
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Diploma Thesis No. 3679

Development of a Java Library and Extension
of a Data Access Layer for Data Access to

Non-Relational Databases

Christoph Schmid

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Frank Leymann
Supervisors: Dr. Vasilios Andrikopoulos

Steve Strauch
Commenced: June 19, 2014
Completed: December 19, 2014

CR-Classification: C.2.4, C.4, D.2.11, H.2

Abstract

In the past years, cloud computing has become a vital part of modern application develop-
ment. Resources can be highly distributed and provisioned on-demand. This fits well with
the less strict data model of non-relational databases that allows better scaling. Many cloud
providers have hosted NoSQL databases in their portfolio.

When migrating the data base layer to a NoSQL model, the business layer of the applica-
tion needs to be modified. These modifications are costly, thus it is desirable to design an
architecture that can adapt to changes without tight coupling to third party components.

In this thesis, we extend a multi-tenant aware Enterprise Service Bus (ESB) with Data Access
Layer, modify the management application and implement a registry for the NoSQL configu-
rations. Then, we design an architecture that manages the database connections that adds a
transparency layer between the end-user application and non-relational databases.

The design is verified by implementing it for blobstores including a Java access library that
manages the access from local applications to the ESB.

Additionally, we evaluate component by measuring the performance in several use scenarios
and compared the results to the performance of the vendor SDKs.

Contents

1. Introduction 1
1.1. Scope of Work . 1
1.2. Outline . 2
1.3. Acronyms . 2

2. Fundamentals 5
2.1. Cloud Computing . 5

2.1.1. Multi-Tenancy . 5
2.1.2. Service Models . 6
2.1.3. Deployment Models . 7
2.1.4. Market Overview . 7

2.2. Enterprise Service Bus . 8
2.2.1. JBI . 9
2.2.2. Normalized Message Router . 9
2.2.3. OSGi . 9
2.2.4. Enterprise Integration Pattern . 10
2.2.5. Apache ServiceMix . 12

2.3. NoSQL Data Bases . 13
2.3.1. NoSQL Data Types . 13

3. Related Work 17
3.1. Cloud Computing with Private Clouds . 17
3.2. Enterprise Service Bus as a Service . 17
3.3. NoSQL Data Bases . 18

3.3.1. Unified Access Libraries . 18
3.3.2. Shared API . 18

4. Specification 21
4.1. Quantity Structure . 21
4.2. Use Cases . 22

4.2.1. Naming Convention . 22
4.2.2. Management . 23
4.2.3. Usage . 28

4.3. Non-Functional Requirements . 36
4.3.1. Multi-Tenancy . 36
4.3.2. Performance and Resource Usage . 37
4.3.3. Consistency and Security . 38
4.3.4. Backward Compatibility, Extensibility, and Reusability 38

iii

Contents

4.3.5. Maintainability and Documentation . 39

5. Design 41
5.1. Matching . 41

5.1.1. Definitions . 41
5.1.2. Matching Types . 42
5.1.3. Restrictions . 43
5.1.4. Routing Types . 44
5.1.5. Examples . 45

5.2. Architectural Overview . 47
5.3. JBIMulti2 and CDASMix Modifications . 48

5.3.1. JBIMulti2 Web Service API . 48
5.3.2. JBIMulti2 Domain . 50

5.4. Unified NoSQL . 51
5.4.1. Blobstore Example . 51
5.4.2. Modifications Needed for Other NoSQL Data Stores 54

5.5. ServiceMix Components . 54
5.5.1. NoSQL Registry . 54
5.5.2. Unified Blobstore . 55

5.6. Java Access Library . 56

6. Implementation 57
6.1. Third Party Components . 57

6.1.1. Update of ServiceMix . 58
6.2. JBIMulti2 and CDASMix Modifications . 58

6.2.1. WSDL Request . 59
6.2.2. JBIMulti2 . 60

6.3. ServiceMix Components . 62
6.3.1. NoSQL Registry . 62
6.3.2. Camel-Jclouds . 63
6.3.3. Unified Blobstore . 65

6.4. Java Access Library . 66
6.5. Validation . 67

7. Evaluation 71
7.1. Execution Environment . 71

7.1.1. Preparation . 71
7.2. Test Program . 72

7.2.1. External Influences . 73
7.2.2. Workload . 73

7.3. Execution . 74
7.3.1. Warm-Up . 74
7.3.2. Test Run . 74
7.3.3. Result Validation . 74

7.4. Results . 74

iv

Contents

7.4.1. Delete . 75
7.4.2. Read . 75
7.4.3. Write . 79
7.4.4. Conclusion . 79

8. Conclusion and Future Work 83
8.1. Conclusion . 83
8.2. Future Work . 83

8.2.1. Support for other NoSQL Data Stores 83
8.2.2. Performance Isolation . 84
8.2.3. Camel Route Update at Runtime . 84

A. Sourcecode 85
A.1. jbimulti2.wsdl . 85

A.1.1. attachNoSQLDataSource . 85
A.1.2. attachNoSQLTargetDataSource . 85

A.2. NoSQL Registry . 86
A.2.1. IRegistry.java . 86
A.2.2. InformationStructure.java . 87
A.2.3. INoSQLSourceDataStore . 89
A.2.4. INoSQLTargetDataStore . 89

