
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diploma Thesis Nr. 3683

Notifications in a Multi-Device
Environment

Dominik Weber

Course of Study: Informatik

Examiner: Jun.-Prof. Dr. Niels Henze

Supervisor: Dr. Alireza Sahami

Commenced: July 16, 2014

Completed: January 15, 2015

CR-Classification: H.5.2

Abstract

Notifications are an integral part of how smartphones are used today. Apps can use notifications
to inform the user about new text messages, upcoming events or available updates. By
using visual cues, auditory signals and tactile output the attention of the user can be gained,
enabling him or her to react right away. Notifications on desktop computers existed years
before the introduction of smartphones and tablets are already widespread and share most of
their characteristics. Other types of connected devices will soon join or already have joined
smartphones in daily life. Recent development in the field of wearable devices indicates an
upcoming widespread adoption of smartwatches and smartglasses. These devices can be used in
situations where the use of a smartphone would be impractical or inappropriate. Previous work
showed that notifications can distract the user, inducing stress and anxiety. Such effects could
worsen with a growing number of notifying devices. Therefore, it is necessary to explore how
notifications should behave in this “multi-device” environment. For that reason, we developed
a concept for a framework that allows synchronizing notifications across multiple devices,
including smartphones, tablets and desktop computers. Based on the approach of research
in the large, we implemented the framework with support for a large number of devices as
an update to an existing application and deployed it to a user base of several thousand users.
After two months in the wild, the updated application was actively used by more than 33,000
users. On a per app basis the application allows disabling the content or sending notifications
altogether. We analyzed the user settings for over 36,000 apps and found, for example, that
apps from the “tools” category were excluded from sending notifications most frequently. On
the other hand, the users disabled sending the text for apps related to communication most
often. In a final large-scale study, the users rated the usefulness of synchronized notifications
on different devices. Overall, synchronized notifications from messenger apps received the
highest usefulness rating across all devices. The gained insights can support the development
of ubiquitous notification mechanisms that keep users informed without overloading them.

3

Kurzfassung

Benachrichtigungen sind ein integraler Bestandteil bei der Nutzung von Smartphones. Apps
können mithilfe von Benachrichtigungen den Benutzer über neue Nachrichten, anstehende
Termine oder verfügbare Softwareaktualisierungen informieren. Die Aufmerksamkeit des Be-
nutzers kann durch das Verwenden von visuellen Hinweisen, akustischen Signalen und taktilem
Feedback gewonnen werden und ermöglicht dem Benutzer eine schnelle Reaktion auf die
Benachrichtigung. Auf Desktop-Computern wurden Benachrichtigungen schon Jahre vor der
Verbreitung von Smartphones eingesetzt. Auch Tablets sind bereits weit verbreitet und teilen
sich viele Eigenschaften mit Smartphones. In absehbarer Zeit werden noch weitere Gerätetypen
hinzukommen. Aktuelle Entwicklungen im Bereich des “Wearable Computing” deuten darauf
hin, dass auch intelligente Uhren und Brillen bald verbreitet sein werden. Diese Geräte können
in Situationen eingesetzt werden, in denen das Verwenden eines Smartphones unpraktisch
oder unangemessen ist. Existierende Arbeiten zeigten, dass Benachrichtigungen den Benutzer
von Aufgaben ablenken und Stress verursachen können. Mit einer wachsenden Anzahl von
Geräten können diese negativen Effekte zunehmen. Daher sollte erforscht werden, wie sich
Benachrichtigungen in einem Umfeld mit mehreren Geräten verhalten sollen. Aus diesem
Grund wurde in dieser Arbeit ein Konzept für ein Framework entwickelt, das es ermöglicht,
Benachrichtigungen über mehrere Geräte hinweg zu synchronisieren. Um das Framework
im realen Umfeld mit einer großen Anzahl von Nutzern testen zu können, wurde eine beste-
hende Anwendung angepasst und die Änderungen wurden an eine bestehende Nutzerbasis mit
mehreren tausend Benutzern verteilt. Nach zwei Monaten wurde die aktualisierte Anwendung
von mehr als 33.000 Nutzern aktiv genutzt. Die Anwendung erlaubt es, für bestimmte Apps das
Senden des Inhaltes oder die gesamte App auszunehmen. Die Analyse der Benutzereinstellun-
gen für über 36.000 Apps ergab, dass Apps der Kategorie “Tools” am häufigsten vom Senden
ausgenommen wurden. Andererseits wurde das Senden des Inhaltes meist für Apps deaktiviert,
die im Zusammenhang mit Kommunikation stehen. In einer umfangreichen Studie haben die
Benutzer die Nützlichkeit der synchronisierten Benachrichtigungen auf verschiedenen Geräten
bewertet. Auf allen Geräten haben synchronisierte Benachrichtigungen von Messenger Apps
die höchsten Bewertungen für die Nützlichkeit erhalten. Die gewonnen Erkenntnisse können
die Entwicklung eines ubiquitären Benachrichtigungssystems unterstützen, das den Benutzer
informiert, ohne ihn oder sie zu überlasten.

5

List of Abbreviations

API Application Programming Interface

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

ID Identifier

JSON JavaScript Object Notation

OS Operating System

PHP PHP: Hypertext Preprocessor

SQL Structured Query Language

URL Uniform Resource Locator

7

Contents

1. Introduction 13

2. Related Work and Background 15
2.1. Notifications and Interruptions . 15
2.2. Mobile Notifications . 16
2.3. Notification Modalities . 18
2.4. Notifications in the Wild . 19

2.4.1. Desktop Operating Systems . 20
2.4.2. Mobile Operating Systems . 21
2.4.3. Web and Web Browsers . 23

2.5. Synchronizing Notifications across Devices . 24
2.6. Recently Announced Devices . 25
2.7. Summary . 26

3. Concept of a Multi-Device Notification Framework 27
3.1. Starting Point . 27
3.2. Architecture . 28
3.3. Requirements . 29
3.4. Summary . 30

4. Device and Notification Studies 31
4.1. Device Distribution . 31

4.1.1. Design . 31
4.1.2. Results . 32

4.2. Notifications on Multiple Devices . 33
4.2.1. Design . 34
4.2.2. Results . 35

4.3. Discussion . 37

5. Implementation of the Framework 39
5.1. Existing Implementation . 39
5.2. Android App . 40

5.2.1. Setup and Device Pairing . 40
5.2.2. Receiving Notifications . 43

9

5.2.3. Dismissing Notifications . 43
5.2.4. App Settings . 44
5.2.5. Notification History . 46
5.2.6. Paired Devices and Settings . 46

5.3. Server Architecture . 46
5.3.1. Authentication . 47
5.3.2. Device Registration . 48
5.3.3. Event Broadcasting . 48

5.4. Google Chrome Extension . 51
5.4.1. Setup and Device Pairing . 51
5.4.2. Receiving Notifications . 51
5.4.3. Dismissing Notifications . 52

5.5. Extensibility . 53
5.6. Limitations . 53
5.7. Summary . 54

6. Deployment and Usage Studies 55
6.1. Publishing . 55
6.2. Users and Devices . 57
6.3. Private and Disabled Apps . 57
6.4. Usefulness of Synchronized Notifications . 59

6.4.1. Design . 59
6.4.2. Results . 60

6.5. App List Update . 62
6.6. Summary . 64

7. Conclusions and Future Work 65
7.1. Summary and Conclusions . 65
7.2. Future Work . 66

A. Appendix 69
A.1. Package Names and Categories . 69
A.2. Survey about Notifications on Multiple Devices (Full Size) 71
A.3. Most Frequently Disabled Apps . 72
A.4. Most Private Apps . 73
A.5. Device and Language Distribution . 74
A.6. Updated Most Frequently Disabled Apps (Smartphone) 78
A.7. Updated Most Frequently Disabled Apps (Tablet) 79
A.8. Updated Most Frequently Disabled Apps (Desktop) 80

Bibliography 81

10

List of Figures

2.1. The Desktop Notifications app . 17
2.2. Notifications in Windows 7 . 20
2.3. Notifications in Windows 8 . 20
2.4. Notifications in Android 5.0 . 22
2.5. Notifications in iOS 8 . 22
2.6. Notifications in Google Chrome . 24
2.7. Notifications in Android Wear . 25

3.1. The existing architecture . 28
3.2. Concept of the new architecture . 29
3.3. Exemplary data flow . 30

4.1. Device ownership survey: Survey notification 32
4.2. Device ownership survey: Popup . 33
4.3. Device ownership survey: Results . 34
4.4. Survey about notifications on multiple devices: Survey 35
4.5. Survey about notifications on multiple devices: Results (combined) 36
4.6. Survey about notifications on multiple devices: Results (categorized) 37

5.1. Android app: Setup . 41
5.2. Android app: Sign-in flow . 42
5.3. Android app: Synchronized notifications . 44
5.4. Android app: App settings and notification history 45
5.5. Android app: Connected devices and settings 47
5.6. Server: Event broastcasting . 49
5.7. Chrome extension: Sign-in flow . 52

6.1. Categories of disabled apps . 58
6.2. Categories of apps in “Private Mode” . 59
6.3. Usefulness of synchronized notifications: Android app 60
6.4. Usefulness of synchronized notifications: Google Chrome extension 61
6.5. Usefulness of synchronized notifications: Results 62
6.6. Updated app settings: User Interface . 63
6.7. Updated app settings: Results . 64

11

List of Listings

5.1. Exemplary JSON object for creating a notification. 50
5.2. Exemplary JSON object for removing a notification. 50

12

1. Introduction

Notifications are an integral part of how smartphones are used today. Apps can use notifications
to inform the user about new text messages, upcoming events or available updates. By
using visual cues, auditory signals and tactile output the attention of the user can be gained,
enabling them to react right away. Smartphones are computing devices that are “always on”,
“always connected” and “always with the user”, and therefore ideal devices for notifications.
Notifications on desktop computers existed years before the introduction of smartphones and
tablets are already widespread and share most of their characteristics. Other types of connected
devices will soon join or already have joined smartphones in daily life. Recent development in
the field of wearable devices indicates an upcoming widespread adoption of smartwatches and
smartglasses. These devices can be used in situations where the use of a smartphone would be
impractical or inappropriate. They are used either as standalone devices or as an extension of
the smartphone and can also gain the user’s attention through different modalities. Depending
on their situation at the time a user might prefer to be notified on a specific device or receive
notifications of a particular kind on different kinds of devices.

In our prior work we conducted a large-scale assessment of mobile notifications [36]. To
gather data in a realistic context we built a mobile application that shows notifications from
smartphones on desktop computers. Based on previous approaches of research in the large [16,
17, 29] we decided to distribute the application in an app store. This enabled us to collect
almost 200 million notifications from more than 40,000 unique users. By analyzing the
collected data sets and conducting large-scale studies we were able to show which kinds of
notifications were perceived as important by the users and how fast they acted on them.

Previous work showed that notifications can distract the user inducing stress and anxiety [6,
7, 26]. Such effects could worsen with a growing number of notifying devices. Therefore, it
is necessary to explore how notifications should behave in this “multi-device” environment.
The aim of this thesis is to gain a first insight into the user’s behavior and preferences with
regard to notifications on multiple devices. Starting from the existing application, we develop
a concept for a framework that allows synchronizing notifications across multiple devices.
As continuation of our previous in-the-large approach we update our application to realize
the conceptual framework for a number of devices. Furthermore, we distribute the update
to the existing user base and analyze behavior and preferences of the users. On top of that
we conduct multiple large-scale studies to consolidate our findings. The gained insights can
support the development of ubiquitous notification mechanisms that keep users informed
without overloading them.

13

1. Introduction

Structure of this Thesis

This thesis is structured as follows: In chapter 2 we discuss the related work and background
information regarding notifications. Based on this we present our concept for a multi-device
notification framework in chapter 3. In chapter 4 we report the results of two studies. We
conducted these studies to determine which kinds of devices are common and on which
devices the participants would prefer to be notified on. Based on the results we describe
the implementation of the multi-device notification framework in chapter 5. Afterwards, in
chapter 6, we outline the process of distributing the implemented framework to the users.
Furthermore we describe our method of data gathering and present the results of the data
analysis. Finally, we draw conclusions from the results of this thesis and propose ideas for
future work in chapter 7.

14

2. Related Work and Background

In this chapter we discuss the related work and background information on notifications. First
we look at previous work about notifications and interruptions caused by notifications. We
then discuss recent research regarding mobile notifications and different notification modali-
ties. Afterwards we describe the implementations of notifications in current popular desktop
and mobile operating systems. Finally we take a look at the current state of synchronizing
notifications across devices and provide an overview of recently announced devices that are
able to notify the user.

2.1. Notifications and Interruptions

Previous work on notifications and interruptions caused by notifications focused on the task
performance in the work context. Czerwinski et al. conducted a diary study about task
switching and interruptions [7]. The participants categorized their tasks by themselves and
recorded interruptions. The results of the study showed that resuming an interrupted task
is difficult and that longer tasks are interrupted more often. Czerwinski, Cutrell and Horvitz
also explored the effects of notifications depending on the time and the type of task [6]. They
could verify that notifications are generally harmful for the task performance. The results
of their study show that notifications are more disruptive depending on the pace of the task.
In a follow-up study the researchers found that users are more likely to forget the primary
task goal if they get interrupted early during the task [5]. Adamczyk and Bailey also came
to the conclusion that the negative effect notifications have on performance depends on the
time of interruption [1]. Leiva et al. conducted a large-scale observational study [26]. The
results show that interruptions caused by notifications can delay the completion of a task
significantly.

Mark et al. investigated work without email in an empirical study [27]. According to the
results of the study, not being available via email can be an advantage. Without interruptions
the participants were able to focus on a task longer, which resulted in less multitasking and
reduced stress. However the researchers questioned the long-term persistence of this effect.
They also concluded that being able to contact people instantly is very useful in the work
environment and giving this up should be carefully considered. Fischer et al. found that
the content of a notification plays a large role in the perceived importance [11]. Iqbal and
Horvitz conducted a field study on the use and perceived value of email notifications in the

15

2. Related Work and Background

workplace [24]. According to the researchers notifications provide passive awareness. In the
study email notifications were turned off. For some users this increased the task performance,
but other users interrupted their tasks in order to check for new emails. The researchers
conclude that “users acknowledge notifications as disruptive, yet opt for them because of their
perceived value in providing awareness” [24].

