scale levels, i.e. we expect constant VT
overhead.

Experiments

The execution time results partially behave as expected or slightly deviate from
the expectations, but they also show some surprising, unexpected effects, that even
decrease the expected VT overhead (see Figures 7.10 and 7.11). The File case com-
pletely differs from our expectations since the VT does not introduce a runtime
overhead, but even places a “negative” runtime overhead, i.e. a runtime improve-
ment by using the VT! The reason for this behavior is that integration scenarios
are inherently complex and therefore tend to run suboptimally considering their ef-
ficiency. Therefore, adding another component to such a complex environment may
not further increase execution time of an already suboptimal request execution, but
could make a suboptimal execution less suboptimal, i.e. decrease execution time.
The crucial point is that the different systems do not run and work isolated, but
they are interconnected and correlated so that the overall infrastructure becomes
more than the sum of its parts. The infrastructure is quite complex and the de-
pendencies and mutual influences of its parts are neither easily comprehensible nor

154

7.4 Experiment Results

easily to predict so that some experiments lead to execution times that are different
to what we originally expected. This requires to take into account further aspects
and to regard the individual parts of the infrastructure in a more global context.
Therefore, we discuss this and other experiment phenomena in further detail in Sec-
tion 7.5. The Derby case and the OOApp case show similar effects and reveal even
further characteristics, i.e. leaps. Reading 1, 10 and 100 data items shows some
VT overhead, as expected or a little bit more than expected in a few cases, which
still is acceptable. However, the higher scales, i.e. reading 1.000 and 10.000 data
items, show significantly lower VT overhead although they should yield the same
VT overhead as for reading 1, 10 and 100 data items.

Figure 7.10: Read-DB2.

Figure 7.11: Read-WS.

We further investigated this phenomenon and detected a leap between reading
104 data items and 105 data items (see Figures 7.12 and 7.13). The absolute ex-
ecution time for reading 104 data items yields some 100 ms, whereas reading 105

155

7 Performance

data items yields an absolute execution time that is about two to three times higher
than the execution time for reading 104 data items (see Figures 7.14 and 7.15). This
phenomenon is another unexpected behavior that we also discuss in more detail in
Section 7.5. However, the important message of these execution time results is that
the experiments behave as expected or even perform better than expected, which is
a very satisfying result.

Figure 7.12: Read-DB2: Leaps.

Figure 7.13: Read-WS: Leaps.

7.4.3 Writing Data

The Write category writes single data items to a remote system, i.e. 1, 10, 100, 1.000
or 10.000 tuples to the Derby lineitem table, lines to the lineitem file or Employee
objects to the OOApp (cf. Section 7.2).

156

7.4 Experiment Results

Figure 7.14: Read-DB2: Leaps (absolute execution time).

Figure 7.15: Read-WS: Leaps (absolute execution time).

Expectations

The Write category will behave analogously to the Read category, i.e. about 50 to
100 percent VT overhead for the File case and about 33 to 50 percent VT overhead
for the other two cases. The VT overhead for writing few data items will be higher
than the VT overhead for writing more than few data items due to the very short
request execution time for writing few data items and the constant time for preparing
the request execution in the different systems.

Experiments

The execution time results behave similarly to the Read category. Some of the execu-
tion time results behave as expected and few slightly deviate from the expectations,
but there also are some surprising, unexpected execution time results decreasing the

157

7 Performance

expected VT overhead (see Figures 7.16 and 7.17). The File case behaves as ex-
pected in the WebSphere case and as expected for writing 1, 10 and 100 data items
in the DB2 case, but then it shows a leap so that the DB2 File case with 1.000 and
10.000 data items even improves runtime by using the VT. There are two leaps in
the DB2 File case (see Figure 7.18), one between writing 108 and 109 data items,
and another leap between writing 134 and 135 data items. The first leap increases
execution time of the VT cases to almost four times and the second leap increases
execution time of the non-VT case to more than five times (see Figure 7.19). The
other cases behave in the same way (see Figures 7.16 and 7.17): the Derby case
and the OOApp case perform as expected or deviate slightly for writing 1 and 10
data items, but thereafter leaps occur so that writing 100 and more data items yield
better execution time results than expected. The leaps occur at different positions:
the DB2 Derby case has two leaps (see Figure 7.20), one between writing 62 and
63 data items and one between writing 72 and 73 data items. The leap between 62
and 63 doubles execution time for the VT cases, which results in a temporary high
VT overhead (see Figure 7.21). The leap between 72 and 73 more than doubles the
execution time for the non-VT case, which reduces the VT overhead permanently
to a very low value, which is lower than expected. The DB2 OOApp case behaves
similarly (see Figure 7.22). The leap between writing 90 and 91 data items almost
doubles execution time for the VT cases (see Figure 7.23), which temporarily in-
creases VT overhead, and the leap between writing 99 and 100 data items more than
doubles the execution time for the non-VT case thereby improving the overall run-
time by using the VT. The WS Derby case and the WS OOApp case show only one
leap (see Figures 7.24 and 7.25). The leap in the WS Derby case is between writing
52 and 53 data items where the execution time is doubled for the VT cases and
more than doubled for the non-VT case (see Figure 7.26), which results in a lower
VT overhead than expected. The leap in the WS OOApp case is between writing
34 and 35 data items where the VT cases almost double execution time and where
the non-VT case more than doubles execution time (see Figure 7.27), which again
results in a lower VT overhead than expected. Refer to Section 7.5 for a discussion
of the leap phenomenon. Again, the important message is that the execution time
results perform as expected or even better than expected and thereby provide very
good results.