A.3. Performance Test . 90
A.3.1. BlobStorePerformanceTest.java . 90

Bibliography 93

v

Contents

vi

List of Figures

2.1. Message Endpoint . 11
2.2. Message Routing Symbols . 11
2.3. Message Filter . 11
2.4. Message Translator . 12

4.1. Management Use Cases . 23
4.2. End-user Use Cases . 31

5.1. CDASMix Before the Modifications . 48
5.2. Generated Camel Context . 52

6.1. Modified Service Registry Database . 61

7.1. Delete Measurements for Provider AWS S3 . 76
7.2. Delete Measurements for Provider Azure . 76
7.3. Read Measurements for Provider AWS S3 . 78
7.4. Read Measurements for Provider Azure . 78
7.5. Write Measurements for Provider Azure . 80
7.6. Write Measurements for Provider Azure . 80
7.7. Compact Overview of the Amazon Results . 81
7.8. Compact Overview of the Azure Results. 81

vii

List of Figures

viii

List of Tables

2.1. Selection of Existing SQL and NoSQL Camel Components 13

4.1. Use Case: Add Data Store Configuration . 24
4.2. Use Case: Attach Target Data Store Configuration 25
4.3. Use Case: Register Data Store . 26
4.4. Use Case: Attach Target Data Store . 27
4.5. Use Case: Register MIS . 27
4.6. Use Case: Register SIS . 28
4.7. Use Case: Store a Blob with the ESB . 30
4.8. Use Case: Read Blob from the ESB . 32
4.9. Use Case: Read Outdated Version of Blob . 33
4.10. Use Case: Delete a Blob from the ESB . 35
4.11. Use Case: Connect to ESB . 36

5.1. Priority of Information Structures . 43
5.2. List of all Valid Configurations . 44
5.3. List of all Invalid Configurations . 44
5.4. Data Store Configuration for the Example . 45
5.5. Requests and the Matching Configurations . 46
5.6. Detailed Explanation of the Matchings . 47
5.7. WSDL Fields Used to Configure the Data Store Configurations 49
5.8. WSDL Fields Used to Configure the Main Information Structure 50
5.9. WSDL Fields Used to Configure the Secondary Information Structure 50

6.1. Selected Programs and Version Used for the Implementation 58
6.2. NoSQL Data Store Configurations of the Evaluation 68
6.3. NoSQL Data Store Configurations of the Evaluation 68

7.1. Delete Request Sent to Provider AWS S3 . 75
7.2. Delete Request Sent to Provider Azure . 75
7.3. Read Request Sent to Provider Azure . 77
7.4. Read Request Sent to Provider AWS S3 . 77
7.5. Write Request Sent to Provider AWS S3 . 79
7.6. Write Request Sent to Provider Azure . 79

ix

List of Tables

x

List of Listings

6.1. SoapUI Request to add a NoSQL Data Store Configuration. 59
6.2. SoapUI Request to add a Default Main Information Structure. 59
6.3. SoapUI Request to add a Default Main Information Structure. 60
6.4. Maven Snippet to Configure Autmatic Source Code and Javadoc 62
6.5. Registration in the Activator Using the Interface 64
6.6. Workaround for Hibernate in an OSGi Environment 64
6.7. Matching of Information Structures . 64
6.8. Required Modifications to Camel-Jclouds to add Delete 65
6.9. Configuring the Camel Contexts for Each Tenant 66
6.11. Methods Provided by the Unified NoSQL Library to Access Blobstores 66
6.10. Mapping Between the Unified Format and the Camel-Jclouds Format 67
6.12. Excerpt of the Write Operation in the NoSQL Library 67

7.1. Wrapper for the Azure Driver . 72
7.2. Output of the Test Evaluation Program . 72

A.1. Request to add a new NoSQL Data Store . 85
A.2. Request to Attach a NoSQL Target Data Store 85
A.3. IRegistry, the NoSQL Registry Interface . 86
A.4. InformationStructure . 87
A.5. INoSQLSourceDataStore . 89
A.6. INoSQLTargetDataStore . 89
A.7. Evaluation program . 90

xi

1. Introduction

Cloud computing becomes more and more popular. Advantages are the reduced costs, better
scaling, and work-load related costs. There is a variety of established suppliers on the market
with similar portfolios the end-user can choose from.

There are different scenarios in which the end-user can profit from cloud computing, which
include reduced costs, better scaling, and a direct connection between costs and consumption.
In this thesis we will narrow on the application data.

In some scenarios, applications cannot use relational databases due to limitations of its
data structure and scalability. In these cases, non-relational like databases NoSQL might be
preferred. Many Cloud providers offer hosted databases, including different types of NoSQL
databases.

Implementing an application using the database of a specific provider creates dependencies
and introduces the danger of vendor lock-in. When the provider decides to increase the price
for example, the end-user developer cannot choose another provider without the costs of
major modifications to his application. On the other hand, the higher costs of developing
provider-independent are often not justified.