Karen Church and Rodrigo de Oliveira conducted an interview and a large-scale study to
learn more about the popularity of the instant messaging app WhatsApp [4]. They compared
WhatsApp to SMS and concluded that SMS is regarded as more formal, reliable and better
for privacy. WhatsApp on the other hand is regarded as informal and is used in a more
conversational style. In the interview some participants stated that they are concerned about
the increasing amount of notifications and interruptions caused by them. Putting the phone
into silent mode helps to cope with the message overload, however the researchers state that
users that use WhatsApp and SMS for business-related communication do not silence their
phones in order to not miss any important business communication.

2.2. Mobile Notifications

With the increasing adoption of smartphones the effect of mobile notifications became a
compelling topic for research. Pielot, de Oliveira, Kwak and Oliver created a model to predict
attentiveness to mobile instant messages [33]. They looked that the “last seen” status message
that is shown in the instant messaging app WhatsApp and concluded that it’s not possible to
derive the user’s attentiveness from the status. Thus they created a model with the goal of
determining if an instant message will be seen within a few minutes of its receiving or not.
The model categorizes the user’s attentiveness in “high” and “low” attention. The researchers
conclude that it’s better to predict “low” attention but receive a fast response than the other
way around. Also a compromise between accuracy of the classification and the accuracy of the
“high” class has to be made. This model was found to be better at predicting the attentiveness
of users than the “last seen” status message provided by WhatsApp. Pielot also created a model
for call-availability prediction [31]. As part of a large-scale study, he published an Android app
in the Google Play Store which collected data about call-availability to train the model.

Pielot, Church and de Oliveira conducted an in-situ study about mobile phone notifications [32].
The participants installed an app that logged notifications and user behavior for one week.
The 15 participants received an average of 63.5 notifications per day. Most notifications were
messenger and email notifications. Even if the phone was muted the users reacted within
a few minutes to the notifications. According to the researchers the notifications create an
increasing amount of negative emotions but the users feel connected. Most communication
is asynchronous but social pressure forces the users to respond quickly. Receiving dozens or
hundreds of notifications per day can be overwhelming because they are always with the user
and affect private and work life.

16

2.2. Mobile Notifications

Figure 2.1.: The Desktop Notifications app forwards notifications from an Android device to
the desktop [36].

In our own prior work we conducted the first large-scale analysis of mobile notifications [36].
We developed an Android app called Desktop Notifications which forwards notifications from an
Android device to a desktop computer (see Figure 2.1). The notifications are routed through
a server which enables us to record various data about notifications and user interaction.
We used the app to collect data about the notifications but also subjective and qualitative
feedback. We used this feedback to create a detailed analysis about which kind of notifications
are liked and which are disliked. The app was published in the Google Play Store and can be
downloaded for free. The users were informed in the store description that the app is part of a
research project and that anonymous data would be collected. In addition to the Android app
the user has to install a browser extension for Google Chrome or Mozilla Firefox. Because these
browsers are available for all platforms, the app can be used regardless of the user’s desktop
operating system. The Android app detects new notifications on the device and sends the
content and meta data of the notification to a server. The browser extension periodically polls
the server to retrieve notifications. To pair devices the Android app generates a connection
code which has to be entered into the browser extension. We collected almost 200 million
notifications from more than 40,000 unique users. Additionally the time between the creation
of a notification and the user clicking on the notification was recorded. The recorded click
times showed that a notification is clicked on within the first 5 minutes with a probability of

17

2. Related Work and Background

83% and within the first 30 seconds with a probability of 50%. We concluded the analysis with
guidelines for designers to make effective use of notifications in mobile apps. Notifications
related to messaging, people and events are perceived as important by the users, while system
notifications are perceived as less important.

In a study conducted by Mashhadi et al. the notifications of 10 participants were logged over
the course of 15 days [28]. In interviews after the study the participants told the researchers
that a fine-grained notification management is important.

The website Wired published an article with the title “Why Notifications Are About to Rule
the Smartphone Interface” [20]. According to the article the notification screen is the most
important screen on a smartphone, because it doesn’t only notify, but it also is interactive.
When receiving a new instant message the user can tap the notification to open the app or
even reply directly from the notification screen, which is an important aspect of asynchronous
communication. The article further states that interactive notifications are more useful than
static notifications because the user doesn’t even have to open the app.

2.3. Notification Modalities

To gain the user’s attention typically visual cues, auditory signals and tactile output are used.
Visual cues include the use of light-emitting diodes (LEDs), pop-ups, movement, blinking, icons
and badges. Sound notifications use different sounds and melodies. Tactile output makes use
of vibration motors primarily found in mobile devices and can vibrate in different patterns and
multiple levels of intensity. These notification channels can be used together or separately from
each other. For example an app on a mobile phone can inform the user about a new message by
playing a sound, vibrating and showing parts of the message at the top of the screen. However
the user might also decide to silence the phone, so only the tactile output and visual cues are
used. Hansson, Ljungstrand and Redström studied these notifications channels and built a
model for subtle and public notifications for mobile devices [14]. The model classifies various
notification cues according to their subtlety and publicity. The researchers state that auditory
notifications are intrusive while tactile cues are private and subtle. Furthermore they explain
that in some situations the lack of public notification cues might create awkward situations.
They give an example of a conversation between two persons where one person receives a
notification through a subtle notification cue and is suddenly distracted from the conversation
without the other person noticing. The Reminder Bracelet by Hansson and Ljungstrand [13]
introduces the idea of a wearable device that is worn on the wrist. The device is connected to a
personal digital assistant (PDA) and can inform the user about events through visual cues. The
evaluations of studies conducted by the researchers revealed that the participants preferred
these subtle cues to the public auditory cues of the PDA.

There has been extensive research regarding the expansion of the common notification modali-
ties. For example Vibkinesis, a smartphone proposed by Yamanaka and Miyashita [41], can

18

2.4. Notifications in the Wild

inform the user about new messages by changing its rotation. By using several vibration motors
it is possible to rotate and move the device. An example use case given by the researchers is
changing the orientation of the device to inform the user about a new message. Because the
orientation stays the same if the battery of the device dies the notification persists when other
notification modalities would cease to function. The researchers also added an omni-directional
lens to the device, which makes it possible to sense the surrounding area to detect and move
towards the user. Sahami et al. proposed using multiple vibration actuators in a mobile
phone to enhance the tactile feedback [35]. In experiments they added up to six vibration
motors to phone prototypes, and thus enhancing the typical vibration pattern and variation
of the vibration intensity by the location of the active actuators. Based on their findings they
concluded that the actuators should be placed in the corners of the device and that the position
of the actuators can be used to encode information.

How much information can be encoded in a three light visual display and how fast the users are
able to learn it was studied by Campbell and Tarasewich [3]. In a follow-up study Tarasewich
et al. tested notification cues consisting of three multicolored lights preceded by vibration on a
handheld device [37]. The results show that customizing notification cues enhances learning
and usefulness of notifications. Furthermore the tactile feedback helped to increase awareness
for new notifications.

Gomes et al. created the MorePhone [12]. The MorePhone is a flexible bendable smartphone.
The researchers evaluated the usefulness of the actuation. The results show that for important
notifications, like alarms and voice calls, the whole display should be actuated. For less
important notifications only the corners should be actuated – preferably a certain corner
for each type of notification. Another actuated system was created by Hemmert et al. [15].
They created a prototype of a mobile phone with an actuated back plate which allows two-
dimensional tapering.

Warnock et al. conducted a study about notification modialities with older users. The
researchers concluded that older users were affected by the same modalities as younger
users [39].

2.4. Notifications in the Wild

In the following sections we describe the current implementation of notifications in the most
popular operating systems. We first look at the implementation of notifications in the desktop
operating systems Windows and OS X. Afterwards we describe notifications on the mobile
operating systems Android and iOS. Finally we discuss the current state of notifications in the
web and in web browsers.

19

2. Related Work and Background

Figure 2.2.: A balloon-style notification in Windows 7a.

aImage from the Microsoft Developer Network http://msdn.microsoft.com/en-us/library/dn742495.aspx

Figure 2.3.: A Windows 8 email notification.

2.4.1. Desktop Operating Systems

In desktop operating systems notifications are typically shown near the system tray area. In
Microsoft Windows this is the bottom right corner of the screen by default. Figure 2.2 shows
a balloon-style notification in Windows 7. The notification consists of an icon, a title and an
additional line of text. The notification is actionable by clicking on it. There is also an “x”
icon to close the notification and a wrench icon to disable notifications for the program in
question. In this example the notification originates from the icon in the system tray. As result
of many applications implementing the notifications themselves, various notification styles
exist. With Windows 8 Microsoft tried to create an unified look and feel across the system,
including notifications. In Figure 2.3 a notification from the default email app is shown. The
notification uses the prominent app color (in this example blue) as background and allows the
display of an image, a title and an additional line of text. The title is used to display the sender
name and the additional line for the subject of the mail. The image is used to display a contact
image of the sender – in this example a blue square. There is an additional icon to indicate
which app created the notification. The notification is actionable, clicking or tapping on it will
open the newly received email. Depending on the input mechanism the notification can be
closed by clicking on the “x” or swiping it away. On all Windows versions the notifications fade
out after a couple of seconds and there is no way to get them back. Windows 10, which at the
time of writing is available as a preview version, will include a notification center that contains
all active notifications until dismissed.

20

http://msdn.microsoft.com/en-us/library/dn742495.aspx

2.4. Notifications in the Wild

In Apple’s desktop operating system OS X notifications are shown in the top right. The
notifications can have an icon, title and content and are actionable. Optionally button and text
input fields can be attached to them. They, too, fade out after a couple of seconds. In OS X
10.8 (Mountain Lion) Apple introduced a notification center which displays active notifications
in a unified manner. The notification center can also hold widgets like weather and stock
information.

2.4.2. Mobile Operating Systems

In the Android operating system notifications are a core feature and were available since the
first public version. Every Android app can use the notification API to alert the user. Figure 2.4
shows how notifications look in Android 5.0. A notification can play a notification sound, let
the device vibrate in a specific pattern and display an icon in the top left of the screen. In
previous versions of Android a so called ticker text could temporarily replace the status area at
the top of the screen with the text of the notification, which allowed the user to glance at the
content. In Android 5.0 this ticker was replaced with heads up notifications that temporarily
cover the top part of the screen, similar to notifications on desktop operating systems. Also
present as a feature in the first version of Android was the notification center. It is always
accessible by swiping down from the top of the screen and reveals a list of active notifications.
A basic Android notification consists of a small icon, a title and a content text. These basic
notifications can be enhanced in multiple ways. In Android 4.1 rich notification layouts were
introduced which allow replacing the single line of text with multiple lines of text, a progress
bar, a full size image or list items. Also the small icon can be replaced by a larger image which
is typically used to display contact images next to messages. Developers can set a specific
action for when the user taps on the notifications. If more options are needed it is also possible
to add action buttons below the notification. For even more options it is possible to implement
a custom view, which for example can be used to display media control elements. Notifications
on Android can be dismissed by swiping them to the left or right. There is also a button which
clears all notifications at once. With Android 5.0 active notifications are also displayed on the
lock screen of the device, making them ubiquitous and easily accessible from all screens.

Notifications in the iOS operating system started as badges on app icons. As seen in the bottom
right of Figure 2.5 a badge is a red circle with a number, indicating the number of new elements.
Later alert notifications were added, which are modal dialogs that pop up in the center of the
screen and require the user to either take action or dismiss them. The less intrusive banner
notifications were added afterwards. Banner notifications appear at the top of the screen and
can be dismissed by swiping them away. Both alert and banner style notifications can display
two rows of text and action buttons. Banner notifications can additionally display an icon
next to the text. The user can decide for every app which style should be used, or disable
notifications altogether. On iOS notifications are shown on the lock screen. With iOS 7 a
notification center, like the one found on Android, was added to the operating system. The

21

2. Related Work and Background

Figure 2.4.: Notifications on Android 5.0. — (1) Notification icon. (2) The notification. (3)
“Clear all” notifications button.

Figure 2.5.: Notifications on iOS 8a. — Top left: Banner notification. Top right: Banner
notifications with two action buttons. Bottom left: Alert notification. Bottom right:
Notification badge.

aImages from the iOS Developer Documentation https://developer.apple.com/library/ios/documentation/

UserExperience/Conceptual/MobileHIG/NotificationCenter.html

notifications on iOS evolved from simple badges to rich notifications with multiple actions that
can be accessed from any screen by swiping down from the top of the screen.

22

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/NotificationCenter.html
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/NotificationCenter.html

2.4. Notifications in the Wild

2.4.3. Web and Web Browsers

To enable a platform-independent approach of notifications the Web Notification [38] specifica-
tion was added to the HTML5 [2] standard. The goal of Web Notifications is to allow websites
to notify the user. The specification is still a working draft at the time of writing, however the
API is already partially supported by desktop browsers. All major browsers except the Microsoft
Internet Explorer support the API without any vendor prefixes. To prevent abuse a website
first has to request permission to show notifications. If the permission is granted a simple
method call is enough to display notifications. The specification requires an icon, title and
content row. Optionally, the notifications can be made actionable. However it is not part of the
specification how the notifications should actually be displayed. The Safari and Opera browsers
use the underlying functionality of the host operating system to display the notifications. In
Firefox and Chrome the notifications are implemented platform-independent. Unlike the other
implementations Chrome has a notification center which integrates in the form of a bell icon
in the system’s tray area and contains all active notifications. All browsers respect the default
position of notifications in their host operating system. On Windows browser notifications
are shown in the bottom right, on OS X in the top right. The support for web notifications by
mobile browsers is still limited1.

One limitation of Web Notifications is that the website has to be opened in the browser in order
to notify the user. A solution to this challenge are Service Workers [34]. This specification,
which currently is also a working draft, aims to define persistent background scripts that run
even when the corresponding website is not open. The background scripts can receive data
from a server and then use Web Notifications to notify the user.

Most web browsers can be extended with browser extensions. Several browser vendors added
a notification API that can be used by extensions. These APIs are different from the Web
Notification API because they don’t require permission to display notifications. In Firefox the
notifications created by add-ons look and feel the same as Web Notifications. In Chrome basic
notifications created by the extension API also look the same, however they can be extended in
various ways. Figure 2.6 shows an active notification in Chrome’s notification center. Apart
from the usual icon, title and content there is also a third line of text and a button. It’s possible
to add up to two buttons to every notification. In addition to this basic style it’s possible to
include an image that spans the whole width of the notification, a notification containing a
text list, and a progress bar. The notification center itself integrates into the host operating
system with a bell icon in the system’s tray area. Similar to Android all active notifications can
be dismissed at once by clicking on the “clear all” button.