7.4.4 Queries

The Query category performs complex, declarative requests, i.e. set-oriented queries,
that retrieve data sets from remote systems of different scale levels, i.e. Derby
databases, files and the OOApp (cf. Section 7.2).

Expectations

Basically we expect a similar behavior as for the Read and Write cases, although
there are some differences. We again expect about 50 to 100 percent VT overhead

158

7.4 Experiment Results

Figure 7.16: Write-DB2.

Figure 7.17: Write-WS.

for the File case and about 33 to 50 percent VT overhead for the Derby case and
for the OOApp case. However, this only holds for very small data sets since we
employ a pipeline processing model as it is typically done in a DBS, for example.
The VT does not perform each processing step strictly separated from the others,
but pipelines them so that the result sets can be processed in parallel and execution
time is sped up. For example, a straight forward approach would be the following:
the VT retrieves the whole result set from a remote system at once. Then it uses the
result set to apply some processing on the contained data items. Finally it submits
the processed result set to the calling middleware system, e.g. DB2 or WebSphere,
and so on. This processing strategy is blocking and time-waisting and therefore
we apply a pipelining model so that the VT, the adapters and the clients work in
parallel where possible (see Figure 7.28). The gray boxes represent the operating
system processes that execute middleware client, middleware system, VT and remote
system. The small boxes represent threads that run within the operating system

159

7 Performance

Figure 7.18: Write-DB2-File.

Figure 7.19: Write-DB2-File (absolute execution time).

processes and that execute in parallel to each other where possible. For example, the
VT retrieves the result set (access & preprocessing), processes it (request processing)
and submits it to the caller (access & dispatching) in parallel. In that way, we can
reduce the VT overhead since the VT is just another filter in the “data stream” that
flows from a remote system to a middleware client. Of course, this does not work
very well for very small data sets, i.e. low scale levels, but we expect that it works
better the larger the result sets become, i.e. especially for scale level 3 and higher.

Experiments

The first query is a basic read operation, i.e. SELECT * FROM x where x is lineitem
for the File and the Derby cases and Employee for the OOApp case. The query
simply reads all lineitem data or all Employee objects from the remote systems.
The request execution time behaves as expected or better for the low scale levels

160

7.4 Experiment Results

Figure 7.20: Write-DB2-Derby.

Figure 7.21: Write-DB2-Derby (absolute execution time).

(see Figures 7.29 and 7.30). The queries perform even better for the higher scale
levels since the pipeline effect positively influences the execution time of the VT
cases as expected and thereby reduces the VT overhead.

The second query is a read operation that returns only a small part of the whole
data set, i.e. we perform a projection and a selection in VTQL like SELECT c1,

c2, c3 FROM x WHERE c4 = v1. We select one percent of the whole data set, i.e.
lineitem data or Employee data, and additionally return only a few attributes or
columns of them thereby significantly reducing the returned data amount to less
than one percent compared to the first query. However, we face several problems
since processing complex requests such as VTQL queries requires corresponding
capabilities as they are provided by a DBS, for example. The DB2 case supports
query processing by means of the DB2 query engine so that the second query can be
processed more efficiently than in the WS case since WebSphere does not have such
processing capabilities. This means, that the WebSphere client can only forward

161

7 Performance

Figure 7.22: Write-DB2-OOApp.

Figure 7.23: Write-DB2-OOApp (absolute execution time).

a corresponding SQL query string via WebSphere and the Derby J2EE connector
to the Derby server, but the File case and the OOApp case require to retrieve the
whole data set to the WebSphere client where the necessary processing has to be
compensated for (see Figure 7.31). The DB2 case works differently since DB2 can
process the SQL query of the DB2 client very well. It hands over a corresponding
SQL string to the Derby server similar to the WS Derby case (called push-down)
and it compensates for the missing query capabilities in the File case and in the
OOApp case. The advantage of the DB2 case over the WS case is that the DB2 client
does not need to retrieve whole data sets in the File case and in the OOApp case.
This is done by DB2 since DB2 can process the data sets and return the significantly
smaller result data sets to the DB2 client (see Figure 7.31). The VT case works even
worse if it does not have any query processing capabilities, i.e. if the only supported
operation is retrieval of the whole data set (see Figure 7.32). In that case, the VT
introduces an incredible overhead for the Derby cases for both the DB2 case as well

162

7.4 Experiment Results

Figure 7.24: Write-WS-Derby.