An additional layer that manages the storage of data to in the Cloud would solve this
problem.

1.1. Scope of Work

This thesis is part of a series of implementation projects that aim to extend an Enterprise
Service Bus (ESB) with multi-tenant awareness, and access to cloud data bases.

The management application grants tenant users limited configuration access to the ESB’s
connectivity and integration services. A registry for user and services has been implemented
using the application server JonAS to run the application management JBI Multi-tenancy
Multi-container Support (JBIMulti2) [Muh12].

In the projects surrounding Cloud Data Access Support for ServiceMix (CDASMix), the ESB
has been extended to allow routing of SQL and NoSQL requests through the router to help
with the migration of applications to the cloud. It is possible to route requests to a specific
data store provider through the cloud, making cloud access transparent to the tenant. The
tenant however had to use a modified version of the native driver and was therefore tied to a
specific implementation [Sá13].

1

Acronyms

In yet another project, a component has been implemented which is able to transform SQL
statements for one SQL dialect to another [Xia13] thereby removing the dependency of the
application to the specific SQL database vendor.

The target of this thesis is to reimplement the existing NoSQL data access layer and enable
the access in a unified manner that allows the access to several compatible NoSQL data stores
through a single interface.

In most cases, modifications to the business logic cannot be avoided when modifying ap-
plications for the use of NoSQL. Therefore, we do not pursue the possibilities of mapping
NoSQL databases onto each other and only explore the implementation of a single uniform
data model that can be mapped to every NoSQL database.

1.2. Outline

The remainder of this thesis is structured as follows:

• Fundamentals, Chapter 2: this chpter provides a general introduction to the technology
concepts that are used for the design and implementation of this thesis.

• Related Work, Chapter 3: a discussion of related work and features of products, that
provide related services to our implementation.

• Specification, Chapter 4: covers the requirements of the extended system and the new
components.

• Design, Chapter 5: this chapter describes in detail the design decisions for the imle-
mentation.

• Implementation, Chapter 6: covers the implementation and modification of the com-
ponents as described, and a description of the validation.

• Evaluation, Chapter 7: a description and documentation of the evaluation of the im-
plementation, which consists of performance measurements of the component and
comparison to other SDKs

• Conclusion and Future Work, Chapter 8: a brief recap of the findings of this thesis and
suggestions for features of future extensions.

1.3. Acronyms

API Application Programming Interface

AWS Amazon Web Services

blob Binary Large Object

2

Acronyms

CDASMix Cloud Data Access Support for ServiceMix

CSV Character Separated Values

EC2 Amazon Elastic Compute Cloud

EIP Enterprise Integation Pattern

ESB Enterprise Service Bus

IaaS Infrastructure as a Service

IP Internet Protocol

JAR Java ARchive

JBI Java Business Integration

JBIMulti2 JBI Multi-tenancy Multi-container Support

MIS Main Information Structure

NoSQL No SQL or Not Only SQL

OSGi Open Service Gateway initiative

PaaS Platform as a Service

RDBMS Relational DataBase Management System

S3 Amazon Simple Storage Service

SaaS Software as a Service

SDK Software Development Kit

SIS Secondary Information Structure

SOAP Simple Object Access Protocol

SQL Structured Query Language

SQS Amazon Simple Queue Service

UUID Universally Unique Identifier

VM Virtual Machine

WSDL Web Services Description Language

3

Acronyms

XML eXtensible Markup Language

XQJ XQuery API for Java

YCSB Yahoo Cloud Serving Benchmark

4

2. Fundamentals

In this chapter we give a general introduction to the technologies used in this thesis. We
are be as concise as possible and only go into the details when required to understand the
following chapters.

2.1. Cloud Computing

In a typical cloud infrastructure, the customer can request resources on demand through
an automated self-service system, and pay dependent on the resource usage. Capabilities
can be rapidly and elastically provisioned and adapted to the current demand. Access
to the resources is provided through a network [MG11]. The resources are provided in a
multi-tenant model, usually through virtualization of hardware components, platform and
application instances.

2.1.1. Multi-Tenancy

From the provider point of view, many users from similar backgrounds must be attended to.
In this scenario, the multi-tenant model is used to describe the clients. The cloud provider
provides access to the resources in a multi-tenant model.

In this context, we define multi-tenancy as sharing the whole technology stack, including
hardware, operating system, middleware and application instances [SALM12].

Tenant

A tenant describes a member of a group of users that share the view on an application they
use. This includes to some degree the data, the configuration, and the management. Tenants
are usually different legal entities [KMK12].

Tenant Space

The tenants rent a predefined share of resources to run different application instances. An
important aspect of the tenant space from the provider point of view is that several tenants
use the same hardware.

5

2. Fundamentals

An example for a tenant space is a virtual processing instance in the cloud on which the user
can install software [SALM12].

Isolation

Sharing resources among users of different legal entities require higher standards regarding
security, privacy, and performance compared to physical instances that provide a certain
degree of isolation between the instances by design.

The main aspcects of isolation between tenant of the same system are performance isolation
and data isolation.

