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John Naisbett: 

“We are drowning in data but starving for knowledge.” 
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Abstract 

In this work, we search for possible approaches to large-scale data mining analytics. We 
perform an exploration about the existing MapReduce and other MapReduce-like 
frameworks for distributed data processing and the distributed file systems for distributed 
data storage. We study in detail about Hadoop Distributed File System (HDFS) and Hadoop 
MapReduce software framework. We analyse the benefits of newer version of Hadoop 
software framework which provides better scalability solution by segregating the cluster 
resource management task from MapReduce framework. This version is called YARN and is 
very flexible in supporting various kinds of distributed data processing other than batch-
mode processing of MapReduce.  
We also looked into various implementations of data mining algorithms based on 
MapReduce to derive a comprehensive concept about developing such algorithms. We also 
looked for various tools that provided MapRedcue based scalable data mining algorithms. 
We could only find Mahout as a tool specially based on Hadoop MapReduce. But the tool 
developer team decided to stop using Hadoop MapReduce and to use instead Apache 
Spark as the underlying execution engine. WEKA also has a very small subset of data mining 
algorithms implemented using MapReduce which is not properly maintained and supported 
by the developer team. Subsequently, we found out that Apache Spark, apart from providing 
an optimised and a faster execution engine for distributed processing also provided an 
accompanying library for machine learning algorithms. This library is called Machine 
Learning library (MLlib). Apache Spark claimed that it is much faster than Hadoop 
MapReduce as it exploits the advantages of in-memory computations which is particularly 
more beneficial for iterative workloads in case of data mining. Spark is designed to work on 
variety of clusters: YARN being one of them. It is designed to process the Hadoop data.  
We selected to perform a particular data mining task: decision tree learning based 
classification and regression data mining. We stored properly labelled training data for 
predictive mining tasks in HDFS. We set up a YARN cluster and run Spark’s MLlib 
applications on this cluster. These applications use the cluster managing capabilities of 
YARN and the distributed execution framework of Spark core services.  
We performed several experiments to measure the performance gains, speed-up and scale-
up of implementations of decision tree learning algorithms in Spark’s MLlib. We found out 
much better than expected results for our experiments. We achieved a much higher than 
ideal speed-up when we increased the number of nodes. The scale-up is also very 
excellent. There is a significant decrease in run-time for training decision tree models by 
increasing the number of nodes. This demonstrates that Spark’s MLlib decision tree learning 
algorithms for classification and regression analysis are highly scalable.  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1. Introduction 

We started this work with the objective of performing large-scale data mining analytics 
using MapReduce. With MapReduce, we mean a distributed data-processing model which 
has become popular for processing extremely large-scale data. We went on for an 
extensive search of implementations and tools of data mining algorithms which provided 
large-scale data mining based on Hadoop MapReduce. We narrowed our search for a 
specific data mining task: decision tree model learning based classification and regression 
data mining. We found out during our extensive search process that there are rather very 
few implementations of data mining algorithms based on Hadoop MapReduce. We found 
only two tools that supported some data mining algorithms based on original MapReduce. 
But we discovered that both of those tools have discontinued their support for original 
Hadoop MapReduce. The respective teams responsible for both the tools decided to 
completely retool their scalable data mining algorithms  by using Apache Spark. This is how 
we came across Apache Spark. 


Apache Spark is a MapReduce-like distributed data processing model that uses Hadoop 
data and Hadoop cluster but uses a much more optimised execution engine than the 
original Hadoop MapReduce [5a]. Their execution engine is optimised for different kinds of 
workloads as opposed to strict batch-mode processing of original MapReduce. Apache 
Spark not only provided an efficient execution that exploited the advantage of in-memory 
computations but also provided in-built low-level data structures and high-level libraries 
(programming constructs) for data mining algorithms. This library is called Machine 
Learning library, abbreviated as MLlib, which contains some high level APIs  for performing 
a wide variety of data mining tasks. We also found out that it contained the implementations 
for decision tree learning based classification and regression analysis. 


We go on to analyse the performance of those algorithms implemented in MLlib. We run 
programs using Apache Spark’ MLlib algorithms on a Hadoop YARN cluster which acts as 
a cluster manager and a Hadoop distributed files system for data storage. We use Apache 
Spark’s MLlib algorithms to build a decision tree of a fixed depth by using three different 
kinds of data mining tasks: binary classification, multi-class classification and regression. 
We perform numerous experiments with real-world data of varying sizes and various 
number of nodes to measure the performance gain, scale-up and speed-up. We also 
determine the impact of data characteristics and other factors on the computation time. We 
also elucidate the limitations and bottlenecks of building distributed scalable decision trees 
using this execution environment. We finally analyse the effectiveness of this distributed 
data-processing model and framework for mining large-scale data. We aim to find out if this 
library successfully serves our purpose for large-scale data mining.


1.1 Background Of The Problem 

There is no dearth of data mining algorithms and tools for processing small datasets which 
can easily fit into a single machine (see a list of them in [1]). In order to mine large datasets, 
one of the current workarounds is to first sample the huge amounts of data into a smaller 
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dataset and then feed the resulting smaller dataset into the existing data mining algorithms 
and tools. This obviously does not alleviate the problem of storing such large-scale data 
and in addition to that, there are no such sampling algorithms which can guarantee to give 
always good sampling quality for any kind of data. As a result, this particular approach is 
not proven to output accurate data models. Therefore, large-scale data mining and 
analytics is still a much researched topic in Information Technology sector. Large-scale data 
mining and analytics is a term which usually refers to processing and analysis of “datasets 
with sizes which is beyond the capability of commonly used software tools to capture, 
curate, manage and process the data within a tolerable [and acceptable] elapsed time” [2]. 
The sudden explosion of data has driven the needs for more scalable and faster data 
mining and analytics methods. The conventional or legacy data mining algorithms, broadly 
classified into association-rule discovery, classification, regression and clustering suffer 
from the problems of memory and processing power limitations of the single machine they 
are running on. 


So, how can we do large-scale data mining? MapReduce framework, first developed by 
Google, is the golden standard for general large-scale data processing and is slowly 
emerging as an important paradigm in data mining and analytics. MapReduce [3] is a 
simple programming model for expressing distributed computations on massive amounts of 
data and also an execution framework for large-scale data processing on clusters built from 
low-end commodity servers. With MapReduce, queries are split and distributed across 
parallel nodes and processed in parallel (the map step). The results are then collected from 
various map outputs and merged (the reduce step). The huge success of MapReduce has 
led to increasing implementations of data mining algorithms based on this framework. The 
high throughput and the performance of Google MapReduce subsequently led to the open-
source MapReduce implementation by Apache Software Foundation which is known as 
Hadoop [4]. Although MapReduce is very simple because of its high-level abstraction and 
simplistic programming model, its application to the data mining algorithms remains poorly 
understood. The conversion of legacy algorithms to MapReduce is, henceforth, a non-trivial 
process. The process of designing MapReduce data mining algorithms requires identifying 
the parts of the legacy algorithms which have independence with respect to data and can 
be parallelized. Moreover, it also obligates the algorithm designers to develop a proper 
understanding of the MapReduce architecture.


MapReduce has continuously evolved over years in an effort to yield ever-increasing 
throughput and performance. These optimised MapReduce frameworks are called 
MapReduce-like frameworks. But in essence, they are MapReduce because they distribute 
the computations using map function and combine the results in reduce function. 
Nowadays, there are numerous implementations of MapReduce and that’s why it is a very 
broad term that encompasses the original MapReduce and the optimised versions. The 
optimised versions of MapReduce rather than the pure Hadoop MapReduce was found to 
be interesting for our work because a lot of work has been already done using old 
MapReduce systems and they clearly point out the drawback of strict batch-processing 
model for heavily iterative algorithms like data-mining algorithms. Moreover, hadoop 
MapReduce clusters are hardcoded to perform only MapReduce batch workloads and 
cannot support other workloads. This was seen as a wastage of valuable computational 
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resources. As a consequence, it is interesting for us to analyse a computational framework 
which is basically tailored for our purpose. Apache Spark [5] is a relatively new distributed 
processing engine for large-scale data which promises a much faster performance as 
compared to Hadoop MapReduce in general. This is made possible by persisting as much 
data in memory as possible and performing in-memory MapReduce based distributed 
computation. This saves the time for multi-stage applications as they do not need to 
perform the expensive disk read operations in every stages. This concept of data caching is 
particularly useful for iterative workflows where computations are done on nearly same 
datasets in every iterations [5a]. Apache spark provides a rich set of tools that take 
advantage of its optimised core execution engine. They are customised for special 
workflows like streaming, graph-processing, iterative processing, etc in order to optimise 
the MapReduce for a particular kind of data processing. One of such libraries is called 
Machine Learning library (MLlib) which optimises the MapReduce for data-mining 
algorithms on large-scale data and provides implementations of various data mining 
algorithms.


1.2 Purpose Of Work 

We identified that classification and regression mining algorithms based on decision tree 
models  is particularly interesting for our work due to the current organisational needs of the 
institute and also due to lack of properly implemented MapReduce data mining algorithms 
based on decision tree learning. In the section 2.4, we will give a generic description of 
decision tree learning algorithm which builds a non-distributed decision tree on a single 
machine. This algorithm suffers from a big limitation that all the training data lying on the 
disk might not fit into main memory of a single machine because they suffer from the 
restriction that all the training data should reside in the memory. As a consequence, they 
suffer from scalability problems with respect to the size of training data. One of the 
straightforward scalability approach includes sampling the training data into a smaller 
dataset but this method is not guaranteed to output a sampled dataset with a size which 
can fit into the main memory. Moreover, there is no proof of guarantee for a good sampling 
quality for sampling methods. In data mining literature, we can find a few complex scalable 
decision tree algorithms. RainForest is a scalable fast decision tree algorithm that adapts to 
the amount of main memory available and uses a special data structure that is more 
memory efficient [6]. But this algorithm has too much dependence on the size of main 
memory available and involves time-consuming repeated operations of reading training 
data from disk for each level of tree. BOAT (Bootstrapped Optimistic Algorithm for Tree 
construction) is another scalable decision tree algorithm that uses bootstrapping sampling 
(to sample the training data uniformly with replacement) to create smaller subsets of 
training data that can easily fit into main memory [7]. Each of these subsets are used to 
create several trees which are then somehow examined and combined to form a new tree 
which is very close to the tree which would have been built using all the training data. This 
tree is incrementally constructed and it requires only two scans of training data lying on the 
disk. We cannot give a comprehensive list of all the scalable decision tree learning 
algorithms in data mining literature as they are not the main focus of our work.
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The solution strategy to the scalability problem of decision tree learning algorithms or as a 
matter of fact, for any data mining algorithm, always waters down to a very generic 
question in data mining community: 


“Which is better: Better algorithms or more data?”  

In other words, what is more beneficial and less effort consuming: improving the data 
mining algorithms so that they can output equally accurate patterns from sampled-down 
large-scale data or use simple algorithms without any optimisations on a large-scale data. 
“The Unreasonable effectiveness of Data” by NORVIG ET.AL [8] shows that for every increase 
in order of magnitude of data we have, it surpasses all the improvements in algorithms. 
Most of the data mining algorithms are paralysed with a restriction that they cannot be 
solved by some neat and concise mathematical formulas. Instead, the best approach is to 
embrace the complexity of the problem domain and to address it by harnessing the power 
of data. RECCHIA and JONES actually performed experiments that demonstrated that simple 
algorithms with more data actually outperforms and scales more efficiently than applying 
more efficient and elegant algorithms on smaller datasets [9]. SHOTTON ET AL. at Microsoft 
Research also support the view that it is worthwhile to look for more data instead of 
searching for a better classifier that outputs highly accurate prediction model using 
sampled-down data [10]. The major outcome of their experiment was that the huge amount 
of data, they were able to generate, was one of the key factors in the success of the 
classifier algorithm, while using a very simple random decision forest as a decision tree 
classifier. BRILL [11] and RAJARAMAN [12] also point out that it is better to concentrate more 
on exploiting the advantages of using more and more data rather than fine tuning the 
algorithms. 


As we can clearly see the advantage of using large-scale data mining using simple models 
on all data, we actually need to perform data mining on large scale or “web-scale” data in 
the order of hundreds of gigabytes to terabytes or petabytes. It is quite obvious that a 
single computer can not store so much data and process them in reasonable amount of 
time given the limited amount of RAM and CPU processing power. Therefore, we are 
obligated to use distributed storage and computation.


There are two procedures for scalable data mining: scale-up and scale-out. Scale-up 
means a small cluster of high-end servers whereas scale-out refers to large cluster of low-
end commodity servers. Although scale-out will imply more machine failures and high 
requirements on fault-tolerance, it is much more economical than scale-up [20a]. 


Large-scale data has scalability problems in two dimensions: data storage and processing. 
Therefore, we need a special distributed file system responsible for distributing workloads 
across the cluster in a controlled manner. Since MapReduce is designed for large clusters 
built using low-end commodity drives, failure of disks will be a norm not an exception. The 
underlying layer of distributed file system provides efficient, automatic distribution of large-
scale data across clusters of machines. It also handles fault tolerance through replication, 
load balancing and monitoring in such a way to provision and locate computing at data 
locations and save the critical resource: network bandwidth. Scheduling of machines in a 
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grid is also provided by other proprietary systems like Condor but it requires a separate 
SAN to automatically distribute the data and MPI for managing communication system.


There are numerous parallel programming languages such as Orca, Occam, ABCL, SNOW, 
MPI and PARLOG but they do not clearly illustrate how to parallelize a particular algorithm 
[13]. There is a vast amount of literature on distributed learning and data mining [14], but 
very few of them give a common procedure or a framework to write distributed machine 
learning programs. We have chosen MapReduce for parallel data processing because it is a 
simple programming model where users only need to specify the computation in terms of a 
map and a reduce function and they don’t need any specialised knowledge of distributed 
computing [15]. Underlying runtime system automatically parallelises the computation 
across large-scale clusters of machines, and also handles machine failures, efficient 
communications and performance issues. GLEICH explains the ease of use of MapReduce 
distributed computations in HPC clusters where normally MPI dominates: MPI based 
distributed programming needs thousands of lines of C code just to perform a single task of 
loading data and this code needs to distributed to all nodes in the cluster. Whereas, same 
task in MapReduce needs zero lines of code [16]. Moreover, there has been many 
successful attempts to adopt various popular data mining algorithms to MapReduce 
programming model. Various experiments have shown that the major advantage of this data 
processing model is its flat scalability curve for very large amounts of data [17]. A program 
written in other distributed programming models will need a large amount of refactoring 
when scaling from few machines to a cluster of 4000 nodes. In other frameworks, the 
program needs to be re-written several times as the scale grows while a MapReduce 
program remains basically same for all scales. TAN ET AL. performed experiments to 
compare three scalable approaches to Naive Bayes classifier: sampling, ensemble methods 
and MapReduce techniques. The results clearly illustrate that the MapReduce approach is 
better due to no limitations and good accuracy [18].


We have given proper arguments for: Why we perform large-scale data mining? And why 
MapReduce is a suitable distributed programming model for doing large-scale data mining? 
This work is principally done to answer the following questions: 


• How can we perform large-scale data mining based on MapReduce? 

• What tools and implementations for MapReduce based data mining algorithms are 

available?

• Which of these implementations or tools we select? 

• What are the reasons for selecting this particular tool or implementation? 

• How do we measure the performance of this implementation? 

• What is the performance of this tool? 

• How does this tool scale with the large-scale data?  

• Does this tool give us the benefits that we expected or desired in the beginning?  
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1.3  Structure Of Work 

In this chapter, we have already given an introduction to our work. Chapter 2 explains the 
general concepts and fundamentals of data mining methods and models. In Chapter 3, an 
overview of the distributed programming model of MapReduce is presented. Chapter 4 
gives a detailed description of an open-source implementation of MapReduce: Hadoop. We 
will cover the most basic aspects of distributed storage and the distributed execution 
framework which is indispensable to understand the further chapters. We will also uncover 
the benefits and drawbacks of this framework. Chapter 5 gives a description of another 
MapReduce implementation, which is provided by Apache Spark. Here, we focus on the 
Machine Learning library (MLlib) of Apache Spark. It is rather obligatory to comprehend the 
details of implementation of this library as we have developed and run data mining 
programs using this library. In Chapter 6, we will browse through relevant related works that 
have been done in this field and discuss the available approaches to scalable data mining 
algorithms. It includes several scientific papers, data mining tools and environments based 
on MapReduce distributed programming model. In Chapter 7, we describe the experimental 
set up. In Chapter 8, we present the various experimental results using charts and graphs 
and evaluate them. In Chapter 9, we put forward the overall conclusions of this work and 
also we lead to the future work. 
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2. Data Mining Concepts 

In this chapter, we give a general introduction to data mining and its concepts. As data 
mining is about discovering patterns and knowledge from data, it has two facets: data 
mining methods (algorithms) and models to represent the discovered patterns and 
knowledge.  Here, we give a brief description of most commonly used data mining methods 
and models. Since the focus of work is decision tree based classification and regression 
data mining methods, we give a detailed description of decision tree learning.


2.1 Motivation Behind Data Mining 

Automated data collection tools, mature database technologies, inexpensive disks, online 
storage and Internet has generated tremendous amounts of data which is stored 
electronically in databases and other information repositories [19]. Actually there is a very 
famous quote describing this situation:


“We are drowning in data but starving for knowledge.”

	 	 -by JOHN NAISBETT


Nowadays, information or knowledge is very valuable. We have vast amounts of raw data 
from various sources, but they are useless unless we can gain useful some information or 
knowledge from them. 


Figure 1. Value chain of  Information Gain 

In Figure 1, we depict that the mining of data increases the value of collection of vast 
amounts of data. When we perform data mining on data, we gain some useful information 
and eventually we are equipped with a better knowledge and understanding of patterns and 
regularities in the data. This knowledge helps us to make better and more productive 
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Figure 1 : Value chain of Information Gain


Data mining is gaining importance day by day and it has far applications in various fields, 
bringing optimisations, increasing the revenues and saving limited resources like 
medicine, food supply. etc. 


1.2 Definition of data mining 

Data mining is automatic or semi-automatic process of discovering hidden, previously 
unknown and usable information or patterns from a large amount of data that go beyond 
simple analysis. The data is analysed without any expectation on the result. Data mining 
is often is described as the analysis step of knowledge discovery process. 


Following are the distinguishing properties of data mining which makes it different from 
statistical modelling or simple analysis :

• Automatic or semi-automatic discovery of patterns

• Prediction of likely outcome

• Creation of actionable information

• Focus on huge amounts of data in multiple formats

• Data mining can answer questions that cannot be addressed through simple query 

and reporting and require complex mathematical models
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decisions. Therefore, data mining gives us a lot of gain in the value chain which is in often 
more than the efforts put to perform data mining. The proper knowledge about the patterns 
in data is even considered very crucial for making decisions in some special scenarios. 
Such field of applications for data mining is growing day by day, for example, it has now far-
reaching applications with the objective of bringing optimisations, increasing the revenues 
and saving limited resources like medicine, food supply, etc. It saves us a lot of efforts and 
time in case of complex decision making situations.


2.2 Definition Of Data Mining 

Data mining is a process which starts apparently from vast amounts of unstructured 
datasets in various formats and from various sources to extract useful and interesting 
information and patterns for making better and timelier decisions [20]. It is an automatic or 
a semi-automatic process to provide us some useful information which we cannot derive 
just by looking at the raw data. It is not only limited to business field but also to artificial 
intelligence, natural language processing, genome sequencing and many other scientific 
breakthroughs. Data mining has emphasis on utilising data from a particular domain in 
order to understand some questions in that domain. For gaining useful information from a 
specified data domain, it applies various data mining algorithms such as prediction, 
classification, regression, clustering, association-rule discovery, recognition and so on. 
These data mining algorithms can be broadly classified into predictive and descriptive 
techniques. Predictive techniques are considered to be more similar to machine learning 
where a model learns over given data (training and testing) and then predicts new instances 
of data using the learned model e.g. decision tree classifiers and regressors, bayesian 
classifiers, neural nets etc. Descriptive techniques merely describe characteristics or 
patterns in the data and there is no learning or training phase. Examples include association 
rules, summarisation, generalisation, inductive algorithms, etc.


The process of data mining in itself is an empirical approach that is driven by data and it is 
an attempt to extract statistical regularities of data [20a]. There are 3 components to this 
approach: data, representation of data and some methods to capture the regularities in 
data. Feature is another term given to the representations of input data. Features can be 
superficial and easy to extract or can be deep and difficult to extract. These features are 
essential for extracting useful regularities or patterns using some kind of model or 
algorithms. There is a growing evidence that of all three components, data is the most 
important [11]. When we apply simple data mining methods to the superficial features and 
to a lot of data, we require much less effort and such a process is more scalable. The 
accuracies of data mining models obtained using this approach can be continuously 
improved by using more data. When we use complex methods to derive equally accurate 
models from small dataset, the complexity hardness of such methods are very difficult to 
increase. But more complex methods are not always guaranteed to give us more accurate 
models using small datasets because there can be case that they have escaped some 
important data which was essential for outputting the model. Additionally, we can see that 
such an approach is hardly scalable. Thus, we can argue that using simple methods on 
large dataset to output simple model is evidently a better and more scalable approach than 
applying complex methods on small datasets to output complex models.
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Now, we are faced with the problem that the data mining and analytics need to deal with 
burgeoning amounts of data.  Data volume, variety, velocity and complexity all present 
challenges that must be faced to efficiently address this problem [21]. This is apparently 
beyond the capability of single machines at a reasonable cost. There are various possible 
solutions for introducing scalability to the data mining algorithms. Parallel and distributed 
data-mining is one of them. This kind of data-mining can run on a diversified type of 
clusters of machines. This strategy has two facets: distribution of the data and an execution 
framework for performing distributed processing. Data-centres or clusters need to find an 
appropriate architecture in order to be scalable and cost-effective. Cloud-computing is one 
of the architectural model for clusters which has emerged to be affordable and flexible. It is 
predominantly used for cases when we need to handle and store vast amounts of data and 
to execute a particular execution on multiple number of nodes in distributed fashion. It is 
beneficial for both the service-provider and the service-consumer because of the element 
of elasticity in cases of varying loads.


2.3 Data Mining Process 

Data mining is an analytic process of discovering hidden, previously unknown and usable 
information or patterns from a large amount of data that go beyond simple analysis [20]. 
The data is analysed without any expectation on the result. Data mining is often is 
described as the analysis step of knowledge discovery process. But for the data mining 
process to work properly, we must know the domain of the data, understand the data and 
the mining methods. We need to understand the data in order to ensure meaningful data 
mining results because data mining algorithms are often sensitive to specific characteristics 
of the data: outliers (data values that are very different from the typical or expected values), 
irrelevant columns, columns that vary together, data coding and data that are chosen to be 
included or excluded. 