Figure 7.25: Write-WS-OOApp.

as for the WS case if the VT is not able to hand over the SQL query to Derby, but just
retrieves the whole data set (see Figures 7.33 and 7.34). The dent at scale level five
stems from unexpected optimization effects. The other WS cases, i.e. the File case
and the OOApp case, work as expected, but the DB2 File case and the DB2 OOApp
case suffer from the same drawbacks as the Derby case although not in such a serious
manner (see Figures 7.35 and 7.36). Nevertheless, even these two cases introduce an
overhead of some hundred percent due to the limited processing capabilities of the
VT. The conclusion from this behavior is clear: the VT requires sophisticated query
processing capabilities to suitably and efficiently process complex requests. In that
case, we get a completely different behavior, which is shown in Figure 7.37. DB2 can
now push-down all queries to the VT and only the VT has to retrieve the whole data
sets in the File case and in the OOApp case since the VT now is able to compensate
for the missing query capabilities of the File case and the OOApp case. Moreover,
the VT can push-down the SQL query to the Derby server, which completely avoids

163

7 Performance

Figure 7.26: Write-WS-Derby (absolute execution time).

Figure 7.27: Write-WS-OOApp (absolute execution time).

transfer of the whole data set. The WS case behaves even much better since the VT
can actually compensate for the missing query capabilities of WebSphere in the File
case and in the OOApp case, i.e. the VT processes the query, so that WebSphere
already receives the final result, which in turn avoids query compensation in the
WebSphere client (compare Figures 7.32 and 7.37). This is the main reason beside
the unexpected optimization effects why the WS File case and the WS OOApp case
significantly speed up query processing when the VT is employed (see Figures 7.38
and 7.39).

The third query is a classic equi-join query like SELECT * FROM x,y WHERE x.c1

= y.c3, which returns a data set that is larger than the sum of its constituents, i.e.
lineitem and orders data for the File case and for the Derby case and Employee and
Department data for the OOApp case. If we use the push-down capability of the
VT, the execution time results of the DB2 case behave as expected, the execution

164

7.4 Experiment Results

Figure 7.28: Request and Data Pipelining Potential.

time results of the WS case show almost constant VT overhead for the File case
and an even increasing VT overhead for the OOApp case (see Figures 7.40 and
7.41). The main reason for this behavior is that the result data set is transferred
from the VT via WebSphere to the WebSphere client although it is larger than
both originating data sets together. The WS case without the VT actually transfers
both originating data sets so that the WebSphere client has to compensate for the

165

7 Performance

Figure 7.29: Query-R-DB2.

Figure 7.30: Query-R-WS.

Figure 7.31: Query-SP-DB2/WS (query processing in DB2 and in the WS client).

join. But this time it is beneficial to perform the join as late as possible to reduce
the amount of data that has to be transferred (see Figures 7.42 and 7.43). The
execution time for the VT-compensated case partially is higher or even much higher

166

7.4 Experiment Results

Figure 7.32: Query-SP-DB2/WS-VT (query processing in DB2 and in the WS client).

Figure 7.33: Query-SP-DB2-Derby (query processing in DB2).

than for the other cases. However, some of the experiments in the lower scale
levels still result in lower execution times when the queries are processed in the
VT. This ambivalent behavior clearly indicates that straight-forward push-down
can yield suboptimal query execution and therefore the VT does not only need
complex query processing capabilities but also sophisticated query evaluation and
query optimization capabilities analogous to FDBSs that can optimize cross-query
execution and that can negotiate query execution with remote systems.

In summary, queries that return small data sets introduce an overhead of up to
100 percent in the worst case. But, again, this is not a problem since response times
of requests of these scale levels range from 10 ms to 200 ms which usually is of no
concern. Queries that access larger data sets reduce the overhead to 10 to 20 percent
or even lower which is a really acceptable rate. The most important aspect is that the
VT needs capabilities to properly optimize and execute complex queries and it also
needs capabilities to negotiate and decide about push-down operations and cross-

167

7 Performance

Figure 7.34: Query-SP-WS-Derby (query processing in the WS client).

Figure 7.35: Query-SP-DB2-File/OOApp (query processing in DB2).

query optimization [HKWY97, LPL96]. If the VT incorporates such capabilities
it is even able to improve execution time of existing integration scenarios since
middleware approaches such as EAI or Web services usually do not offer complex
query execution capabilities.

7.5 Optimization Effects

The unexpected behavior of the experiments prevailed on us to check the VT pro-
totype and the other systems of the integration scenario and to thoroughly perform
and evaluate the experiments a second time. The integration scenario worked cor-
rectly and the experiment execution time results indeed remained the same. We
further investigated the unexpected behavior, which comprised local monitoring of
single, isolated systems of the infrastructure, e.g. local execution of parts of the

168

7.5 Optimization Effects

Figure 7.36: Query-SP-WS-File/OOApp (query processing in the WS client).