1Browser support for Web Notifications http://caniuse.com/#feat=notifications

23

http://caniuse.com/#feat=notifications

2. Related Work and Background

Figure 2.6.: The notification center of Google Chrome with one active notification. — (1) The
notification. (2) Notification indicator. (3) Icon to dismiss all notifications.

2.5. Synchronizing Notifications across Devices

Typically notifications are only shown on the device on which the app or program that created
the notifications is installed. If the user wants to receive notifications on all devices, for
example about new emails, he has to set up his account on every device. In some cases this
isn’t possible. For example the popular messenger WhatsApp can only be installed on one
device at a time, as it is bound to the phone number. On the other hand email clients are
available for all platforms. However those are not always smart about notifying the user. A
notification for a newly received email might be shown on all devices with the client, but
not all clients remove the notification once the user read the email. With the increasing
amount of connected devices, dismissing the same notification on multiple devices can become
an annoyance. Because of this some social networking services and messengers started to
synchronize the state of notifications across multiple devices. In 2013 Apple introduced a
feature which allows some notifications from the iPhone to be shown on Macintosh computers.
The notifications are sent to the computer via Bluetooth. Similarly some wearable devices like
smartwatches and advanced fitness trackers also connect to the user’s smartphone and are able
to notify the user about new events. In December 2012 we created the Desktop Notifications
Android app [36] which allows sending notifications from an Android smartphone to the user’s
desktop computer.

24

2.6. Recently Announced Devices

Figure 2.7.: A notification displayed on both an Android-based smartphone and an Android-
Wear-based smartwatcha.

aImage from the Android Wear Developer Documentation https://developer.android.com/training/

wearables/notifications/index.html

2.6. Recently Announced Devices

As this thesis was written, several new devices with the capability to notify the user have been
announced or released. Apple unveiled the Apple Watch2, a smartwatch that connects with
iPhones. One focus of the presentation was the ability to show the phone’s notifications on the
watch, including messages, calls and notifications from third-party apps. The notifications on
the watch are interactive, so it’s possible to accept calls and respond to text messages. While
the Apple Watch only has been announced, several other manufacturers have already started to
ship smartwatches based on the Android Wear3 operating system. Android Wear connects with
Android-based smartphones and automatically shows all notifications from the smartphone on
the smartwatch as well (see Figure 2.7). Dismissing a notification on either device also removes
it from the other device. This functionality works with existing apps, however the notifications
on the smartwatch can be enhanced by adding special actions or graphics. The smartglasses
Google Glass use a modified version of Android rather than Android Wear, and the ability to
synchronize notifications with a smartphone is a feature that was previously absent. However
Google announced4 that Glass will soon be able to display all notifications from the connected
smartphone on Glass. Pebble, one of the first smartwatches, received a firmware update5

2Apple Watch https://www.apple.com/watch/
3Android Wear http://www.android.com/wear/
4Notifications on Google Glass (Announcement) https://plus.google.com/+GoogleGlass/posts/FSfaTv9yfbb
5Notifications on the Pebble Smartwatch (Announcement) https://blog.getpebble.com/2014/11/20/

fw28-adr21-ios252/

25

https://developer.android.com/training/wearables/notifications/index.html
https://developer.android.com/training/wearables/notifications/index.html
https://www.apple.com/watch/
http://www.android.com/wear/
https://plus.google.com/+GoogleGlass/posts/FSfaTv9yfbb
https://blog.getpebble.com/2014/11/20/fw28-adr21-ios252/
https://blog.getpebble.com/2014/11/20/fw28-adr21-ios252/

2. Related Work and Background

which also enabled showing notifications from any app on the watch. Microsoft released the
fitness tracker Microsoft Band6 that can also be paired with a smartphone. Unlike the Apple
Watch or Android-Wear-based smartwatches it supports all major mobile operating systems
(iOS, Android and Windows Phone). The device was also advertised to be able to synchronize
notifications with the phone. Furthermore Microsoft also announced a smart wireless charging
pad and a smart lamp that can notify the user via ambient light7.

2.7. Summary

In this chapter we looked at related work regarding notifications and interruptions caused
by notifications. Studies have shown that notifications are disruptive and lower task perfor-
mance [6, 7, 26] but are still valued by the users [24]. We then looked at recent research
regarding mobile notifications. The Desktop Notifications [36] app allows sending notifications
from Android-based devices to the desktop. Afterwards we described different notification
modialities and related research. Furthermore we discussed the current implementation of
notifications in popular desktop and mobile operating systems, notifications in the web and
the state of synchronizing notifications across devices. Finally we concluded the chapter with a
selection of (mostly wearable) devices that are able to notify the user and were announced or
released during the work on this thesis.

6Microsoft Band http://www.microsoft.com/microsoft-band/en-us
7Microsoft Smart Charging Pad and Smart Lamp http://lumiaconversations.microsoft.com/2014/11/12/

smarter-charging-notifications-new-light/

26

http://www.microsoft.com/microsoft-band/en-us
http://lumiaconversations.microsoft.com/2014/11/12/smarter-charging-notifications-new-light/
http://lumiaconversations.microsoft.com/2014/11/12/smarter-charging-notifications-new-light/

3. Concept of a Multi-Device Notification
Framework

In this chapter we introduce the concept of a multi-device notification framework. The purpose
of the framework is to synchronize notifications across all kinds of devices by expanding an
existing application. First we explain the architecture of the existing system. We then outline
the requirements of the framework and the new architecture.

3.1. Starting Point

We use the Desktop Notifications [36] app as starting point for our concept. The app allows
the sending of notifications from an Android-based device to the desktop. Figure 3.1 shows
the architecture in a simplified manner. The sender device shown in the figure is an Android
smartphone or tablet with the Desktop Notifications app installed. The app listens for new
notifications on the device and sends them to a central server. The server temporarily stores
these notifications in a database. On the receiving device, a desktop computer, the user has
to install an extension for either the Google Chrome or the Mozilla Firefox browser. The
browser extension periodically queries the server for new notifications sent by the Android app.
Multiple receiving devices can query the server at the same time, thus creating a one-to-many
relationship between the sender and the receiving devices. If the server returns a notification,
the browser extensions displays it on the desktop.

This architecture has several limitations. First, there is a distinction between the sending and
receiving devices and the data only flows in one direction. The architecture does not allow
sending notifications from one sender device to another. Furthermore, notifications have to
be dismissed on each device individually. Also the receiving devices have to know the sender
device in order to query new notifications from the server. For example, if a user owns a
smartphone and tablet, the receiving devices have to be paired explicitly with each sender
device. It would be advantageous to be able to automatically pair devices with the knowledge
that both devices belong to the same user. From a data flow perspective, periodically querying
the server can create a lot of unnecessary requests. Furthermore, the delivery of notifications to
the receiving devices may be delayed, as the length of time between two requests is a balancing
act between minimizing that delay by querying for new notifications frequently and minimizing
the workload of the server.

27

3. Concept of a Multi-Device Notification Framework

Figure 3.1.: The architecture of the Desktop Notifications [36] app that we used as a starting
point. — (1) The sender device sends information about new notifications
to the server. (2) The receiving devices periodically query the server for new
notifications.

3.2. Architecture

Based on the existing architecture we propose a notification framework for a multi-device
environment. As shown in Figure 3.2, the framework still uses a central server as its core
element. In a study regarding the risk associated with permissions on mobile phones it was
shown that sharing information with a server was regarded as not critical [9]. Instead of
distinguishing between sender and receiver devices, every device now takes on both roles.
Furthermore every device is associated with a certain user. The devices itself no longer need to
know about each other; they now only need to know which user they belong to. The central
server is used to keep track of all user-device-relations. This way the server can retrieve a list
of all devices for a given user. The devices communicate with the server via a bi-directional
channel. This communication channel does not necessarily have to be persistent, as long as
the devices can send data to the server at any time and vice versa. With the server able to
push messages to the devices, it is possible to broadcast notifications with very little delay
to all connected devices. In addition to sending notifications to all devices, the dismissal of
notifications is now also broadcasted. Figure 3.3 shows an exemplary data flow between three
devices owned by the same user and the server. In step (1) a notification is shown on the first
device and information about the notification is sent to the central server. The server knows
which other devices belong to the user and forwards the notification in step (2) to the second
and third device. Both devices then notify the user based on the received information. At this
point the notification is shown on all devices. In step (3) the user dismisses the notification
from the second device. The device informs the server about the dismissal, which in return
broadcasts a remove event to the first and second device. Both devices remove the notification
and thus the notification is cleared on all devices at once with minimal delay. In the following
chapters we will refer to the notification of step (1) as the notification from the device of origin
and the notifications created on the other devices as synchronized notifications.

28

3.3. Requirements

Figure 3.2.: Concept of the multi-device notification framework. The user’s devices are con-
nected to a central server via a bi-directional, but not necessarily persistent,
communication channel. The server keeps track of the devices by storing the
user-device-relations in a database.

3.3. Requirements

The new architecture imposes several requirements. Firstly, to include a device within the
framework it must be able to communicate with the server in some way. For mobile devices
this communication channel should not impact the battery. Additionally, the server should be
able to push events to the devices. Furthermore a device has to be able to display notifications.
As we have shown in section 2.4 most notifications nowadays consist of an icon and two lines
of text. That means that in order to synchronize notifications across devices at least the text
has to be transmitted. On top of that there should be an easy way to assign devices to a certain
user and store this relation on the server.

29

3. Concept of a Multi-Device Notification Framework

Figure 3.3.: Exemplary data flow between three devices owned by the same user and the
server. A notification is sent from the first device to the two others via the server.
The user then dismisses the notification on the second device, which causes the
notifications to disappear from all devices in short order.

3.4. Summary

In this chapter we proposed a framework for notifications in a multi-device environment. A
central server keeps track of the user’s devices and is able to communicate with them over
a bi-directional communication channel. An application is installed on each of the devices
and listens for notifications. If a new notification is registered, the application forwards the
notification to the server, which in return broadcasts it to the user’s other devices. If the user
dismisses a notification on one device, the dismissal is also broadcasted to all devices, thus
removing the notification on all other devices in short order.

30

4. Device and Notification Studies

To learn more about notifications on multiple devices we conducted two studies. For both
studies we pushed surveys to the users of the Desktop Notifications [36] app. We first asked the
users what kind of devices they own. In the second survey we asked them on which devices
they prefer to be notified. In this chapter we explain the design and results of the surveys, and
discuss the findings.

4.1. Device Distribution

The goal of the first survey was to determine the device distribution among the users of the
Desktop Notifications app in order to get a better understanding of the user base. We asked the
users which kinds of devices they own.

4.1.1. Design

Similar to the large-scale study conducted in [36], our approach was to show this survey to
the users of the Desktop Notifications extension for Google Chrome. We modified the Chrome
extension to display a survey notification to every user. As shown in Figure 4.1, we asked the
user “What kind of devices do you own?”. Below the notification we added two buttons. The
first button (Answer) opened the survey in a pop-up window and the second button (I don’t
want to answer) hid the notification and set a flag so that the user was not asked again. The
survey notification was shown once every day until the user either agreed to participate or
declined.

Figure 4.2 shows the pop-up window which was displayed to the user if he decided to
participate in the survey. In the pop-up window the question was slightly modified to “Which of
the following devices do you own?”, followed by a list of seven device categories: Smartphone,
Tablet, Smartwatch, Smartglasses, Desktop PC, Laptop and TV. We chose these device categories
by looking at currently available devices and categorizing them. The individual categories
could be selected by marking checkboxes. For the categories Smartwatch and Smartglasses we
added exemplary devices. The categories were listed in a random order. Below the list the
participants could optionally add a text comment. We translated the survey into English and
German and detected the set language of the Chrome installation to determine which should

31

4. Device and Notification Studies

Figure 4.1.: We asked the users to participate in the survey by displaying a notification on the
user’s desktop.

be displayed. For German users we displayed the German version and the English one in all
other cases.

4.1.2. Results

The survey was run over the course of four weeks. In total 6,779 users participated. Even
though the survey was only shown in English and German, we used the data from all par-
ticipants, regardless of their set language. The most popular device languages were English
(45.34%), German (11.95%), Portuguese (9.97%), Spanish (6.78%) and Japanese (4.22%). The
complete language distribution is available in appendix A.5. Figure 4.3 shows the results of
the survey. 92% of the participants own a smartphone. Laptops and PCs are owned by 61%
and 53%, respectively. These high numbers are not surprising because the participants are
users of the Desktop Notifications app, which requires an Android smartphone or tablet and
a desktop PC or laptop to work. Next are TV (45%) and tablet (44%). An interesting thing
to look at is the smartphone-tablet-distribution. Only 2% of the users own a tablet, but no
smartphone, and 42% own both. When we conducted the survey, there was a limited number of
smartwatches available for purchase. 8% of the users owned a smartwatch. Even less popular
are smartglasses, the select of which is pretty much limited to Google Glass. We expected many
users to not even know about them, so the result of 2% for the smartglasses ownership is not
at all surprising. In the comments some users told us that they plan to buy a smartwatch, but
are waiting for the technology to mature. It’s important to note that we did not ask if the TV in

32

4.2. Notifications on Multiple Devices

Figure 4.2.: The survey shown to the users of the Desktop Notifications extension for Google
Chrome. We asked the participants what kind of devices they own, with a list of
predefined categories and an optional comment field.

question was capable of connecting to the Internet. Some users stated in the comments that
their TV is indeed not a “smart” TV. Others stated that they use gaming consoles and devices
like the Google Chromecast to access online content on their TVs.

4.2. Notifications on Multiple Devices

After determining the device distribution among the Desktop Notifications users we wanted
to learn more about which devices the users preferred to be notified on. Thus we conducted
a second survey asking the users on which devices they would like to see notifications from
certain apps.

33

4. Device and Notification Studies

Figure 4.3.: The results of the device ownership survey show that almost all users own a
smartphone. Tablet, desktop PC, laptop and TV are around the 50% mark. Smart-
watches and smartglasses are not yet popular.