It must also be ensured that no tenant can use more than “his share” of the resources and
affect the other tenants negatively.

The data of tenants must be protected from access and modification by other tenants. This
aspect can be further decomposed into communication isolation, for example by using
separate message paths, and application isolation, to prevent applications and services of one
tenant from accessing data of another tenant’s applications or services [SAS+12].

2.1.2. Service Models

Cloud services are often distinguished on the level of the provided service. The levels are
infrastructure, platform, and software [MG11].

• Infrastructure as a Service (IaaS): The fundamental computing resources like process-
ing power, storage, network are virtualized, provisioned and provided to the consumer.
The customer can choose the configuration from hardware configuration to operating
system. Underlying cloud infrastructure is managed by the provider with limited
influence by the consumer, such as selecting network components or location.

• Platform as a Service (PaaS): The platform provides the customer the opportunity to
deploy own software to the cloud infrastructure of the provider. The software must
use the programming language and tools supported by the provider. The provider
manages the hardware, network access, storage etc., and the client has full control over
the deployment of the application.

• Software as a Service (SaaS): Customer use the provider’s applications which are
running on a cloud infrastructure. The provider manages everything from hardware,
storage and network to the actual software with the exception of user specific settings.
The resource is accessed through a thin client like an internet browser.

6

2.1. Cloud Computing

2.1.3. Deployment Models

Another distinction between cloud services can be made by taking a closer look at the user
group.

• Private Cloud: The usage of a private cloud is provisioned for a single organization with
multiple consumers. Management can be provided by a division of the organization
itself or by a third party. The infrastructure can be on premise or off premise.

• Public Cloud: A public cloud is provisioned for open use by the general public and
often based on a pay-per-use consumption model [BBG11]. The hardware is located on
premise of the cloud provider and managed by him.

• Community Cloud: The community cloud can be described as an in-between of private
and public clouds. The infrastructure is shared by several organizations and support
the needs of a group of users that has shared concerns regarding the requirements of the
cloud. Resources are on premise of one of the organizations or off premise, managed by
one of the organizations or a third party.

• Hybrid Cloud: A hybrid cloud is a composition of two or more different of the previ-
ously named service models. The possibility to connect the different clouds is either pro-
vided by standardized Application Programming Interfaces (APIs) among the provider
or by proprietary technology [MG11].

2.1.4. Market Overview

Many cloud solutions are available that encompass the whole spectrum of cloud services.
As SaaS provides usually only offer solutions for a very specialized user spectrum, we have
decided to exclude them from this selection.

Amazon Web Services

Amazon Web Services (AWS)1 is one of the first public cloud providers and has been a
pioneer since 2006. Their portfolio includes offers for hosted computing, networking, content
deliveries, Structured Query Language (SQL) and No SQL or Not Only SQL (NoSQL) data
storage, messaging systems and many more.

The most well-known aspects of AWS are Amazon Elastic Compute Cloud (EC2) IaaS service
that provides access to virtual servers and Amazon Simple Storage Service (S3), an established
Binary Large Object (blob) storage service.

1http://aws.amazon.com

7

http://aws.amazon.com

2. Fundamentals

RackSpace

Like Amazon, RackSpace2 provides solutions for cloud virtual servers and cloud storage, but
is also focused on configuring and maintaining custom private clouds.

RackSpace provided Code for OpenStack, an open source computing software platform.

Microsoft Azure

The portfolio of Microsoft Azure3 includes IaaS services like virtual services and cloud data
services, but also a PaaS services for app- and website development. The cloud data services
include relational and NoSQL databases like document stores, key/value stores, and blob
stores.

Google Cloud Computing

The cloud services from Google4 include virtual machines, SQL and NoSQL stores, and
application services. The most common and dominant in the PaaS market is the Google App
Engine.

Private Cloud Solutions

There are several cloud solutions available for the configuration of a private cloud. The most
common are OpenStack5 and Eucalyptus6, both are open source.

OpenStack is backed by RackSpace, and provides as key components virtual servers and blob
storage. It is part of the Ubuntu Server and widely accepted.

Eucalyptus has similar features and uses an API that is very similar to the Amazon API.

2.2. Enterprise Service Bus

The application landscape in an enterprise often consists of many applications of different
vendors that need to exchange data to support the internal workflow.

Implementing point to point connections between each application that need to communicate
becomes impractible slow, since the number of possible connections grows quadratic with

2http://www.rackspace.com
3http://azure.microsoft.com/en-us
4https://cloud.google.com
5http://www.openstack.org
6http://www.eucalyptus.com

8

http://www.rackspace.com
http://azure.microsoft.com/en-us
https://cloud.google.com
http://www.openstack.org
http://www.eucalyptus.com

2.2. Enterprise Service Bus

the number of applications. Direct connections are also difficult to manage since even minor
changes to the API need to be adopted by every connected component.

The purpose of an Enterprise Service Bus (ESB) is to provide a framework that allows to
connect applications of different vendors inside an application landscape and can help reduce
the communication overhead.