Figure 2. Data mining process [22] 
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Figure 2: Data mining process


Figure 2 shows a iterative nature of data mining process where the focus of models is 
narrowed in the next iteration. Data mining is the most essential step of knowledge 
discovery in databases. 


1.3 Data Mining categories and methods 

Data mining methods can be broadly classified into descriptive and predictive. The former 
describes the data in a concise summarised manner and presents the general interesting 
properties and patterns; whereas the latter constructs one or a set of models using the 
past values and predicts the behaviour of new data sets.
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Figure 2 shows the general steps in a data mining process. Such a process is iterative in 
nature which means that the data mining  results trigger new questions where the focus of 
models is narrowed in the next iteration. The first step is to identify the objectives and the 
requirements and reformulate them into a data mining problem. The following step is to 
access the data and identify those datasets which addresses the data mining problem well. 
The input data should be meaningful for the target application. This step is indispensable 
for improving the data quality which can subsequently improve the information obtained 
through data mining. It might also involve tasks like data sampling, cleaning and 
transformation. In model building and evaluation stage, we apply various modelling 
techniques and finally evaluate how well the model satisfies our initial problem statement. 
The last stage of knowledge deployment is to apply the model in the real-world targets to 
obtain the actionable information that we aimed for initially.


2.4 Data Mining Methods And Its Categories 

Like mentioned above, data mining methods can be broadly classified into descriptive and 
predictive. The former describes the data in a concise summarised manner and presents 
the general interesting properties and patterns; whereas the latter constructs one or a set of 
models using the past values and predicts the behaviour of new datasets. Figure 3 shows 
the categorisation of data mining methods and the popular methods in the respective 
categories.


Figure 3. Data mining methods and its categories 

Association-rule discovery or frequent pattern mining searches recurring relationships in 
a given data. It discovers interesting associations and correlations between itemsets in our 
data [23]. Typically, association rules that do not satisfy the minimum support and the 
confidence are discarded as uninteresting patterns. They are used to derive interesting 
statistical correlations between attribute-value pairs. This data mining technique is widely 
used in recommender systems by large e-commerce and online shopping companies like 
Amazon, Zalando, eBay, etc which we come across in our daily lives. There is a collection 
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1. Association rule discovery is intended to identify strong association relationships or 
correlations or rules among set of items. Based on the concept of strong rules, 
Rakesh Agrawal et al.[20] introduced association rules for discovering regularities 
between products in large-scale transaction data recorded by point-of-sale (POS) 
systems in supermarkets.


2. Clustering/Segmentation aims to group a set of objects into k clusters such that 
objects in the same cluster are more similar and very different from objects of other 
clusters.


3. Classification/Regression computes a classification model using training data whose 
field attributes and the class label is known. Classification uses this model to predict 
the class label for new objects using the field attributes.


4. Time-Series Forecasting is used to predict future values based on previously observed 
values. 


1.4 Problem Description 

First we need to discuss which is better: better algorithms or more data? The 
Unreasonable effectiveness of Data, by Norvig et.al [21] shows that for every increase in 
order of magnitude of data you have, it beats all improvements in algorithms. Most of the 
data mining algorithms cannot be solved by neat, concise mathematical formulas. 
Instead, the best approach appears to be to embrace the complexity of the problem 
domain and address it by harnessing the power of data. [22] actually performed 
experiments that demonstrated that simple algorithms with more data actually 
outperforms more efficient and elegant algorithms with smaller data sets. [23] also 
supports the view that it is worthwhile to look for more data instead of searching for a 
better classifier. They mention explicitly that the huge amount of data they were able to 
generate was one of the key factors in their success while classifier itself was a simple 
random decision forest. [24,25] also points out that it is better to concentrate more on 
data acquisition rather than fine tuning the algorithms. This is one way to see the problem 
that more data gives more efficient data mining models. The other way to see the problem 
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of algorithms that implement frequent patten mining. Apriori is one of the foremost 
algorithm proposed by R. AGRAWAL and R. SRIKANT [24] for mining frequent itemsets for 
Boolean association rules [23]. This algorithm implements a level-wise iterative searching 
where the prior knowledge of frequent itemsets in the previous iteration is utilised to reduce 
the search space for candidate itemsets in the current iteration. This typically requires 
several passes to the original database. There are several optimisations to this algorithm 
but their discussion is beyond the scope of this work. Another novel implementation for this 
data mining is frequent pattern growth (FP-growth) which employs a divide-and-conquer 
tactic to build a frequent pattern tree which contains the itemset association information. 
The whole set of transactions are then partitioned into smaller sets each corresponding to 
one frequent itemset in the tree. The tree grows in similar fashion. The advantage of this 
approach is elimination of candidate itemsets generation step in every iteration.


Clustering or Segmentation is also a non-predictive technique that aims to group a set of 
objects into k clusters such that objects in the same cluster are more similar and they are 
very dissimilar from objects of other clusters. Clustering is called as unsupervised learning 
because it organises the observed data into meaningful taxonomies, groups or clusters that 
are initially unknown or not pre-defined [25]. It implies that the training data do not need to 
have the class labels. That’s why it is sometimes also referred as automatic classification. 
Clustering itself is not an algorithm but refers to a general data mining task which can be 
implemented by using various algorithms [26]. These algorithms can use various schemes 
for clustering like distance-based, partitioned-based, hierarchical, density based and 
model-based clustering. Discussion of such algorithms in detail is beyond the scope of this 
work.


Classification and regression are two main predictive data mining techniques or methods 
that we will discuss in more detail as they are the main focus of our work. Classification is 
a data mining method where it learns a predictive model or a function by analysing a set of 
properly labeled training examples. The derived model is then used to predict the class 
labels for new data for which the class label is previously unknown. The term classification 
is used when it predicts categorical (discrete, unordered) class labels. It is rather called 
regression when the target class labels have continuous values [23]. Both the predictive 
techniques are a two-step procedure, comprising of a learning step (to learn a predictive 
model or a function) and the application step (where the derived model is used to predict 
class labels of given data). The second step is also popularly called as scoring in data 
mining literature. This is depicted in Figure 4 where testing or evaluation of output model is 
rather optional (shown by dotted line).These techniques are also known as supervised 
learning techniques because the training phase involves training data whose target or 
predicted labels are previously known. Therefore, the training data should have special 
characteristics when being applied to these data mining methods. One part of the training   
example is called explanatory (independent) variable which is grouped together to form a 
feature vector. The other part is the dependent variable or the predicted class label. In data 
mining terminology, the feature vector is said to be composed of attributes or features. 
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(b) 

Figure 4. Two-step classification and regression data mining [23].  
(a) Learning step (b) Testing and application step 

Typically, the first step of classification or regression is to learn the mapping y —> f(X) or the 
function y = f(X) that can predict the associated class label y of a given training record X. In 
other words, we aim to find classification rules which establish some kind of relationship 
between the feature vector and the predicted class label. However, this mapping can be 
represented using a variety of knowledge output representations like classification rules, 
decision trees or just mathematical formulae. In the second step, we can also measure the 
accuracy of the predictor model. For this purpose, a set of testing examples are formulated 
and then the accuracy of the model is derived by the percentage of test set examples that 
are correctly classified by the model. 


For our work, we have chosen classification and regression data mining methods which 
uses decision tree model as a predictive model. Decision tree models, where the target 
class labels can only have discrete and finite set of values (categorical values), are called 
classification trees [26a]. Decision trees, where the target labels can take continuous 
values (typically real numbers), are called regression trees [26a]. We will use the term 
decision tree classifiers and decision tree regressors for the corresponding 
classification and regression methods to build the decision tree models. We will use an 
umbrella term decision tree learning for both methods. 
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Decision tree is a flowchart-like tree structure where each leaf or terminal node represents 
the class label or a probability distribution over the set of class labels while each non-leaf or 
internal node represents a test on an attribute and the branch depicts the result of the test. 
Therefore, each non-terminal node is labeled with an input feature and the branches from 
this node is labeled with the possible values of the feature. We have given an example to 
illustrate the decision tree model in Figure 5. This decision tree learning models the 
classification rules for the data mining problem: “Whether a customer buys a smartphone?” 
We have used various features or attributes like age, salary and pension as a test parameter 
to divide the customer set into two class labels: yes or no. 


Figure 5. Decision tree for the date mining goal: “buy a smartphone” 

Now, one can easily argue that why we have chosen decision tree learning as a specific 
data mining algorithm to be parallelized using the MapReduce. This question can be 
reformulated as: “Why decision tree classifiers and regressors are so popular?” First of all, 
the construction of decision trees does not require any prior knowledge of the data domain. 
This means that they are able to handle all kinds of data: both numerical and categorical. 
They do not feature scaling, data normalisation or dealing with the missing values. They are 
also able to capture non-linearities and feature interactions. Decision models are rather 
simple and easy to understand and interpret.


There are several specific algorithms that implement decision tree learning. Iterative 
Dichotomiser (ID3) is the seminal algorithm invented by J. ROSS QUINLAN, to generate 
decision trees [27]. ID3 is a precursor for a better algorithm called as C4.5, which was again 
developed by QUINLAN [28]. Around the same time, group of statisticians (L. BREIMAN, J. 
FRIEDMAN, R. OLSHEN, and C. STONE) developed a new decision tree algorithm called as 
Classification and Regression Trees (CART) [29]. Albeit being developed independently, all 
these algorithms yet follow a similar approach to learn decision trees. 
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All three algorithms employ a greedy (also known as non-backtracking) strategy where 
decision trees are built in a top-down induction and recursive partitioning of data in a 
divide-and-conquer way [23]. The algorithm proceeds by the recursive partitioning of the 
training set by selecting a best split candidate or an attribute that maximises the 
homogeneity of the target labels of training subsets at each child node. In other words, it 
maximises the value addition to the prediction.The measure of homogeneity or purity of 
target labels for a set of training tuples at child nodes can be expressed by various 
statistical properties knows as gini index, entropy and variance. They are the heuristics for 
splitting criteria. Gini index and Entropy are strictly used for classification trees whereas 
variance is used for regression trees. When we use gini index, the tree is strictly binary but 
entropy is able to output multiway trees. Information gain refers to the difference between 
the purity of child nodes and the parent node. So an attribute is considered as a best split 
candidate when  it maximises the information gain. The node is then labeled with this best 
split attribute and  branches are grown out of this node. If the splitting attribute is a discrete 
value, a branch is created for each known unique value of this attribute. The training data is 
partitioned by putting tuples having the same value of the attribute to the corresponding 
branch. If the splitting attribute is continuous-valued, there are two possible outcomes each 
corresponding to the attribute values below and above the splitting point. This splitting 
point is implicitly calculated when calculating best split candidate. In practice, the splitting 
point is often taken as the midpoint of two known adjacent values of the continuous 
attribute and therefore may not actually be a preexisting value of the attribute from the 
training data [23]. The recursive partitioning terminates when all the training tuples in the 
node have same class labels (completely homogeneous) or there is no significant 
information gain or there are no remaining attributes on which data can be partitioned. In 
the end, a decision tree is returned. 


Classification and regression trees work in a similar way but they differ in the use of impurity 
measures: classification use gini and entropy while regression use variance. Moreover, they 
also differ in the representation of the leaf nodes: classification tree uses the most 
commonly occurring class label as a leaf node whereas regression uses the average value 
of all the target values in the leaf node. However, decision tree learning algorithms might 
suffer from overfitting problem and create over-complex trees that do not generalise 
properly due to some anomalies in the training data such as outliers or noise. This problem 
of overfitting is rectified by a pruning approach where pruned trees tend to be smaller and 
less complex. There are two types of pruning: pre-pruning and post-pruning. Pre-pruning 
halts the construction of tree at earlier stages. This can be done by specifying the maximum 
depth of the tree or by specifying a minimum threshold for information gain. If the 
information gain is below this threshold, the leaf nodes are constructed. In this case, leaf 
nodes contain the most commonly occurring class labels or the average value of target 
variables. Post-pruning removes sub-trees from a fully-grown tree by replacing them with a 
leaf node which is labeled with the most frequently occurring class among the subtree 
being replaced. The criteria for selecting sub-trees to be pruned is the error rates of 
prediction and the improvement in this error rate after pruning the tree.
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3. MapReduce Concepts 

Google MapReduce [15] was the first successful attempt to implement distributed 
computing on a cluster of low-end cheap commodity servers while hiding the system level 
details from the programmers. Programmers need to focus only on what computations are 
to be performed and they don’t need to bother about how computations are actually 
distributed. The basic idea behind MapReduce is to move the processing closer to the data 
and to spread the data across the various nodes in the cluster. This is in contrast to the 
conventional data processing models where data is moved to the processing nodes. The 
complex task of managing the data is done automatically by the underlying distributed file 
system called GFS (Google File System). Nowadays, the term MapReduce can refer to 
three different but related concepts. First, it can refer to the distributed programming model, 
second it can refer to the runtime environment that facilitates the distributed computations 
and lastly it can refer to the software implementations like Google, open-source Hadoop, 
MapR, Apache Spark etc. The first concept is relevant for our work. The term MapReduce 
refers to distributed data processing model rather than to a specific implementation for our 
work.


3.1 MapReduce Paradigm 

MapReduce programming model derives its inspiration from functional programming 
models like LISP and ML. The key concept of functional  programming is that the higher-
order functions can accept other functions as arguments. Just as map and reduce functions 
in the functional programming languages like LISP, we have two stage processing structure 
in MapReduce. First stage is a embarrassingly parallel map step which is basically a 
transformation stage where it reads and processes discrete chunks of data called as ‘splits’ 
in parallel. The second stage is called reduce stage where the sorted output from the map 
step is aggregated and stored back to the permanent storage. So the process of converting 
complex algorithms into equivalent MapReduce algorithms is to express all the 
computations (those that can be parallelised) in the original algorithm using map and 
reduce functions only. 


3.2 Pre-Requisites 

The first and the foremost task is to determine if a particular algorithm can be parallelised 
and implemented using MapReduce paradigm. CHU ET AL. have given a generalised 
approach to test whether a particular algorithm can be adopted to MapReduce. They have 
proved that any algorithm that satisfies the “Statistical Query Model” can be expressed in a 
summation form. Moreover, MapReduce is one of the easiest way to express this 
summation form and write the corresponding program. Algorithms that compute enough 
statistics or gradients satisfy this model. They have shown that if the summations are 
batched, it can be easily implemented using two stage process: first stage to compute the 
statistics and second stage to sum all of them [13]. Now, we will enumerate some of the 
general restrictions with respect to the input data to the MapReduce processing. Data 
should have “Write Once Read Many” (WORM) characteristics because such data fulfil the 
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necessary condition for being processed in parallel fashion without the need for mutexes. 
The tuples in data should not have any dependencies on other tuples so that out-of-order 
processing is possible. In order to fully exploit the potential of MapReduce, data-set should 
be very large because MapReduce is an execution framework that has been designed for 
processing large-scale data. MapReduce is a partial parallel algorithm because the input of 
the map and reduce should always be of the form <key, value>. This key-value structure 
is imposed on the input when the data tuples are read from the underlying special 
Distributed file systems such as HDFS, GFS by the MapReduce run-time.


3.3 Architecture And Programming Model 

The architecture of MapReduce programming model, as proposed in [15], is of master-slave 
paradigm. One of the nodes is a special node: master node. It has the responsibility of 
assigning map and reduce tasks to the slave nodes, monitoring task progress on each of 
the slaves nodes, periodically detecting slave node failures and restarting failed map and 
reduce tasks preferably on alive slave nodes which have the replicated data. Slave nodes 
only run map or reduce tasks and periodically inform the progress of the task completion 
back to the master node. Figure 6 shows the original architecture of MapReduce and its 
execution flow. The client program forks a master process on the master node and slave 
processes on other slave nodes. From this point, master node assumes the responsibility of 
scheduling the map and reduce tasks on slave nodes. Slave nodes execute the map and 
the reduce tasks which are assigned to them by the master node. Before the reduce tasks 
can be started, all the map tasks should be finished. This can be viewed as a 
synchronisation step between map and reduce tasks. Map tasks send the output to the 
reduce tasks by using a distributed shuffle and sort operation. Combiner and partitioner 
steps are optional and are basically optimisations. Combiner reduces the size of map 
outputs by performing the local reduce. Combiner reduces the size of shuffle data between 
map and reduce tasks. Partitioner divides the map output into number of reducers. Various 
kind of partitioning schemes can be employed like hash partitioning. In reduce step, all the 
values with same key are combined and the merged results are stored back to the DFS 
storage. The reduce results are first sorted by their keys before they are stored to DFS.


The key aspect of the MapReduce programming model is that if every Map and Reduce is 
independent of all other ongoing Maps and Reduces, then the operation can be run in 
parallel on different keys and values [30]. One of the most important aspect of MapReduce 
processing model is that it runs the map tasks on the nodes where the data lives. This 
ensures that there is no or very little movement of data between nodes and preserves the 
valuable network bandwidth.  This property is called as data locality optimisation. All the 
independent computations need to be specified in 2 kinds of functions: map and reduce. 
We will now give a general definition of map and reduce transformations:


Map. A map transform is provided to transform an input data row of key and value to an 
output list containing zero or more (key,value) pairs: map(key1,value) -> list<key2,value2> 
Reduce. A reduce transform is provided to take all values for a specific key, and generate a 
new list of the reduced output: reduce(key2, list<value2>) -> list<value3> 
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Figure 6. Overall MapReduce programming model architecture [15] 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Fig Overall MapReduce architecture and processing model
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4. Hadoop 

This section gives an overview to Hadoop, an open-source project under Apache Software 
Foundation and distributed under Apache License 2.0 [4]. It is necessary to understand the 
basics of Hadoop because we have used Hadoop based cluster to perform our 
experiments later. There are numerous reasons to use this framework to build the cluster. 
While MapReduce software framework from Google is proprietary, Hadoop is an open 
source, the most accessible and the most mature implementation of MapReduce. In 
Hadoop, data storage and computation both live on the same machines within the cluster. 
By leveraging this proximity of data, hadoop is capable of efficiently processing large 
volumes of data. Therefore, we can leverage the data mining analytics easily and cost 
effectively using Hadoop. Since it is written in Java, it can run on any platform running JVM. 
It implies that there are no special requirements on machines that will comprise the cluster. 
Building up distributed systems requires coordination of large number of machines, large-
scale data storage and analysis and Hadoop provides very simple and easy-to-use tools for 
that purpose. All the modules in Hadoop framework are designed to automatically handle 
hardware failures. This fault-tolerance is made possible by the automatic and efficient data 
replication in Hadoop. There are 2 basic modules in Hadoop which are essential to 
understand for this work: Hadoop Distributed File System (HDFS) module for distributed 
data storage and MapReduce module for distributed data processing. We have used HDFS 
for storing large-scale data in our experiments. Although, we will see later that we have not 
used the MapReduce processing framework of Hadoop, we need to understand this 
original and the most mature MapReduce framework because it is the reference framework 
for other advanced and optimised MapReduce frameworks. It is of immense help to 
understand the fundamentals of Hadoop’s MapReduce processing, so that we can later 
compare this with the optimised MapReduce framework (which is Apache Spark) that we 
have used for our work. We need to have a basic idea about the original MapReduce so 
that we can comprehend the optimisations that are implemented in other MapReduce-like 
frameworks.


Hadoop has namely two major versions: Hadoop 1.x and 2.x. The 2.x version is scalable up 
to 10,000 nodes whereas 1.x version is scalable only up-to 4000 nodes because the newer 
version has better cluster management capabilities and provide fine-grained memory 
management capabilities. 1.x uses slot-based mechanism for memory allocation and it 
leads to under-utilisation of overall cluster memory. 2.x uses container-based memory 
allocation which is more flexible. Nevertheless, both versions have improved tremendously 
in terms of scalability, reliability, manageability and performance over incremental releases.


4.1 HDFS - Hadoop Distributed File System 

There are several distributed file systems that has been in use for several decades, then 
why do we need a special DFS like HDFS? Let us take an example of the most ubiquitous 
file system: NFS (Network File System) [17]. It has been so popular because of its major 
advantage being the location transparency of files. All the file commands for local filesystem 
also works on files hosted on NFS as if they are locally hosted. But there are several 
limitations of NFS. The first problem is that all files belonging to one NFS volume should 

�24



reside on a single machine. Thus the size of single machine is the upper limit of the size of a 
NFS volume. If there are large number of clients requesting files from this single NFS 
volume, the machine will be probably overloaded. Moreover, it does not provide any out-of-
the-box reliability guarantees because there is no replication supported. The primary 
requirement is that distributed File system should tolerate node failures without any data 
loss. Now we will see how the unique design of HDFS that solves all the shortcomings of 
NFS.


4.1.1 Design of HDFS 

The architecture of HDFS is described in the original paper from Yahoo! Inc. [31], which is 
based on the design of GFS [32]. HDFS can store large amounts of data (in order of 
terabytes or petabytes) and the size of files is not limited by the size of single DFS machine 
because it stores files by breaking  them into blocks of fixed sizes (128 MB by default) 
which might typically reside on different machines across the cluster. It also provides 
automatic fault-tolerance and handles the node failures by replicating the blocks on various 
machines in an efficient manner. The size of the blocks is usually very large as compared to 
traditional filesystem blocks so that seek times are much smaller as compared to time for 
reading data from the disks. Therefore, it gives very high throughput and performance in 
case of applications that require long sequential reads from the disks. It is also designed to 
use commodity disk drives because it provides automatic fault tolerance in case of disk 
failures. Hadoop has the fundamental flexibility to handle unstructured data regardless of 
the data source or format. Additionally, disparate types of data stored on unrelated systems 
can all be deposited in the Hadoop cluster without the requirement to predetermine how 
the data will be analysed. But the design of HDFS which makes it highly scalable and gives 
very high performance also makes it limited to a particular class of applications. It is 
specially suitable for data which has Write Once and Read Many (WORM) and strong 
independent properties. Applications which require very instant seek accesses are not 
suitable for HDFS storage. But the data locality optimization of HDFS makes it very suitable 
for any kind of MapReduce applications. Data locality optimisation implies that the blocks 
are stored in such a manner that there are minimal movements of blocks between machines 
belonging to the same rack and even lesser block movements between machines in 
different racks. HDFS follows a rack-aware architecture.