4.2.1. Design

Similar to the first survey this survey was shown to users of the Desktop Notifications app.
However this time we displayed the survey on Android devices instead of the desktop. Again
we created a survey notification on the device. This time the survey notification was triggered
if a notification from another app was shown. We set a maximum of one survey notification
every 22 hours and created the notification with the lowest priority possible. We did not
use sound or vibration and no icon was shown in the notification area of the device. The
user had to open the notification center to discover the notification. Upon tapping the survey
notification a survey view was shown to the user (see Figure 4.4; the full sized screenshot is
available in appendix A.2). In this survey view we told the user the name of the app which
triggered the survey and the user was asked to assume that he owns all of the devices shown
in the survey. Below this introduction we displayed seven statements, all starting with the text
“I would like to see this notification on my ...” followed by the same device types as in the
first survey (smartphone, tablet, smartwatch, smartglasses, desktop PC, laptop and TV). We
asked the users to rate these statements on a Likert scale from 1 (Strongly agree) to 5 (Strongly
disagree). Underneath the statements we added an optional text field for comments. Again we
translated the survey into English and German and used the set language of the Android device
to determine the language to be displayed, with the German version displayed on German
devices and English on all others.

34

4.2. Notifications on Multiple Devices

Figure 4.4.: This survey was shown to the user after clicking on a survey notification. The
users were asked to rate how strongly they want a notification from a certain app
(here: Spotify) to be displayed on another device.

4.2.2. Results

We distributed the survey as an update for the Desktop Notifications Android app and removed
it with another update after five weeks. In total 6,961 users participated at least once. The
most popular device languages were English (47.36%), German (15.11%), Portuguese (8.02%),
Spanish (6.69%) and French (3.51%). The complete language distribution is available in
appendix A.5. We received 12,468 ratings for 1,224 apps. Of the total ratings 94.8% were
performed on a smartphone and 5.2% on a tablet.

35

4. Device and Notification Studies

Figure 4.5.: Degree of agreement to the statements “I would like to see this notification on my
<device type>” on a Likert scale from 1 (strongly disagree) to 5 (strongly agree).
For the box plot the ratings of 46 apps were used, each with more than twenty
participants.

When we looked at the number of votes per app we immediately noticed a long tail. Many
apps were only rated by one user. For further analysis we cut off the long tail by only selecting
apps with ratings from more than 20 users. This reduced the number of apps to 46 (available
in appendix A.1). We aggregated the ratings for these apps and created the boxplots shown
in figure 4.5. The boxplots show the agreement to the statement “I would like to see this
notification on my <device type>”. The average rating for all device types except TV were
rated neutral or higher. The highest rating was received by the smartphone category (M =
3.69, SD = 0.22), followed by desktop PC (M = 3.46, SD = 0.24) and laptop (M = 3.44, SD
= 0.23). Similar to the first survey, these results are likely influenced by the fact that the
survey was shown exclusively to users of the Desktop Notifications app, a group of users that
already show interest in receiving notifications on the desktop. The next highest ratings were
received by the categories tablet (M = 3.88, SD = 0.28), smartwatches (M = 3.26, SD = 0.31)
and smartglasses (M = 3.10, SD = 0.28). The device type with the lowest rating was TV (M =
2.77, SD = 0.27).

36

4.3. Discussion

Figure 4.6.: The 46 most rated apps grouped into categories. The results of each category
look similar to the combined results of Figure 4.5 with the exception of the
calendar/alarm and phone categories, where the smartwatch ratings are higher
than the tablet ratings.

To gain further insight into the data we categorized the 46 apps into seven categories: cal-
endar/alarm, email, game, messenger, phone, social and tool. As shown in Figure 4.6 the
distribution looks similar to the previously discussed boxplot, with the smartphone, desktop
PC and laptop categories receiving high ratings. Noticeable exceptions are the slightly higher
ratings of calendar/alarm and phone notifications on smartwatches compared to tablets. This
is likely because these notifications often require an immediate reaction and thus are more
useful on a device which is always worn by the user.

In this survey the optional comment field was hardly used. However we received negative
feedback from multiple users who disliked our approach of creating notifications for the survey,
even through they were silent. Because of this we later added a prominent opt-out link at the
top of the survey.

4.3. Discussion

Our goal was to learn more about notifications on multiple devices. We conducted two studies
targeted at users of the Desktop Notifications app. In the first survey we asked which kind of
devices the users own. The high distribution of smartphones, desktop PCs and laptops were
expected since those devices are required to be able to use the app. Tablets and TVs were
common as well. However we did not ask for the exact models of the devices, so we did not
find out which operating systems were installed on the tablets, nor whether or not the the

37

4. Device and Notification Studies

respective TV was a “smart” TV. In the second survey we asked the users on which kind of
devices they prefer to receive notifications. The smartphone, desktop PC and laptop categories
received a high rating, followed by tablet, smartwatch and smartglasses. TVs received the
lowest rating.

Taking both surveys into account we decided to focus further work in this thesis on smartphones,
tablets and desktop computers, because of their high ratings and high distribution. We
determined that smartwatches and smartglasses are not yet widespread enough and TVs
received a too low rating.

38

5. Implementation of the Framework

In this chapter we discuss the implementation of the prototype. First we describe the existing
implementation, which was used as starting point. We then describe the changes to the Desktop
Notifications [36] Android app as well as its server-side components and the Google Chrome
extension.

5.1. Existing Implementation

The existing implementation [36] consists of an Android app, server-side components and a
Chrome extension. The Android app was published in the Google Play Store1 and is available
for devices running Android 2.3.3 and later. The server-side components consist of PHP scripts
and MySQL databases. The Google Chrome extension was published in the Chrome Web
Store2. On its first run, the Android app requests a unique code from the server. The code
is randomly created and consists of 16 alphanumeric characters. The server adds the newly
created code to a table in the database to ensure that every code is unique. The Android app
stores the code persistently and displays it to the user. To connect the Android app with the
Chrome extension the user has to enter the code provided by the Android app into the Chrome
extension. When the Android app detects a new notification, it sends the notification, encoded
in the JavaScript Object Notation (JSON) [8], to the server. The JSON object contains the
content of the notification, meta data and the pairing code. A PHP script on the server processes
the request and stores the data in the MySQL database. The Chrome extension periodically asks
the server if notifications for a certain pairing code were added to the database. Depending on
the amount of notifications a user receives, the extension polls every 10 to 60 seconds. The
server selects all new entries in the database for the given code since the last request and
returns the data as a JSON object. If the result is not empty, the Chrome extension creates a
notification by calling Chrome’s notification API. The package name of the Android app that
created the notification on the Android device is used as an identifier for the notification on
Chrome. New notifications from the same app will overwrite existing notifications.

1Desktop Notifications in the Google Play Store https://play.google.com/store/apps/details?id=org.hcilab.

projects.notification
2Desktop Notifications in the Chrome Web Store https://chrome.google.com/webstore/detail/

desktop-notifications-for/giicnncicnopjohcpamieklkiacdoeni

39

https://play.google.com/store/apps/details?id=org.hcilab.projects.notification
https://play.google.com/store/apps/details?id=org.hcilab.projects.notification
https://chrome.google.com/webstore/detail/desktop-notifications-for/giicnncicnopjohcpamieklkiacdoeni
https://chrome.google.com/webstore/detail/desktop-notifications-for/giicnncicnopjohcpamieklkiacdoeni

5. Implementation of the Framework

5.2. Android App

In this section we discuss the changes to the Desktop Notifications Android app. For this thesis
we changed the setup process, added the ability to receive and dismiss notifications, improved
the settings and added a notification history.

5.2.1. Setup and Device Pairing

The existing version of the Android app, which we used as a starting point, consisted of two
views: The main view and the settings view. As shown in Figure 5.1, the main view guides the
user how to set up the app and pair the devices in the first three steps, with a fourth step to
test the setup.

The first, second and fourth steps of the setup were left largely unchanged. The first step
still asks the user to grant the app access to the notifications. The notification access is not
covered by Android’s permission system and has to be explicitly granted by the user in the
system settings. If the user did not yet grant access a button is displayed which, depending on
the Android version, will open the accessibility settings (Android 2.3 - 4.2) or the notification
access settings (Android 4.3 and newer). In both cases the user is asked to click the button,
check a checkbox in the system settings, confirm the action and then return to the app. The
button is then replaced with the text Enabled.

The second step in the setup tells the user to download either the Chrome or Firefox browser
extension. The user is shown short URLs leading to either the Chrome Web Store or the Firefox
add-on marketplace. Because the links have to be opened in the desktop browser rather than
the Android device, we intentionally left them unclickable.

In the third step previously a random pairing code generated by the server was shown to the
user. While this works for a one-to-one device mapping, it doesn’t work well in a multi-device
environment because the user would have to pair every device with every other device. Another
drawback of the code-based pairing system was that typos committed while entering the code
caused the pairing to fail. Also the security aspect was rather lacking, because copying the
code provided the ability to access the notifications. Thus we were looking for a pairing system
that makes it possible to assign devices to a user in as few steps as possible and at the same
time with improved security. We solved this challenge by implementing an authentication
system based on OAuth 2.0 [22]. Because the Android app is distributed by the Google Play
Store, which requires a Google account to download apps, we decided to use this account to
authenticate the user. To do so we had to register the app in the Google developer console.
This registration allows the user to grant the app access to his account. After access to the
account has been granted, the Android app is able to generate an authentication token which is
valid for approximately an hour. This token is sent along with the data for every server request.
The server then validates the token and extracts the account ID of the user. This ID is unique

40

5.2. Android App

Figure 5.1.: The setup process of Android devices. — Step 1: Grant the app access to read
the notifications. Step 2: Install browser extension. Step 3: Sign into the Google
account. Step 4: Create a test notification.

for every account and does not change for the lifetime of the account. If the user signs in with
the same account on every device, we can use this ID to pair the user’s devices.

Figure 5.2 shows the sign-in flow from the user’s perspective. The user is shown a Sign in with
Google button. After tapping on the button the app looks for Google accounts on the device,
and if multiple accounts are found an account picker is shown. On the very first sign-in a modal
dialog is shown, asking the user if the app is allowed to access the account. This permission
has to be granted only once and for every following sign-in the user is not asked again. It’s
also possible to register multiple apps in the Google developer console which all share this
access. The account data which can be accessed by the app can also be controlled by so-called
scopes. Since we only need the access to authenticate the user, we requested the most basic
scope (profile) which enables us to access the unique account ID and public information. After

41

5. Implementation of the Framework

Figure 5.2.: The sign-in flow of the Android app. — (1) The user taps on the Sign in with
Google button. (2) If there are multiple accounts on the device, the user chooses
an account or adds a new account. (3) The user is authenticated and the device is
registered on the server. (4) The user is successfully signed in.

the access is granted, the app generates an authentication token which is sent to the server
to register the device. The server then validates the token by requesting the token validation
endpoint provided by Google. If the token is valid, the endpoint returns the unique account
ID of the user. The server then stores the device information along with the account ID in the
database and tells the app that the device registration was successful. The sign-in button is
then replaced by the text Signed in.

This device pairing system allows the user to pair a new device with only one tap on a button
once access is granted, leaving little room for mistakes. Furthermore security is improved since
an attacker now needs access to the Google account in order to intercept the notifications.
Because OAuth is an open standard for authentication it is possible to add further authentication
providers with little effort.

42

5.2. Android App

5.2.2. Receiving Notifications

In order to synchronize the notifications across the user’s devices, the Android app has to
receive events about new notifications from the server, similar to the Chrome extension.
However, unlike the Chrome extension, an app on a mobile device should never continuously
poll for new data in the background. The polling would cause the device to stay awake and
quickly drain the battery. Sending push messages from a server to a mobile device is a common
problem and because of this there are several services that try to solve it. For the Android
platform Google offers the Google Cloud Messaging (GCM) service. The service runs in the
background of Android devices and maintains a single connection to Google’s servers. Third
party apps can hook into the background service so even if there are multiple apps listening
for push messages only one outbound connection is required. To use the GCM service we
had to register the package name of the app and the IP address of our server in the Google
developer console. In the app we had to implement event listeners for new push messages.
In addition the app has to register itself with the GCM background service running on the
Android device. In this registration process a unique key is generated which is used by the
server to send messages to specific devices. The key is sent to the server in the authentication
step we described in the previous section and it is stored together with the account ID in the
database.

To send a message to a device, the server has to send the data and the key of the device to
a GCM endpoint. The GCM service then takes care of delivering the message to the mobile
device. The GCM background service on the mobile device receives the data and invokes the
third party app. In our case we use these events to create synchronized notifications. As shown
in Figure 5.3 a synchronized notification shows the title and content in addition to the name of
the original device. This implementation behaves just like that of the Chrome extension. The
notifications are grouped by the package names of the apps that created them. If a notification
from a certain app already exists, it is updated. If the user clicks on the notification, the full
text of the notification is displayed. These synchronized notifications can optionally play a
notification sound or cause the receiving device to vibrate.

Using a push message system triggered by the server has the additional benefit of being faster
than having the device poll every 10 to 60 seconds. Although the message has to be sent to the
GCM endpoint first we observed an approximate transmission time of one second. For other
platforms other services similar to the GCM push-service exist.

5.2.3. Dismissing Notifications

When synchronizing notifications across devices, we want to avoid that the user has to dismiss
the same notifications on every device. Thus it is necessary to broadcast not only events about
new notifications but also events about removing them. The API we use to listen for new
notifications can also be used to listen for remove events. Since remove events only differ in

43

5. Implementation of the Framework

Figure 5.3.: Synchronized notifications show (1) the title and content of the original notifica-
tion and (2) the name of the device on which the notification was created.

that they close a notification instead of opening it, we were able to use the existing architecture
to deliver the events to the user’s devices. As described in the previous section the data is first
sent to the server, which forwards it to the GCM endpoint. The GCM service then takes care of
delivering the data to the user’s devices. On each device the Android app is then invoked and
depending on whether the message contains a new notification or a remove event a notification
is created or removed.

Using this system the user can dismiss a notification from any device, regardless on which
device the notification was actually created first. Normally Android does only allow the
removal of a notification if the app created it itself. However because the user granted our
app notification access during the setup we can access methods that would otherwise not be
available, like closing any active notification.

5.2.4. App Settings

To give the user control over which apps are allowed to send notifications we implemented
the view shown on the left side of Figure 5.4. The view contains a list of all apps that have
previously created a notification on the device. By tapping on the checkbox the user can enable
or disable sending notifications for specific apps. By default all apps are set to send notifications.
Below the name of the app a notification count tells the user how many notifications were
created by the app. This information is useful to quickly detect apps that create a huge number
of notifications.