Messages are sent to the ESB which orchestrates the communication between the applications.
Thus, there are no direct communications and lot of the routing and data conversion can be
abstracted in the ESB. The systems are coupled in a loose way, new applications can be added
without changes to the existing applications and can be modified without influencing the
other components [Cha04].

A ESB must provide a message delivery system and support a service container.

2.2.1. JBI

Java Business Integration (JBI) is a specification that guides the implementation for a service-
oriented architecture. It defines the service container that can be contacted via binding
components.

The JBI specification has not been developed further in the last years [JBI05].

2.2.2. Normalized Message Router

One of the possibilities to provide reliable messaging is through a normalized message router.
The messages must first be transformed in a normalized message format and can then be
routed to the receiver. The receiver then transforms messages in a format that the endpoint
can process.

2.2.3. OSGi

Another specification dealing with the management of container is Open Service Gateway
initiative (OSGi). Similar to JBI, Open Service Gateway initiative (OSGi) is used to simplify
the management and the complexity of large systems [OSG11].

The components are wrapped as OSGi bundles which can be started by the OSGi platform.
Besides the bundle registry OSGi also supports advanced dependency and life-cycle man-
agement [dCA11]. An OSGi bundle can be used as a modular building block. Bundles are
packed as Java ARchive (JAR) files with an included description file containing instructions
to the OSGi environment.

Access to functionality between bundles needs to be explicitly allowed [CW13]. The trend in
ESB development goes toward other components built on top of the core OSGi framework
[dCA11, p. 6].

9

2. Fundamentals

2.2.4. Enterprise Integration Pattern

Enterprise Integation Pattern (EIP) define another way to handle message routing through
pattern. The pattern is specified and defines many implementable building blocks.

The next section provides a short overview of the key components to understand the basics
of routing in EIP7. The figures for the EIP are taken from the JBoss Fuse for Developers
tooling8.

Message Channel

A message channel is a virtual connection between a message sender and receiver. One
application writes message to a particular message channel, the other component then reads
the messages.

Messages

Messages are packages of information that are transmitted using a message channel. These
messages can then be routed through a messaging system to one or more recipient.

Pipes and Filters

In the EIP, a singe event can trigger several processing steps. These separated tasks are
performed by modular components to process the message information.

A core concept is that the functionality is implemented by independent processing steps
(filters) that are connected by channels (pipes) [HW03].

A filter receives a message through an exposed inbound pipe, processes it and if necessary
modifies and publishes the results to the outbound pipe.

The pipes connect filter, sending output messages from one filter as input to the next filter.

Message Endpoint

A message endpoint (see Figure 2.1) connects an application to a messaging channel. It
enables the application to produce and receive messages that are later processed. It is a direct
connection of the application API to the API of the messaging system.

The message endpoint invokes the processing of an incoming message by the application,
and transforms output of the application that needs to be handled by other data that needs to
be processed to a message [HW03].

7A full list of the components can be found at [HW03] and
http://www.enterpriseintegrationpatterns.com/toc.html

8JBoss Fuse for Developers tooling: https://www.jboss.org/products/fuse/overview/

10

http://www.enterpriseintegrationpatterns.com/toc.html

2.2. Enterprise Service Bus

Figure 2.1.: Message Endpoint

Message Routing

The concept described in the section about pipes and filters only allows the connection of two
filter with each other. For advanced combinations, different routing patterns are used.

If a message must be sent to several filters, one of the pattern that can be used is the multicast
pattern (see first image in Figure 2.2). It defines that a copy of a message is sent to each
target.

Multicast Aggregation Message Router

Figure 2.2.: Message Routing Symbols

The results of a message that are sent to several filter can be aggregated to a single message
again using an aggregator. An aggregator collects the messages belonging together until an
exit condition is matched and then publishes a message with the aggregated information of
the input messages.

Messages can be sent to one of several predefined targets, depending on the message content,
using the routing pattern.

Message Filter

Message filter remove messages from the route if the passing message does not comply with
a predefined condition.

Figure 2.3.: Message Filter

11

2. Fundamentals

Message Translator

The different endpoints may need messages in a different format, or with different header
providing the information. The pattern used to modify a message to match another expected
format is the message translator, as shown in Figure 2.4 [Apaa], [HW03].

Figure 2.4.: Message Translator

2.2.5. Apache ServiceMix

Apache ServiceMix9 is an open source ESB that offers the previously discussed features.
The development started as an implementation of the JBI standard. ServiceMix Version 3
and 4 provide full support of the JBI specification, including normalized message router,
management beans and support for hot deployment of JBI components [Apab].

Since then, it has been completely refactored and uses OSGi as component manager but
still supports JBI up until ServiceMix 4.5.3. Since the following versions, ServiceMix 5.0 JBI
support has been removed.

In version 4 and 5, ServiceMix uses Apache Karaf10 as OSGi integration container. OSGi
container provide additional features e.g. Apache ActiveMQ provides reliable messaging,
EIP, messaging and routing is supported through Apache Camel, and WS-* and RESTful Web
services with Apache CXF [ASM].

Apache Camel

Apache Camel implements the framework to use EIP. In addition to the routing functionality,
Camel has a lot of ready-to-use implementation of many Camel components11 that can be
integrated in the Camel route as a factory for message endpoints to third party applications.