Figure 7.37: Query-SP-DB2/WS-VT (query processing in the VT).

experiments, JVM garbage collection behavior or JVM profiling. However, these
investigations detected deviations from the expected behavior only in some cases.
The majority of the cases with unexpected behavior cannot be solely explained by
means of a single, isolated system of the infrastructure, but originates from the com-
plexity of the whole infrastructure. The unexpected behavior comprises unexpected
leaps in the Read and Write categories as well as unexpected, constant behavior
in the Read and Write categories (see Sections 7.4.2 and 7.4.3). There also is an
unexpected behavior in the Query category as shown in Figures 7.33 and 7.34. The
reason here is the Derby server that significantly decreases performance for queries
with scale level 5 and with a high selectivity factor (see Figure 7.44). We detected
the same behavior for a selection-projection-join query of the form SELECT c1, c2,

c3, c4 FROM x,y WHERE x.c1 = y.c3 AND c4 = v1, which selects one percent of
the join result, i.e. lineitem and orders data for the File case and for the Derby case
and Employee and Department data for the OOApp case, and which additionally

169

7 Performance

Figure 7.38: Query-SP-DB2 (query processing in the VT).

Figure 7.39: Query-SP-WS (query processing in the VT).

reduces the returned data amount to less than one percent due to the projection to a
few columns (see Figures 7.45 and 7.46). We completely recreated the database for
this scale level, but the performance decrease still remained. The query plans also
showed no differences to the query plans of the other scale levels. The executing
JVMs showed no conspicuous garbage collection activities and the JVM profiling
tool did not give any useful hints, either. In the end, the deviation of the query
execution time results from the expected behavior is locally caused by the Derby
server and not by the VT. Therefore, this behavior is not relevant for an assessment
of the VT. The rest of the unexpected behavior, however, cannot be reduced to local
deviations only, but has more complex reasons.

Generally, the unexpected behavior shows better performance values than ex-
pected. The unexpected behavior in the Read and Write categories shows up to 28
percent faster executions when a VT-based scenario is used (e.g. see Figure 7.11),
whereas the expected performance decrease in the Query category is up to 13,000

170

7.5 Optimization Effects

Figure 7.40: Query-J-DB2 (query push-down).

Figure 7.41: Query-J-WS (query push-down).

percent if the VT does not support sophisticated query processing (e.g. see Fig-
ure 7.34). The VT-based scenarios in the Query category basically change the way
a query is executed in the infrastructure and therefore they partially yield signif-
icant performance differences to the conventional, non-VT scenarios. This is not
the case for the unexpected behavior where the performance differences between
the expected behavior and the actual behavior are much less significant as for the
query execution in the Query category. The reason is that the effects that cause the
unexpected behavior do not come from basic changes in the way the infrastructure
executes requests, but they originate from the correlations and mutual dependen-
cies of the components of the infrastructure so that a sub-optimal execution of the
infrastructure becomes a little bit less sup-optimal. In that way, the unexpected
behavior works as an optimization effect, even if it is an unexpected and uninten-
tional one. The leaps are a very good example for that phenomenon as they show
a non-linear increase of the execution time either for both compared scenarios or

171

7 Performance

Figure 7.42: Query-J-DB2 (query compensation in DB2).

Figure 7.43: Query-J-WS (query compensation in the WS client).

for one of both, i.e. VT-based scenario or conventional, non-VT scenario. These
leaps, i.e. the non-linear increase of execution time, indicate that the infrastructure
suddenly starts stuttering, i.e. the execution becomes less optimal for some reason
so that performance finally decreases. An isolated execution and evaluation of the
single, participating systems showed similar leap behavior only in some cases and
did not show any conspicuous characteristics in the other cases at all because the
leaps and the other effects in the experiments are mainly caused by the interactions
and correlations within the infrastructure, which means that they originate from
the complexity of the whole infrastructure: four different layers with different soft-
ware systems on each layer, different hardware, operating systems, programming
languages, multiple network connections and different ways of communicating via
the network, i.e. request, response, transfer of data. Performance issues in such
a complex scenario also depend on the whole infrastructure and cannot always be
divided up into clearly separated parts and statements such as “component x con-

172

7.5 Optimization Effects

Figure 7.44: Degeneration Effect: Querying Derby directly.

Figure 7.45: Query-SPJ-DB2: Derby Degeneration Effect.

sumes exactly y ms of the overall request execution time of z ms”. It is impossible to
completely assess a single, isolated part of the infrastructure separately without the
context of the surrounding infrastructure. Adding an additional component such
as the VT to an infrastructure does not necessarily decrease the performance of
the infrastructure according to the performance characteristics of the added com-
ponent. Put in other words, the infrastructure of integration scenarios typically is
more complex and more meaningful than the sum of its parts.