44

5.2. Android App

Figure 5.4.: Left: List of apps which are allowed to send notifications. “Private Mode” notifies
but doesn’t send the text. Right: A history of all past notifications from this device.

This list of apps was already available in the existing version of the app, however it was shown
at the bottom of the settings view and most users did not discover it. Thus we moved the list
into a tab view so the users can reach it with one swipe from the setup view. The code related
to the list had to be rewritten from scratch in order to move it from the settings view into the
tab view. We used this opportunity to add a new functionality to the list. To preserve the user’s
privacy the app already had the option to disable sending the content of notifications for all
apps. We decided to change this global setting to a per app setting. The so called “Private
Mode” can be enabled by long pressing on an app in the list. For existing users these changes
reset all previous settings.

45

5. Implementation of the Framework

5.2.5. Notification History

Because it is now possible to dismiss notifications across devices we were worried about
the user accidentally dismissing notifications. Thus we implemented the history view which
displays all notifications that have been created on this device in chronological order. As shown
on the right side in Figure 5.4 the view is accessible by clicking or swiping to the history tab.
Each history entry contains the title and content of the notification in addition to the icon of
the app which created the notification. The history is limited to a fixed number of notifications
and can be cleared by the user. To preserve the user’s privacy the history can be disabled at
any time in the settings of the app.

5.2.6. Paired Devices and Settings

Since we now pair devices using the user’s Google account it is possible to retrieve a list of all
devices that are associated with the user’s account. We implemented a view (see left side of
Figure 5.5) that requests all paired devices from the server for a given account. The list shows
the names of the devices ordered by the dates each device was added. The list can be accessed
from the app’s menu.

In the settings view (see right side of Figure 5.5) the user previously had the option to
restrict sending notifications to Wi-Fi networks, disable sending the content of the notifications
and disable sending for certain apps. As described in section 5.2.4, we moved the last two
options to a more accessible view. The Wi-Fi setting remained and we added options to
assign a name to the device and disable the notification history. The device name is used in
synchronized notifications on other devices to declare the origin of the notification and in the
list of connected devices. We generate a default device name based on the device’s model
name which is provided by Android. Because the model name is not always useful, we added a
list of popular devices which maps the model name to a readable name. If the model is not in
this list it uses the manufacturer’s name instead. The device name can be freely edited by the
user. Because the app is now able to receive notifications from other devices we added options
related to incoming notifications. The user can enable a notification sound and control the
vibration.

5.3. Server Architecture

To support multiple devices and the dismissal of notifications we had to rewrite the server-side
components from scratch. The previous implementation was a one-way street: The Android
app pushed data to the server and the browser extension used polling to retrieve the data from
the server. However sending data from the browser to the Android app was not possible.

46

5.3. Server Architecture

Figure 5.5.: Left: The list of devices associated with the user. Right: The settings screen allows
the user to set a device name, enable the logging of notifications in a history and
set notifications to be sent only through Wi-Fi. Synchronized notifications from
other devices can be set to play a sound and/or vibrate the device.

5.3.1. Authentication

In the new version of the server every request has to be authenticated. Possible requests are:
pairing a new device, retrieving a list of all paired devices and broadcasting events about new
or removed notifications. To authenticate the user an authentication token is generated by the
Android app or Chrome extension which is sent with every single request. The authentication
token is valid for approximately one hour. Before the server can process the request itself it has
to validate the token. This is done by sending the token to the Google token-info endpoint. The
result contains information about the app that created the token, the Google account ID and
the remaining token lifetime in seconds. In the case of an invalid token an error is returned

47

5. Implementation of the Framework

instead and the server will reject processing the request. Retrieving the information from the
token-info endpoint can be expensive, especially when done dozens of times per second. Thus
we cache the result for the remaining lifetime of the token in an in-memory database table.
This ensures that during the lifetime of the token the lookup of the account ID is very fast for
subsequent requests and requires no further network requests.

All requests from the Android app and Chrome extension to the server are sent via HTTPS and
use a certificate provided by the German National Research and Education Network3. This
ensures transport security of all data which is an essential part of the system’s security. Without
encryption an attacker would be able to read the authentication token and interact with the
server on behalf of the user and thus gain access to the user’s notifications.

5.3.2. Device Registration

When the user clicks on the Sign in with Google button in the Android app or the Chrome
extension, the key for the Google Cloud Messaging (GCM) service, information about the
device and an authentication token are sent to the server. The server authenticates the user and
saves the GCM key together with the account ID into the database. This database table is the
core element of the server, because it allows us to retrieve a list of all devices for a specific user.
We also store additional meta data like the device type, so we can distinguish between Android
smartphones, Android tablets and Chrome instances. With this information it is possible to
broadcast notifications to all devices at the same time or only certain device types.

5.3.3. Event Broadcasting

To keep the user’s notifications in sync across all devices, every new notification and every
notification dismissal has to be sent to the server and then broadcasted to all devices. Figure 5.6
shows the necessary steps to broadcast an event. In step (1) an event about a new or removed
notification is sent to the server. Every request includes an OAuth 2.0 authentication token. The
server uses PHP scripts to process the requests. Subsequently, in step (2) the server sends the
authentication token to the token-info endpoint which is provided by the OAuth authentication
service provider. The authentication service provider validates the token and returns the user’s
account ID. The server uses the account ID to request all associated devices from the MySQL
database. The result of the request is a list of device keys which can be used to send push
messages to the devices via the Google Cloud Messaging (GCM) service. After that, in step (3),
the server forwards the event to the GCM endpoint. In step (4) the GCM service pushes the
event to the user’s devices. The devices receive the event and, based on the contents of the
event, create a new notification or remove an existing one.

3German National Research and Education Network https://www.dfn.de/en/

48

https://www.dfn.de/en/

5.3. Server Architecture

Figure 5.6.: The interaction between the Android app, Chrome extension, server-side compo-
nents and Google services.

In listing 5.1 an exemplary JSON object for a new notification is shown. It consists of all
necessary data that is required to display the notification on other devices. Because every
request has to be authenticated, the JSON object contains an authentication token. Android
notifications are identified using the the package name of the notifying app, a notification ID
and an optional notification tag. Besides the package name the actual name of the app is also
included. The title and content fields contain the content of the notification and are omitted
if the user disabled sending the content for an app. The time field represents the Unix time
stamp of the creation time in milliseconds. The device name is used to indicate the origin of
the notification and the device type specifies the type of the device which triggered the event.
Possible values for the device type are Android smartphone (android_phone), Android tablet
(android_tablet) and Chrome browser (chrome).

For comparison, listing 5.2 shows an exemplary JSON object which is used to signal the
dismissal of a notification. Again an authentication token is included in the request. In this

49

5. Implementation of the Framework

1 {

2 "access_token": "ya29.UQC5W8Tjny ... kdN-uBKANL8",

3
4 "package": "com.whatsapp",

5 "notification_id": 42,

6 "notification_tag": null,

7
8 "appname": "WhatsApp",

9 "title": "Dominik Weber",

10 "content": "Example Notification",

11
12 "time": 1415630510793234,

13
14 "device_name": "Nexus 5",

15 "device_type": "android_phone"

16 }

Listing 5.1: Exemplary JSON object for creating a notification.

1 {

2 "access_token": "ya29.TE9xms8PU ... P-roZoAb",

3
4 "package": "com.whatsapp",

5 "notification_id": 42,

6 "notification_tag": null,

7
8 "time": 1415630514391345,

9
10 "device_type": "chrome"

11 }

Listing 5.2: Exemplary JSON object for removing a notification.

example the remove event was not triggered on the same device as the creation event. Because
of this the authentication token is different, however both tokens will return the same account
ID. The package name, notification ID and notification tag match the values of the create event.
The Android app and Chrome extension will compare the values and close all notifications
with matching values. The name of the app, title, content and device name are omitted in the
remove event, because they are not needed. The time field indicates the time of the dismissal
and the difference between the time stamp in the create and remove events equals the duration
for which the notification was shown. Similarly, the device type field contains the type of
device which was used to dismiss the notification.

50

5.4. Google Chrome Extension

5.4. Google Chrome Extension

To support the new functionality of synchronizing notifications across devices we also updated
the Chrome extension. Similar to the Android app we updated the way devices are paired and
how notifications are received by the Chrome extension.

5.4.1. Setup and Device Pairing

The setup process of the Chrome extension previously consisted of entering the pairing code
which was shown in the Android app. Because our goal was to assign all devices to a single
account ID, we replaced the code-based mechanism with a sign-in button (as shown on the left
side of Figure 5.7). The button allows the user to sign in with a single click if he previously
granted the app access to his Google account. In the case that the permission to access the
account was not granted yet, a pop-up window will open asking the user to do so. The
permission to access the Google account is shared across the Android app and the Chrome
extension, because we linked both projects in the Google developer console. After the user
is successfully signed in, the text Signed in is shown along with options regarding the display
duration of the desktop notifications and a checkbox to enable a notification sound.

5.4.2. Receiving Notifications

Previously the Chrome extension used polling to periodically ask the server for new notifications.
On mobile devices we decided not to use this technique because of the negative impact on
battery life. This doesn’t apply to desktop PCs or even laptops. However, constantly polling for
new notifications creates many unnecessary requests and does not scale well on the server-side.
Furthermore, polling every 10 to 60 seconds means that in the worst case a notification might
be delayed for 60 seconds. Thus we decided to also implement a server initiated push message
system for the Chrome extension. Although the Google Cloud Messaging (GCM) system we
use for the Android app is sometimes referred to as “GCM for Android” in the documentation,
Google added support for it in a recent update of Chrome. Similar to the Android version of
the service, extensions can request a unique key for a particular Chrome instance. The key
is sent to the server during setup and is stored in the database together with the account ID.
The extension then only has to register an event handler to receive push messages from the
server.

We also updated the extension to show the name of the origin device in desktop notifications.
Similar to the Android app, the name is shown below the content of the associated notification
and enables the user to see the origin at a glance.

51

5. Implementation of the Framework

Figure 5.7.: The setup and settings dialogs of the Desktop Notifications extension for Google
Chrome. — Left: The user is instructed to sign into the same Google account as
on the Android device. Right: Confirmation of the successful sign-in and settings
to change the duration of desktop notifications and enabling a notification sound.

5.4.3. Dismissing Notifications

Desktop notifications are only shown for a couple of seconds and are then moved into Chrome’s
notification center, which behaves similarly to Android’s notification center. The user can
review the notifications and dismiss a single notification or all notifications at once. Before,
dismissing a notification had no other effect than removing it from the user interface. We added
an event listener to the notifications which notifies the extension about dismissed notifications.
The extension then forwards the event to the server, which broadcasts it to all of the user’s
devices.

At the same time the extension can now receive remove events from the server and close
notifications in Chrome’s notification center. By broadcasting events about new and dismissed
notifications on every platform we are able to keep the user’s notifications on all devices in
sync.

52

5.5. Extensibility

5.5. Extensibility

Currently the system only supports Android-based devices and Google Chrome on the desktop.
However we designed the architecture in a loosely coupled manner which can be easily
extended to support other connected devices. For example, the Google Cloud Messaging
service can only push messages to Android-based devices or Chrome instances. However other
push messaging service providers exist. Apple offers the Apple Push Notification (APN) service4

to target iOS-based mobile devices and Microsoft offers Windows Push Notification Services
(WNS)5 for Windows and Windows Phone apps based on the Windows Runtime. To support
other browser extensions besides Chrome, for example the Firefox add-on, WebSockets [18]
could be used. WebSockets are low-overhead persistent connections which enable bi-directional
sending of messages between the browser and a server.

Wearable devices, like smartwatches, that do not have a direct network connection but rather
use Bluetooth to communicate with a mobile device can, in some cases, also be integrated
into the system. The requirement is that the wearable device synchronizes the notifications
with the mobile device through Bluetooth. In one of our tests we used an Android-Wear-based
smartwatch and paired it with an Android smartphone. The smartphone then was paired with
an Android tablet using the Desktop Notifications Android app. A notification on the tablet
would then show up on the smartphone and on the smartwatch. Dismissing the notification on
the smartwatch would remove it from the smartphone and tablet. However in this case it’s not
possible to detect if the notification was removed on the smartwatch or on the smartphone.

In the current implementation the authentication mechanism is based on the user’s Google
account. Because Google implements the OAuth authentication scheme it is possible to use
another authentication provider with little effort or give the user the choice to use one of
multiple authentication providers. Most social networks can act as OAuth authentication
service providers.

5.6. Limitations

A special case of Android notifications are so-called ongoing notifications. They notify the
users about ongoing processes like download progress, the duration of ongoing phone calls or
the currently played song. Typically these notifications are updated often. For example the
duration of a phone call will update once a second to increase the timer. Updates to Android
notifications are internally treated as removing the existing notification and creating a new one.

4Apple Push Notification (APN) service https://developer.apple.com/library/ios/documentation/

NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
5Windows Push Notification Services (WNS) http://msdn.microsoft.com/en-us/library/windows/apps/

hh913756.aspx

53

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx

5. Implementation of the Framework

The notification API allows app developers to set a special flag to indicate that the notification
is ongoing. Because of the huge amount of events created by this kind of notifications we filter
them out using the “ongoing” flag.

To reduce the bandwidth that is required to broadcast notifications to all devices we decided to
not send any images with them. On Android notifications show an icon of the app next to the
text of the notification and in some cases, like text messages, the icon is replaced by an image
of the contact. As a workaround we determined the top hundred most used apps and crawled
the Google Play Store to download their default app icons. We bundled these icons with the
Chrome extension and the Android app. For less popular apps a generic default icon is shown
instead. We also do not transfer any sounds or vibration patterns.

Most Android notifications are actionable and tapping on them will, for example, open the
related app. Because we don’t include possible actions when broadcasting the notifications to
all devices, the synchronized notifications are not actionable. This can be confusing at times,
for example, after creating a screenshot on an Android device a notification with the next “Click
here to view the screenshot” is created, which would be visible in synchronized notifications
as well. This also means that accepting calls or replying to text messages by tapping on a
notification is not possible, something the users are used to doing.

The add-on for Mozilla Firefox was developed to reach more users and increase the number
of installations of the Android app. Functionality-wise the Firefox add-on worked exactly the
same as the Chrome extension. However we decided against updating the add-on to the new
system, because updates for Firefox add-ons are manually reviewed by Mozilla before they
can be rolled out to all users. The waiting time for the review process is usually several weeks
and thus out of the scope of this thesis. Considering the fact that most users use the Chrome
extension we decided to focus our work on the Chrome extension.