In Figure 7, we illustrate the architecture of HDFS using an example where there is one 
master node and 3 slave nodes.The architecture of HDFS is based on master-slave design 
[33]. The master node is called namenode whereas the slave nodes are called datanodes 
[34]. Namenode holds the filesystem tree and its metadata persistently on a local disk but it 
stores the metadata about block locations in memory. Therefore, namenode needs typically 
more memory than data nodes. Large size of HDFS blocks also means that there will be 
relatively low amount of metadata per file as the memory needed by namenode is typically 
determined by total number of blocks in the HDFS. Datanodes manages, store and retrieve 
blocks in a HDFS directory as directed by the client or namenode. In Figure 7, we show that 
a read or a write client can do the respective operations on any slave or master node but it 
first needs to consult the namenode. In case of read operation, the read client needs to 
fetch the metadata information about the physical location of the blocks and their replicated 
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versions on data nodes from namenode. In case of a write operation, the write client 
informs the namenode about its intention to write a block of a file. Namenode replies back 
with the address of the datanode where the requested block can be stored. Write client 
writes the block to the specified datanode. Datanodes are then responsible for replicating 
the particular block by a replication factor value specified for the HDFS system. In the given 
example, the replication factor is 2. This cycle repeats for next blocks until all the blocks of 
file are written to the HDFS ensuring that the required replication factor is always fulfilled.


 

Figure 7. HDFS architecture and the flow of  execution for read and write operations [34] 

4.2 MapReduce Framework 

In this sub-section, we develop a comprehensive understanding of fundamentals of 
MapReduce processing framework [35]. This specifically refers to the original 
implementation by Hadoop. We will describe only the important characteristics of this 
framework which is important for building a concept about MapReduce distributed 
programming model. In Hadoop, a MapReduce job is the highest unit of abstraction of work 
in Hadoop and it is submitted by a job client. The job consists of three minimal 
components: specification of input  and output paths, definition of map and reduce tasks 
and various other configuration parameters. For this purpose, JobConf  is the primary 
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Design 

The architecture of HDFS is described in the original paper from Yahoo! Inc [29], which is 
based on the design of GFS [33]. HDFS can store large amount of data (terabytes or 
petabytes) and the size of files is not limited by the size of single DFS machine because it 
stores a file by breaking it into blocks of fixed sizes (64 MB by default) which might 
typically reside on different machines across the cluster. It also handles the node failures 
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interface for a user to describe and configure a MapReduce job. MapReduce execution 
framework also works in the master-slave fashion. The master-slave architecture is 
completely different in two versions of Hadoop. So, we will be using the  more generic term 
master and slave for this section and we will see their specific implementations and their 
respective names in different versions in the sub-section 4.3 and 4.4. Hadoop run-time is 
responsible to divide a job into tasks which can be only of 2 types: map and reduce. For 
this, users are required to define a Mapper class that implements the map function and a  
Reducer  class that implements the reduce function. Here, we will give a foundational 
concept of map and reduce which is valid for both versions of Hadoop. It gives us a general 
idea about how map and reduce actually distribute the computations and what 
characteristics yield performance and throughput benefits.


4.2.1 Map 

Hadoop divides the input data into input splits and creates one map task per input split and 
processes the list of <key1, value1> entries in the split one by one to produce an 
intermediate list of <key2, list of value2>. In map stage, user need to define some 
classes: InputFormat, InputSplits, RecordReader, Mapper, Combiner and Partitioner.

InputFormat  is a class that defines the source of input files, defines InputSplits  to break 
input and provides a factory of RecordReader  objects to convert binary data from 
InputSplits into meaningful <key, value> tuples per record.


InputSplits defines a single unit of work for a single map task. Therefore, the total number 
of map tasks is equal to the  number of input splits. This is not user configurable because it 
depends only on the split size. Smaller splits means less time to process the splits 
concurrently as compared to larger ones. Smaller splits also enable better load-balancing 
because faster processor can process more splits than slower machines within the same 
time frame. Split size should not be too small, otherwise overhead of managing the splits 
and time to create map tasks is much higher than the map task execution time. In most 
scenarios, a fair split size is one HDFS block because if input split contains several HDFS 
blocks, it is unlikely that all HDFS blocks is present on the same node. Some of them will 
need to be transferred to the running map task and therefore will consume the cluster 
bandwidth. This goes against data locality optimization efforts of Hadoop to conserve the 
network bandwidth. This shows that one DFS block size is the right size for input split. If 
data-local map task is not possible, Hadoop MapReduce tries to execute map task on a 
node in the same rack (rack local). Off-rack map tasks are spawned when not possible in 
the same rack by transferring the split over the network. 


RecordReader recursively creates <key, value> pairs from InputSplits until an entire split 
has been consumed. Map tasks are called for every invocation of RecordReader and all the 
intermediate values associated with a given output intermediate key are subsequently 
sorted and grouped by the framework. 
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Combiner (which is a optional stage) attempts to reduce the size of data shuffled between 
map and reduce tasks. It runs the reduce function on the map output locally on the node. 
Since, it is just an optimization, Hadoop does not guarantee the number of times combiner 
function might be called if at all.


Partitioner  partitions the intermediate key space per Reducer. The total number of 
partitions is the same as the number of reduce tasks for the job. 


The output from the local buffer is finally written to a local file not to the HDFS because it is 
just an intermediate output which is trashed when read by the reducer.


4.2.2 Reduce 

Reducer reduces a set of intermediate values which share a common key to a smaller set of 
values. The number of reduce tasks is a user controllable parameter unlike the map tasks. 
When number of reduce tasks is high, the shuffle is more complicated and will consumes 
more bandwidth. While lesser number of long running reduce tasks will negatively impact 
the overall execution time due to lesser degree of parallelism. Reducer has 3 primary 
phases: shuffle, sort and reduce. Shuffle is the process of moving relevant partitions of map 
outputs to the reduce tasks using HTTP. The set of intermediate keys on a single node is 
automatically sorted by Hadoop before they are presented to the Reducer. A Reducer 
instance is created for each reduce task. It merges the values which have the same key and 
the output is written back to the HDFS as defined by OutputFormat.


Most of the applications especially for machine learning and data mining require several 
parameters to be passed to the MapReduce tasks. If the parameters are read-only large 
files, they must be distributed by DistributedCache. Small parameters are passed by using 
the setter and getter functions in JobConf class.


In sub-section 4.3 and 4.4, we will see the differences between the two versions of Hadoop. 
There is very minor difference between HDFS in two versions and it does not need any 
further elaboration. The architecture and job execution  flow in MapReduce has undergone 
a complete overhaul from first to second version. Although, we will be using MRv2 because 
of its numerous advantages, it is worth to see both versions for a comparison.


4.3 Hadoop MapReduce 1.x (MRv1) 

Hadoop MapReduce Software component has three major facets:


• The end-user MapReduce API for programmers and users.

• MapReduce run-time which is the actual implementation of various phases of 

MapReduce applications.

• MapReduce framework which is the back-end infrastructure to run the MapReduce job, 

manage cluster resources, schedule queues of numbers of concurrent jobs, provide 
fault tolerance etc.
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Figure 8. Hadoop MapReduce version 1.x (MRv1) 

In Figure 8, we can see that in MRv1, there are only two abstract layers: HDFS and 
MapReduce. The lower layer facilitates a reliable and fault-tolerant distributed data storage 
whereas the upper layer is responsible for both cluster resource management and 
distributed data processing in MapReduce fashion.


Figure 9. Architecture and job execution flow in Hadoop MapReduce version 1.x (MRv1) 
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Design 

The architecture of HDFS is described in the original paper from Yahoo! Inc [29], which is 
based on the design of GFS [33]. HDFS can store large amount of data (terabytes or 
petabytes) and the size of files is not limited by the size of single DFS machine because it 
stores a file by breaking it into blocks of fixed sizes (64 MB by default) which might 
typically reside on different machines across the cluster. It also handles the node failures 
by replicating these blocks on various machines in an efficient manner.The size of the 
blocks is usually very large as compared to traditional filesystem blocks so that seek 
times are much smaller as compared to time to read data from the disks. Therefore, it 
gives very high throughput and performance in case of applications that require long 
sequential reads from the disks. It is also designed to use commodity disk drives because 
of its automatic fault tolerance. But the design of HDFS which makes it highly scalable 
and gives very high performance also makes it limited to particular class of applications. It 
is specially designed for data which is WORM. Applications which require very instant 
seek accesses are not suitable for HDFS storage. But the data locality optimization of 
HDFS makes it very suitable for MapReduce applications.


The architecture of HDFS is based on master-slave design [30]. The master node is called 
namenode whereas the slave nodes are called datanodes. Namenode holds filesystem 
tree and the metadata persistently on the local disk but it stores the metadata about 
block locations in memory. Therefore, namenode needs typically more memory than slave 
nodes. Large size of HDFS blocks also means that there will be relatively low amount of 
metadata per file as the memory needed by namenode is typically determined by total 
number of blocks in the HDFS. Datanodes manages, store and retrieve blocks in a HDFS 
directory as directed by the client or namenode.


Fig. The architecture of HDFS representing datanodes, namenode with replication of 
factor 2 and how read and write operations are actually performed.


3.2 MapReduce framework 

A MapReduce job is the highest unit of abstraction of work in Hadoop and it is submitted 
by the job client. The job consists of three minimal components: specification of input  
and output paths, definition of map and reduce tasks and various other configuration 
parameters. For this purpose, JobConf is the primary interface for a user to describe 
and configure a MapReduce job. For most of the applications, users generally and not 
necessarily need to specify Mapper, Combiner, Partitioner, Reducer, 
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HDFS 
(redundant, reliable storage)

MapReduce 
(cluster resource management and data processing)

RecordReader recursively creates <key, value> pairs from InputSplits until entire split has 
been consumed. 
Map tasks are called for every invocation of RecordReader and all the intermediate values 
associated with a given output key are subsequently sorted and grouped by the 
framework.


Combiner (optional stage) attempts to reduce the size of data shuffled between map and 
reduce tasks. It runs the reduce function on the map output locally on the node. Since, it 
is just an optimization, Hadoop does not guarantee number of times combiner function 
might be called if at all.


Partitioner partitions the intermediate key space per Reducer. The total number of 
partitions is the same as the number of reduce tasks for the job. 
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In Figure 9, we show the architecture of MapReduce framework specific to this version. We 
also illustrate the specific daemons running on master and slave nodes which form the 
fabric of MapReduce distributed processing for this version. The master node is controlled 
by a JobTracker daemon, that farms out and schedules the MapReduce tasks to specific 
nodes in the cluster, ideally the nodes that have the data, or at least are in the same rack 
[35]. Slave nodes are controlled by a TaskTracker daemon that manages the map and the 
reduce tasks on the individual node [35]. The TaskTrackers communicate with and are 
controlled by the JobTracker. The JobTracker is a single point of failure for the Hadoop 
MapReduce service.

The responsibilities of JobTracker are resource management (which implies monitoring the 
task trackers on worker nodes), tracking resource availability and consumption and job life-
cycle management (for example, scheduling individual tasks of the job, tracking process, 
providing fault tolerance, etc). Whereas TaskTrackers have very simple responsibilities to 
launch the map and reduce tasks ordered by the JobTracker and inform the task progress 
status information periodically back to the JobTracker.


4.4 Hadoop MapReduce 2.x (MRv2) or YARN

Hadoop YARN is an attempt to enable other data-processing models beyond MapReduce  
on the Hadoop clusters. Job scheduling and running the MapReduce applications still 
remains in the MapReduce component but the cluster resource management is moved to a 
new component called YARN [36]. 


Figure 10. Hadoop MapReduce version 2.x (MRv2) or YARN 

In Figure 10, we can see that there are 3 abstraction layers in Hadoop MRv2: HDFS, YARN 
and data processing layer. Cluster resource management has been separated from data 
processing so that YARN only acts a cluster manager and can support a variety of data 
processing models like batch, iterative, interactive, streaming and so on.The major redesign 
of MRv2 is to split up the two facets of the JobTracker daemon: global resource 
management and application-specific job scheduling, into separate daemons: global 
ResourceManager and per-application ApplicationMaster. The ResourceManager is the 
central arbitrator of all cluster resources (cpu and memory) among the competing 
applications. Container is an abstract notion for representing a collection of physical 
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InputFormat, OutputFormat and OutputCollector implementations to JobConf. 
MapReduce execution framework also works in the master-slave fashion. The master-
slave architecture is completely different in two versions of Hadoop. So, we will be using 
the  more generic term master and slave for this section and we will see the specific 
implementations and their respective names in different versions in the next section. 
Hadoop run-time is responsible to divide that job into tasks which can be only of 2 types: 
map and reduce. Master is responsible for distributing the software and configuration to 
the slave nodes, scheduling the tasks, monitoring them and restarting the failed tasks.


Map 

Hadoop divides the input data into input splits and creates one map task per input split 
and processes the list of <key1, value1> entries in the split one by one to produce 
intermediate list of <key2, list of value2>. The task of splitting up the input files which are 
typically from the HDFS and presenting data in appropriate <key,value> form to map 
function is done internally be the MapReduce run-time. Map phase has following phases: 
InputFormat, InputSplits, RecordReader, map, Combiner and Partitioner.

InputFormat is a class that defines the source of input files, defines InputSplits to break 
input and provides a factory of RecordReader objects to convert binary data from 
InputSplits into meaningful <key, value> tuples per record.


InputSplits defines a single unit of work for a single map task. Therefore, total number of 
map tasks is equal to the  number of input splits. This is not user configurable because it 
depends only on the split size. Users can control the split size value by setting the 
mapred.min.split.size parameter in hadoop-site.xml. Smaller splits means less time to 
process the splits concurrently as compared to larger ones. Smaller splits also enable 
better load-balancing because faster processor can process more splits than slower 
machines within the same time frame. Split size should not be too small, otherwise 
overhead of managing the splits and time to create map tasks is much higher than map 
task execution time. In most scenarios, a fair split size is one HDFS block because if input 
split contains several HDFS blocks, it would be unlikely that all HDFS blocks would be on 
same node. Some of them need to be transferred to the running map task and therefore 
will consume the cluster bandwidth. This goes against data locality optimization efforts of 
Hadoop in order to conserve the network bandwidth. If data-local map task is not 
possible, it tries to execute map task on a node in the same rack (rack local). Off-rack 
map tasks are spawned when not possible in the same rack by transferring the split over 
the network. 
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computational resources like CPU cores, disks and memory. Yarn uses container-based 
allocation of resources. Per-node NodeManager daemons run on slave machines. They are 
responsible for allocating containers as scheduled and requested by the Resource 
Manager, managing and monitoring the resource usage of all the containers on the single 
machine and reporting back the monitored values to the Resource Manager. Per- 
application ApplicationMaster is a special container which acts as application master for a 
specific application launched. The ApplicationMaster is a data-processing framework-
specific container that negotiates resources from the ResourceManager and works with the 
NodeManager(s) to execute and monitor the component tasks. This means that the 
ApplicationMaster container for Spark will be different from Hadoop MapReduce.


The ResourceManager has two main components: Scheduler and ApplicationsManager. 
The ApplicationsManager is responsible for accepting job-submissions, negotiating the first 
container for executing the application-specific ApplicationMaster and provides the service 
for restarting the ApplicationMaster container on failure. The Scheduler is a pure scheduler 
which is responsible for allocating cluster resources to the various running applications 
subject to familiar constraints of capacities, queues etc. The Scheduler performs its 
scheduling function based the resource requirements of the applications and schedules the 
resources in the form of containers.


YARN – Walkthrough 

In Figure 11, we give an illustration about the general execution sequence in YARN which is 
explained in the following steps:


1. A client program submits an application jar (where configurations and compiled code 
are packaged together) to ResourceManager.


2. The ResourceManager requests a container to start an ApplicationMaster from any 
NodeManager.


3. The ApplicationMaster registers itself with the ResourceManager and provides the 
necessary information.


4. After reading the configurations from jar, the ApplicationMaster negotiates appropriate 
resource containers from ResourceManager via the resource-request protocol.


5. The ResourceManager requests the required number of containers from NodeManagers.

6. NodeManagers launch specified containers as requested by the ResourceManager.

7. NodeManagers return the container IDs back to the Resource Manager.

8. Resource Manager sends the list of Container IDs to the ApplicationMaster.

9. Application master communicates with launched containers and the application code 

executing within the containers via an application-specific protocol.

10.During the application execution, the client that submitted the program communicates 

directly with the ApplicationMaster to get status, progress updates etc. via an 
application-specific protocol.


11.Once the application is complete, and all the necessary work has been finished, the 
ApplicationMaster deregisters with the ResourceManager and shuts down, allowing its 
own container to be repurposed.
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Figure 11. Architecture and job execution flow of  Hadoop YARN 

4.5 Why YARN? 

In this sub-section, we give proper arguments for selecting Hadoop YARN as the underlying 
cluster for our experiments. Hadoop YARN provides numerous benefits and addresses 
various drawbacks of the first version of Hadoop. First of all, Hadoop YARN clusters are 
more scalable than clusters built from previous version of Hadoop. How YARN is more 
scalable? Resource Manager which is the central manager for all cluster resources does not 
have to deal with other specifities of MapReduce like providing application-specific fault 
tolerance. The previous version of Hadoop MapReduce JobTracker spends a very 
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significant portion of time and effort managing the life cycle of applications. Thus, it 
becomes overloaded as the size of cluster grows and becomes a major cause for software 
mishaps and breakdowns. YARN supports data-processing models beyond batch mode 
MapReduce which are optimised for iterative, interactive or graph jobs. Specifically for our 
work, YARN is suitable because it can handle iterative kind of workloads for data mining. 
Additionally, Apache Spark (introduced later), which we have used for MapReduce data 
mining, is capable of running very efficiently on YARN. Another interesting aspect is to 
analyse the resource allocation models in both versions. In previous version of Hadoop, 
each node was statically assigned a fixed number of slots for map and reduce tasks. These 
slots could not be dynamically shared between map and reduce tasks. But MapReduce job 
execution flow shows that there is a more demand for map slots in the beginning and 
reduce slots at the completion of the job. The static allocation of slots in the previous 
version led obviously to the under utilisation of the cluster resources. YARN addresses this 
wastage of cluster resources in the old version of Hadoop by providing a more flexible 
resource allocation model. Resources are requested in the form of containers. They have 
non static attributes because they have maximum and minimum defined memory limits. 
ApplicationMaster can obtain only containers in the multiple of the minimum until the 
maximum is reached.


4.6  Conclusion 

The strict batch job scheduling of map and reduce tasks in Hadoop MapReduce is very 
restrictive and not suitable for other data-processing workflows. Map and reduce tasks 
must be written as acyclic data flow programs, i.e., a stateless mapper followed by a 
stateless reducer, that are scheduled in a batch fashion [37]. As a consequence, it 
introduces high-latency to the programs and falls short of real-time data analysis. 
MapReduce paradigm also hinders the repeated querying of datasets and makes them 
painfully slow. Such limitations become more obvious in fields such as data mining, where it 
is very typical that iterative algorithms will revisit a single working set multiple times. In 
Hadoop, reduce tasks can not take place until all maps tasks have completed (or have 
failed and been skipped). As a result, we do not get any data back until the entire mapping 
has finished.
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5. Apache Spark 

Although the original MapReduce provided scalability, fault tolerance and throughput, it 
suffered from the problem of latency due to the strict batch processing architecture. 
Original MapReduce executed jobs in a simple but rigid structure: a processing or 
transform step (“map”), a synchronization step (“shuffle”), and a step to combine results 
from all the nodes in a cluster (“reduce”). Most of the data mining algorithms are highly 
iterative in nature and to port these algorithms to MapReduce framework, the only way was 
to string together a series of MapReduce jobs and execute them in a sequence. Each of 
those jobs was of high-latency because they had to read the data from the local disks, and 
none of them could start until the previous job had finished completely. Therefore, such 
complex, multi-stage applications are distressingly slow because of the non-trivial 
MapReduce run-time overhead in every iteration. 


Apache Spark tries to relax the rigid batch architecture of the original MapReduce and tries 
to eliminate costly snychronisation blockages. It allows programmers to construct complex, 
multi-step Directed Acyclic Graphs (DAGs) of work that must be done, and to execute 
those DAGs all at once, not step by step. Moreover, it also let the jobs to keep the data in 
memory for faster query and processing. Spark was purposely designed to support in-
memory processing. The net benefit of keeping everything in memory is the ability to 
perform iterative computations at blazing fast speeds — something MapReduce is not 
designed to do. But it won’t be far to compare Spark with MapReduce because 
MapReduce is just a programming model for distributed computation whereas Spark is a 
general purpose cluster computing system which uses MapReduce-like parallel operations. 
Apache Spark is a MapReduce-like distributed data processing model which supports a 
rich set of distributed transformations in addition to simple “map” and “reduce”. It has 
following components:


• High level APIs (Application Programming Interfaces) in Java, Scala and Python.

• An optimised execution engine that supports fast distributed processing. 

• A set of higher-level tools including Shark (Hive on Spark), Spark SQL for structured data, 

MLlib for machine learning, GraphX for graph processing and Spark Streaming.


Machine Learning Library MLlib is of special interest for our work because there is a 
growing number of machine learning algorithms being implemented and ready to be used. 


5.1 Basics Of Spark 

We know that Hadoop is the most widely used open source implementation of MapReduce  
which scales out computation and storage across cheap commodity servers and allows 
other applications to run on top of both of these — Spark is one of these applications. 
Although Hadoop is effective for storing vast amounts of data cheaply, the computations it 
enables with MapReduce are highly limited for the reasons we have seen above. 
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According to Spark documentation, Spark application comprises of a driver program that 
executes the user’s main program and runs several kinds of parallel operations on a cluster 
[38]. Resilient distributed datasets (RDDs) forms the fundamental programming 
abstraction of Apache Spark. They are immutable (which means read-only) collections of 
records partitioned across cluster that can be operated in parallel [37a]. So how are RDDs 
actually created? Before, we can answer this question, we need to have the knowledge that 
RDDs support two types of operations: transformations (to create new RDDs from existing 
dataset) and actions (to compute and to output results to the main driver program after 
performing computations on the transformed RDDs). In Table 1, we have given some 
examples of transformations and actions which are currently provided by Apache Spark. 
RDDs are created by starting with a source file stored in HDFS (or any other Hadoop-
supported file system), or an existing Scala collection (which we do not use for our work) in 
the driver program, and applying any kind of transformations (map, filter, group-by…) on it. 
Spark supports text files, SequenceFiles and any other Hadoop InputFormat. 