A selection of relevant component is show in Table 2.112. The selection is incomplete and the
functionality of the components has not been examined.

Database Name Camel Component Remark

Amazon DynamoDB Camel-AWS Key-Value Store
Amazon SimpleDB Camel-AWS Key-Value Store

9http://servicemix.apache.org
10http://karaf.apache.org
11http://camel.apache.org/component.html
12Full list can be accessed here: http://camel.apache.org/components.html

12

http://servicemix.apache.org
http://karaf.apache.org
http://camel.apache.org/component.html
http://camel.apache.org/components.html

2.3. NoSQL Data Bases

Redis spring-redis Key-Value Store
Amazon S3 Camel-AWS and Camel-Jclouds Blobstore
Azure Blob Camel-Jclouds Blobstore
Riak - Third party implementation13

Cassandra - Third party implementation14

MongoDB Camel-MongoDB Document Store
CouchDB Camel-CouchDB Document Store
CouchBase Server Camel-Couchbase Document store in the camel-extra

repository
Noe4j Camel-Spring-Neo4j Graph Database inthe camel-extra

repository
SQL Camel-SQL Performing SQL queries using JDBC

Table 2.1.: Selection of Existing SQL and NoSQL Camel Components

2.3. NoSQL Data Bases

Relational DataBase Management Systems (RDBMSs) assume a well-defined structure in
data, meaning that the properties of the data can be defined upfront. With this structure, the
data can be accessed through SQL requests.

To store information, the data as used by the application must be mapped to the format of
the data store. But the internal representation does not always comply with the strict table
scheme of SQL databases [Tiw11]. In other cases, the limitations to scalability make RDBMS
databases impractible to use.

In these cases, No SQL or Not Only SQL (NoSQL) databases might be the solution. NoSQL is
an umbrella term for many structured data store systems that are not SQL.

2.3.1. NoSQL Data Types

There are several types of NoSQL data stores with ambiguous defined 15 main categories and
their definition in the following.

Key/Value Database or Tuple Store

Key/value data bases store the information using associative arrays16. Keys are unique and
provide access to the stored data set. This basic functionality is often extended with additional
properties regarding consistency, persistency, and ordering.
13https://github.com/amit1000/camel-riak
14http://github.com/ticktock/camel-cassandra
15http://nosql-database.org
16associative array: other descriptions are map or dictionary

13

https://github.com/amit1000/camel-riak
http://github.com/ticktock/camel-cassandra
http://nosql-database.org

2. Fundamentals

Examples for key/value databases are Berkeley DB, EHCache, Memcached, Redis, Amazon’s
DynamoDB, Cassandra, Riak, and Voldemort.

Blobstores

Blobstores are a specialized key/value stores. They are designed to handle values that consist
of a Binary Large Object (blob). Blobstores use a “container name”/”blob name” tuple as
access key to further organize the entries. Popular blobstores are Microsoft Azure Blob Service,
Amazon S3, and OpenStack Object Storage.

Column-Databases

The data in column databases is stored in a column-oriented way, in contrast to the row-
oriented format in RDBMS.

For data sets with varying data entries, this reduces the required space needed since they
don’t need to store null values for empty columns. The items are grouped to column families,
that provide access to the content [Tiw11, p. 11].

Examples for column databases are Google Bigtable, Apache HBase, and Hypertable.

Document Stores

Document stores are designed for storing, retrieving, and managing semi-structured data.
The information is stored as a whole and not split into its constituent name/value pairs. The
document and metadata are indexed and later used to find the requested documents faster.

Examples for document stores are CouchDB, MongoDB and Redis [Tiw11, p. 11].

Graph Databases

Graph databases are the best choice if the application data can be represented as a graph
structure of nodes, edges, and properties to store data.

Nodes contain pointers to the connected edges and vice versa which makes navigation
between the nodes and edges very efficient. Graph data bases often have a database specific
query languages.

Popular examples are Neo4j, FlockDB, and InfiniteGraph.

14

2.3. NoSQL Data Bases

XML Databases

The database model of XML databases is based on the eXtensible Markup Language (XML)
format. Like graph databases, XML databases are best used when the application data already
uses the same format as the storage provider. XML databases are often SQL databases with
enabled XML extension, but native XML databases also exist.

Examples for XML databaes are BaseX, eXist, and Sedna.

15

2. Fundamentals

16

3. Related Work

In this chapter, we will discuss related work and features of products, that provide related
services to our implementation.

3.1. Cloud Computing with Private Clouds

As mentioned in Section 2.1 there are several private cloud provider. The functionality offered
is usually based on the API of established cloud providers such as Amazon, Google, or
Microsoft.

In this thesis, we restricted the selection in the validation to public cloud providers due to the
time and effort required to manage a private cloud infrastructure.

The functionality is, however, not limited to public Clouds and all components are able to
connect to private cloud services in the same way they are able to connect to the selected
public cloud.

We refrain from using private Clouds in this thesis due to the required time required for setup
and configuration only use public Cloud provider..