All devices require an active Internet connection for the framework to work. If any device is
offline, it will be unable to send or receive events and the device will go out of sync.

5.7. Summary

We introduced a framework which makes it possible to synchronize the user’s notifications
across Android smartphones, Android tablets and desktop computers. The user’s devices are
paired by signing into the Android app or Chrome extension with a Google account, which, after
granting the permission once, is done with only one tap or click. The user’s notifications are
sent to a central server which broadcasts the notifications to all connected devices. Dismissing
a synchronized notification on one device automatically removes it on all other devices. The
user can disable sending notifications for certain apps or enable “Private Mode”, which will
still notify the user but does not include the actual content of the notification.

54

6. Deployment and Usage Studies

In this chapter we describe the process of publishing the updates to the Android app and
Chrome extension to the existing user base. We then analyze the state of the user base, their
devices, and apps settings after two months. Furthermore we conducted a study to learn more
about the usefulness of synchronized notifications across devices. We also updated the app
once again to offer more options and looked into the resulting effects.

6.1. Publishing

We published the updates to the Desktop Notifications [36] Android app and Chrome extension
in the Google Play Store and the Chrome Web Store. Updating both, the Android app and
the extension, at the same time turned out to be a challenge for of a number of reasons. For
one, the update mechanisms of the Google Play Store and the Chrome Web Store behave
differently. Updates to a Chrome extension are rolled out to all users automatically, without
any user interaction, within several hours. The Google Play Store in comparison rolls out
the updates rather slowly, over several days. Furthermore, not all users receive the updates
automatically, because the Play Store allows users to disable automatic updates. If an app
requests additional permissions the update has to be performed manually by the user, regardless
of set update preferences. This was the case for the update to the Android app, as it requested
new permissions for the implementation of the Google sign-in. When we released the update
to the Play Store approximately 35,000 users had the current version of the app installed and
approximately 12,000 users used a version that was no longer supported. In addition to the
requirement of a manual update the replacement of code-based pairing with account-based
pairing meant that existing users had to pair their devices anew.

We approached this challenge by temporarily supporting both the old and new versions of the
Android app, Chrome extension and server-side components. Furthermore, we rolled out the
updates in three phases:

Phase 1 In the first phase we published the updated Android app in the Play Store which
triggered the manual update for all users. We explained the new pairing mechanism in
the “what’s new” section of the Play Store. Because we didn’t expect all users to sign
into the app right away, we modified the server to handle the notifications with both
the old polling-based mechanism and the new push-based mechanism. We also updated

55

6. Deployment and Usage Studies

the Chrome extension to show a hint that the new pairing mechanism is now available.
We monitored the user behavior over the course of several days and made sure that the
update worked as intended.

Phase 2 In the second phase we updated the Chrome extension again to display the sign-in
button to new users, while removing the option to use the code-based pairing mechanism.
For existing users we added a notice that code-based pairing would be disabled soon.

Phase 3 Eventually half of the active Android app users updated to the new version. We then
disabled the old polling-based mechanism on the server side and updated the Chrome
extension once again to remove the code-based system completely. Existing users that
had not paired their devices using the new account-based pairing system yet now saw a
message explaining the update in detail.

This process happened over the course of two months. According to the Google Play Store
statistics, approximately 8,000 users did not update the Android app. However, during the
same time the app gained several thousand new users.

The following statistics describe the state of the Android app, Chrome extension and Firefox
add-on at the time of writing in December 2014. One has to keep mind that the app and
browser extensions were first published in December 2012 and updated for this thesis in
October 2014. The Android app has been downloaded 298,841 times since its release and is
currently installed on 58,265 devices. Of these active installations 35,863 (61.55%) use the
newest version of the app and 22,402 (38.45%) use an older version which we disabled on the
server side. The three most used devices are the Google Nexus 5 (5.81%), the Samsung Galaxy
S3 (4.14%) and the Google Nexus 4 (4.07%). According to the Play Store the app is installed
on 3,386 tablets with a display size ranging from 7 to just under 10 inches and on 2,598 tablets
with a display size of 10 inches and larger. Most downloads originated from the United States
(17.94%), followed by Germany (12.08%), India (6.31%) and the United Kingdom (4.86%).
The app has been rated 8,155 times, with an average rating of 4.26 out of 5 stars and received
over 1,700 comments.

The Chrome Web Store reports approximately 80,000 weekly users. The discrepancy regarding
user count between the Chrome extension and the Android app indicates, that many users
might install the Chrome extension out of curiosity but fail to install the Android app, or simply
do not bother to remove the extension from Chrome after they decide to no longer use the
app. The Chrome extension has been rated 616 times, with an average rating of 4.25 out of 5
stars.

The statistics dashboard for the Firefox add-on reports 67,814 total downloads and between
8,000 and 9,000 daily active users. It has been rated 16 times, with an average rating of 4.5
out of 5 stars.

56

6.2. Users and Devices

6.2. Users and Devices

After two months we created a snapshot of the database and analyzed the list of devices which
were registered with the service at the time. In total 33,888 users used their Google account
to sign in and 53,565 devices were active. The number of active devices included of 27,933
(52.15%) Android smartphones, 2, 214 (4.13%) Android tablets and 23,418 (43.72%) Chrome
instances installed on desktop PCs or laptops.

We looked at the distribution of these three device types among the users. For example, if
a user installed the Android app on two smartphones and the Chrome extension on three
computers, we counted this as two distinct device types. Of the 33,888 users 19,004 (56.08%)
have only one device type associated with their account, 14,409 (42.52%) users have two and
the remaining 475 (1.40%) users all three.

The group of users that had only one device type associated with the app is interesting to
look at, considering that at first glance they would not be able to use the app at all. However,
because we only counted the distinct device types, a user could use the app to synchronize
notifications between multiple phones or multiple tablets. Another possibility is that users used
the Firefox add-on, which wasn’t counted in these statistics, but still signed into the Android
app with their Google account. A third possible group are users which started the pairing
process but did not bother adding other devices. Breaking down the users with only one device
type (N = 19,004) revealed that 11,497 (60.50%) users registered an Android smartphone,
1,082 (5.69%) an Android tablet and 6,425 (33.81%) a Chrome instance.

The 14,409 users which registered two distinct device types can be categorized into the
combinations of Android smartphone with tablet (238 users, 1.65%), Android smartphone with
Chrome (13,710 users, 95.15%) and Android tablet with Chrome (461 users, 3.20%).

We also logged the underlying operating system of the Chrome installations. Out of 23,418
Chrome instances 20,048 (85.61%) were installed on a computer with Microsoft Windows,
1,634 (6.98%) on OS X, 1,151 (4.92%) on a Linux distribution and 585 (2.50%) on Chrome OS.
(All distributions are available as pie charts in appendix A.5.)

6.3. Private and Disabled Apps

Once a week, Desktop Notifications Android app automatically sends the list of apps that created
at least one notification on the user’s device to the server. The list includes information about
whether or not the user has disabled sending notifications for certain apps and if the user
enabled the “Private Mode” (notify, but don’t include the content). With the update to the
Android app we reset all previous settings, so the following collected data is the result of the
app being used in the wild over the span of two months.

57

6. Deployment and Usage Studies

Figure 6.1.: Categories of the 30 most frequently disabled apps with at least one thousand
users.

In total we saw that 36,249 different apps created at least one notification. Of these apps 6,051
had notifications disabled and 452 were marked as private by at least one user. We selected all
apps that were used by at least one thousand users and calculated for each of them how many
users disabled sending notifications for the app and how many enabled the “Private Mode”.

A total of 146 apps were disabled by at least one thousand users. We sorted the list of apps by
the percentage of users that disabled notifications for them. From this sorted list we took the
30 highest percentage entries and categorized them. (The list and the corresponding categories
are available in appendix A.3.) In Figure 6.1 we visualized the distribution of the categories in
a bar chart. With 21 out of 30, most apps are in the tool category by a large margin. The other
apps are divided into the categories email (3), game (2), media (2) and social (1).

In the same manner we extracted the list of apps that were set in the “Private Mode” by at least
one thousand users. This list contains 113 apps. Again, we calculated the percentage, sorted
the list and looked at the 30 most frequent apps. (This list of apps with the corresponding
categories are available in appendix A.4.) As shown in Figure 6.2, messenger (16) and email (7)
apps were set to “Private Mode” most often. The content of the notifications created by these
apps often is of a private or confidential nature, yet at the same time receiving notifications
from these types of apps is important to the users [36]. Not sending the actual content of the
notification but still getting notified is a compromise many users seem to agree with. The same
goes for apps from the social (2) and calendar/alarm (1) categories. With four apps the tool
category is positioned at rank three. They consist of two anti-malware apps, an alternative app
store for Android and an app related to online banking.

58

6.4. Usefulness of Synchronized Notifications

Figure 6.2.: Categories of the 30 apps that were set to “Private Mode” most frequently and
which are used by at least one thousand users.

6.4. Usefulness of Synchronized Notifications

To learn more about synchronized notifications across different devices we asked the users of
the app to rate their usefulness.

6.4.1. Design

We updated the Android app and Chrome extension once again and added a feedback button
below some synchronized notifications. We limited the feedback button to the 46 apps which
we already used in section 4.2 (see appendix A.1). Figure 6.3 shows the button below a
synchronized notification on an Android device. Tapping on the feedback button opens a new
view where the user is asked if they felt receiving this notification on the current device in
addition to the origin device was useful to them. Both the name of the app origin device were
explicitly named. The rating was done on a Likert scale from 1 (strongly disagree) to 5 (strongly
agree). Tapping on one of the options immediately closed the view and sent the rating to the
server. This feedback procedure was utilized on both Android smartphones and tablets. As
seen in Figure 6.4, we implemented the same feedback form in the Chrome extension. We
translated both forms to English and German and used the device’s set language to determine
which language should be displayed. As usual, for German users we displayed the German
translation and in all other cases the English version.

59

6. Deployment and Usage Studies

Figure 6.3.: Left: Feedback button below a synchronized notification on an Android device.
Right: Feedback view shown after tapping on the feedback button.

6.4.2. Results

The feedback button below synchronized notifications was shown for two months. During
this time 286 users rated a total of 609 synchronized notifications. 37.76% of the participants
used a device set to English, 21.68% German and 8.04% Spanish. The complete language
distribution is available in appendix A.5.

The origin of the synchronized notifications could either be an Android smartphone or tablet.
With a smartphone as origin, the participants rated 43 synchronized notifications on another
smartphones, 97 on a tablet and 107 on the desktop. Likewise, with an tablet as the origin, 71
notifications were rated on an Android smartphone, 1 on a tablet and 13 on the desktop.

For further analysis we categorized the apps again. The categories calendar/alarm, phone
and game did not receive a meaningful amount of ratings, so we were only able to analyze
the categories email, messenger, social and tool. Figure 6.5 shows the rating of synchronized
notifications grouped by category and the device type which was used to rate the notifications.
Notifications on the desktop received the highest rating in all categories. The messenger
category (M = 4.54, SD = 0.97) is followed by email (M = 4.12, SD = 1.41), social (M = 3.56,
SD = 1.83) and tool (M = 3.04, SD = 1.52). On smartphones the messenger category also
received the highest ratings (M = 3.97, SD = 1.59), followed by social (M = 3.04, SD = 1.7),
tool (M = 2.74, SD = 1.58) and email (M = 2.24, SD = 1.6). On tablets the messenger category
again received the highest ratings (M = 4.41, SD = 1.08), followed by email (M = 2.78, SD =
1.62), tool (M = 2.4, SD = 1.59) and social (M = 2.25, SD = 1.48).

60

6.4. Usefulness of Synchronized Notifications

Figure 6.4.: Bottom right: Feedback button below a synchronized notification created by
Chrome. Top left: Feedback window shown after clicking on the feedback button.

Overall the notifications from the messenger category received the highest ratings on all devices,
verifying the statement “notifications are for messages” [36]. The high rating of email and
social notifications on the desktop compared to smartphones and tablets is interesting. We
assume that many users use browser-based email clients and social networks. As we explained
in section 2.4.3 the Web Notifications API is partially supported but not yet widely used in the
wild. This means the users have to rely on notifications from their mobile phones or tablets to
receive notifications on the desktop. On the other hand email accounts and social networking
apps might already be set up on all mobile devices resulting in duplicate notifications and
thus a lower rating. It is also possible that the results were influenced by the name of the app
(Desktop Notifications).

With the exception of the messenger category the results of this study are in stark contrast to
the results of the study conducted in section 4.2. When asked on which kind of devices the
users would like to see the notifications every device type except the TV was rated neutral (3)
or higher. In this study only the desktop received comparable ratings.

61

6. Deployment and Usage Studies

Figure 6.5.: Agreement to the statement “Being able to see this <app name> notification
from my <device name> on this device is useful for me.” on a Likert scale from 1
(strongly disagree) to 5 (strongly agree). The ratings are grouped by the categories
of the apps and the type of the device which was used to rate the notification.
The error bars show the standard error.

6.5. App List Update

Because of the differences in the usefulness of synchronized notifications across device types
we decided to update the Android app to support disabling apps from sending notifications to
certain device types instead of disabling it completely. As shown in Figure 6.6, we replaced the
checkbox next to every app with three icons. The icons include the characters D for desktop, S
for smartphone and T for tablet. The current settings regarding each device type are shown
through colors. A gray icon is shown if notifications from a certain app should not be sent to
this device type. A green icon is shown if notifications should be sent, which is the default
setting. When the user taps on an app a settings dialog is shown which allows the user to
enable or disable sending notifications for this app to specific device types. We also moved the
option to enable the “Private Mode” from the long-press menu to this settings dialog.

These changes mean that now all notifications are sent to the server, unless the user has
disabled the sending of them for all device types. We extended the JSON messages by including
the user’s settings. Furthermore we modified the server to filter by disabled device types
instead of broadcasting the notifications to all devices. We published the update to all users. In
the progress we reset the previous settings, so every user had all device types enabled for all
apps after the update.