When the source file is HDFS, number of partitions of RDDs is equal to the number of HDFS 
blocks in a file. However, transformations in Spark are lazy. As such, RDDs are materialised 
on demand when an action is required to be employed to the RDDs and result is to be 
returned to the driver program. Users can explicitly cache or persist RDDs in memory 
across machines and reuse it in multiple MapReduce-like parallel operations. Therefore, we 
can control the storage level (memory, disk, etc) for RDDs. RDDs are currently cached in 
memory by default, but when the memory is insufficient, RDDs will spill to disk. In case of 
spill to disk, there will be a degradation in the performance of Apache Spark but not worse 
than current MapReduce. In our experiments, we will also analyse this correlation between 
the size of data and the performance output. 

Table 1. RDD operations 
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RDD Transformations (define a new RDD) RDD actions (compute and return the result 
to driver program)

map
filter
sample
groupByKey
reduceByKey
sortByKey
flatMap
union
join
cogroup
cross
mapValues

reduce
collect
save
lookUpKey
count



Resilient distributed dataset uses a clever way of guaranteeing fault tolerance that 
minimises network I/O. The Spark academic paper [37] says, RDD achieves fault tolerance 
through a notion of lineage. If a partition of an RDD is lost, the RDD always tracks the graph 
of transformations that is used to build it in order to be able to rebuild just that partition. 
This implies that lost partitions can be reconstructed without needing replication to achieve 
fault tolerance. Hadoop, on the other hand, uses replication to achieve fault tolerance.


The second abstraction of Spark is shared variables which is passed to the functions that 
invoke parallel operations. Spark supports two kinds of shared variables: broadcast 
variables, which is used to copy a large read-only parameter to all the nodes just once, and 
accumulators, which are variables that are added to associative operators like counters and 
sums which are specifically used by the driver program.


In order to understand the abstract programming model of Spark, we will use an example 
as shown in Figure 12. This gives an in-depth explanation of RDD and its parallel 
operations. This pseudo code of Spark application performs log mining to count error 
messages containing specific errors. The first line of the pseudo code refers to reading a 
text file from HDFS. This is actually the base RDD where each HDFS block forms a partition 
of RDD. Second and third lines intend to perform transformations to get new RDD. But 
these transformations are rather lazy and are not performed until actions are invoked. 
Fourth line again stores an intention to cache the calculated RDD after invoking action. Until 
now, there has been no reading of data and any kind of computations in the program. As 
soon as the first count action is invoked, the partitions of base RDD, each corresponding to 
one HDFS block, are read in parallel manner. Then filter and map transformations are 
applied to get the final transformed RDD on which count action is ready to be invoked. 
Since fourth line gives the intention to cache the RDD, they are persisted in the memory 
and the second count action is applied on the cached RDD. If any partition of RDD is lost, it 
tracks the lineage information: read data from HDFS, filter, map and cache to rebuild the 
lost partition.


Figure 12. An example for Spark program for log mining 
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1. lines = spark.textFile(“hdfs://…”)

2. errors = lines.filter(_.startsWith(“ERROR”))

3. messages = errors.map(_.split(‘\t’)(2))

4. messages.cache()

5. messages.filter(_.contains(“memory”)).count()

6. messages.filter(_.contains(“exceptions”)).count()

Transformed RDD

Transformed RDD

Base RDD

Actions

Actions



Additionally, we also need to know the internal representation and the building blocks of 
RDD. RDD contains following components: set of partitions (“splits”), list of dependencies 
on parent RDD, function to compute a partition given parents, optional preferred locations 
and optional partitioning info (Partitioner). Since we are using Hadoop data for our 
experiments, we need to see the internal representation of Hadoop RDD. In case of Hadoop 
RDD, there is one partition per HDFS block, there are no dependencies, there is a function 
to compute the partition which is reading a corresponding block, there is a preferred 
location which is the HDFS location and there is no partitioner which is required to be 
defined.


5.2 Overview Of Spark In Cluster Mode

We will give a short overview of how Spark runs on clusters, to make it easier to understand 
the components involved. In Figure 13, we show the mechanism of working of Spark in 
cluster mode. Each Spark application creates one SparkContext object which is the main 
entry point to the Spark functionality. It is used to specify all the application-specific 
configurations. SparkContext is also responsible to connect to a central cluster manager 
and request compute resources from the cluster. The cluster manager can be of following 
types in the current version: Standalone cluster from Spark, Hadoop YARN, Apache Mesos 
and Amazon EC2. Next SparkContext acquires executors on worker nodes. Executors are 
processes to run computations and store relevant data. Each application gets its own 
executor processes, which stay up for the duration of the whole application and run tasks in 
multiple threads. Next, it sends the application code (defined by JAR or Python files passed 
to SparkContext) to the executors. Finally, the executors run the tasks submitted to them.


Figure 13. Architecture and job execution flow for Spark in cluster mode [39] 
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In order to write applications for Spark, we need to understand the underlying architecture. 
It comprises of following components:


Application: This is the job that user intends to perform. It may be a single job, a sequence 
of jobs, a long-running service issuing new commands or an interactive exploration session.

Spark Driver: The Spark driver is the process running the spark context (which represents 
the application session). This driver is responsible for converting the application to a 
directed graph of individual steps to execute on the cluster. There is one driver per 
application.

Spark Application Master: The Spark Application Master is responsible for negotiating 
resource requests made by the driver with ClusterManager and finding a suitable set of 
hosts/containers in which to run the Spark applications. There is one Application Master per 
application.

Spark Executor: A single JVM instance on a node that serves a single Spark application. 
An executor runs multiple tasks over its lifetime, and multiple tasks concurrently. A node 
may have several Spark executors and there are many nodes running Spark Executors for 
each client application.

Spark Task: A Spark Task represents a unit of work on a partition of RDD of a distributed 
dataset. 


Apache Spark applications can run both in local and cluster mode. For our work, we have 
specifically used “Apache Spark on YARN” cluster. It is rather difficult to comprehend how 
Spark works on YARN. That’s why we present a simplified explanation of interaction 
between Spark and YARN in the following sub-section.


5.3 Spark On YARN 

When running Spark on YARN, each Spark executor runs as a YARN container. But the 
Spark container is more efficient than the MapReduce container. In MapReduce, Hadoop 
schedules a container and fires up a JVM for each task. Spark hosts multiple tasks within 
the same container. This approach enables several orders of magnitude faster task startup 
time because of elimination of overhead of starting each container for a new task. The same 
container is reused for multiple tasks in Spark for the whole life-time of an application.


Spark supports two modes for running on YARN: “yarn-cluster” mode and “yarn-client” 
mode. Broadly, yarn-cluster mode makes sense for production jobs, while yarn-client mode 
makes sense for interactive and debugging uses where the users want to see the 
application’s output immediately.


In yarn-cluster mode, the driver runs in the Application Master. This means that the same 
process is responsible for both driving the application and requesting resources from 
YARN, and this process runs inside a YARN container. The client that starts the app doesn’t 
need to stick around for its entire lifetime.


In yarn-client mode, the driver runs inside the client program. The Application Master is 
merely present to request executor containers from YARN. The client communicates with 
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those containers to schedule work after they start. This mode allows driver to access client 
side resources, including inputs from users. Since the user program is the driver of the 
Spark job,  if the client dies in this mode, the entire application exits.





Figure 14. Spark on Yarn Execution Cycle scenario for 2 slave nodes 
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The study of general flow of execution in “Spark on YARN” environment is an indispensable 
step to understand how exactly our experiments run in this execution environment. In 
Figure 14, we explain exactly how Spark applications run on YARN clusters by taking an 
example where there is one master node and two slave nodes: The region above the grey 
dotted line runs locally on the master node while two boxes below the grey dotted line 
represent two slave nodes. The distributed nature of HDFS is depicted in an abstract view. 
It actually represents the local disks of two slave nodes as a single storage location 
(location transparency). SparkContext object is first created inside the user’s main program 
which serves as an entrance to Spark API. Using this object, we specify various 
configurations for a Spark job. For Spark application to run on YARN in a client mode, the 
configuration parameter “master” should be specified as “yarn-client”. SparkContext object 
uses an environment variable HADOOP_CONF_DIR of the underlying YARN cluster to 
contact Resource Manager. It requests various cluster information from the Resource 
Manager such as number of Node Managers, Name Node, data replication, etc. After 
fetching this information, client program submits the Spark assembly jar (packages all 
dependencies into a single jar file) to Name Node. Name Node assumes the responsibility 
to submit the submitted jar to the underlying HDFS ensuring that the required replication 
factor is fulfilled. The client submits a separate application jar to the ResourceManager. The 
ResourceManager now assumes the responsibility to negotiate and arbitrate cluster 
resources for executing the application code. First step is to request for a special container 
known as Spark Application Master which acts as a Spark framework specific Application 
Master. The Node Manager on one of the slave nodes launches this requested container 
with the required configuration parameters and sends back the corresponding ID of the 
Application master container. Now, Resource Manager requests the allocation of containers 
for Spark executors from Node Managers. Executors are the containers requested by Spark 
application where the actual parallel distributed computation will run. Node Managers 
return the container IDs of the launched executors to the Resource Manager. The Resource 
Manager sends this list of container IDs to the Spark Application Master so that it can 
directly communicate with the launched containers and schedule the tasks to the 
executors. Finally, the Resource Manager ships the application jar to all the node managers 
where containers have been launched and will execute the application code.


5.4 Task Scheduling Process In Spark 

As we can see in the last Figure 14, Spark Application Master container runs a Directed 
Acyclic Graph (DAG) scheduler which is a general scheduler for tasks. Task scheduler 
pipelines the operations wherever possible. It is data-locality, cache aware and also 
partitioning-aware, the last one to avoid shuffle of data. Figure 15 shows task scheduling 
process in detail. The first step is to create a Directed Acyclic Graph of operations that will 
happen in a Spark Application. In the given figure, DAG scheduler builds a graph 
corresponding to join, groupBy and filter operations. For our experiments, where we run 
programs to implement multi-stage decision tree learning algorithms using Machine 
Learning library of Spark, the number of stages in DAGs specifically depends on the 
maximum depth of tree. Before each stage is submitted as ready, DAG scheduler needs to 
split each stage corresponding to one operation into a number of tasks. The number of 
tasks in every stage depends on the number of input partitions to the particular stage. In 
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our experiments, the number of tasks in a stage depends on the total number of HDFS 
blocks in the input file stored on HDFS. The tasks are then submitted to the worker nodes 
for execution via Cluster Manager. Basically,  there is one Block Manager per executor and 
it manages the storage for most of the data in Spark, to name a few: block that represent a 
cached RDD partition, intermediate shuffle data, broadcast data etc. Cluster Manager also 
takes care of re-submitting the failed stages to the worker nodes. 





Figure 15. Task Scheduling Process in Apache Spark. 

5.5 Apache Spark’s Machine Learning Library (MLlib) 

MLlib is a standard component of Spark which provides machine learning primitives on top 
of Spark’s core execution engine. It is a low-level library for distributed Machine Learning on 
Spark and also introduces high-level machine learning programming abstractions. MLlib 
enables data analysers to develop machine learning programs using rich and user-friendly 
APIs in Java, Scala and Python. However, we have used Java APIs to write our programs 
that train and evaluate decision tree models based classification and regression data 
mining. The current version of MLlib consists of many data mining algorithms, such as, 
classification, regression, clustering, collaborative filtering and dimensionality reduction [64].  


5.6 Decision Tree Learning Algorithms In Spark’s MLlib 

In data mining literature, there are two popular predictive data mining methods: 
classification and regression that can output the prediction models in various formats. But, 
in MLlib, there are rather three kinds: binary classification, multi-classification and 
regression. Spark’s MLlib documentation points out that there are classification and 
regression data mining algorithms can be performed using naive bayes, decision trees and 
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linear models (SVMs, logistic regression, linear regression). As such, there are three kinds of 
decision tree learning based classification and regression algorithms. These decision tree 
learning algorithms output decision tree model which are represented as hierarchical if-else 
statements that the test feature values in order to predict a label. Binary classification refers 
to data mining method where objects can be classified only into one of two classes by 
using some kind of classification rule [40]. Multi-class classification is a similar procedure to 
classify objects into one of more than two classes [41]. Both binary and multi-class 
classification can predict only discrete values for the target labels. Regression refers to the 
classification problem where the target or the predicted values are continuous. Decision 
tree model can be built by using two static methods: trainClassifier(for both binary and 
multi-class classification trees but works internally differently for them) and trainRegressor 
(for regressor trees) [42],[43]. 


It is mandatory to understand the details of the implementation of decision tree classifiers 
and regressors in Spark’s MLlib for our work. All the three decision tree learning algorithms 
work in a similar fashion and share a similar implementation. Therefore, we can give a 
general description for the implementation that is valid for all three algorithms. First and 
foremost, the parallel scaling of those algorithms is achieved by partitioning the input data 
horizontally by rows and processing them in a parallel distributed fashion. This implies that 
it performs same kind of computation on all nodes but using different subsets of datasets 
that have been partitioned across  several nodes. The algorithms build a decision tree using 
level-by-level approach. The algorithms proceed by performing a recursive partitioning of 
the feature space [43]. This partitioning is done by choosing the best split candidate which 
leads to maximum information gain. The algorithms select the splits for all nodes at the 
same level of the tree simultaneously. This level-wise optimization reduces the number of 
passes over the dataset tremendously because it make one pass for each level, rather than 
one pass for each node in the tree. It also leads to significant savings in I/O, computation 
and communication overheads [44]. As we know that information gain used for selecting 
the best splits, is the difference between the parent node impurity and the weighted sum of 
the child node impurities, the current version of MLlib supports three kinds of impurities: 
gini and entropy (for classification) and variance (for regression). As we will see later, we 
have performed experiments using all three impurity measures. The recursion of algorithm 
terminates when the tree has reached its maximum depth or there are no split candidate 
that can give an information gain at the node.


We need to also understand how the MLlib decision tree algorithms calculate the split 
candidates for large-scale distributed data, in case where the domain of all features is 
continuous. We have assumed later in our experiments that all features are continuous. For 
small-scale data on single machine, non-distributed decision tree implementations typically 
use sorted unique feature values for continuous features as split candidates for the best 
split calculation [43]. This implies that, for continuous features, number of split decisions 
that legacy algorithms need to consider for a feature will be equal to the total number of 
instances in the whole dataset. However, finding sorted unique values is an expensive 
operation over a distributed dataset. Moreover, the number of split decision considerations 
for a feature will be extraordinarily high for large-scale data which might contain millions of 
instances. MLlib decision tree solves this problem by first discretising the continuous 

�42



features. The first step of MLlib decision tree algorithms is to store metadata information of 
decision tree such as dimension of feature, whether features are continuous or categorical, 
etc. Then it uses a sampled fraction of data (obtained by sampling with replacement) to 
calculate the quantile (distribution of values for feature in the sampled data) for each 
feature. This quantile calculation is also done in a parallel distributed manner on a very large 
number of sampled data on multiple nodes. This quantile statistics from a large number of 
sampled data is then collected and merged together to calculate an overall quantile 
statistics of data. This aggregated statistical information about the distribution of values in a 
feature is used to determine the boundary of bins. The maximum number of bins is a user-
defined parameter (maxBins parameter). Then the binned representation of each feature is 
precomputed using: the maxBins user-defined parameter and the aggregated quantile 
information. The binned representation of each feature is subsequently saved on disk and 
memory, to be used in later stages for computing sufficient statistics for splitting. This 
saves computation in each iteration. As a result, in later stages, where the algorithms need 
to calculate the best split candidates, they know the split locations for each feature 
beforehand. After binning, each continuous feature becomes an ordered discretised feature 
with at most maxBins possible values.Therefore, the number of split locations 
considerations for each feature is drastically reduced from a unusually high value to a user-
defined controllable value. This is a standard tradeoff for improving decision tree 
performance without significant loss of accuracy. This parameter has also impact on 
communications and computation time because it controls the graininess of split decisions. 
Higher value results into considering more split candidates. Now, we give a brief description 
about the process of decision tree construction. The steps are as follows:


• Master node selects a node of tree. It first starts from the root node and then goes into 
the deeper levels of the tree. Specifically, it selects all the nodes belonging to one level of 
the tree at a time.


• For the nodes selected by the master node, each worker makes one pass over its subset 
of instances to collect the statistics about splitting.


• For each node in construction, the statistics for that node from all workers are 
aggregated to a particular worker by a reduce function. The designated worker for reduce 
operation chooses the best (feature, split) pair, or chooses to stop splitting if the stopping 
criteria are met.


•  The master collects the all decisions about splitting nodes and updates the model.

• The updated model is passed to the workers in the next iteration.

• This process continues until the maximum depth of tree has reached or there are no 

features left that could be used for splitting.


Most of the methods in this implementation support the statistics aggregation, which is the 
heaviest part of the computation. In general, this implementation is bound by either the cost 
of statistics computation on workers or by communicating the sufficient statistics. We will 
study about also this characteristic in our experiments later. 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6. Discussion Of Existing Approaches To Large Scale Data 
Mining 

As stated in the introductory chapter, we look for tools and implementations for data mining 
based on MapReduce for performing large-scale data mining analytics. We identified that 
the first step for this task was to do a comprehensive literature research of existing 
MapReduce scientific papers, libraries and toolkits available. This will help us to develop a 
comprehensive concept for developing such algorithms. We will need to carefully analyse 
the results of existing experimental set-ups with real-world data in order to find out if the 
performance benefits are good enough to channelize our efforts to perform MapReduce 
based data mining. Another advantage of this work is that we also learn about  the possible 
bottlenecks of frameworks used and their suggested optimisations during the algorithm 
design. Moreover, it guides us to identify parts of MapReduce framework which are 
essential to understand in order to design an effective MapReduce data mining algorithms 
for large-scale data. We use this knowledge to find the appropriate MapReduce 
implementation of data mining algorithms that can process large-scale data for our work.


In this section, we will study various scientific works and available tools to implement data 
mining algorithms based on MapReduce. The basic objective of this chapter is to develop a 
general concept about formulating MapReduce based data mining algorithms. This chapter 
will give us a deeper insight about how legacy data mining algorithms can be transformed 
into MapReduce based data mining algorithms. What are the generic steps thereof? Do we 
need to properly understand the legacy data mining algorithms in order to develop 
MapReduce based data mining algorithms? Which parts of traditional non-distributed 
algorithms can be implemented using MapReduce paradigm? How do we identify those 
parts? How can we string together all those MapReduce parts and non MapReduce parts 
to output algorithms that behaviour like single-machine implementations? What trade-offs 
are necessary for processing large-scale data? Such design questions and decisions 
pertain to a general MapReduce programming concept and not to a particular MapReduce 
implementation. This knowledge will help us to grasp the basic concepts and fundamentals 
of data mining algorithms which intends to harness the potentials of generic MapReduce 
distributed data-processing model. Some of those concepts are rather more general for all 
data mining algorithms and very few of them rather specific to a particular data mining 
algorithm. In this section, we will attempt to capture both non-specific and specific 
concepts about parallelising data mining algorithms using MapReduce. Therefore, we will 
discuss the MapReduce implementations of decision tree learning based classification and 
regression algorithms and as well as other data mining algorithms like naive bayes classifier, 
frequent pattern mining, clustering etc. This concept building will be important to 
understand the data mining algorithm implementations in Apache Spark MLlib, which we 
have used for conducting our experiments. This is because they also use various map-like 
and reduce-like operations on key-value pairs of input data to parallelise the algorithms. We 
will also see the extent of support for large-scale data mining analysis using MapReduce 
distributed computation in popular data mining suites.
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6.1 Existing MapReduce Based Data Mining Scientific Works 

6.1.1 MapReduce Naive Bayes Classifier 

TAN ET AL. [18] performed a comparison of various existing approaches to introduce 
scalability to the data-mining algorithms using real-world large scale datasets. They have 
also used the results of the comparison to suggest to new framework to combine the 
different approaches to provide fast, scalable and accurate data mining. We will evaluate 
how far their suggested methodology applies to the general-purpose data mining 
algorithms which are scalable without sacrificing considerable accuracy. So far, they found 
out that there are three major ways to deal with vast amounts of data:

• Sampling: The data mining model is constructed using a sampled data of massive 

dataset. Sampling is done to reduce the size of the training data so that it can easily fit 
into the main memory of the machine. This method is fast and efficient and they found out 
that it can be as accurate as model built from entire dataset. But there are problems to 
determine the right size of the samples and to increase the quality of samples. TAN ET AL. 
did not mention about any algorithms that could deliver good quality samples. This 
approach also suffer from the problem of memory limitations on local classifiers.


• Ensemble Method: This method has been applied on the classification algorithms where 
data is randomly partitioned and mined in parallel on local classifiers and finally merged to 
build a global classifier. Normally, training data is fed into the local classifiers and a voting 
mechanism is used to find the category of each file. This is illustrated in Figure 16. Again, 
the problem could be that size of the partitioned training data is larger than the memory 
available on local machines.


Figure 16. Ensemble Approach for Naive Bayes Classifier [18] 
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Figure 1: Ensemble Approach


• MapReduce based Approaches: Various cloud computing platforms like Google, 
Amazon and the open source Hadoop provide the opportunity for distributed computing 
on large scale data. They provide a very simple interface to parallel scale the data 
mining algorithms on large scale data and alleviating the memory limitation problems 
above. Obviously in MapReduce, the whole data set was used as a training data set. As 
we know that in classification data mining algorithms, there are two distinct phases: 
Training phase and Evaluation phase, both phases is parallelized using MapReduce 
framework as shown figure 3. They have used the Mahout Naïve Bayes classifier for this 
purpose
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• MapReduce based Approaches: TAN ET AL. used Hadoop MapReduce for distributed 
computing on large-scale data. Hadoop MapReduce provides a very simple interface to 
parallel scale the data mining algorithms on large scale data alleviating the memory 
limitation problems in other two approaches. Obviously in MapReduce, the whole dataset 
was used as a training dataset. As we know that in classification data mining algorithms, 
there are two distinct phases: Training phase and evaluation phase, both phases are 
parallelized using MapReduce framework as shown figure 17. They have used the Mahout 
Naïve Bayes classifier for this purpose.





Figure 17. MapReduce Classifier Model [18] 

A Naive Bayes classifier is a simple probabilistic classifier based on applying Bayes' 
theorem (from Bayesian statistics). Naive Bayes Classifier was selected because it can be 
used on all the aforementioned three approaches and have strong independence 
assumptions. In simple terms, a naive Bayes classifier assumes that the presence (or 
absence) of a particular feature of a class is unrelated to the presence (or absence) of any 
other feature.