Logically, the next step is to monitor the participating systems not isolated,
but in the context of the whole infrastructure. The problem is that we have to
instrument and monitor all participating systems, i.e. operating system, JVM, mid-
dleware system, network communication, thread time, etc., to reliably detect the
interactions and dependencies during the processing of a request. However, instru-
menting and monitoring all participating systems inherently influences the actual
execution of the infrastructure and thereby distort the “original” request execution

173

7 Performance

Figure 7.46: Query-SPJ-WS: Derby Degeneration Effect.

(think of quanta in quantum theory that are changed when they are observed by a
third party). Consequently, the “altered” execution differs in most cases from the
“original” execution in a way that effects that formerly occurred no longer occur or
other effects occur that did not occur before. This in turn makes it difficult, if not
impossible to determine the exact reasons and causes of the effects to be investigated.
For example, the JVM profiling facility that we used to monitor the execution of our
systems and adapters significantly slowed down performance due to the costly task
of instrumenting the code to be monitored and executing the instrumented code.
This did not only significantly increase the overall request execution time, but espe-
cially significantly influenced the interactions and dependencies of the participating
systems so that the effects of the previously detected unexpected behavior did not
come into play and thereby the unexpected behavior did not occur.

It would be very interesting to apply a much more extensive and sophisticated
diagnostics and monitoring approach in the next step to determine the reasons
and causes of the unexpected behavior in more detail. However, such an in-depth
investigation is not relevant for the results of this work and it would also go far
beyond the scope of this work. An investigation and a systematic analysis and
evaluation of this class of phenomena, e.g. how optimization in integration scenarios
can be achieved, what does it cost to optimize the processing in integration scenarios,
etc. is dedicated to future work. Nevertheless, we give a brief overview why the
VT can actually decrease execution time in the experiment scenarios and how the
unexpected optimization effects look like. A major issue are concurring, blocking or
overstrained resources such as main memory, hard disk, processor or communication
that are better managed or exploited when the VT is additionally used. For example,
the footprint of the VT prototype is smaller than the footprint of DB2 or WebSphere.
The VT host has the same hardware and configuration than the middleware host
and thus the JVM on the VT host has more main memory to hold the data of
the remote systems, to marshal and unmarshal data, etc. than the JVMs of DB2

174

7.6 Summary

or WebSphere. Therefore, the VT host can more efficiently handle high request
rates or queries with larger result sets. The Read and Write categories show this
behavior for the Derby case and for the OOApp case, e.g. reading or writing 1,000
or more data items per request. The File case indicates another cause. DB2 and
WebSphere have to read and write data from and to files in the File case. If they
also concurrently read or write other data from or to files, access to the hard disk
can be more often or longer required than if the VT is reading or writing files on the
VT host and if DB2 or WebSphere read configurations, log information, reorganize
disk space, etc. on the middleware host. In that case, concurring access to the
hard disk is distributed to access to hard disks on two hosts, i.e. the VT host and
the middleware host, and thereby the whole request is sped up. Another point are
waiting situations. If DB2 and WebSphere read data from files in the File case, they
request the next data item when it is needed, i.e. each data item has to be retrieved
from hard disk on demand as there is no sophisticated prefetching mechanism. If
however DB2 and WebSphere access the VT and the VT reads the files, the VT is
reading data from files concurrently to DB2 or WebSphere that are processing the
data items requested from the VT. Thereby, the VT can speed up request execution
and may even be faster than if the same request is executed without the VT as given
by the File case in the Read category. The bottom-line of the unexpected behavior
is that we partially perform unintended optimizations in integration scenarios when
we use the VT. The infrastructure at least partially behaves sub-optimally so that
optimization considerations might be an issue and worth further investigations.

7.6 Summary

The benefits of the VT such as software reuse, integration independence, higher
stability and flexibility of IT infrastructures, reduced costs for software, hardware
and personnel come at some costs, i.e. partial performance decrease. However, the
performance decrease is moderate and even negligible when we consider the benefits
of the VT. The main result of the experiments is that the longer a request execution
lasts and the larger the data sets are that are read or written, the better performs
the VT, i.e. the lower is the overhead. If request executions have a very short
execution time or if very small data sets are read or written, the VT creates some
overhead. However, this can be usually neglected in integration scenarios since the
overhead is only up to a few hundred ms in the worst cases. The overall result of the
experiments is that the VT actually is practically applicable and efficient. Another
important result is that the VT can efficiently handle diverse adapter technologies
independent of the context where it is used.

The experiments revealed unexpected behavior that yielded optimization effects
and thereby better performance values than expected. The effects that caused the
unexpected behavior in the Read and Write categories did not come from basic
changes in the way the infrastructure executed requests, but they originated from
the correlations and mutual dependencies of the infrastructure components so that a

175

7 Performance

sub-optimal execution of the infrastructure became less sup-optimal. The VT-based
scenarios in the Query category basically changed the way a query was executed in
the infrastructure by means of a different query optimization strategy and therefore
they partially yielded significant performance improvements to the conventional,
non-VT scenarios.