3.2. Enterprise Service Bus as a Service

Providers like AWS with the service Amazon Simple Queue Service (SQS)1 and Microsoft
Azure with the Azure Queues and Service Bus Queues2 provide reliable messaging as cloud
service to their customers.

For the messaging system in our scenario, we take the perspective of the service provider that
provides his clients with a share of the service bus functionality.

Since the Cloud ESB and the Cloud storage components are part of the portfolio of a single
provider, the integration of those components is supported by tutorials and white paper3.

Our work can be considered as a competing open source implementation to the messaging
products of these cloud provider.

1http://aws.amazon.com/sqs
2http://azure.microsoft.com/en-us/services/service-bus
3http://aws.amazon.com/articles/1464

17

http://aws.amazon.com/sqs
http://azure.microsoft.com/en-us/services/service-bus
http://aws.amazon.com/articles/1464

3. Related Work

3.3. NoSQL Data Bases

From the user point of view, the main goal is to access NoSQL databases without committing
to a specific provider. The user would like to be able to change the supplier without any major
modification to his application code. Besides the routing of the requests through a service
bus which unifies the requests and routes them to the configured provider, there are other
methods to reach this goal.

3.3.1. Unified Access Libraries

There are third party libraries that allow access to several NoSQL implementations. These
implementation provide a unified api for a single types of NoSQL data stores.

Apache Jclouds

Apache Jclouds4 is a universal access library, that abstract access to blob data stores of every
major private and public provider.

Jclouds supports 30 cloud providers and cloud software stacks including Amazon, Azure,
OpenStackand vCloud. The API supports abstractions of compute services, blobstores and
load balancer.

The access is however limited to a single target provider, content dependent target selection,
and replication functionality is not included.

We use the functionality of Jclouds wrapped as a Camel component to access the provider in
the implementation of this thesis.

Blueprints

Tinkerpop offers the same functionality a Jclouds for graph databases with the implementation
of Blueprints5. Blueprints is able to connect to several graph databases including Neo4j and
InfiniteGraph.

3.3.2. Shared API

Another way to ease the coupling between implementation and vendor is to share a single
API to access the content. This is either done by implementing a shared, standardized API
by the vendors, or when “newcomers” build their own API after the quasi standard set by
established products.

4https://jclouds.apache.org
5http://blueprints.tinkerpop.com

18

https://jclouds.apache.org
http://blueprints.tinkerpop.com

3.3. NoSQL Data Bases

XQuery API for Java

XQuery API for Java (XQJ)6 is an example of a shared API based on a public specification.
It enables Java programmers to execute XQuery against an XML database. XQJ is based
on the W3C XQuery 1.0 specification [BFM+10] and supported by most XML databases per
default.

Even with a shared API modifications to the source code are still necessary to modify the
driver and connection details.

Eucalyptus and AWS

An example for a shared API by established quasi standards is the connection between
Eucalyptus7 and AWS. Eucalyptus has been implemented as a private cloud mirror of AWS
components. Both services include a blob data store. This simplifies the exchange between
private and public Clouds and can be a selection factor for the selection of components for a
hybrid cloud.

The APIs are usually similar, but not identical. Each provider tries to find customers with
unique features.

6http://www.w3schools.com/xquery
7https://www.eucalyptus.com

19

http://www.w3schools.com/xquery
https://www.eucalyptus.com

3. Related Work

20

4. Specification

This chapter covers the requirements of the extended system and the new components. Since
the existing components should continue to be fully operational, the quantity structure and
the requirements are partially set by the requirements for the already existing system.

The following we only lists new and changed requirements, everything else can be found in
the theses of previous students [Muh12, Sá13, Xia13].

The first section covers the quantity structure in Section 4.1.

The functional requirements are defined in the form of use cases in Section 4.2 and the
non-functional requirements are specified in Section 4.3.

4.1. Quantity Structure

QS 1: Management

The existing administration interface of JBI Multi-tenancy Multi-container Support (JBIMulti2)
calculates with the following volume of work in normal use:

Quantity Structure: One JBIMulti2 instance connected to a cluster of two Ser-
viceMix instances should handle the following quantities without impact on other
non-functional requirements [Muh12]:

• The system can store 1000 registered service assemblies or services, 10 ten-
ants with each having 1000 tenant users and corresponding records in the
Configuration Registry. [. . .]

• The system allows 50 tenant users or system administrators to execute [man-
agement] use cases concurrently over the Web UI and 100 management
requests per second over the Web service interface.

• A management request to the Web UI or the Web service interface is re-
sponded to in 4 seconds on normal networking conditions .

Additionally, the system must be able to perform the following NoSQL specific management
tasks:

• The system can store 1000 data store configurations.

21

4. Specification

• These configurations consist of 1000 source data stores, 5000 target data stores as well
as 10000 Main Information Structures (MISs) und Secondary Information Structures
(SISs)1

QS 2: Usage

The system is able to handle 10000 separate tenant users2. Some of them have several active
data store configurations, others have none.

The requirements for this large number of tenants can only be fulfilled by a properly equipped
cluster of ServiceMix instances. A single instance should be able to handle the following
workload:

• Access any of the configured data store configurations.