The experimental results demonstrated that the accuracy of all the three models improved 
by using larger training dataset. Ensemble model gives the highest accuracy although the 
accuracies of all three models are very close. Ensemble model is paralysed by memory 
limitations of a single machine and is not scalable. MapReduce inherently gives following 
benefits: scalability, reliability and efficiency. Sampling can give good results only if sampled 
size is big enough and sampling quality is good enough. For improving implementation time 
and to increase the quality of sampling model, they suggested to use MapReduce only in 
the sampling phase. The sample data is extracted from entire dataset using the 
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MapReduce and it is then fed into data mining tools like WEKA to build data model. This is 
an iterative procedure where there is a feedback loop to the next iterations and where the 
accuracy of data mining model is improved by adjusting the sampling data and the size of 
the sampling data over the iterations. This hybrid is again not guaranteed to give data 
samples that will ensure that important patterns are not missed. Sampling might remove 
datasets that are important for data mining model. 


6.1.2	 MapReduce k-Means Clustering 


ZHAO ET AL. give a very methodical way to design parallel k-means clustering algorithm 
based on MapReduce [45]. In order to design the MapReduce algorithm, the foremost part 
is to identify the serial and the parallel (or independent) parts of the traditional algorithm. 
The original k-means algorithm partitions a set of n objects into k clusters. It randomly 
selects k objects as cluster centers and calculates the distances of remaining n-k objects 
and assigns them to the nearest centers. The new mean, respectively the center of the 
cluster is recalculated and the above process is iterated using the updated centers. The 
process is terminated when there are no significant changes in the position of the centre of 
clusters. They identified that the calculation of distances is the most intensive calculation in 
every iteration. Of course, the distance calculations of different points to the corresponding 
centre are independent and can be largely parallelized. Map function assigns every point to 
the nearest centre and reduce function calculates the new mean and respectively the new 
centre of the cluster. They also use a combiner function which is used to calculate the 
partial sum of all points belonging to the same centre to reduce communication overheads 
during the shuffling period. MapReduce k-means is an iterative process with a termination 
condition which is as follows:
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Their experimental setup gave very encouraging results with respect to speed-up, scale-up 
and size-up. Speed-up measures the increase in performance by increasing the number of 
nodes while keeping the other parameters constant. The overall speed-up, despite being 
not close to linear is good. It improves and becomes more acceptable for larger datasets. 
The gain in speed-up however reduces when the number of nodes are increased because 
of the greater communication overheads between more nodes. Scale-up measures how 
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well the larger system handles the equivalently larger data in same time consumed by the 
original system. The algorithm was found to have an acceptable scale-up. Size-up 
measures the ability of the system to handle larger data. The MapReduce algorithm sizes 
up according to their expectations. The overall experiment validates the effectiveness of the 
MapReduce algorithms for k-means clustering algorithm. 


6.1.3 MapReduce k-Medoids Clustering 

K-medoids clustering is performed when the particular application requires more 
robustness against outliers and noise. K-medoids algorithm uses medoid-shift as opposed 
to mean-shift in k-means to find the clusters in an iterative way. ZHOU ET AL. have attempted 
to use the Hadoop MapReduce to parallelize this algorithm [46]. First of all, they propose an 
algorithm for the optimal search of medoids which aims to reduce the number of distance 
calculations to find the medoids. They use this optimisation in the MapReduce based 
algorithm which is as follows:
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In their experiments, they have only measured the speed up using their experimental set-up 
which was found to be excellent and almost linear versus number of nodes.


6.1.4 MapReduce Co-Clustering 

Co-Clustering or biclustering generates simultaneously two clusters by performing a 
simultaneous clustering of rows and columns of a data matrix. The pre-requisite of this 
algorithm is that the data should be represented as a matrix: data tuples as rows and 
features as columns. For row-wise clustering, we need to identify a correlation or similarity 
across some of the columns that will guide the clustering of rows. The process is repeated 
likewise for column-wise clustering. PAPADIMITRIOU and SUN have made a successful 
attempt to formulate and implement a MapReduce algorithm of checkerboard style 
partitioning of a matrix into sub-matrices where each sub-matrix represents a cluster [47]. 
The goal of the algorithm proposed here is to divide an (m X n) matrix into (k X l) sub-
matrices.


They have used the MapReduce and HDFS for all the four stages of data mining: data 
gathering, pre-processing, mining and post-processing. Here, our main interest is to find 
out the results of their experiments and collect their experiences in using MapReduce for 
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this particular data mining algorithm. For simplicity and brevity, we have removed the 
discussion of details of their implementation.

The aim of the experiment was to design an effective distributed co-clustering algorithm 
based on MapReduce and to collect various experiences to implement it using the Hadoop 
MapReduce framework. For implementation, they needed to tune various parameters to get 
the best results out of distributed computations. The first parameter was the thread pool 
size which needed to be configured per node. They found out that when it was set to 1.5 
times the number of cores in the node, it gave very reasonable node utilisation. The number 
of map tasks was implicitly controlled by the minimum input split size and 256 MB was 
found to be an optimal size. The number of reduce tasks was set to 1 for actual data mining 
step. But for pre-processing steps, one reduce task was found to be a bottleneck and 
therefore this number was increased to the number of machines in the cluster. First, we see 
their experimental findings of the data pre-processing step. The aggregate throughput 
scaled almost linearly (rather below linear) against the number of nodes by using the initial 
configurations: input split size as 256 MB, number of reduce tasks as 5 and max number of 
concurrent map tasks as 6. Next, they found out that the utilisation of each node increased 
by increasing the number of concurrent map tasks until an optimum value is reached. This 
optimum value was found to be a value which was slightly more than the number of cores 
on the machine. The number of reducers for this task that gives peak throughput was found 
to be 5. Finally, they found out that too small or too large input splits degraded the 
performance. A small size caused large overheads since there was a large number of map 
tasks, and therefore a larger number of HTTP request to each reducer, to transfer 
intermediate results. However, as they increased the split size to several multiples of HDFS 
block size, it became much more difficult to place map tasks on local copies of the data, so 
performance degraded due to unnecessarily high network traffic for transferring HDFS 
blocks to map tasks.  For co-clustering step (actual data mining step), they found out that 
optimal number of nodes to be 25 and after that there were no gains in the scalability. This 
was possibly because the hadoop run-time overhead began to dominate the job run time 
as the actual time of job execution decreased with increasing number of nodes. The 
behaviour of co-clustering process with respect to other three parameters, as in pre-
processing step, was found to be same as in the pre-processing step. Lastly they found out 
that the pre-processing step took significant time portion of the whole process. Therefore 
they suggest that it is better to employ MapReduce on pre-processing.


6.1.5 MapReduce Apriori Association Rule Discovery 

Apriori Algorithm for Association rule discovery is one of the most prevalent data mining 
methods to find frequent itemsets from given transactional data collected by the 
companies. It is a very effective algorithm which uses the Apriori knowledge that non-empty 
subsets of frequent item sets must also be frequent. This Apriori property is used to 
effectively reduce the search space for itemsets in each iteration. It needs k iterations to 
find k cardinality frequent itemsets and finally outputs strong rules from it which satisfy both 
the minimum user defined support and confidence. In every iteration, the algorithm needs 
the scan the entire database to find frequent k-itemset whose support is greater than 
minimum support defined. LI ET AL. [48] proposed a parallel Apriori Algorithm based on 
MapReduce. They found out that scanning the entire transactions database to find the 
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occurrences of k-itemset candidates and respectively their support is the most time-
consuming step in every iteration. Furthermore, the counting of occurrences of itemsets 
across the transactions is independent of each other. So this step can be parallelized using 
the MapReduce distributed computation. Map function basically counts the occurrences of 
the given itemset and reduce function sums up the counts outputted by all the mappers. 
Then the frequent item sets are generated whose support is more than minimum support. 


The experimental set up gave not so good results for smaller datasets. But the results  with 
respect to scale up, size up and speed up subsequently improved by using larger datasets. 
Consequently, their experiments demonstrated the fact that MapReduce data mining 
algorithms can give performance enhancements only when the data size is really big.


6.1.6 MapReduce ID3 Decision Tree 

The supervised methods of data mining tasks like classification are often represented and 
stored in the form of decision trees. ID3 (Iterative Dichotomiser 3) is one of the basic 
algorithms to build decision tree models. We will see MapReduce version of this algorithm 
which has been designed by PURDILA and PENTIUC [49]. Unlike original ID3, their algorithm 
can handle both continuous and discrete attributes. The algorithm has two distinct phases: 
decision tree building using training data and post-pruning using the test data. Both phases 
share the same architecture for MapReduce based distributed processing. In this 
architecture, there is a central controller which runs only on the master node and performs 
no data-intensive computations. The controller runs the process to build the decision tree 
and this process is controlled by a recursive ID3 function running on the controller. The task 
of calculating the class entropy, information gain for each attribute, the most common class 
for current dataset, the number of records processed, the splitting value (threshold) for each 
numeric attribute  is done by MapReduce jobs running in parallel on worker nodes. These 
values are sent back to the recursive function ID3 function running on the controller. They 
provide enough information to the ID3 function running on master node to choose the best 
split and its value for a particular node of the tree in construction. ID3 function uses four 
parameters to control the recursive construction of decision tree and they are as follows:


• Attributes: It is a list of attributes which can be used for splitting a node. 

• Input Path.:The HDFS location to read the files.

• Filters: list of <best split, corresponding value> tuples that have been calculated in the 

previous iterations. This is used to split the node using each value of the best attribute. 

• MostCommonClasses: Most common class labels found in the previous iteration.


In the beginning, the attribute list is set of all possible attributes in the training set. If there 
are elements in the attribute list, the controller dispatches a MapReduce job to find out the 
best split. Map and reduce tasks compute the class entropy, information gain for every 
attribute and the most common class labels. These values are communicated back to the 
controller. Then the controller propagates the construction of tree using these values in the 
following fashion:
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• If the class entropy is 0 (all patterns from current dataset belong to the same class) or no 
patterns were processed (all were excluded by the filters) the algorithm returns a new leaf 
node that is labeled with the most common class for current dataset. 


• Else, it chooses the attribute with maximum information gain and creates a new node. 

• The filters and attribute list are accordingly updated and broadcasted to all mappers in 

the next iteration. 

• Then, the ID3 function is called recursively for each value of best split attribute in case 

the best split attribute is categorical. In case the best split attribute is continuous, the ID3 
function is called only twice, once for values ≤ threshold value and once for values > 
threshold value. This threshold values was implicitly calculated earlier in best split 
computation step. Filters contain the best split attribute and its corresponding value 
which is used to split the datasets into the partitions in order to reduce the search space 
for calculating the nodes at lower depths of the tree.


• The terminating condition for the whole procedure is when the list of attributes is empty.


Their experimental set-up achieved a near linear scale-up. They attributed the success of 
their experiments to clever MapReduce decisions, for example, selecting the right split size  
of input data for MapReduce run-time and choosing the appropriate number of map and 
reduce slots. This ensured the proper utilisation of nodes in the cluster.


6.1.7 MapReduce C4.5 Decision Tree 

Now we will see another MapReduce implementation of a very popular decision tree 
learning data mining algorithm: C4.5 is basically an extension of the ID3 algorithm, both of 
them invented by J. ROSS QUINLAN. The operation of both algorithms is same but C4.5 can 
handle continuous attributes and missing values of attributes better and uses entropy gain 
ratio instead of pure entropy gain as in ID3 to eliminate the bias of selecting the attributes 
with many values or large range of continuous values.  Without going into the further details 
of C4.5, we will analyse the MapReduce version of this algorithm designed and 
implemented by DAI and JI [50]. For porting the traditional single machine C4.5 algorithm to 
MapReduce, they have designed appropriate data structures. These structures store the 
metadata information of the training dataset which helps in building the final decision tree 
and also provide a representation for the final tree constructed. The first data structure is an 
attribute table which stores the basic information about an attribute (represented as key of 
the table), such as row identifier for training tuples (row_id), domain of the attributes and the 
class labels of tuples. Count table stores the number of training tuples with a specific class 
label if split by a particular attribute and its value. Hash table which is the last data structure 
stores the link information between node_id (each node in a tree is represented by a 
node_id) and row_id and link between parent node (node_id) and it’s sub-node 
(subnode_id). Their approach was to divide the M attributes equally on N nodes. This is 
how the data is vertically (logically only) partitioned and it ensures the maximum localisation 
of data processing. In other words, they are actually parallelising the job of finding the best 
split. They have used four kinds of MapReduce jobs corresponding to each of the four 
stages in this algorithm: data preparation, selection, update and tree growing. The 
explanation of each phase is as following:
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• Data Preparation: This stage converts the raw data stored in HDFS into the three data 
structures mentioned above for further MapReduce processing. In this stage, map 
function transforms the training data tuples into the attribute table by using each 
attribute as key, row_id and class labels as values. To perform this aforementioned 
conversion, a map function is used to calculate the invert indexes of training data (which 
is viewed as a matrix) to calculate the attribute table. The input to the map function is a  
<key, value> pair where key is the row_id of each training row and value is the 
training row itself. The output of map is a <key,value> pair which is keyed by an 
attribute which gives information for every attribute, such as, the training tuples (row_id) 
that have those attributes and the class labels. Reduce function receives this output 
from the map function. It can simply apply count operation on map output to count the 
number of training tuples with a specific class label if they are split by a particular 
attribute. This forms the count table. So the output of map function is an attribute table 
and reduce function is a count table. However, the hash table is set to NULL initially.


• Selection: This stage selects the attribute that is the best split and its corresponding 
value. First step of this stage is a reduce function whose input is the output of the 
reduce function of the previous stage. It uses summation to compute the total number 
of training rows for a particular attribute. Next function is a map function which 
computes the information gain and split information for every attribute. The next 
function is a reduce function that computes the information gain ratio for each attribute. 
The attribute that yields the maximum information gain ratio is selected as the best 
attribute for splitting and the corresponding split information is selected as the split 
location or split value.


• Update: This stage updates the count table and the hash table. Map function reads the 
training rows from the attribute table whose keys are the best attribute calculated in 
previous step and calculates the counts of the class labels for the best attribute. Next 
map function computes the hash value of the best attribute so that the training rows 
with same class labels split into the same partition in the next step. This hash value of 
best attribute is assigned to the node_id. Next, it assigns the node_id to every row_id. 
This stage can be viewed as node creation step.


• Tree growing: The next iteration is repeated by following the same steps in selection and 
update stages as in previous iteration. This stage grows the tree by creating a sub-node 
of the parent node created in the previous iteration. It builds tree by creating linkage 
between the node created in the previous step and the node created in the current 
iteration. If the node_id for a particular row_id calculated in the current iteration is similar 
to the node_id of the previous iteration, it is outputted as a leaf node. Otherwise, a new 
subnode_id is created and assigned to the row_id.


• The whole process is a pipeline of jobs as described in four stages. Only data 
preparation MapReduce job is one time, the rest of the jobs are iterative in nature which 
terminates when all the node_id become leaf nodes.


Their experimental set up comprised of 4 machines and they used 6 attributes. Therefore, 1 
attribute on is assigned to each of first 3 machines and 3 attributes are assigned on the last 
one. First, they compared their algorithm with the original C4.5 algorithm. Interestingly, their 
algorithm outperformed the original C4.5 algorithm even on single node. This was attributed 
to the dual core machines they have used which provides some parallelism using 
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MapReduce algorithm. Then, they measured the characteristics of their algorithm using 
single node. The results showed that the speedup of MapReduce C4.5 algorithm in single 
node environment was considerably increased when the data size was increased. In the 
last, they evaluated the behaviour of their algorithm in a truly parallel distributed 
environment consisting of 4 nodes. In parallel distributed environment, the execution times 
decreased as the number of nodes were added. The scale-up and speed-up of the system 
improved when the size of the dataset was increased. For smaller datasets, the 
performance results were rather poor. Their experiment clearly shows that a properly 
designed MapReduce decision tree learning algorithm can be effective for large-scale data 
only. In other words, MapReduce is advantageous when there are long-running jobs.


6.1.8 MapReduce Decision Tree Ensembles (PLANET) 

Classification and regression tree learning is one of the most important data mining 
operations done at Google Inc. PLANET, developed by PANDA, HERBACH, BASU, and 
BAYARDO, is an attempt at Google to properly understand the application of MapReduce 
distributed framework to one of the most popular data mining algorithm and also explore 
the underlying challenges and bottlenecks and find their respective workarounds [51]. 
PLANET stands for “Parallel Learner for Assembling Numerous Ensemble Trees”.


We will give a brief description about architecture and working of PLANET. It is an 
oversimplified MapReduce decision tree learning algorithm for small decision trees that 
must fit into memory of single machine. But the advantage of this implementation is that it 
is designed to handle large-scale training dataset. Therefore, size of training dataset is not a 
limitation for this implementation. However, it is limited to regression trees with binary splits 
only and it can use only variance as a impurity measure. They argue that the main objective 
of their work is to derive and develop general architectural principles of MapReduce based 
decision tree learning algorithms so that they can be later utilised to extend this algorithm 
to other options like classification trees, n-ary splits and other impurity measures such as 
gini and entropy. 


PLANET achieves parallelism by breaking the large-scale datasets across many processing 
units. PLANET builds a breadth-first tree which grows one level in every iteration. The 
central component of PLANET is a Controller which runs on the master node. It controls the 
entire process for constructing a decision tree model. For coordinating this process, it uses 
a special data structure called as ModelFile. This data structure stores the current state of 
the tree which has been constructed so far. By inspecting the ModelFile, controller 
determines which nodes and split predicates to consider. Suppose, the ModelFile contains 
the information that the tree has been built until level k, then the master considers all the 
nodes in the level k+1 and the set of remaining attributes and its values that can be 
considered for splitting those nodes at k+1 level of the tree. The process of decision tree 
building is described in the following steps:


• Initialisation phase. The first stage of this implementation is a initialisation phase which is 
implemented using map and reduce jobs. This phase has only one kind of MapReduce 
job called as Initialisation MapReduce job. This job pre-identifies all the values for each 
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attribute which need to be considered later for splits. In other words, it calculates the 
attribute metadata such attribute domain of each attribute. For continuous attributes, it 
computes an approximate equi-depth histogram and uses the boundary points of the 
histogram as split locations. For categorical attributes, it identifies the whole domain of 
each attribute by identifying each distinct categorical value that were found in all data 
instances. This task of pre-computing the metadata of each attribute is executed in a 
parallel distributed fashion on a number of nodes using the MapReduce job mentioned 
earlier in this paragraph. This kind of metadata information about attributes is stored in 
an attribute file which is later loaded in the memory for MapReduce tasks of the 
succeeding stage. The initialisation stage runs only one and is followed by a stage which 
builds the decision tree. This stage is iterative in nature and uses the attribute metadata 
information given by the initialisation phase. 

• Decision tree construction phase. This phase uses MapReduce jobs to calculate the best 
splits. After the master has decided for which nodes split predicates to compute, it sends 
the attribute file and the model file to all mappers on worker nodes.  The mapper function 
first scans the whole partition of dataset that is residing on the same node and uses the 
ModelFile to determine if a particular training tuple is a part of input dataset. After 
determining the input dataset to a particular node, mapper needs to evaluate the 
possible splits for the node and select the best split for the partition of data residing on 
the node. Each Mapper runs on a subset of data and computes partial statistics for all 
splits to be considered. Mappers output the result where key is the best split that the 
mapper computes for the particular subset of data residing on the same node and values 
are the statistical information when that best split is used on the same subset of data. 
Reducers combine map outputs and compute the best split that it has seen for the 
particular node. Each reducer informs the controller about following information: (1) the 
quality of the best split and its value, (2) the average value predictions or class labels in 
the left and right branches, and (3) the number of training records in the left and right 
branches. The Controller takes the splits produced by all the reducers and finds the best 
split for the current node, then updates the ModelFile with this information. This process 
is repeated until there are no splits to consider. They have also introduced one very 
important optimisation that the algorithm switches to the original algorithm for small-
scale data where training tuples are kept in memory over the iterations. In PLANET, as 
tree induction progresses, the size of the input dataset for many nodes becomes small 
enough to fit in memory. In that case, subtrees below those nodes are built by keeping 
the training tuples in the memory as opposed to scanning the database to find the input 
dataset. 

Here we have seen one of the implementations of simple decision tree induction on 
MapReduce framework. But they also found out that their algorithm often suffers from the 
problem of overfitting. Therefore, they build an ensemble of trees in parallel. Each of these 
trees are built exactly in the same manner explained above. Boosting and bagging is 
applied to this ensemble of trees which speeds up the decision tree building process. 
Additionally, they also remove the problem of overfitting eliminating the need of any post-
pruning. Since building tree is a iterative process, they ran into various issues which 
significantly affected the performance and speed up negatively. They observed that every 
set-up for MapReduce task took significant time. So they used forward scheduling to 
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handle this problem. Forward scheduling means Controller performs the set-up for next 
MapReduce task when a MapReduce task is currently running rather than waiting for the 
current MapReduce task to finish. Another significant latency in map jobs was introduced 
by traversing the tree model to determine if the records are candidate for the test on the 
node being expanded. They used fingerprinting to solve this issue. They also introduced 
some reliability measures to the controller because it was a single point of failure. Controller 
checkpoints the growth of the tree on a permanent storage. In case the controller fails, it 
can be restarted from the last tree model that checkpoint by the failed controller. The 
experimental results shows that the training time increases with the increase in the training 
data size but significantly decreases by adding more machines. They also concluded that 
optimal number of workers for their experimental set up is under 400 machines.


In this sub-section, we have summarised the effectiveness of MapReduce for data mining 
algorithms. Most of these algorithms achieve close to linear speed up (always lower than 
linear exactly) against number of nodes and good scale up and size up against various data 
sizes. But there are several bottlenecks and limitations of this software framework that 
compelled the programmers developing distributed data mining algorithms to come up with 
many work-arounds and optimisations tailored for their particular implementation.


6.2 MapReduce Based Data Mining Tools 

6.2.1 Apache Mahout 

Apache Mahout is a project of Apache Software Foundation to develop open source 
implementations of highly scalable data-mining algorithms [52]. It is a scalable machine 
learning and data mining open-source software based mainly in Hadoop MapReduce. For 
years, this was the only tool that provided that provided ready to use data mining tool 
based on Hadoop. But the development team of Mahout has stopped support for Hadoop 
MapReduce based data mining tools in favour of developing tools based on Apache Spark. 
The current version is still based on Hadoop which has implementations of a wide range of 
machine learning and data mining algorithms: clustering, classification, collaborative 
filtering and frequent pattern mining on top of distributed and scalable Apache Hadoop 
platforms. The scalability of Mahout has 3 dimensions:


	 •	 Scalable to large data-sets because it uses scalable and distributed systems.