176

Chapter 8

Conclusion

There is an abundance of integration technologies and there still is no means to sys-
tematically deal with them. This leads to increasing complexity in IT environments
and also to increasing integration efforts and IT costs. Integration management
(IM) provides a means of systematically dealing with integration technologies. It ab-
stracts from integration technologies so that software development is shielded from
integration tasks. The achieved integration independence significantly alleviates
maintenance and evolution of IT environments and reduces the overall complexity
and costs of IT landscapes.

We designed and realized an IM system, the virtualization tier (VT), that allows
to reuse adapters of different integration technologies so that costly development
of new adapters from scratch can be avoided. The VT achieves integration inde-
pendence by means of a global access layer that supports transparent processing
independent of the access style chosen by a client system and independent of the
integration technology used in the VT to access a remote system. A client system
can access any remote system by means of the VT if there is a suitable adapter
deployed in the VT. The integration tasks that are related with accessing remote
systems can be completely encapsulated by means of the VT so that a software
developer can concentrate on the development of the core application logic.

Deployment and administration tasks in the VT are handled by different IT
roles, i.e. VT object deployer and adapter deployer, so that the complex use of inte-
gration technologies becomes practically manageable. The VT also enables different
architecture patterns to realize systematic integration solutions based on IM tech-
nology. The VT-based architecture patterns reuse parts of integration technologies
and provide for significantly less complex integration solutions than conventional
integration solutions do. Even SOA-based applications can benefit from the VT
by using the VT as a global ESB. IM technology can thereby become a central
part of Web service infrastructures. Finally, our performance evaluation of the VT
shows that IM technology can work efficiently and that optimization effects can even
improve performance of IT scenarios. The moderate performance decrease that is
partially introduced by the VT layer becomes negligible when we consider the bene-
fits of the VT such as integration independence, higher stability and flexibility of IT

8 Conclusion

infrastructures, reduced costs for software, hardware and personnel. Especially the
reuse of adapters in the VT does not only avoid costly and lengthy development of
new adapters, but also employs existing adapters in the sense of IT infrastructure
assets, i.e. investments, that pay off much better. Moreover, the reuse of adapters
in the VT allows IT infrastructures to rely on existing, stable adapters instead of
new ones that have been recently developed and that first have to become mature
and stable. Existing adapters may be the only means that is left to adequately and
correctly access legacy remote systems that would be out of control and no longer
usable otherwise. This means that adapter reuse may be the only way to econom-
ically and effectively deal with remote systems no matter how efficient this works.
And the VT prototype actually shows that such cases can still work efficiently.

In summary, IM technology is a key technology to cope with integration issues
and IT infrastructure heterogeneities in a systematic and uniform manner.

178

Bibliography

[ABCB+01] Danny Ayers, John Bell, Carl Calvert-Bettis, Thomas Bishop, Bjarki
Holm, Glenn E. Mitchell, Kelly Lin Poon, and Sean Rhody. Profes-
sional Java Data. Wrox Press, 2001.

[APvS03] J.P.A. Almeida, L.F. Pires, and M.J. van Sinderen. Web services and
seamless interoperability. First European Workshop on Object Orien-
tation and Web Services, 2003.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason Mchugh, Jennifer Widom, and
Janet Wiener. The lorel query language for semistructured data. In-
ternational Journal on Digital Libraries, 1:68–88, 1997.

[BB97] Ph. Bonnet and S. Bressan. Extraction and integration of data from
semi-structured documents into business applications. In Intl. Conf.
on Industrial Applications of Prolog..1997, 1997.

[BBH+08] M. Böhm, J. Bittner, D. Habich, W. Lehner, and U. Wloka. Model-
Driven Generation of Dynamic Adapters for Integration Platforms. In
J.P. Bourey, X. Franch, and E. Hunt, editors, Proceedings of the 1st In-
ternational Workshop on Model Driven Interoperability for Sustainable
Information Systems (MDISIS’08), pages 105–119, June 2008.

[BCG+05] Boualem Benatallah, Fabio Casati, Daniela Grigori, Hamid R. Mo-
tahari Nezhad, and Farouk Toumani. Developing adapters for web
services integration. In Advanced Information Systems Engineering,
pages 415–429, 2005.

[BCMP13] Mirko Bronzi, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti.
Extraction and integration of partially overlapping web sources. Proc.
VLDB Endow., 6(10):805–816, August 2013.

[BHM+04] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael
Champion, Chris Ferris, and David Orchard, editors. Web Services
Architecture. World Wide Web Consortium, February 2004. W3C
Working Group Note.

[CBB+00] R. G. G. Cattell, Douglas K. Barry, Mark Berler, Jeff Eastman, David
Jordan, Craig Russell, Olaf Schadow, Torsten Stanienda, and Fernando

179

Bibliography

Velez, editors. The Object Data Standard: ODMG 3.0. Morgan Kauf-
mann, 2000.