After three weeks we analyzed the settings. In total sending notifications for 2,540 apps was
disabled by at least one user. For further investigation we only considered apps that had

62

6.5. App List Update

Figure 6.6.: Updated list of apps which are allowed to send notifications. — Left: The check-
boxes next to every app have been replaced by three icons. Right: Tapping on an
app opens a settings dialog.

notification sending disabled by at least one thousand users (N = 127) and sorted the list
of apps depending on the percentage of how many users disabled notification sending for
it. Figure 6.7 shows the 30 apps that had notifications disabled most frequently by category,
divided into target device types. (The lists with their corresponding categories are available in
appendix A.6, A.7 and A.8.) Similar to the findings of the previous analysis in section 6.3, most
apps belong to the tool category. Notifications from apps of this category have been disabled
from being sent to smartphones, tablets and the desktop equally, with 19 apps each. The media
category comes second with 5 apps excepted from sending to smartphones and tablets and 6
apps to the desktop. For the email category the incidence of disabled notification sending to
the smartphone and tablet is 3, with 4 to the desktop. The calendar/alarm category saw 3 apps
excepted on both the smartphone and tablet, but none on the desktop. Only one app from the
game category has been disabled from sending notifications to the desktop frequently.

Compared to the findings in section 6.3 most apps that had notification sending disabled are
again from the tool category by a large margin. In both findings the categories email, game
and media make an appearance but instead of the social category the calendar/alarms category
appeared.

63

6. Deployment and Usage Studies

Figure 6.7.: Categories of the 30 apps that have been disabled from sending notifications most
frequently, grouped by target device type.

6.6. Summary

In this chapter we described the process of publishing the updates to the Android app and
Chrome extension to the existing user base. Because the users had to manually confirm the
update of the Android app and had to pair their devices again, we performed this update in
three phases. After most users adapted to the updates, we analyzed the user base, device
distribution and which apps were commonly disabled or set into the “Private Mode”. The
results showed that the users disabled apps from the tool category the most. The “Private Mode”
was often enabled for apps related to communication. We then conducted a study about the
usefulness of synchronized notifications. Notifications from the messenger category received
high results on every type of device. The other categories showed mixed results, with the
desktop receiving the highest rating compared to smartphones and tablets. We assume that the
users tended to receive duplicate notifications thus lowering the usefulness of the synchronized
notifications. Another explanation is that the results were influenced by the name of the app
(Desktop Notifications). On the basis of these mixed results we updated the Android app to
allow disabling the sending of notifications to certain device types instead of disabling them
completely. We saw few differences compared to the previous analyses, with the tool category
still having notifications disabled most often.

64

7. Conclusions and Future Work

In this chapter we recap the work of this thesis and draw conclusions from our findings. Finally,
we suggest ideas for future work.

7.1. Summary and Conclusions

In this thesis we introduced a concept for a multi-device notification framework. First we dis-
cussed related work regarding notifications and interruptions caused by notifications. Studies
have shown that notifications are disruptive and lower task performance [6, 7, 26] but are still
valued by users [24]. We then looked at the recent research regarding mobile notifications and
described the Desktop Notifications [36] application, which allows sending notifications from
Android-based devices to desktop computers. Afterwards we described various notification
modalities and related research. Furthermore, we discussed the current implementation of
notifications in popular desktop and mobile operating systems, notifications in the web and
the state of synchronizing notifications across devices. We closed the section regarding related
work with a selection of recently announced devices that are able to notify the user.

Based on the described related work and the current implementation of notifications on
different platforms we proposed our concept of a multi-device notification framework. The
goal of the framework is the synchronization of notifications across multiple devices. A
notification on one device should also be shown on all other connected devices and dismissing
a notification on one device should remove it from all others. As a starting point for the
implementation of the framework we used the Desktop Notifications application. Before the
actual implementation, we conducted two studies with the existing user base of the application
to determine what kind of devices the users own and on which devices they would like to
receive notifications. The results of the first study showed that smartphones, tablets, desktop
PCs, laptops and TVs are common, while smartwatches and smartglasses are not yet popular.
According to the results of the second survey, the users agreed with the idea of receiving
notifications on different kinds of devices with the exception of TVs. Based on these findings
we implemented the framework for smartphones, tablets and desktop computers by updating
the Desktop Notifications application. We then distributed the updated application to the
existing user base. After two months over 33,000 users were actively using the updated
application.

65

7. Conclusions and Future Work

Using the data collected by the application, we analyzed which categories of apps were disabled
from sending notifications through our app most frequently. Our results show that most of
these apps were from the tool category. The app with the highest exclusion percentage was
disabled by 9.9% of all users. In the same manner we extracted the categories of apps that were
set to “Private Mode” most frequently, finding that most were apps related to communication.
The content of notifications created by these apps often is of private or confidential nature, yet
at the same time receiving notifications from these types of apps is important to the users [36].
Not sending the actual content of the notification but still getting notified is a compromise
many users seem to agree with.

We then conducted a large-scale study about the usefulness of synchronized notifications.
Notifications from the messenger category received the highest ratings on all types of devices.
The other categories showed mixed results, with the desktop receiving the overall higher
ratings compared to smartphones and tablets. We assume that the users received duplicate
notifications on the latter two devices thus lowering the usefulness of the synchronized
notifications. However, the results could also be influenced by the name of the application
(Desktop Notifications). On the basis of these mixed results we updated the application to
allow disabling the sending of notifications by device type instead of disabling them completely.
Again we were able to observe that apps from the tool category were excluded from sending
notifications most frequently on all types of devices.

7.2. Future Work

The research-in-the-large approach of deploying our application in an app store helped us
to gain real-world insights into user preferences and behavior with notifications. However,
this approach can be a challenge for less popular device types and ones with a large number
of different platforms, for example smartwatches and smartglasses. A follow-up study in a
controlled environment would allow us to cover these kinds of devices.

While our framework allows the synchronization of notifications across multiple devices, there
is no user interaction possible on receiving devices except the dismissal of said notifications.
However, nowadays most notifications are interactive and allow the user to take immediate
action. Therefore, future work should explore how other actions relating to notifications can
be added to the framework. Considering on the variety of input mechanisms between devices,
this can be a challenging task.

Previous work has shown that contextual information can be used to avoid disruptive notifica-
tions [25]. By delaying a notification until an appropriate moment occurs, like the end of a
task, it is possible to reduce the likelihood or severity of interruption caused by the notification.
This has already been explored for single-device environments [10, 19, 21, 23, 30]. Delaying
a notification is a balancing act between the importance of said notification and finding an

66

7.2. Future Work

appropriate moment. It should be investigated how this work can be incorporated into a multi-
device environment. Our framework is based on the idea of broadcasting events to all devices.
Later, we modified the implementation to allow the disabling of sending notifications to certain
device types. It should be explored if it is possible to automatically determine the most suitable
device or subset of devices for a given context and notification. This is especially challenging
for mobile devices. Prior work has already investigated how mobile phones can infer where
they are kept [40]. Furthermore, many devices support multiple notification modalities to
alert the user. Again, based on the current context and importance of the notification, used
modalities should be used in degrees, ranging from subtle to intrusive. In summary, it should
be explored when, on which devices and by what means the user should be notified. Each
of these dimensions requires a model that can predict the importance of notifications and a
shared context between the user’s devices.

67

A. Appendix

A.1. Package Names and Categories

Package names and corresponding categories of the apps used in the sections 4.2 and 6.4.

Package Name H Category

com.android.calendar calendar/alarm
com.android.deskclock calendar/alarm
com.android.email email
com.android.mms messenger
com.android.phone phone
com.android.providers.downloads tool
com.android.settings tool
com.android.systemui tool
com.android.vending tool
com.antivirus tool
com.bbm messenger
com.cleanmaster.mguard tool
com.cleanmaster.security tool
com.dianxinos.optimizer.duplay tool
com.facebook.katana social
com.facebook.orca messenger
com.foursquare.robin social
com.fsck.k9 email
com.google.android.apps.plus social

(continued on the next page)

69

A. Appendix

Package Name H Category

com.google.android.calendar calendar/alarm
com.google.android.deskclock calendar/alarm
com.google.android.email email
com.google.android.gm email
com.google.android.googlequicksearchbox tool
com.google.android.talk messenger
com.google.android.youtube social
com.htc.android.mail email
com.htc.sense.mms messenger
com.ijinshan.kbatterydoctor_en tool
com.instagram.android social
com.jb.gosms messenger
com.mailboxapp email
com.outlook.Z7 email
com.qihoo.security tool
com.sec.android.app.clockpackage tool
com.skype.raider messenger
com.snapchat.android messenger
com.sonyericsson.conversations messenger
com.supercell.clashofclans game
com.twitter.android social
com.viber.voip messenger
com.whatsapp messenger
com.yahoo.mobile.client.android.mail email
jp.naver.line.android messenger
kik.android messenger
org.telegram.messenger messenger

70

A.2. Survey about Notifications on Multiple Devices (Full Size)

A.2. Survey about Notifications on Multiple Devices (Full Size)

71

A. Appendix

A.3. Most Frequently Disabled Apps

Package Name Category Percent Disabled H

com.google.android.googlequicksearchbox tool 9.90%
com.keramidas.TitaniumBackup tool 8.43%
com.fsck.k9 email 8.40%
com.android.vending tool 8.02%
com.antivirus tool 7.70%
de.robv.android.xposed.installer tool 7.53%
com.touchtype.swiftkey tool 6.84%
com.google.android.email email 6.83%
com.ninegag.android.app media 6.68%
com.cleanmaster.mguard tool 6.62%
com.nero.android.htc.sync tool 6.48%
com.sonyericsson.extras.liveware tool 6.03%
com.htc.android.mail email 6.02%
com.ea.games.r3_row game 5.86%
com.sec.android.fwupgrade tool 5.73%
com.vkontakte.android social 5.68%
com.estrongs.android.pop tool 5.67%
com.sony.nfx.app.sfrc tool 5.64%
com.amazon.venezia tool 5.58%
com.google.android.apps.maps tool 5.55%
com.kiloo.subwaysurf tool 5.46%
mobi.mgeek.TunnyBrowser tool 5.34%
com.android.providers.downloads tool 5.27%
com.sonymobile.playanywhere tool 5.21%
com.motorola.contextual.smartrules2 tool 5.18%
com.google.android.gm email 5.15%
com.amazon.kindle media 5.12%
com.cleanmaster.security tool 5.12%
com.king.candycrushsaga game 5.12%
com.ifttt.ifttt tool 5.07%

72

A.4. Most Private Apps

A.4. Most Private Apps

Package Name Category Percent Private H

com.fsck.k9 email 1.72%
ch.threema.app messenger 1.39%
com.bbm messenger 1.13%
com.whatsapp messenger 1.04%
kik.android messenger 0.99%
com.htc.sense.mms messenger 0.85%
org.telegram.messenger messenger 0.72%
com.tencent.mm messenger 0.61%
com.google.android.talk messenger 0.56%
com.android.mms messenger 0.53%
com.sonyericsson.conversations messenger 0.49%
com.jb.gosms messenger 0.47%
com.google.android.gm email 0.45%
com.yahoo.mobile.client.android.mail email 0.43%
com.htc.android.mail email 0.43%
com.facebook.orca messenger 0.43%
com.google.android.email email 0.38%
cm.aptoide.pt tool 0.34%
com.skype.raider messenger 0.34%
com.facebook.katana social 0.33%
com.outlook.Z7 email 0.33%
com.viber.voip messenger 0.32%
com.android.email email 0.32%
com.paypal.android.p2pmobile tool 0.28%
jp.naver.line.android messenger 0.27%
com.antivirus tool 0.26%
com.contapps.android social 0.25%
com.cleanmaster.security tool 0.25%
com.htc.calendar calendar/alarm 0.23%
com.snapchat.android messenger 0.23%

73

A. Appendix

A.5. Device and Language Distribution

Active devices by device type (N = 53,565)

Device types per user (N = 33,888)

74

A.5. Device and Language Distribution

Distribution of users with one device type (N = 19,004)

Distribution of users with two device types (N = 14,409)

75

A. Appendix

Desktop operating system distribution (N = 23,418)

Language distribution in section 4.1 (N = 6,779)

76

A.5. Device and Language Distribution

Language distribution in section 4.2 (N = 6,961)

Language distribution in section 6.4 (N = 286)

77

A. Appendix

A.6. Updated Most Frequently Disabled Apps (Smartphone)

Package Name Category Percent Disabled H

com.keramidas.TitaniumBackup category 2.92%
com.google.android.googlequicksearchbox tool 2.69%
de.robv.android.xposed.installer tool 2.69%
com.google.android.apps.inbox tool 2.28%
com.motorola.contextual.smartrules2 email 2.22%
com.google.android.apps.books tool 2.20%
com.android.vending media 2.20%
com.nianticproject.ingress tool 2.15%
eu.chainfire.supersu tool 2.13%
com.amazon.venezia tool 2.13%
com.google.android.apps.paidtasks tool 2.02%
com.google.android.music tool 1.91%
com.google.android.gm media 1.91%
com.estrongs.android.pop email 1.90%
com.google.android.calendar tool 1.79%
com.touchtype.swiftkey calendar/alarm 1.77%
com.google.android.email tool 1.77%
com.sony.nfx.app.sfrc email 1.67%
com.amazon.mShop.android media 1.65%
com.sonymobile.playanywhere tool 1.64%
com.android.deskclock tool 1.58%
com.cleanmaster.security calendar/alarm 1.58%
com.android.providers.downloads tool 1.57%
com.pushbullet.android tool 1.53%
com.dropbox.android tool 1.48%
com.amazon.kindle tool 1.45%
com.ninegag.android.app media 1.44%
com.google.android.apps.fitness media 1.44%
com.google.android.deskclock tool 1.43%
tunein.player calendar/alarm 1.42%

78

A.7. Updated Most Frequently Disabled Apps (Tablet)

A.7. Updated Most Frequently Disabled Apps (Tablet)

Package Name Category Percent Disabled H

com.keramidas.TitaniumBackup tool 3.09%
com.google.android.googlequicksearchbox tool 2.82%
de.robv.android.xposed.installer tool 2.69%
com.motorola.contextual.smartrules2 tool 2.50%
com.amazon.venezia tool 2.39%
com.android.vending tool 2.33%
com.google.android.apps.inbox email 2.33%
com.google.android.apps.paidtasks tool 2.28%
com.google.android.apps.books media 2.25%
eu.chainfire.supersu tool 2.18%
com.nianticproject.ingress tool 2.05%
com.google.android.gm email 2.02%
com.estrongs.android.pop tool 1.96%
com.google.android.music media 1.95%
com.google.android.email email 1.95%
com.touchtype.swiftkey tool 1.90%
com.google.android.calendar calendar/alarm 1.87%
com.amazon.mShop.android tool 1.80%
com.sony.nfx.app.sfrc media 1.67%
com.android.providers.downloads tool 1.64%
com.sonymobile.playanywhere tool 1.64%
com.pushbullet.android tool 1.64%
com.amazon.kindle media 1.61%
com.dropbox.android tool 1.58%
com.android.deskclock calendar/alarm 1.58%
com.cleanmaster.security tool 1.58%
com.ijinshan.kbatterydoctor_en tool 1.54%
tunein.player tool 1.52%
com.musixmatch.android.lyrify media 1.50%
com.google.android.deskclock calendar/alarm 1.48%