	 •	 Scalable for individual business case as it uses friendly Apache license.

	 •	 Scalable developer and contributor community which is responsive  
	 	 and interactive.


In order to use Mahout with Hadoop, Mahout needs to be installed only on the master node 
of Hadoop cluster. Mahout works by submitting the data mining job as a Hadoop jar to the 
Master node in Hadoop environment. Mahout can also be used on a single machine without 
MapReduce. In data mining field, Mahout is the only most complete suite that contained 
most of the best-in-class data mining algorithms based on Hadoop MapReduce. Table 2 
gives an exhaustive list of all algorithms implemented in Apache Mahout. Detailed 
discussion of implementations of each algorithm in Mahout is not required for our work.
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Table 2. List of  Hadoop MapReduce based data mining algorithms in Apache Mahout 

After going through the full documentation of Mahout, we have come into several 
interesting observations about this project. We found that this machine learning software 
tool is relatively strong in unsupervised learning, offering a number of clustering algorithms 
and others. But Mahout’s supervised learning algorithms, however, are weak. There is only 
one decision tree algorithm supported and it have several issues regarding the memory 
limitations of tree. We found two major criticisms of Mahout project, which we will explain: 
the project itself is a mess and Mahout’s integration into MapReduce is suitable only for 
high latency analytics. First, Mahout certainly does seem eclectic in the way the different 
data mining algorithms are implemented. Some of the algorithms are distributed, others are 
single-threaded, in turn others are simply imported from other projects. Many algorithms 
are underdeveloped, unsupported or both. The project is constantly in a cleanup phase as it 
upgrades its version: a number of underused and unsupported algorithms are continuously 
deprecated and removed. Secondly, the “Slow analytics” solution provided by Mahout is 
not acceptable in the real world. The issue here is that machine learning performance 
suffers from MapReduce’s need to persist intermediate results after each pass through the 
data; for competitive performance, iterative algorithms require an in-memory approach. For 
this reason, they are going to develop algorithms based on Apache Spark. So, currently the 
project is in experimental status. MICHAEL SEVILLA shares his experiences using the Mahout 
library for data mining purposes [53]. The results are not very exciting. He found out that 
Mahout is not so intuitive and does not provide easy-to-use and out-of-box solutions for 
parallelising data mining on hadoop clusters. The abysmal scaling performance from his 
experimental set up was because of the poor understanding of the underlying data mining 
algorithms. There were several bugs which users of Mahout need to always track in their 
bugs and issues webpages. He found out that Mahout did not suffer from the problem of 
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Data mining categories Data mining algorithms

Collaborative filtering/frequent pattern mining 1. user-based recommender

2. item-based recommender

3. recommendations based on Alternating 
Least Squares

Classification 1. Naive Bayes Classifier

2. Complementary Naive Bayes classifier

3. Random Forest Classifier

Clustering 1. K-means clustering

2. Canopy clustering

3. Fuzzy k-means clustering

4. Streaming k-means clustering

5. Spectral clustering



poor scalability but rather improper tuning of parameters could give poor performance. So 
in order to get maximum performance out of Mahout, data scientists must have the proper 
understanding of both input data and the underlying algorithms implemented in Mahout. 


In April 2014, Apache Mahout project announced that they will stop developing data mining 
algorithms based on Hadoop MapReduce. After releasing Mahout version 0.9, the team 
decided to begin an aggressive retool using Apache Spark. So, we can see that even the 
most complete suite of data mining algorithms based on Hadoop MapReduce are moving 
to a more modern and more efficient data-processing model. One could argue that the 
Mahout community had to embrace Spark, at least, if it wanted to remain relevant. This was 
one of the strongest arguments for us to select Apache Spark for our data mining tasks. 
This is a clear indication that even big open-source projects that aim to develop distributed 
and scalable data mining algorithms are abandoning Hadoop MapReduce for future 
development.  


6.2.2 WEKA 

WEKA (Waikato Environment for Knowledge Analysis) is a popular suite of machine learning 
software written in Java, developed at the University of Waikato, New Zealand. WEKA is 
free software available under the GNU General Public License [54]. It contains a collection 
of visualisation tools and algorithms for data analysis and mining together with graphical 
user interfaces. WEKA is mainly a tool for use on a single machine. The development team 
has attempted to develop some scalable data mining packages for large-scale data. There 
are some development efforts to provide some data mining functionality using Hadoop 
MapReduce. Without delving into the depths of this software, we will analyse this 
MapReduce based data mining functionality provided by WEKA in form of extension 
packages which is collectively called as distributed weka [55]. The version 3.7.2 of WEKA 
contains two packages for this purpose: distributedWekaBase which provides base "map" 
and "reduce" tasks that are not tied to any specific distributed platform and 
distributedWekaHadoop which provides Hadoop-specific wrappers and functions for the 
aforementioned map and reduce base tasks. Distributed Weka package for WEKA defines  
various Mappers and Reducers that can be directly used in user’s programs for executing 
data mining tasks inside of Hadoop MapReduce. But there are no documentations and API 
specifications about Hadoop MapReduce data mining algorithms implemented in WEKA. 
On the top of that, the number of data mining algorithms that have been implemented using 
Hadoop MapReduce is abysmally low. The current version of WEKA has only 
implementation for classification or regression type of data mining algorithms based on 
MapReduce. There are only logistic regression and naive-bayes based classification 
algorithms. There are no decision tree based classification and regression data mining 
algorithms. The implementation of clustering and association rule discovery data mining 
practices are still missing or are under development. But the project team has given clear 
indications that they will invest their development efforts in developing distributed scalable 
data mining algorithms using Apache Spark. 
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6.3 Conclusion 

The outcome of this chapter is that although MapReduce is a mature technology and a lot 
of large-scale data processing is still done using this technology, there is a rather  
disappointing number of MapReduce data mining implementations in scientific literature. 
This scenario is even worse when we look for MapReduce based data mining tools. 
Moreover, the development teams that involved in scalable data mining projects for large-
scale data are more interested in investing and focussing their development resources to 
implement distributed data mining algorithms based on Apache Spark because its in-
memory computations is clearly advantageous for iterative date mining algorithms. This 
extensive literature review helped us analyse to various alternatives for scalable and 
distributed data mining algorithms that are capable of processing large-scale data. 


When we summarise the results of all experiments that has been done in section 6.1, we 
can conclude that MapReduce makes sense when the data size is massive. All the 
experiments pinpointed the same trend that increasing the data size gave better speed-up 
and scale-up. But for all data sizes, the scale-up was always much less than 1 and speed 
up approached 1 when the data size was increased by tremendous amount. Increasing the 
data size ensured that the length of the running job was much larger as compared to the 
MapReduce overhead. The insignificant MapReduce overhead in case of longer-running 
jobs improved the speed-up. The performance benefits from Hadoop MapReduce are 
clearly not enough for data mining tasks when we desire output in reasonable amount of 
time. Therefore, the current trend in data mining field is to explore better distributed 
execution platforms that are more suited for data mining and analytics. But Hadoop 
MapReduce is a mature technology and its use case is justified when stability is desired for 
our applications. 


Now, we have gathered a lot of strong arguments that favours using Apache Spark’s 
distributed processing engine for scaling out data mining algorithms. After doing extensive 
research about experiments that have been done using Apache Spark, we could not find 
any experiments that demonstrate the behaviour and performance of Spark for decision 
tree based classification and regression analysis of real-world datasets. This particular kind 
of data mining algorithm has been implemented in Spark’s MLlib. We will evaluate the 
performance and behaviour of this implementation in forthcoming chapters. 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7 Experimental Set-Up

In this section, we give a detailed description of the experimental set-up, the various 
configuration parameters tuning and the data retrieval process for performing decision tree  
based classification and regression analysis using the Apache Spark’s MLlib. Our 
experiments are conducted using Apache Spark’s distributed computation model which 
uses the Resource Manager of Hadoop YARN for negotiating the cluster resources and the 
underlying HDFS for storing and accessing data in distributed manner. Therefore, all Spark 
applications have dependencies on Hadoop YARN client, HDFS and on Spark core 
execution services. All the Spark applications that use MLlib APIs must also specify 
dependency on Spark MLlib module. Although spark applications can be developed using 
Java, Scala or Python, we have chosen to use Java as a programming language for our 
applications development. In order to submit the standalone java programs (not using 
Spark’s interactive distributed Scala shell) to Spark execution framework, we need to create 
an assembly jar which packages the compiled Java application with all the dependencies. 
We have used Apache Maven to create jar files. Maven is a very popular Java project 
building tool. All applications are run on “Spark on YARN” in “client mode”. We have used 
Java version 1.8.0_25, Spark version 1.1.0 and YARN version 2.4.0 for all our experiments. 
This section is unusually long because we need to discuss the experimental set-up 
specifics of two technologies: Spark and YARN. We also discuss the data preparation in 
this section as it is a very essential and time-consuming step for general data mining tasks 
which becomes even more complicated in case of large-scale data preparation.


First of all, we need to set up the underlying cluster. As such, it is very essential to have an 
overview of the YARN cluster and the underlying HDFS. This is represented in Figure 18 
below. Our infrastructure consists of a cluster of six nodes: dmcl0, dmcl1, dmcl2, dmcl3, 
dmcl4 and dmcl5. Each node has 4 cores, 8 GB RAM and 50 GB of disk storage. All of 
these virtual machines are running CentOS 6.5. Nodes dmcl0-5 are locally connected by a 
software-switch running on the VM host. Hence, the bandwidth will depend on the overall 
load of the host. In Figure 18, we see also that dmcl1 acts as master node, dmcl2 - 5 act as 
slave nodes and dmcl0 acts as secondary master node.


Figure 18. YARN Cluster showing number of  nodes, their respective roles and the network topology  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The next step is to calculate and set the values of various configuration parameters for 
YARN and HDFS. After determining the necessary configuration values, they are set with 
the help of a group of configurations files provided by Hadoop: conf-site.xml, hdfs-site.xml, 
yarn-site.xml and mapred-site.xml. There is a bewildering number of configuration 
parameters when one wants to deploy a YARN cluster. But only few of them are worth 
mentioning. Considering that we have a rather small cluster with limited number of cores, 
disk space and memory, we need to carefully choose some important configurations and 
cleverly calculate their values. In other words, we have a cluster of low-end machines. This 
is a very important characteristic of our cluster which we need to keep in mind and which 
we evaluate to find out Spark's concrete hardware requirements. It is a popular fact that 
Hadoop was designed for low-end commodity servers but there is no general 
documentation about such requirements for Spark. 


Due to the small nature of the cluster, we have reduced the default size of HDFS blocks 
from 128 MB to 64 MB. There are two reasons for this decision: First, we have to accept the 
fact that we cannot process very large amounts of data within a reasonable amount of time 
on such a small cluster. This is specially true for decision tree classification and regression 
algorithms as they are multi-stage applications. Secondly, reducing the block size ensures 
maximum parallelization even for smaller amounts of data because spark calculates the 
number of tasks from the total number of blocks in any HDFS data. Typically, as the 
Hadoop YARN and Spark documentation says, the total number of tasks should be more 
than the maximum number of cores (which is 16 in our cluster) for optimal cluster utilisation. 
For our experiments, as we will see later, the minimum size of input data is 2 GB which is 
when divided by 16 gives us a value of 64 MB. This parameter was not set to a lower value 
because for larger data sizes, it would create very large number of blocks. Henceforth, data 
seek times for blocks would become very high, disk read speeds would deteriorate and it 
would affect the performance of algorithms for larger data sizes negatively. The default 
replication factor for blocks was left at the default level of 3.


There are other configuration parameters specific to spark environment which needs to be 
taken care of in order to avoid Java heap space memory problems while ensuring maximum 
parallelization of tasks and in-memory computations at the same time. Spark configuration 
parameters need to be closely controlled due to the limited amount of RAM we have (only 8 
GB). For calculating the values of those parameters, we should carefully inspect and 
understand how Spark works on top of a YARN cluster in a client mode. This makes it 
necessary to have an overview of all the processes and daemons running on each node 
and their respective memory usage. This is graphically depicted in Figure 19. There are 3 
kinds of nodes: master, secondary master and slaves. They have different sets of daemons 
and processes running on them. There are four yarn daemons running on the master node: 
Resource Manager, Name Node, Hadoop Job-History Server and Hadoop Proxy Server. The 
secondary master has only one YARN daemon: Secondary Name Node. Slaves have two 
YARN daemons: Node Manager and Data Node. Each YARN daemon on master, secondary 
master and slaves requires 1GB of memory. Therefore, maximum memory that can be 
allocated to YARN containers on each slave node is left to 6 GB. YARN container scheduler 
is configured to allocate containers in multiple of 512 MB up-to a maximum of 6 GB. Spark 
executors are just containers which has been requested by a Spark application. 
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Figure 19. An overview of  YARN daemons and Spark processes running on different nodes.  
. 

One of the most tedious job in the process of configuring a Spark application is to configure 
the exact amount of memory for Spark executors and driver. Figure 20 shows a very 
systematic way to calculate the value for a maximum amount of memory that can be 
allocated to each executor in our cluster. Since each slave node has four cores, four 
containers may run on each node at the maximum in a truly parallel manner. At first, it 
seems that we can specify a maximum of 1.5 GB to each executor. In that case, we found 
out that the number of executors is less than four and one of the cores will go idle on each 
node. This is due to the fact that when we specify spark executor or driver memory, this 
amount of memory refers only to the amount of memory that will be requested by Spark 
application to store objects. Here, objects refer to Java RDDs which are constructed by 
transforming the training tuples when a Spark application reads the training dataset stored 
on HDFS. Such RDDs will typically reside in Java heap space and will also be subject to 
Garbage collection of JVM. In addition to the memory requested for each executor, there is 
a “Spark on YARN” memory overhead per executor which refers to off-heap memory to 
store serialised objects (which are stored outside the Java heap space and are also not 
subject to Garbage Collection). This memory overhead is used to store or cache stuff like 
JVM overheads, interned strings, other native overheads, etc. Spark run-time adds this 
“Spark on YARN” memory overhead value to the executor memory value to determine the 
size of the containers that it will request from the YARN Resource Manager. The Spark on 
YARN memory overhead can have a minimum value of 384 MB. We have increased this 
value to 512 MB to avoid out-of-memory problems. Therefore, each spark executor 
memory is configured to 1 GB. In Figure 20, we can also see that the amount of executor 
memory space is further divided into 2 regions: 60% of this memory is used to cache and 
keep old RDDs and the rest 40% is used for storing new RDDs which are created during 
the task execution (40%) of every iteration. The Garbage Collection occurs first on the part 
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of executor memory where new objects are created and stored (the 40% part). Why it is 
designed like this? If the application revisits the same dataset in every iteration there is no 
need for Garbage collection and to create new RDDs in each iteration. But this is not the 
typical case in decision tree learning algorithms as the input dataset to compute each node 
in each iteration is different. Therefore, we need a separate cache to store new RDDs where 
Garbage collection occurs to evict the old RDDs  to make room for new RDDs.  

 

Figure 20. Memory is allocation to each executor on a node. 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7.1 Data Preparation 

The current version Spark’s MLlib supports three kinds of data structures to represent the 
RDDs of the input training and testing data: Matrix, Labeled point or Vector form [56]. For 
supervised learning algorithms like decision tree classification, the only supported data 
structure is a Labeled Point. We know that the training data for classification and regression 
algorithms should be a labelled training data which contains one column as a label 
(response) and the rest of the columns represent the feature vector used to predict the 
corresponding label. The Labeled Point refers actually to the RDDs which is obtained by 
reading such labelled training data from a source file. In Labeled Point RDDs, a double is 
used to store a label so that it can be used for both classification and regression algorithms. 
Figure 21 represents the Labeled point example for a multi-class classification.


Figure 21. Labeled points for multi-class classification (an example). 

For data preparation, we need to discuss the specific formats of source file that are 
supported by Apache Spark’s MLlib. It actually supports both CSV and LIBSVM format for 
input data file. If the input data is in CSV format, MLlib reads training tuples row by row and 
transform them into a Labeled point RDD which has two parts: a label and a feature. We 
need to specify which column is a label, which columns form feature vector and what 
delimiters is used (in this case always a comma). However, the internal representation of a 
Labeled point RDD is exactly the same as LIBSVM format. Therefore, MLlib supports 
reading data directly from files in LIBSVM format where users do not need to specify the 
procedure to convert the input data into Labeled Point. LIBSVM format is optimised for 
both sparse and dense data while CSV format is not optimised for sparse data. The 
conversion of data in CSV format to a Labeled Point is currently supported only in Scala API 
but not in Java API. Therefore, Spark’s MLlib Java applications for decision tree learning 
expects the input data only in a LIBSVM format and not in a CSV format. Thus, we have 
used input data files in LIBSVM format rather than CSV format. LIBSVM uses the so called 
"sparse" format where zero values do not need to be stored. An example for LIBSVM 
format training input for the corresponding CSV training input is shown in Figure 22. The 
first value in LIBSVM format data is defined to be a label. Therefore, MLlib classification and 
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label/response index 0 index 1 index k index n-1

1 33,5 45,0 …………………….. 90,0

0 34,0 50,9 …………………… 99,7

3 22,9 51,2 …………………. 100,8

2 34,9 89,0 ………………… 110,9

label/response
for multi-class
classification

Feature vector of dimension n



regression algorithms automatically know the label and the feature vector and they don’t 
need to calculate them while loading LIBSVM data into memory. This saves valuable 
computation time as well. The only drawback of this format is that it currently supports only 
numerical data.


CSV  format: comma separated zero and non-zero values

CSV  input data: 9,1,0,8,97,0,0,0,0,12

LIBSVM format: label <index 1>:value1 <index2>:value2…..

LIBSVM input data: 9  1: 1  3: 8  4: 97 9: 12

Figure 22. An example for LIBSVM format for corresponding CSV format 

Very fortunately, several tools are available that convert CSV format files to LIBSVM format 
files, for example, MATLAB [57] (proprietary) and Phraug [58] (open-source python scripts). 
We have used the Phraug tool to pre-process large files line by line. In addition to 
converting files from CSV to LIBSVM, we have used other functions of this tool, for 
example, to count lines in a file and to split a file into a number of smaller files to create 
data with sufficiently varying characteristics. 


Now we will see the procedure to retrieve, transform and augment the training data which 
serve as input for programs that perform decision trees learning. For regression, we 
selected two kinds of datasets. We call them “Blog” data and “YearPrediction” data. The 
dimension or the number of features in YearPrediction data is 90 and in Blog data it is 281. 
For our experiments, we have used all the 90 features of YearPrediction data and all the 281 
features of Blog data. YearPrediction data is obtained from an online repository [59] which 
hosts some properly labelled training data-sets in the LIBSVM format for classification and 
regression mining tasks. The original size of YearPrediction data is 567 MB. Since the size 
of data-set is not large enough, we have use the tools from Phraug to break the file into 
large number of small files. We create files of required sizes by randomly concatenating 
those smaller files. This ensured that training tuples are randomly distributed and their 
duplication is also randomised in the output files of desired sizes. Since the computation 
time for training the decision tree models depends on number of training rows and not on 
the size of the file, we have used the Phraug tool to count the number of training instances 
in different sizes of file. Table 3 shows the exact number of training instances in varying 
sizes of the YearPrediction data file (exact sizes in GB).
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Table 3. Number of  training instances in 2,4 and 8 GB of  YearPrediction data 

Blog data is obtained from another online repository [60] but it stores data in CSV format. 
So we used phraug tool to convert the format of data from CSV to LIBSVM and then we 
apply same procedures as in YearPrediction data to create files of desirable sizes. The 
original size of Blog data is 72 MB.


Table 4. Number of  training instances in 2,4 and 8 GB of  Blog data 

For Binary classification, we have used another interesting data source: “Pascal Large 
Scale Learning Challenge” [61][62]. This repository provides various large-scale data files 
which are named as: alpha, beta, delta, dna, epsilon, fd, gamma, zeta ocr and webspam. 
We selected the alpha data file and therefore, we call this data as “Alpha”. This is the only 
true large-scale properly labelled data (original size is 3,7 GB) that we found for 
classification mining tasks. The dimension of features in this data 500. We have used all 
features of this dataset. The original data comes in CSV format, but the online repository 
also provides an accompanying python tool which can be used to specify exact number of 
training tuples that can be extracted in LIBSVM format. The original file contains 500.000 
training instances and we apply this conversion tool on this file. Then, we use the Phraug 
tool to break the converted large file into a large number of smaller files which are again 
merged to form files of desired sizes. This was clearly the best and the easiest way to 
create large-scale which did not require the duplication of training instances. But training 
data for multi-class classification or regression is unfortunately not available.
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YearPrediction data

Data Size (GB) No of training instances

2 1704860

4 3409720

8 6819440

Blog Data

Data Size  (GB) number of training instances

2 5179877

4 10357049

8 20714098



Table 5. Number of  training instances in 2,4 and 8 GB of  Alpha data 

For multi-class classification, we have used a rather high dimension data obtained from 
Mnist database for handwritten digits [63]. We have directly used the LIBSVM format of the 
same data stored at [59]. We call this data as “Mnist" data. The original size of this data file 
is 69,4 MB. It has a maximum dimension of 780. But we have used 100, 150 and 200 
dimensions for our experiments in order to study the impact of number of features on the 
computation time. We could not use higher dimensions due to memory restrictions. We 
have applied similar procedure as in YearPrediction data to consolidate the size of the files 
to desired values.