[CGMH+94] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly
Ireland, Yannis Papakonstantinou, Jeffrey D. Ullman, and Jennifer
Widom. The TSIMMIS Project: Integration of Heterogeneous Infor-
mation Sources. In 16th Meeting of the Information Processing Society
of Japan, pages 7–18, 1994.

[CHS+95] Michael J. Carey, Laura M. Haas, Peter M. Schwarz, Manish Arya,
William F. Cody, Ronald Fagin, John Thomas, John H, and Edward L.
Wimmers. Towards heterogeneous multimedia information systems:
The garlic approach. In In RIDE-DOM, pages 124–131, 1995.

[CMRW07] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva
Weerawarana, editors. Web Services Description Language (WSDL).
World Wide Web Consortium, 2.0 edition, June 2007. W3C Recom-
mendation.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6):377–387, 1970.

[DHW01] Denise Draper, Alon Y. HaLevy, and Daniel S. Weld. The nimble xml
data integration system. In Proceedings of the 17th International Con-
ference on Data Engineering, pages 155–160. IEEE Computer Society,
2001.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California,
Irvine, 2000.

[FT96] William Frakes and Carol Terry. Software reuse: Metrics and models.
ACM Comput. Surv., 28(2):415–435, June 1996.

[GAD+05] Ian Gorton, Justin Almquist, Kevin Dorow, Peng Gong, and Dave
Thurman. An architecture for dynamic data source integration. In
Proceedings of the Proceedings of the 38th Annual Hawaii International
Conference on System Sciences - Volume 09, pages 276.3–, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[GAO95] David Garlan, Robert Allen, and John Ockerbloom. Architectural
mismatch or why it’s hard to build systems out of existing parts. In
Proceedings of the 17th International Conference on Software Engi-
neering, ICSE ’95, pages 179–185, New York, NY, USA, 1995. ACM.

[GAO09] David Garlan, Robert Allen, and John Ockerbloom. Architectural
mismatch: Why reuse is still so hard. IEEE Software, 26(4):66–69,
2009.

180

Bibliography

[GGF+95] Georges Gardarin, Sofiane Gannouni, Béatrice Finance, Peter
Fankhauser, Wolfgang klas, Dominique Pastre, Régis Legoff, Antonis
Ramfos, In Omran Bukhres, and Ahmed K. Elmagarmid (eds. Iro-
db - a distributed system federating object and relational databases.
In Object-Oriented Multidatabase Systems: A Solution for Advanced
Applications, chapter 20, pages 684–712. Prentice Hall, 1995.

[GRVB98] Jean-Robert Gruser, Louiqa Raschid, Maŕıa Esther Vidal, and Laura
Bright. Wrapper generation for web accessible data sources. In In
CoopIS, pages 14–23, 1998.

[Hai07] Marc N. Haines. The impact of service-oriented application develop-
ment on software development methodology. System Sciences, 2007.
HICSS 2007. 40th Annual Hawaii International Conference on, pages
172b–172b, Jan. 2007.

[HGMN+97] Joachim Hammer, Hector Garcia-Molina, Svetlozar Nestorov, Ramana
Yerneni, Marcus Breunig, and Vasilis Vassalos. Template-Based Wrap-
pers in the TSIMMIS System. In SIGMOD ’97, pages 532–535, 1997.

[HKWY97] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun
Yang. Optimizing queries across diverse data sources. In In Proc. of
VLDB, pages 276–285, 1997.

[HMKH10] Laura M. Haas, Renée J. Miller, Donald Kossmann, and Martin
Hentschel. A first step towards integration independence. In ICDE
Workshops, pages 147–150, 2010.

[KBA+10] Gavin King, Christian Bauer, Max Rydahl Andersen, Emmanuel
Bernard, Steve Ebersole, and Hardy Ferentschik. Hibernate Reference
Documentation, 3.6.0. 2010.

[Kru92] Charles W. Krueger. Software reuse. ACM Comput Surv., 24(2):131–
183, 1992.

[LCL06] Siew Poh Lee, Lai Peng Chan, and Eng Wah Lee. Web services im-
plementation methodology for soa application. Industrial Informatics,
2006 IEEE International Conference on, pages 335–340, Aug. 2006.

[LDA06] Lightweight Directory Access Protocol, June 2006.

[Lee05] Eng Wah Lee, editor. Web Service Implementation Methodology. Or-
ganization for the Advancement of Structured Information Standards
(OASIS), July 2005. Public Review Draft.

[Lev98] Alon Y. Levy. The Information Manifold Approach to Data Integra-
tion. IEEE Intelligent Systems, 13(5):12–16, September/October 1998.

181

Bibliography

[LHB+99] Ling Liu, Wei Han, David Buttler, Calton Pu, and Wei Tang. An
XML-based Wrapper Generator for Web Information Extraction. In
In Proc.of ACM-SIGMOD 99, pages 540–543, 1999.