79

A. Appendix

A.8. Updated Most Frequently Disabled Apps (Desktop)

Package Name Category Percent Disabled H

com.keramidas.TitaniumBackup tool 2.92%
com.google.android.googlequicksearchbox tool 2.90%
de.robv.android.xposed.installer tool 2.36%
eu.chainfire.supersu tool 2.33%
com.amazon.venezia tool 2.33%
com.android.vending tool 2.22%
com.motorola.contextual.smartrules2 tool 2.02%
com.google.android.apps.inbox email 1.98%
com.google.android.apps.books media 1.87%
com.touchtype.swiftkey tool 1.87%
com.musixmatch.android.lyrify media 1.80%
com.google.android.email email 1.77%
com.google.android.music media 1.76%
com.estrongs.android.pop tool 1.72%
com.sony.nfx.app.sfrc media 1.67%
com.google.android.gm email 1.66%
com.android.providers.downloads tool 1.65%
com.amazon.mShop.android tool 1.65%
com.cleanmaster.security tool 1.63%
com.lookout tool 1.55%
com.amazon.kindle media 1.53%
com.sonyericsson.extras.liveware tool 1.52%
com.htc.android.mail email 1.48%
com.king.candycrushsaga game 1.48%
com.antivirus tool 1.47%
com.dropbox.android tool 1.46%
com.sonymobile.playanywhere tool 1.46%
com.cleanmaster.mguard tool 1.45%
com.ninegag.android.app media 1.44%
tunein.player tool 1.42%

80

Bibliography

[1] P. D. Adamczyk and B. P. Bailey. If not now, when?: the effects of interruption at different
moments within task execution. In Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 271–278. ACM, 2004. (Cited on page 15)

[2] R. Berjon, S. Faulkner, T. Leithead, S. Pfeiffer, E. O’Connor, and E. D. Navara. HTML5.
Candidate recommendation, W3C, July 2014. URL http://www.w3.org/TR/2014/

CR-html5-20140731/. (Cited on page 23)

[3] C. S. Campbell and P. Tarasewich. Designing visual notification cues for mobile devices.
In CHI’04 Extended Abstracts on Human Factors in Computing Systems, pages 1199–1202.
ACM, 2004. (Cited on page 19)

[4] K. Church and R. de Oliveira. What’s up with whatsapp?: comparing mobile instant
messaging behaviors with traditional sms. In Proceedings of the 15th international
conference on Human-computer interaction with mobile devices and services, pages 352–
361. ACM, 2013. (Cited on page 16)

[5] E. Cutrell, M. Czerwinski, and E. Horvitz. Notification, disruption, and memory: Effects
of messaging interruptions on memory and performance. 2001. (Cited on page 15)

[6] M. Czerwinski, E. Cutrell, and E. Horvitz. Instant messaging and interruption: Influence
of task type on performance. In OZCHI 2000 conference proceedings, volume 356, page
361, 2000. (Cited on pages 13, 15, 26 and 65)

[7] M. Czerwinski, E. Horvitz, and S. Wilhite. A diary study of task switching and interrup-
tions. In Proceedings of the SIGCHI conference on Human factors in computing systems,
pages 175–182. ACM, 2004. (Cited on pages 13, 15, 26 and 65)

[8] Ecma International. The json data interchange format. URL http://www.

ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf, 2013. (Cited
on page 39)

[9] A. P. Felt, S. Egelman, and D. Wagner. I’ve got 99 problems, but vibration ain’t one: a
survey of smartphone users’ concerns. In Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices, pages 33–44. ACM, 2012. (Cited
on page 28)

81

http://www.w3.org/TR/2014/CR-html5-20140731/
http://www.w3.org/TR/2014/CR-html5-20140731/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

Bibliography

[10] J. E. Fischer, C. Greenhalgh, and S. Benford. Investigating episodes of mobile phone
activity as indicators of opportune moments to deliver notifications. In Proceedings of the
13th International Conference on Human Computer Interaction with Mobile Devices and
Services, pages 181–190. ACM, 2011. (Cited on page 66)

[11] J. E. Fischer, N. Yee, V. Bellotti, N. Good, S. Benford, and C. Greenhalgh. Effects of
content and time of delivery on receptivity to mobile interruptions. In Proceedings of
the 12th international conference on Human computer interaction with mobile devices and
services, pages 103–112. ACM, 2010. (Cited on page 15)

[12] A. Gomes, A. Nesbitt, and R. Vertegaal. Morephone: a study of actuated shape defor-
mations for flexible thin-film smartphone notifications. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 583–592. ACM, 2013. (Cited
on page 19)

[13] R. Hansson and P. Ljungstrand. The reminder bracelet: subtle notification cues for mobile
devices. In CHI’00 extended abstracts on Human factors in computing systems, pages
323–324. ACM, 2000. (Cited on page 18)

[14] R. Hansson, P. Ljungstrand, and J. Redström. Subtle and public notification cues for
mobile devices. In Ubicomp 2001: Ubiquitous Computing, pages 240–246. Springer, 2001.
(Cited on page 18)

[15] F. Hemmert, S. Hamann, M. Löwe, J. Zeipelt, and G. Joost. Shape-changing mobiles:
tapering in two-dimensional deformational displays in mobile phones. In CHI’10 Extended
Abstracts on Human Factors in Computing Systems, pages 3075–3080. ACM, 2010. (Cited
on page 19)

[16] N. Henze and M. Pielot. App stores: external validity for mobile hci. interactions,
20(2):33–38, 2013. (Cited on page 13)

[17] N. Henze, M. Pielot, B. Poppinga, T. Schinke, and S. Boll. My app is an experiment:
Experience from user studies in mobile app stores. International Journal of Mobile Human
Computer Interaction (IJMHCI), 3(4):71–91, 2011. (Cited on page 13)

[18] I. Hickson. The websocket api. Candidate recommendation, W3C, Sept. 2012. URL
http://www.w3.org/TR/2012/CR-websockets-20120920/. (Cited on page 53)

[19] J. Ho and S. S. Intille. Using context-aware computing to reduce the perceived burden
of interruptions from mobile devices. In Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 909–918. ACM, 2005. (Cited on page 66)

[20] M. Honan. Why notifications are about to rule the smartphone interface. URL http:

//www.wired.com/2014/06/smartphone-notifications/, June 2014. (Cited on page 18)

82

http://www.w3.org/TR/2012/CR-websockets-20120920/
http://www.wired.com/2014/06/smartphone-notifications/
http://www.wired.com/2014/06/smartphone-notifications/

Bibliography

[21] E. Horvitz, A. Jacobs, and D. Hovel. Attention-sensitive alerting. In Proceedings of
the Fifteenth conference on Uncertainty in artificial intelligence, pages 305–313. Morgan
Kaufmann Publishers Inc., 1999. (Cited on page 66)

[22] Internet Engineering Task Force (IETF). The oauth 2.0 authorization framework. URL
http://tools.ietf.org/html/rfc6749, 2012. (Cited on page 40)

[23] S. T. Iqbal and B. P. Bailey. Oasis: A framework for linking notification delivery to
the perceptual structure of goal-directed tasks. ACM Transactions on Computer-Human
Interaction (TOCHI), 17(4):15, 2010. (Cited on page 66)

[24] S. T. Iqbal and E. Horvitz. Notifications and awareness: a field study of alert usage and
preferences. In Proceedings of the 2010 ACM conference on Computer supported cooperative
work, pages 27–30. ACM, 2010. (Cited on pages 16, 26 and 65)

[25] J. Knittel, A. Sahami Shirazi, N. Henze, and A. Schmidt. Utilizing contextual information
for mobile communication. In CHI’13 Extended Abstracts on Human Factors in Computing
Systems, pages 1371–1376. ACM, 2013. (Cited on page 66)

[26] L. Leiva, M. Böhmer, S. Gehring, and A. Krüger. Back to the app: the costs of mobile
application interruptions. In Proceedings of the 14th international conference on Human-
computer interaction with mobile devices and services, pages 291–294. ACM, 2012. (Cited
on pages 13, 15, 26 and 65)

[27] G. Mark, S. Voida, and A. Cardello. A pace not dictated by electrons: an empirical study
of work without email. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 555–564. ACM, 2012. (Cited on page 15)

[28] A. Mashhadi, A. Mathur, and F. Kawsar. The myth of subtle notifications. In Proceedings
of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct Publication, pages 111–114. ACM, 2014. (Cited on page 18)

[29] D. McMillan, A. Morrison, O. Brown, M. Hall, and M. Chalmers. Further into the wild:
Running worldwide trials of mobile systems. In Pervasive Computing, pages 210–227.
Springer, 2010. (Cited on page 13)

[30] V. Pejovic and M. Musolesi. Interruptme: designing intelligent prompting mechanisms
for pervasive applications. In Proceedings of the 2014 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, pages 897–908. ACM, 2014. (Cited on page 66)

[31] M. Pielot. Large-scale evaluation of call-availability prediction. In Proceedings of the
2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages
933–937. ACM, 2014. (Cited on page 16)

[32] M. Pielot, K. Church, and R. de Oliveira. An in-situ study of mobile phone notifications.
In Proceedings of the 16th international conference on Human-computer interaction with
mobile devices & services, pages 233–242. ACM, 2014. (Cited on page 16)

83

http://tools.ietf.org/html/rfc6749

Bibliography

[33] M. Pielot, R. de Oliveira, H. Kwak, and N. Oliver. Didn’t you see my message?: predicting
attentiveness to mobile instant messages. In Proceedings of the 32nd annual ACM confer-
ence on Human factors in computing systems, pages 3319–3328. ACM, 2014. (Cited on
page 16)

[34] A. Russell and J. Song. Service workers. W3C working draft, W3C, May 2014. URL
http://www.w3.org/TR/2014/WD-service-workers-20140508/. (Cited on page 23)

[35] A. Sahami, P. Holleis, A. Schmidt, and J. Häkkilä. Rich tactile output on mobile devices.
In Ambient Intelligence, pages 210–221. Springer, 2008. (Cited on page 19)

[36] A. Sahami Shirazi, N. Henze, T. Dingler, M. Pielot, D. Weber, and A. Schmidt. Large-scale
assessment of mobile notifications. In Proceedings of the 32nd annual ACM conference on
Human factors in computing systems, pages 3055–3064. ACM, 2014. (Cited on pages 13,
17, 24, 26, 27, 28, 31, 39, 55, 58, 61, 65 and 66)

[37] P. Tarasewich, T. Bhimdi, and M. Dideles. Testing visual notification cues on a mobile
device. In CHI’04 Extended Abstracts on Human Factors in Computing Systems, pages
1562–1562. ACM, 2004. (Cited on page 19)

[38] A. van Kesteren and J. Gregg. Web notifications. Last call WD, W3C, Sept. 2013. URL
http://www.w3.org/TR/2013/WD-notifications-20130912/. (Cited on page 23)

[39] D. Warnock, M. McGee-Lennon, and S. Brewster. Multiple notification modalities and
older users. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1091–1094. ACM, 2013. (Cited on page 19)

[40] J. Wiese, T. S. Saponas, and A. Brush. Phoneprioception: enabling mobile phones to
infer where they are kept. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 2157–2166. ACM, 2013. (Cited on page 67)

[41] S. Yamanaka and H. Miyashita. Vibkinesis: notification by direct tap and’dying mes-
sage’using vibronic movement controllable smartphones. In Proceedings of the 27th
annual ACM symposium on User interface software and technology, pages 535–540. ACM,
2014. (Cited on page 18)

All links were last followed on January 14, 2015.

84

http://www.w3.org/TR/2014/WD-service-workers-20140508/
http://www.w3.org/TR/2013/WD-notifications-20130912/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Related Work and Background
	2.1 Notifications and Interruptions
	2.2 Mobile Notifications
	2.3 Notification Modalities
	2.4 Notifications in the Wild
	2.4.1 Desktop Operating Systems
	2.4.2 Mobile Operating Systems
	2.4.3 Web and Web Browsers

	2.5 Synchronizing Notifications across Devices
	2.6 Recently Announced Devices
	2.7 Summary

	3 Concept of a Multi-Device Notification Framework
	3.1 Starting Point
	3.2 Architecture
	3.3 Requirements
	3.4 Summary

	4 Device and Notification Studies
	4.1 Device Distribution
	4.1.1 Design
	4.1.2 Results

	4.2 Notifications on Multiple Devices
	4.2.1 Design
	4.2.2 Results

	4.3 Discussion

	5 Implementation of the Framework
	5.1 Existing Implementation
	5.2 Android App
	5.2.1 Setup and Device Pairing
	5.2.2 Receiving Notifications
	5.2.3 Dismissing Notifications
	5.2.4 App Settings
	5.2.5 Notification History
	5.2.6 Paired Devices and Settings

	5.3 Server Architecture
	5.3.1 Authentication
	5.3.2 Device Registration
	5.3.3 Event Broadcasting

	5.4 Google Chrome Extension
	5.4.1 Setup and Device Pairing
	5.4.2 Receiving Notifications
	5.4.3 Dismissing Notifications

	5.5 Extensibility
	5.6 Limitations
	5.7 Summary

	6 Deployment and Usage Studies
	6.1 Publishing
	6.2 Users and Devices
	6.3 Private and Disabled Apps
	6.4 Usefulness of Synchronized Notifications
	6.4.1 Design
	6.4.2 Results

	6.5 App List Update
	6.6 Summary

	7 Conclusions and Future Work
	7.1 Summary and Conclusions
	7.2 Future Work

	A Appendix
	A.1 Package Names and Categories
	A.2 Survey about Notifications on Multiple Devices (Full Size)
	A.3 Most Frequently Disabled Apps
	A.4 Most Private Apps
	A.5 Device and Language Distribution
	A.6 Updated Most Frequently Disabled Apps (Smartphone)
	A.7 Updated Most Frequently Disabled Apps (Tablet)
	A.8 Updated Most Frequently Disabled Apps (Desktop)

	Bibliography