Table 6. Number of  training instances in 2,4 and 8 GB of  Mnist data 

The last step is to discuss some important decisions pertaining to the data mining 
algorithms implementations in Apache Spark’s MLlib which we have used for our 
experiments. MLlib decision tree learning algorithms support both discrete and continuous 
values for features. But in our experiments, we have assumed that all features have 
continuous values for the sake of simplicity. To extract categorical features information, we 
will need to do a lot of pre-processing for the input data and this is particularly very difficult 
and time consuming for large-scale data. Additionally, it does not gives any significant 
advantage for our work because MLlib decision tree learning algorithms internally 
discretises the continuous features into discrete features by binning the features as 
described in section 5.4. We viewed extracting categorical features information in a pre-
processing step also as a deviation from the main focus of our work. 
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Mnist Data

Data Size (GB) number of training instances

2 1800000

4 3600000

8 7200000

Alpha Data

Data Size (GB) number of training instances

2 292278

4 583221

8 1166442



It is also important to identify different stages in all three MLlib’s decision tree learning 
algorithms. Later, in our experimental results, we will see that we have assigned certain 
names for those stages: Initial Spark setup, Read data, Read data & Count labels, Train 
Model and Evaluate Model. We need to understand what those terms stand for. Figure 23 
(a), (b) and (c) respectively depicts the various stages in decision tree learning based 
regression, binary classification and multi-class classification algorithms. For all three 
algorithms, the first stage is called Initial Spark set up. In this stage, Spark environment-
specific configurations for a spark application is set up and the required number of 
executors are requested from the Resource Manager. The second stage is called Read data 
whose responsibility is to load as much data as possible into memory. This is done by 
calling a spark action which loads the LIBSVM data file. But, as we can see in Figure 23 (c), 
the loading of LIBSVM data becomes a lazy transformation rather than an action. Spark’s 
MLlib API specifies that when we specify the number of features that we want to use for 
data mining, then the loading of LIBSVM data becomes a lazy transformation and is 
delayed until first action is performed. In Figure 23 (c), we can also see that the first action 
for multi-class classification is to count the number of target labels. This implies that the 
loading LIBSVM data is delayed until counting of labels is required. Therefore, the stage to 
count the labels includes the time for caching the LIBSVM data and the time for counting 
the labels. That’s why, the second stage in mutli-class classification is called Read data & 
Count labels. As we can see in Figure 23 (b), that there is no operation for counting the 
labels because we know beforehand that there are only two target labels for binary 
classification. Third stage is called Train model. This stage actually builds the decision tree 
model for classification and regression mining. This stage requires a lot of iterations to 
construct a decision tree. The number of iterations depends on maximum depth of tree. 
Time taken by this stage is most interesting for our work. As we can see in figure 23 (a), that 
this stage also performs the counting of labels before it performs the decision tree 
induction. The last stage is to evaluate the output model from train phase by calculating the 
mean square error of trained model against a testing data. Here, we use the training data as 
testing data. 

	 	 


 	 


�67



	 

	 (a)         (b)     (c)


Figure 23. Stages in decision tree learning for regression and binary classification in MLlib 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8 Experiment Results And Evaluation

In this section, we evaluate the performance of decision tree classification and regression 
algorithms implemented in Spark’s MLlib for large-scale data. We also analyse their run-
time behaviour and its characteristics. We compare the time to train decision model by 
varying the number of nodes and by varying the data size. Number of nodes actually refer 
to number of worker nodes in our experimental set-up. The performance evaluation is also 
done by calculating speed-up and scale-up. We perform experiments by using 1 master 
node and 1, 2 and 4 slave nodes. In order to properly measure the speed-up and scale-up, 
we have taken 2, 4 and 8 GB data which are the exact multiples of the node numbers.

 

Speed-up factor demonstrates how much faster an algorithm is when it is run on more than 
one node. To measure the speed-up, we keep the dataset constant and increase the 
number of nodes in the system. A perfect parallel algorithm demonstrates a linear or an 
ideal speed-up. It is obtained when the system with p-times the number of nodes yields a 
speed-up of p. However, the linear speed-up is difficult to achieve because the 
communication and other overhead increases as the size of the cluster grows.  


Scale-up evaluates the ability of the algorithm to grow both the number of nodes and the 
dataset size. It is defined as the ability of a p-times larger system to process a p-times 
larger dataset in the same run-time as the original system. For measuring the scale-up, 
since there are 1, 2 and 4 nodes, we need 2, 4 and 8 GB data. Scale-up is measured by 
increasing the data size and the number of nodes by same factor at the same time. 


Before discussing the results of all three algorithm implementations, we need to understand 
some factors that will influence the run-time. The most obvious factor is network and 
communication overhead which increases when we increase the number of nodes. More 
number of node implies that there is more shuffling of intermediate data between map and 
reduce tasks. There are some factors that are more specific for decision tree learning based 
classification and regression algorithms. One of those factors that we need to consider is 
the dimension of features. We perform some experiments to show the effect of number of 
features on the run-time of training models. There are some factors that are even more 
specific to the Apache Spark’s MLlib implementation of decision tree learning algorithms. 
As we know from section 5.4 that MLlib implementations of decision tree learners actually 
discretises the continuous features by binning them, the user specified maxBins parameter  
which specifies the maximum graininess that is used for split decisions also affect the 
computation times and the communication overhead. We also attempt to demonstrate the 
effect of maxBins parameter on run-time by performing appropriate experiments. 


For all experiments, we repeat the same experiment five times and then we use minimum, 
average and maximum values for fine tuning the presentation of the results. We also specify 
the maximum depth of tree to be 6 because higher values of tree depths were giving out-of-
memory errors. Such errors finally led to the complete halt of the programs without finishing 
the execution. In this section, we will present the results of our experiments by using 
several graphs and pie charts that will demonstrate the behaviour and performance of all 
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decision tree learning algorithms of MLlib that we have used for our experiments. We have 
organised this section by assigning one sub-section to each dataset.


8.1 Initial experiments 

After performing rigorous initial experiments with various datasets having different 
dimensions and maximum number of bins, we found out that we can build a tree of 
maximum depth of 6. Since, spark uses in-memory computations, building tree of more 
depth threw out-of-memory errors in most cases.

In the beginning, when we started performing our experiments, we found out that Spark 
run-time was throwing very often out-of-memory errors. We tried all kinds of optimisations 
suggested by Spark online guide but of no avail. Therefore, we performed some initial 
experiments to find out the cause of this problem. This problem was mainly due to the 
Garbage Collection mechanisms during the task execution. As we know that Spark 
performs in-memory computations, it reserves 60% of the executor memory for storing old 
RDDs and 40% for storing new RDDs created during particular stage execution. It uses 
Garbage Collection to make space for the new RDDs in the same fashion as JVM organises 
its own heap [65]. Normally, when decision tree construction reaches lower levels of the 
maximum specified depth, a lot of new RDDs are produced which causes the Garbage 
Collection mechanisms to kick in too often. As we know that garbage collections introduce 
intermediate pauses, this can interfere with task working memory. The pause time for each 
Garbage Collection process is proportional to the number of Java objects. The garbage 
collector will throw an out-of-memory error if too much time is being spent in garbage 
collection: if more than 98% of the total time is spent in garbage collection and less than 
2% of the heap is recovered, an out-of-memory error will be thrown. We found out that the 
programs were throwing out-of-memory errors at lower depths of tree which implies that 
garbage collection becomes more prominent at lower depths of tree. Again after performing 
lot of initial experiments, we found out that the rate of churning in of new java RDDs 
increases when the feature dimension and the maximum number of bins increase. Again, 
we found out this fact by increasing feature dimension and keeping the maximum number 
of bins constant. This led to the out-of-memory errors for the higher dimensions of feature. 
The same procedure was applied to the maxBins parameter and yielded out-of-memory 
errors for higher values of maxBins.


8.2 Experiment 1 With Alpha Data (Binary Classification)


In Experiment 1, we perform decision tree based binary classification using Alpha data. 
Since, we already know that the maximum depth of tree is 6 and the dimension of training 
data is 500, we only need to determine the value of one more parameter: maxBins. Since 
the dimension of the pascal data is very high, we fixed the value of maxBins to 25. When 
we increased the value of maxBins to 30,40 and 50, we found out that spark was throwing 
out-of-memory error at the lower depths of 6-depth tree for all data sizes. This led to lost 
executors problems and considerable time loss to recover the lost stages. The cause 
behind out-of-memory errors can be attributed to the fact that higher feature dimension and 
higher bin value led to higher memory requirements for histogram computations at lower 
level. So, we could not perform experiments with bin value 50 and this option was 
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eventually dropped. Of all the datasets that we have used for our experiments, this dataset 
has the lowest number of training instances for same volumes of data in GB. The MLlib 
documentation [64] says that the training time depends on the number of instances. For 
conciseness, we are referring to data sizes in GB rather than the number of instances. 
However, we can refer to tables in section 7 for information about the exact number of 
training instances in each dataset.


As mentioned before, the objective of this experiment is to measure the run-time for training 
decision tree model by varying the data size and the number of nodes. This is depicted by a 
number of graphs in Figure 24. We also find out the proportion of total time taken by 
different phases. This is depicted by various pie-charts in Figure 25. This gives a general 
idea about how the total computation time is distributed among various phases.


Figure 24 (a), (b) and (c) shows respectively the minimum, average and maximum time taken 
for training the decision tree models versus number of nodes for a specific data size. For 2 
GB data set, there was a considerable decrease in run-time when the number of nodes was 
increased from 1 to 2. This result was according to our expectations. This result can be 
explained by the arguments that increasing the number of nodes from 1 to 2 facilitated 
more main memory for caching the RDDs which enabled more in-memory computations. 
Moreover, there are more number of cores that can run computations in parallel. When the 
number of nodes was further increased from 2 to 4, we see some improvement in run-time 
as well but his improvement is rather small. This shows that 2 nodes were sufficient to 
cache 2 GB data in memory. This data set has the lowest number of training instances. The 
small improvement that was obtained was primarily due to parallel processing of data rather 
than increase in amount of cached RDDs. Moreover, when number of nodes is increased to 
4, the performance is dampened because there is more communication overhead for 
shuffle and sort of intermediate results of map and reduce which begins to dominate the 
small execution time. We conclude from the results that 2 nodes are rather optimal for 2 GB 
of Alpha data. For 4 GB data, we see better improvements in run-time when we increase 
the number of nodes from 1 to 2 and 2 to 4. By improvements, we mean an absolute 
amount of decrease in run time rather than the factor of decrease. For 8 GB data, the 
improvement in run-time is even more pronounced. Therefore, the amount of decrease in 
computation times definitely depends on the training time on 1 node for all data sets. 

Figure 24 (d), (e) and (f) shows respectively the minimum, average and maximum time taken 
for training the decision tree models versus different sizes of data while keeping the number  
of nodes constant. All the graphs in the second row of Figure 24 demonstrate that there is a 
considerable increase in training time when the data size is doubled or quadrupled. There is 
also a significant decrease in training time when the number of nodes are increased from 1 
to 2 to 4.


Figure 24 (g) demonstrates the speed-up of MLlib’s binary decision tree classifier. In sub-
section 6.1, we have seen that the decision tree learning algorithms based on Hadoop 
MapReduce yielded near-linear speed-up. Figure 24 (g) clearly shows that we have much 
better than close to linear speed-up for Apache Spark’s MLlib decision tree classifier for all 
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data sizes. As expected, we achieve super good speed-up for 2 (6,3 for 2 nodes and 7,6 for 
4 nodes) and 4 GB data (2,9 for 2 nodes and 8,1 for 4 nodes) because most of the data can 
fit in memory for in-memory processing. We can also conclude from the results that 4 nodes 
is an overkill for a small data set (2 GB). There is no significant gain in speed up when we 
increase number of nodes from 2 to 4 because 2 GB data is not enough data to fully utilise 
the processing power of 4 nodes.The best speed-up was observed for 4 GB data because 
this amount of data is neither too less nor too much to utilise the full processing power and 
caching benefit of 4 nodes. So, we can conclude that when the data size is less than the 
capacity of cache memory, we can get much better than ideal speed-up. For 8 GB data, we 
have speed-up of almost 2 for 2 nodes and 5,5 for 4 nodes which is still better than an ideal 
speed-up. Therefore, for all dataset sizes of Alpha, we achieve much better results than we 
expected.

Figure 24 (h) reveals the scale-up for this system. As we can see that system scales very 
well when data size is increased from 2 to 4 GB (even over 1) but decreases slightly when it 
is increased to 8 GB (0,89). This scale-up (both data sizes) is considerably better than 
Hadoop MapReduce based algorithms in section 6.1. Moreover, it shows that 4GB data is 
the optimum data size for this system when we aim that all training tuples are processed 
using fast in-memory computations. When data size is increased to 8 GB, the scale-up 
decreases due to various factors: more frequent Garbage Collection occurs, more 
percentage of total data is lying on the disk and less percentage of total data is lying in 
memory; more number of nodes means there is more shuffling of intermediate data between 
map and reduce because we increase number of nodes to 4 for 8 GB. Our experimental set-
up exhibit far better than expected results for decision binary classifiers implemented in 
Apache Spark’ MLlib.

Figure 25 shows the percentage of total run-time taken by each phase. Now analyse the 
behaviour and the general trend of each phase. First, we take the training phase. We can 
see that training phase takes the most percentage of total time for all cases (except when 
data size is 2 GB). We can also see that the proportion of total time spent in training phase 
increases when the data size increases and it decreases when the number of nodes 
increases. As the size of training data increases, most of the total time is spent training the 
model. For evaluation phase, the proportional time also decreases with more number of 
nodes. Proportion of time spent for initial spark set up increases as we increase the number 
of nodes. This shows that the overhead for requesting executors increases when the 
number of nodes requested are higher. For reading phase, the share of time for reading 
phase decreases when the data size increases because training and evaluation phase take 
much longer time and dominate the run-time.
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Figure 24. Experimental results for Alpha data using training time 
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bin=25
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Figure 25. Share of  total time for different phases for Alpha data 

8.3 Experiment 2 With Blog Data (Regression) 

For regression analysis using decision trees, we have used both high dimension and low  
dimension input training data. Blog data is the high dimension data with 281 number of 
features. We have set the maximum number of bins to be 25 as higher value threw out-of-
memory errors. We build a tree of depth 6. Here we see the behaviour of run time of MLlib’s 
decision tree regressors using high dimensional data. Although the sizes of data sets in 
Alpha [Table 5] and Blog [Table 4] data is same in terms of disk space, the number of 
training instances in Blog Data is 17,7 times the number of training instances in Alpha data. 
Therefore, in terms of number of training instances, Blog data is considerably larger data 
than Alpha data; but it has lower dimension. The number of instances and their feature 
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dimension finally determine the number of RDDs that algorithms in MLlib will need to 
process. Thus, number of instances is the actual size of input data for MLlib.


The first row of Figure 26 shows the behaviour of training time for regression decision trees 
versus number of nodes for a particular data set size. Figure 26 (a), (b) and (c) shows 
correspondingly the minimum, average and maximum observed values for training times. 
As expected, there is considerable decrease in training times with more number of nodes 
for all data sizes. However, we do not observe any anomaly in the case of 2GB data which 
we observed in the Alpha Data because there are significantly more number of training 
instances in Blog Data even for 2 GB. Again, the amount of decrease in computation time is 
observed highest for 8 GB data and it decreases as the size of data decreases.


In Figure 26 (d), (e) and (f), we can see how the training time changes against data sizes 
while keeping the number of nodes constant. When the data size is increased from 4 to 8 
GB, the increase in training time is far much more than the increase in training time when 
data size is increased from 2 to 4.


However, the speed-up results, as shown in Figure 26 (g), are rather worse than for Alpha 
data because this dataset is considerably larger than Alpha dataset. Here, we get better 
than linear speed-up for 2 GB data, linear speed-up for 4 GB data and close to linear speed 
up for 8 GB. Thus, for 8 GB data, the performance of MLlib regression algorithms 
approaches the performance of Hadoop MapReduce based regression algorithms because 
all the Hadoop MapReduce experiments in section 6.1 always yielded close to linear speed-
up (which is actually lower than the linear speed-up). We found out that there is not much 
variation in the speed-up for the number of nodes equal to 2. This is because all the data 
sizes are much larger than the total size of memory of 2 nodes and for all data sizes, most 
of the data is fetched from the disk. But there is a much larger variation for speed-up when 
the number of nodes is 4. We begin to see the caching effect for 2 GB but this effect again 
diminishes for 4 GB and 8 GB data. Caching effect means most of the data can be cached 
into memory and speeds up the execution. We see that for 8 GB data and 4 nodes, the 
speed-up falls slightly lower than linear because there is a higher communication overhead 
for shuffle and write of intermediate map and reduce outputs, most of the data is lying on 
the disk and the garbage collection is occurring more frequently. Figure 26 (h) demonstrates 
the scale-up of this system. The system scales again superbly up-to 4 GB (again more than 
1). But, for 8 GB data, the scale-up decreases because the system becomes larger and 
there is higher communication overhead which overshadows the little benefit we are getting 
from in-memory computation because most of the data is processed from the disk.


In Figure 27, we show the percentage of total computation that is spent on a particular 
stage. As we can see, the training time percentage remains almost constant around 65 % 
except for the case of 2 GB and 4 nodes because the training is sped up due to more 
caching effect. Evaluation time percentage decreases with increase in number of nodes.
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Figure 26. Experimental results for Blog data using training time 
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Figure 27. Share of  total time for different phases for Blog data


8.4 Experiment 3 With YearPrediction Data (Regression) 

We perform another decision tree based regression analysis using a lower dimension data. 
We have used YearPrediction data for this purpose whose features have dimension of 90. If 
we compare the data sets of Blog data and YearPrediction data of same sizes, the number 
of training instances in YearPrediction is one third of the number of training instances in 
Blog data. Although it is a smaller data set as compared to Blog data, it is still much larger 
than Alpha data when we talk in terms of number of training instances.
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blog data (bin=25)
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Figure 28 (a), (b) and (c) depicts the minimum, average and maximum training time for 
regression decision tree versus number of nodes for a specific data size. We can see that 
the amount of decrease in training time by increasing the number of nodes is prominent and 
more evident in case of 8 GB. For 4 GB data, we also see a considerable reduction in 
training times but it is less than 8 GB data. For 2 GB data, there is not much reduction in 
the training time because this data is small and the training time on even 1 node is rather 
small. We can also see for 2 GB data that there is a significant reduction in training time 
when the nodes are increased from 1 to 2 but rather insignificant reduction in training time 
when the number of nodes are increased from 2 to 4. This shows that most of the RDDs 
created from 2 GB data can fit in the memory of 2 nodes. Therefore, 2 nodes are just 
sufficient for this amount of data. Increasing the number of nodes to 4 for this size of 
YearPrediction data is not justified because of the poor gains. This shows that there is much 
reduction in training time when the training time on 1 node is very long but we cannot gain 
much reduction in training time when it is initially very small on 1 node.


Figure 28 (d), (e) and (f) shows the behaviour of training time versus data size when the 
number of nodes are kept fixed. We can see that there is a considerable increase in training 
times when the number of nodes are increased in two steps: 1 to 2 and 2 to 4. In the latter 
step, the increase in computation time is even more pronounced. 


Figure 28 (g) demonstrates the speed-up of this system. The speed-up for the 2 GB data is 
excellent and far better than just linear speed up (7,7 in case of 2 nodes and 12,5 in case of 
4 nodes). Better than the linear speed-up shows the effectiveness of memory caching. The 
memory of 1 node is not sufficient to cache all the RDDs of the 2 GB YearPrediction data 
due to which the on-disk processing dominates the in-memory processing. 2 nodes cached 
most of the data into memory and 4 nodes could cache even more. So, there was a 
significant shift from on-disk to in-memory processing. Therefore, more caching in the case 
of 4 nodes gives the benefits of in-memory computation and speeds up the algorithm by a 
large factor. In the case of 4 GB data, the speed-up is lesser than 2 GB data but it is still 
better than ideal speed-up (2,7 in case of 2 nodes and 7,9 in case of 4 nodes). This shows 
that there is also a continuous increase in percentage of total data being cached into the 
memory by increasing the number of nodes. The proportion of the RDDs in the memory to 
the RDDs lying on the disk is large enough for the in-memory computations to show the 
caching effect. In case of 8 GB data, this proportion becomes very low even in the case of 4 
nodes and therefore speed-up is close to linear speed-up (2,1 in case of 2 nodes and 3,3 in 
case of 4 nodes).


Figure 28 (h) shows how well the system scales with the respect to data. The system scales 
very well for 4 GB data but this scalability drops when the data size is increased to 8 GB. To 
measure the scale-up, we use 4 times larger system to process 8 GB data. So, there is a 
high communication overhead and there is a shuffle of larger amounts of intermediate 
outputs of map and reduce when the number of nodes increases and so far we are not 
benefitting much from in-memory data processing as most of the data is lying on the disk.
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Figure 28. Experimental results for Year Prediction data using training time
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bin=25

DataSize NumExecutors Initial Spark setup Read data Train model Evaluate model Total (sec)

2 1 32 93 245 119 492

2 18 51 32 1 105

4 32 40 20 1 95
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8 1 32 337 1317 585 2268
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Figure 29 shows the proportion of total time that is shared by different phases of decision 
trees learning based regression analysis. The percentage of time taken by the training and 
the evaluation phase decreases with more number of nodes for the 2 GB and the 4 GB data 
but remains more or less constant for the 8 GB data. For the 2 and the 4 GB data, the 
training time is substantially improved due to the effective caching of greater portion of the 
input data into the main memory of more nodes.