[LPH00] Ling Liu, Calton Pu, and Wei Han. Xwrap: An xml-enabled wrapper
construction system for web information sources. In Proceedings of the
16th International Conference on Data Engineering, pages 611–621.
IEEE Computer Society, 2000.

[LPL96] Ling Liu, Calton Pu, and Yooshin Lee. An adaptive approach to query
mediation across heterogeneous information sources. Cooperative In-
formation Systems, IFCIS International Conference on, 0:144, 1996.

[LR00] Frank Leymann and Dieter Roller. Production Workflow: Concepts
and Techniques. Prentice Hall, 2000.

[McG06] David McGoveran. Embracing SOA: The Benefits of Integration Inde-
pendence. White paper, Alternative Technologies, 2006.

[Mic10] .NET Framework. Microsoft, April 2010.

[Mil10] Renée J. Miller. Information integration: a vision for integration in-
dependence and linking open data. In AMW, 2010.

[Noe05] Jasmine Noel. BPM and SOA: Better together. White paper, IBM,
2005.

[Noy04] Natalya F. Noy. Semantic integration: A survey of ontology-based
approaches. SIGMOD Record, 33:2004, 2004.

[OMG08] OMG. Common Object Request Broker Architecture (CORBA) Speci-
fication, Version 3.1. Object Management Group, 2008.

[PH07] Mike P. Papazoglou and Willem-Jan Heuvel. Service oriented archi-
tectures: approaches, technologies and research issues. The VLDB
Journal, 16(3):389–415, 2007.

[PRÁ+02] Alberto Pan, Juan Raposo, Manuel Álvarez, Paula Montoto, Vicente
Orjales, Justo Hidalgo Luca Ardao, Anastasio Molano, and Ángel
Viña. The Denodo Data Integration Platform. In Proceedings of the
28th international conference on Very Large Data Bases, VLDB ’02,
pages 986–989. VLDB Endowment, 2002.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to
automatic schema matching. VLDB JOURNAL, 10:2001, 2001.

182

Bibliography

[RPÁ+02] Juan Raposo, Alberto Pan, Manuel Álvarez, Justo Hidalgo, and Ángel
Viña. The Wargo System: Semi-Automatic Wrapper Generation in
Presence of Complex Data Access Modes. In DEXA ’02, pages 313–
317, 2002.

[RS97] Mary Tork Roth and Peter M. Schwarz. Don’t Scrap It, Wrap It! A
Wrapper Architecture for Legacy Data Sources. In VLDB ’97, pages
266–275, 1997.

[SQL08] ISO/IEC 9075:2008 Information technology – Database languages –
SQL, 2008.

[Sto02] Michael Stonebraker. Too much middleware. SIGMOD Rec., 31(1):97–
106, 2002.

[Sun02] Sun. Java Message Service. Sun Microsystems Inc., April 2002. Final
Release.

[Sun03] Sun. J2EE Connector Architecture Specification, Version 1.5. Sun
Microsystems Inc., November 2003. Final Release.

[Sun05] Sun. Java Business Integration(JBI) 1.0. Sun Microsystems Inc., Au-
gust 2005. Final Release.

[Sun06a] Sun. Java EE Specification, Version 5. Sun Microsystems Inc., April
2006. Final Release.

[Sun06b] Sun. JDBC 4.0 Specification. Sun Microsystems Inc., November 2006.
Final Release.

[Sun10] Sun. Java Data Objects 3.0. Sun Microsystems Inc., 2010.

[SvdAB+03] S. Staab, W. van der Aalst, V.R. Benjamins, A. Sheth, J.A. Miller,
C. Bussler, A. Maedche, D. Fensel, and D. Gannon. Web services:
been there, done that? Intelligent Systems, IEEE, 18(1):72–85, Jan-
Feb 2003.

[Vin03] Steve Vinoski. Integration with web services. IEEE Internet Comput-
ing, 7:75–77, 2003.

[Whi75] J.E. White. RFC 707: A High-Level Framework for Network-Based
Resource Sharing, 1975.

[WM07a] Ralf Wagner and Bernhard Mitschang. Enhancing middleware func-
tionality by virtualizing adapters. In ICEIS (Selected Papers), pages
108–120, 2007.

183

Bibliography

[WM07b] Ralf Wagner and Bernhard Mitschang. Flexible reuse of middleware
infrastructures in heterogeneous it environments. In OTM Conferences
(1), pages 522–539, 2007.

[WM07c] Ralf Wagner and Bernhard Mitschang. A methodology and guide for
effective reuse in integration architectures for enterprise applications.
In IRI, pages 323–328, 2007.

[WM07d] Ralf Wagner and Bernhard Mitschang. A virtualization approach for
reusing middleware adapters. In ICEIS (1), pages 78–85, 2007.

[WM09] Ralf Wagner and Bernhard Mitschang. Uniform and efficient data
provisioning for soa-based information systems. In ITNG, pages 1012–
1017, 2009.

184