Figure 29. Share of  total time for different phases for YearPrediction data 

�80

bin=25

DataSize NumExecutors Initial Spark setup Read data Train model Evaluate model Total (sec)

2 1 32 93 245 119 492

2 18 51 32 1 105

4 32 40 20 1 95

4 1 32 176 576 304 1091

2 18 89 210 117 437

4 32 71 73 30 210

8 1 32 337 1317 585 2268

2 18 187 621 290 1118

4 32 127 396 179 735

year data bin=50

DataSize NumExecutors SparkConf (sec) DataRead (sec) Train (sec) Evaluate (sec) Total (sec)

2 1 32 89 248 113 486

2 17 51 37 1 110

4 32 40 24 1 99

4 1 32 168 591 304 1097

2 18 87 221 128 457

4 32 70 79 28 210

8 1 32 327 1330 600 2292

2 18 195 635 317 1168

4 32 124 411 413 189

Year is dense data

datasize no of training 
tuples

2 1705640

4 3409720

8 6819440

RegressionDimension = 90

Training Time for year bin = 25 (sec)

No.of nodes 2GB(min) 2GB(avg) 2GB(max) 4GB(min) 4GB(avg) 4GB(max) 8GB(min) 8GB(avg) 8GB(max)

1 node 240 245 248 573 576 580 1306 1317 1325

2 nodes 31 32 33 201 210 218 608 621 627

4 nodes 20 20 20 73 73 74 386 396 393

Training Time for year bin=50 (sec)

No.of nodes 2GB(min) 2GB(avg) 2GB(max) 4GB(min) 4GB(avg) 4GB(max) 8GB(min) 8GB(avg) 8GB(max)

1 node 246 250 254 584 591 599 1319 1330 1341

2 nodes 36 37 38 220 221 222 626 635 642

4 nodes 23 24 24 77 79 85 406 411 416

time to train decision tree for 2,4,8 GB year 
prediction data (bin=25) vs no of nodes

 tr
ai

ni
ng

 ti
m

e 
in

 s
ec

0

350

700

1050

1400

no of nodes
1 node 2 nodes 4 nodes

2GB(avg)
4GB(avg)
8GB(avg)

Speed up for year (bin=25)

No. of Nodes Data = 2 GB Data = 4 GB Data = 8 GB

1 node 1 1 1

2 nodes 7,65625 2,74285714 2,12077295

3 nodes 12,25 7,89041096 3,32575758

speed up vs no of nodes

sp
ee

d 
up

0

2

4

6

8

10

12

14

no of nodes
1 node 2 nodes 3 nodes

Data = 2 GB
Data = 4 GB
Data = 8 GB

speed up

No. of nodes Data = 2 GB Data = 4 GB Data = 8 GB

1 node 1 1 1

2 nodes 6,7027027 2,67420814 2,09448819

4 nodes 10,3333333 7,48101266 3,23600973

speed up vs no of nodes for year data(bin=50)

sp
ee

d 
up

0

2,75

5,5

8,25

11

no of nodes
1 node 2 nodes 4 nodes

Data = 2 GB
Data = 4 GB
Data = 8 GB

scale up year (bin=25)

scale up

2 GB 1

4 GB 1,1666667

8 GB 0,61868687

scale up

scale up

2 GB 1

4 GB 1,2217195

8 GB 0,60340633

scale up vs data size

sc
al

e 
up

0

0,325

0,65

0,975

1,3

no of nodes
2 GB 4 GB 8 GB

scale up

scale up vs data size 

sc
al

e 
up

0

0,3

0,6

0,9

1,2

no of nodes
2 GB 4 GB 8 GB

scale up

time to train decision tree for 2,4,8GB year 
prediction data(bin=25) vs no of nodes

tra
in

in
g 

tim
e 

in
 s

ec

0

350

700

1050

1400

no of nodes
1 node 2 nodes 4 nodes

2GB(min)
4GB(min)
8GB(min)

time to train decision tree for 2,4,8 GB year 
prediction data(bin=25) vs no of nodes

tra
in

in
g 

tim
e 

in
 s

ec

0

350

700

1050

1400

no of nodes
1 node 2 nodes 4 nodes

4GB(max)
2GB(max)
8GB(max)

time to train decision tree for 2,4,8 GB year 
prediction data (bin=50) vs no of nodes

tim
e 

in
 s

ec
 (m

in
)

0

350

700

1050

1400

no of nodes
1 node 2 nodes 4 nodes

2GB(min)
4GB(min)
8GB(min)

time to train decision tree for 2,4,8 GB year 
prediction data (bin=50) vs no of nodes

tim
e 

in
 s

ec
 (a

vg
)

0

350

700

1050

1400

no of nodes
1 node 2 nodes 4 nodes

4GB(avg)
2GB(avg)
8GB(avg)

time to train decision tree for 2,4,8 GB year 
prediction data (bin=50) vs no of nodes

tim
e 

in
 s

ec
 (m

ax
)

0

350

700

1050

1400

no of nodes
1 node 2 nodes 4 nodes

8GB(max)
4GB(max)
2GB(max)

time to train(avg) vs data size

data size 1 node 2 nodes 4 nodes

2GB 245 32 20

4GB 576 210 73

8GB 1317 621 396

time to train(min) vs data size

data size 1 node 2 nodes 4 nodes

2GB 240 31 20

4GB 573 201 73

8GB 1306 608 386

time to train(max) vs data size

data size 1 node 2 nodes 4 nodes

2GB 248 33 20

4GB 580 218 74

8GB 1325 627 393

time to train decision tree vs data set size

tim
e 

in
 s

ec
 (m

in
)

0

350

700

1050

1400

data set size
2GB 4GB 8GB

1 node
2 nodes
4 nodes

time to train decision tree vs data set size

tim
e 

in
 s

ec
 (a

vg
)

0

350

700

1050

1400

data set size
2GB 4GB 8GB

1 node
2 nodes
4 nodes

time to train decision tree vs data set size

tim
e 

in
 s

ec
 (m

ax
)

0

350

700

1050

1400

data set size
2GB 4GB 8GB

1 node
2 nodes
4 nodes

comparison of training time for 2GB year 
prediction data for bin=25 &bin=50 vs no of 

nodes

tra
in

in
g 

tim
e 

in
 s

ec
 (a

vg
)

0

75

150

225

300

no of nodes
1 node 2 nodes 4 nodes

2GB and bin =25
2GB and bin = 50

comparison of training time for 4GB year 
prediction data for bin=25 &bin=50 vs no of 

nodes

tra
in

in
g 

tim
e 

in
 s

ec
 (a

vg
)

0

150

300

450

600

no of nodes
1 node 2 nodes 4 nodes

4GB and bin=25
4GB and bin=50

comparison of training time for 8GB year 
prediction data for bin=25 &bin=50 vs no of 

nodes

tra
in

in
g 

tim
e 

in
 s

ec
 (a

vg
)

0

350

700

1050

1400

no of nodes
1 node 2 nodes 4 nodes

8GB and bin=25
8GB and bin=50

comparison of training time for 2GB year 
prediction data for bin=25 &bin=50 vs no of 

nodes

tra
in

in
g 

tim
e 

in
 s

ec
 (a

vg
)

0

75

150

225

300

no of nodes
1 node 2 nodes 4 nodes

2GB and bin=25
2GB and bin=50

comparison of training time for 4GB year 
prediction data for bin=25 &bin=50 vs no of 

nodes

tra
in

in
g 

tim
e 

in
 s

ec
 (a

vg
)

0

150

300

450

600

no of nodes
1 node 2 nodes 4 nodes

4GB and bin=25
4GB and bin=50

comparison of training time for 8GB year 
prediction data for bin=25 &bin=50 vs no of 

nodes

tra
in

in
g 

tim
e 

in
 s

ec
 (a

vg
)

0

350

700

1050

1400

no of nodes
1 node 2 nodes 4 nodes

8GB and bin=25
8GB and bin=50

24%

50%

19%

7%

Initial Spark setup
Read data
Train model
Evaluate model

1%

31%

50%

18%
1%

22%

43%

34%

28%

53%

16%
3%

27%

48%

21%

4% 15%

35% 34%

16%

26%

58%

15%
1%

26%

56%

17%
2%

24%

54%

17%

4%

1 node 2 nodes 4 nodes

2 GB

4 GB

8 GB





Figure 30. Comparison of  training time for Year Prediction data using different bin values 

In this experiment, we have also tried to measure one more criterion that may affect the 
training time of decision tree models. This criterion is the maximum number of bins. We 
conducted the experiments by using two values of maximum number of bins: 25 and 50. In 
this data, we were successfully able to increase the maximum number of bins because of 
the low dimensionality of the features in this data. Figure 30 compares the training time for 
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the two values of maximum number of bins. As expected, the training time increased for the 
larger bin value for all data sizes. We could not further increase the bin value due to the 
memory limitations of this set-up.


8.5 Experiment 4 With Mnist Data (Multi-Class Classification) 

We perform decision tree learning based multi-class classification using Mnist data. The 
Mnist data has slightly more number of training instances as compared to the 
YearPrediction data for same data sizes. Mnist data is a very high dimensional data (it has 
780 number of features). After running various experiments, we found out that we could not 
use all the features of this data without running into out-of-memory problems. As such, we 
decided to use only a sub-set of the features of this data. MLlib allows this functionality 
which enables us to specify the first n features that we want to use for the decision tree 
construction. Therefore, we have used the first 100 features to build the decision tree of 
depth 6 and maximum bin value of 25. Figure 31 and 32 show the experimental results 
using these parameters.


Figure 31 (a), (b) and (c) shows the minimum, average and maximum values of the training 
time for decision tree building versus the number of nodes given a specified data size. 
Here, we see considerably good performance gains for all data sizes and for all node 
values. We can see that there is a considerable reduction in run-time for training the model 
for the 8 GB data by increasing the number of nodes from 1 to 4. This shows that more and 
more data are being fetched into the memory and being processed in parallel which 
significantly reduces the amount of run-time. However, this absolute reduction in running 
time decreases as the data sizes decreases. 


Figure 31 (d), (e) and (f) shows how the minimum, average and maximum values of training 
time changes with respect to the data sizes when the number of nodes is kept fixed. We 
see that the increase in training time when the data size is increased from 4 to 8 GB is 
much greater than the increase in training time when the data size is increased from 2 to 4 
GB.


In Figure 31 (g), we see the speed-up of this experiment. When the number of nodes is 
increased to 2, we see that the speed-up for all data sizes are close to each other. This 
points to the fact that the total memory of 2 nodes is too small for all data sizes. Therefore, 
for all the data sizes, most of the data processing is done by fetching the data from the 
disk. Thus, there is a negligible benefit from in-memory computation because only a very 
small proportion of data is fetched into the memory. But when the number of nodes is 
increased to 4, we see a considerable jump in the speed-up for the 2 GB data (from 3,65 for 
2 nodes to 17,3 for 4 nodes). We can conclude that there is a considerable increase in the 
proportion of data that is fetched into the memory when the number of nodes is increased 
from 2 to 4. This means that mostly on-disk processing of 2 nodes moves to mostly in-
memory processing of 4 nodes. For the 4 GB data, we also see a considerable jump in the 
speed-up which is much better than a linear speed-up (2,5 for 2 nodes to 7,7 for 4 nodes). 
However , 8 GB data is still too large for the total memory of 4 nodes. Therefore, we 
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Figure 31. Experimental results for Mnist data using training time
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2 1 32 130 365 211 742

2 18 65 100 61 252

4 32 52 21 1 109
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8 1 32 492 1781 966 2299

2 19 262 828 500 1612

4 20 165 371 230 789
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observe only a slightly better speed-up than a linear speed-up in this case (2,2 for 2 nodes 
and 4,8 for 4 nodes).


Figure 31 (h) shows the scalability of this experimental set up with respect to increasing 
data size. This system scales well both for both data sizes. Both scale-up values are very 
close to 1.





Figure 32. Share of  total time for different phases for Mnist data


�84

Table 1

DataSize NumExecutors Initial Spark setup Read data &Count 
target labels

Train model Evaluate model Total

2 1 32 130 365 211 742

2 18 65 100 61 252

4 32 52 21 1 109

4 1 32 251 837 482 1123

2 18 132 334 204 690

4 20 89 109 0 276

8 1 32 492 1781 966 2299

2 19 262 828 500 1612

4 20 165 371 230 789

Multi-class 
Classification

Table 2

data no of training 
examples

2 1800000

4 3600000

8 7200000

Dimension:100

Training Time for mnist100

No.of nodes 2GB(min) 2GB(avg) 2GB(max) 4GB(min) 4GB(avg) 4GB(max) 8GB(min) 8GB(avg) 8GB(max)

1 node 364 365 367 831 837 844 1773 1781 1818

2 nodes 100 100 100 325 334 349 773 828 939

4 nodes 21 21 21 108 109 111 369 371 374

Training time for mnist data vs no of nodes

tim
e 

in
 s

ec
 (a

vg
)

0

450

900

1350

1800

no of nodes
1 node 2 nodes 4 nodes

2GB(avg)
4GB(avg)
8GB(avg)

Table 3

No. of nodes Data = 2GB Data = 4GB Data = 8 GB

1 node 1 1 1

2 nodes 3,65 2,50598802 2,15096618

4 nodes 17,3809524 7,67889908 4,80053908

speed up of mnist data vs no of nodes

sp
ee

d 
up

0

4,5

9

13,5

18

no of nodes
1 node 2 nodes 4 nodes

Data = 2GB
Data = 4GB
Data = 8 GB

Table 4

scale up

2 GB 1

4 GB 1,09282437

8 GB 0,983832749

scale of mnist data vs data size

sc
al

e 
up

0,8

0,875

0,95

1,025

1,1

no of nodes
2 GB 4 GB 8 GB

scale up

Training time for mnist data vs no of nodes

tim
e 

in
 s

ec
 (m

ax
)

0

500

1000

1500

2000

no of nodes
1 node 2 nodes 4 nodes

2GB(max)
4GB(max)
8GB(max)

Training time for mnist data  vs no of nodes

tim
e 

in
 s

ec
 (m

in
)

0

450

900

1350

1800

no of nodes
1 node 2 nodes 4 nodes

2GB(min)
4GB(min)
8GB(min)

time to train(min) vs data size

data size 1 node 2 nodes 4 nodes

2GB 364 100 21

4GB 831 325 108

8GB 1773 773 369

time to train(avg) vs data size

data size 1 node 2 nodes 4 nodes

2GB 365 100 21

4GB 837 334 109

8GB 1781 828 371

time to train(max) vs data size

data size 1 node 2 nodes 4 nodes

2GB 367 100 21

4GB 844 349 111

8GB 1818 939 374

time to train decision tree vs data set size

tim
e 

in
 s

ec
 (m

in
)

0

450

900

1350

1800

data set size
2GB 4GB 8GB

1 node
2 nodes
4 nodes

time to train decision tree vs data set size

tim
e 

in
 s

ec
 (a

vg
)

0

450

900

1350

1800

data set size
2GB 4GB 8GB

1 node
2 nodes
4 nodes

time to train decision tree vs data set size

tim
e 

in
 s

ec
 (m

ax
)

0

500

1000

1500

2000

data set size
2GB 4GB 8GB

1 node
2 nodes
4 nodes

29%

49%

18%

4%

Initial Spark setup
Read data &Count target labels
Train model
Evaluate model

25%

41%

27%

7% 1%
20%

49%

30%

30%

52%

16%
2%

30%

49%

19%

3%

50%

41%

9%

30%

54%

15%
1%

31%

51%

16%
1%

29%

47%

21%

3%

1 node 2 nodes
4 nodes

2 GB

4 GB

8 GB



In Figure 32, we can see that the proportionate share of the total time for the training phase 
remains almost constant around 50 % but decreases considerably for 2 GB data and 4 
nodes because training phase is immensely fastened due to the small size of data and the 
more memory availability.




Figure 33. Comparison of  training times for different sizes of  feature dimension of  Mnist data 
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Using the Mnist data, we also aim to conduct more experiments to analyse the impact of 
the dimension of features on the training time. We perform the experiments by increasing 
the feature dimension from 100 to 150 and then to 200. Using these values for feature 
dimensions gave similar graphs for speed-up and scale-up and therefore they are omitted 
for space. We compare the training time for training the model by using different sizes of 
feature dimensions. This comparison is shown in Figure 33. Here, we can clearly see that 
the training time increases when we increase the size of feature dimension. 


8.6 Conclusion 

Here, we summarise the general conclusions from our experiments. In a typical parallel 
distributed experiment, our aim is to achieve a linear speed-up and a linear scale-up. But 
such ideal speed-up and scale-up is hard to obtain because there is always a non-trivial 
overhead of distributed systems to the normal program execution time. Therefore, we 
expected to achieve an almost linear speed-up and scale-up with this distributed system 
using Spark, YARN and HDFS. We analyse the performance of decision tree based 
classification and regression algorithms implemented in Spark’s MLlib which runs on this 
system.


We found out that when the memory is large enough to cache all the input data and the 
system could perform most of the data processing in the memory, the system consequently 
yielded excellent results. We achieved much better than expected performance gains, 
speed-up and scale-up for decision tree learning algorithms for classification and 
regression data mining in MLlib. The in-memory caching effect of Apache Spark enabled 
much better performance benefits than the simple Hadoop MapReduce. Speed-up was 
sometimes much higher than a linear speed-up. It happened in cases when increasing the 
number of nodes and thereby increasing the total amount of main memory to cache the 
training tuples moved the previously mostly on-disk processing to mostly in-memory 
computations. This clearly shows the advantage of in-memory computations for highly 
iterative decision tree learning algorithms that are implemented in MLlib. In our experiments 
we have achieved the best speed-up for 2 GB Mnist data where the speed-up is almost 18 
times when we increase the number of nodes by just 4 times. This is particularly due to the 
reason that most of the RDDs were lying on the disk in case of 1 node but most of these 
RDDs move to the main memory cache when the number of nodes was increased to 4. The 
scale-up was always maximum in case of 4 GB data. The scale-up for 4 GB data and 2 
nodes was even more than 1 in all the experiments with different datasets. However, this 
scale-up dropped slightly for 8 GB data and 4 nodes. For regression algorithm, this drop 
was more than classification algorithms. Since we measure scale-up for 8 GB data by 
increasing the node to 4, there are two factors that brings down the scale-up: Firstly, there 
was increased communication overhead in case of 4 nodes due to shuffle of large amounts 
of intermediate data between map and reduce; Secondly, increasing the data to 8 GB 
implied lesser proportion of the total data was processed in memory.  


Apache Spark’s MLlib was not so much advantageous in the case of very large data sizes 
containing very high number of training instances. In that case, most of the RDDs were lying 
on the disk and few proportion of them could be fetched into main memory. This means 
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disk based computations overly dominated the in-memory computations. In this case, 
garbage collectors also ran more frequently to make space for the new RDDs of task 
execution in every iteration. This also interfered in the run-time of program execution. 
Despite of the garbage collection mechanisms impacting the run-times, the speed-up and 
scale-up were found to better or at-least as good as the original Hadoop MapReduce 
based decision tree learning implementations. From this, we can conclude that for larger 
sizes, the proportion of the total data cached in memory became very low and the benefit 
from in-memory computations started to diminish. As a result, the performance gains from 
Spark based decision tree learning algorithms started to approach the performance of 
original MapReduce based decision tree learning algorithms that we saw in section 6.1.6, 
6.1.7 and 6.1.8. So, we can derive a conclusion that the Apache Spark’s distributed 
processing model behaved more like the original MapReduce from Hadoop when most of 
the data processing is done on-disk rather than in-memory.


There is no general statement about the hardware requirements or characteristics of cluster 
of machines that should be met for running applications for Apache Spark. We found out 
that the basic hardware requirement for Spark is a cluster of high-end machines as Spark 
applications have typically higher memory requirements. This is in contrast to the hardware 
requirements for Hadoop MapReduce based applications. It is a known fact that Hadoop 
was built around large clusters of low-end commodity servers. Apache Spark applications 
have a higher demand for memory but not on CPU cores and disks. However, the main 
memory is becoming increasingly cheap and we can see nowadays that most of the 
systems are equipped with much higher RAMs. This requirement for high amount of RAM is 
specifically true for decision tree based learning algorithms because because there is a 
higher memory requirements for histogram computations in the later iterations of this 
algorithm. This requires garbage collection methods of JVM to evict the old RDDs to make 
space for new RDDs. When we have a cluster of machines with low amounts of memory, 
we should not be too optimistic about processing very large volumes of data with very high 
feature dimension.


During our work, we found out that the Spark’s run-time was throwing a lot of out-of-
memory errors when we attempted to increase the maximum depth of the tree, the feature 
dimension or the maximum number of bins. We were being overly optimistic about the 
capabilities of our small cluster with low-end virtual machines. The conclusion is that when 
we have small number of machines with low amounts RAM, we should keep the depth of 
tree to a low value. In our case, this value should be higher than 6. We should try to use a 
lower dimension of data and use a lower value of maximum number of bins to discretise the 
continuous features, to avoid memory problems.


The requirements of MLlib’ s decision tree algorithms in the terms of input data is rather 
very strict. As we have seen in the data preparation stage earlier in section 7.1, when we 
use Java API to develop programs that does decision tree learning of MLlib, data should be 
in specific format: LIBSVM format. For both CSV (which we can convert to LIBSVM when 
using Scala API) and LIBSVM formats of input files, there is a very strict requirement in case 
of target labels. For binary classification, the labels should be 0 and 1 and for multi-class 
classification, the labels should start from: 0,1,2…. to n-1. If the labels are not specified in 
this manner, MLlib run-time will throw run-time exceptions (ArrayIndexOutOfBounds 
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Exceptions). The current version of MLlib can handle only numerical data for both the 
feature vector and the labels. There should no extra or trailing white-spaces in the data 
because MLlib cannot handle them out-of-box. We found out that YearPrediction data had 
double whitespaces between labels and the feature vector which cause the MLlib to 
interpret the feature vector as NULL and throw run-time exceptions.


By comparing our experiments to Hadoop based MapReduce implementations in section 
6.1.6, 6.1.7 and 6.1.8, we can see the ease of application of Spark MLlib for large-scale 
data mining. In case of Hadoop, the speed-up and scale-up was generally very poor for 
smaller datasets which demonstrates the outcome that Hadoop MapReduce has a high 
overhead which dominates in the case of small dataset. This speed-up and scale-up 
improved for larger dataset because the high MapReduce overhead is smaller in 
comparison to very long running times for processing very large datasets. However, we 
found a completely opposite outcome in our experiments. The speed-up and scale-up was 
excellent for smaller dataset but it dropped for larger datasets because of diminishing effect 
of in-memory computations.  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9. Conclusion Of This Work 

In tis chapter, we summarise the overall conclusion of our work. Nowadays, there are 
multiple alternative approaches for large-scale distributed data mining analytics. We are not 
only limited to the strict batch-mode data processing of old Hadoop MapReduce. Although 
Hadoop MapReduce is still being predominantly used for distributed processing of data, 
there is a significant shift in the solutions for data mining and analytic tools. These tools are 
already in the process of a complete overhaul in favour of Apache Spark. Therefore, it was 
interesting for us to evaluate the data mining capabilities of machine learning libraries 
provided by Apache Spark. The Machine learning library from Apache Spark demonstrated 
the superb performance benefits of distributed large-scale data mining analytics. The 
performance improvements, speed-ups and scale-ups were in most of the cases better 
than expected. Even in the case of very larger datasets, the performance benefits were 
substantial and useful. Our experiments clearly show the effectiveness of distributed data 
processing (with MapReduce-like data processing model of Apache Spark) for large-scale 
data mining analytics. This effectiveness is specifically proven for decision tree learning 
based classification and regression analysis of large-scale data. 


Apache Spark is definitely not without problems. We felt that it requires some optimisations, 
fixes, and a deeper integration with Hadoop YARN. It doesn’t yet provide the depth of 
information about its library functions that traditional data mining tools do. But as a data 
mining platform, it is already sufficiently interesting for data scientists to look at it seriously.


Future work could include implementing decision tree learning based data mining 
algorithms using old Hadoop MapReduce which are equivalent to the implementation of 
algorithms that we used from Spark’s MLlib and compare them. This would require 
investigating the whole source code of Apache Spark which will give us an idea about the 
general design of this algorithm. This will give us an opportunity to compare the distributed 
processing engine of Spark and Hadoop MapReduce. We could also provision higher end 
machines to analyse the behaviour of Spark’s distributed processing model for building 
trees of more depths.
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