• Allow three active tenants with two tenant users each.

• Access data from all tenant users concurrently.

• Even though it is expected that the usage of the shared resources will influence the
usage of the other tenants, no tenant user can block the shared resource.

4.2. Use Cases

In this section, only the use cases that are needed to use the Unified NoSQL Data Store
component are mentioned. The use cases are separated into two groups: Management for
the administrative operations (Section 4.2.2 and Figure 4.1), and usage for the use cases that
apply for the end-user interacting with the Java access library (Section 4.2.3 and Figure 4.2).

Existing use cases that were used without modification are colored grey, new use cases and
modified use cases are colored white in both figures.

4.2.1. Naming Convention

The “data store configuration” stores the information that is needed to route the request from
the end-user through the ESB to the target NoSQL provider. It contains the “data store” and
the “information structures”.

Data stores contain one “source data store” that configures the connection between the API
and the connector of the ESB and at least one “target data store” that stores the access data
needed to connect from the ESB to the NoSQL provider.

1 Each of these configurations consists of one source data store, on average five target data stores configurations,
and for each target data store configuration two information structures (on average).

210 tenants with 1000 users each.

22

4.2. Use Cases

The information structures “main information structure” and “secondary information struc-
ture” are needed for the mapping between source and target data store.

Additionally each target data store can be connected with a “target data store policy” which
contains additional information about the usage of the data store like read-only access,
write-only access, quotas etc.

4.2.2. Management

Figure 4.1.: Management Use Cases

FR 1.1: Add a new Data Store Configuration

Name Add Data Store Configuration

Goal The tenant operator wants to add a new NoSQL data store configuration.

Actor Tenant operator

Pre-Condition The tenant operator has been added with permission to add new data store
configurations.
All systems are running (PostgreSQL DB, JOnAS, ServiceMix).
The Unified Blobstore component has been deployed to ServiceMix.
SoapUI is running and can be used to send requests to the JOnAS JBIMulti2
management application.

* continued on the next page

23

4. Specification

Post-Condition The data store configuration has been added and the end-user can use the data
store configuration.

Post-Condition in
Special Case

The configuration step has been aborted and can be executed again with correct
data.

Normal Case 1. Register a new NoSQL data store.
(see use case: FR 1.3: Register a new Data Store)

2. Register one or more main information structures.
(see use case: FR 1.5: Register a Main Information Structure)

3. Register one or more secondary information structures, reference one of the
main information structures registered before
(see use case: FR 1.6: Register a Secondary Information Structure)

Special Cases 2.a Source or target data store does not exist:
1. System returns error message
2. User returns to step 3.

3.a Main information structure does not exist:
1. System returns error message
2. User returns to step 3

Table 4.1.: Use Case Add Data Store Configuration

FR 1.2: Attach a Target Data Store Configuration to an existing Configuration

Name Attach Target Data Store Configuration

Goal The tenant operator wants to add a new NoSQL target data store to an exist-
ing data store configuration and connect it based on the rules defined in the
information structures.

Actor Tenant operator

Pre-Condition The tenant operator has been added with permission to add new data store
configurations.
All systems are running (PostgreSQL DB, JOnAS, ServiceMix).
The Unified Blobstore component has been deployed to ServiceMix.
SoapUI is running and can be used to send requests to the JOnAS JBIMulti2
management application.
A data store configuration exists.

Post-Condition The data store configuration has been added and the end-user can use the data
store configuration.

Post-Condition in
Special Case

The target data store has not been added to an existing data store configuration.

* continued on the next page

24

4.2. Use Cases

Normal Case 1. Attach one or more new NoSQL target data stores to an existing data store
configuration.
(see use case: FR 1.4: Attach a Target Data Store)

2. Register one or more main information structures and reference the new
target data store.
(see use case: FR 1.5: Register a Main Information Structure)

3. Register one or more secondary information structures and reference one of
the main information structures registered before.
(see use case: FR 1.6: Register a Secondary Information Structure)

Special Cases 1.a The referenced Data Store Configuration does not exist:
1. System returns error message
2. User returns to step 1

2.a Source or target data store does not exist:
1. System returns error message
2. User returns to step 2

3.a Main information structure does not exist:
1. System returns error message
2. User returns to step 3

Table 4.2.: Use Case Attach Target Data Store Configuration

FR 1.3: Register a new Data Store

Name Register Data Store

Goal The tenant operator wants to add a new data store, consisting of a source data
store and a target data store.

Actor Tenant operator

Pre-Condition The tenant operator has been added with permission to add new data store
configurations.
All systems are running (PostgreSQL DB, JOnAS, ServiceMix).
The Unified Blobstore component has been deployed to ServiceMix.
SoapUI is running and can be used to send requests to the JOnAS JBIMulti2
management application.

Post-Condition The data store configuration has been added.

Post-Condition in
Special Case

No changes have been made.

Normal Case The operator sends a request to JBIMulti2 using SoapUI with the configuration
for the source and target data stores.

* continued on the next page

25

4. Specification

Special Cases 1.a A source data store or target data store with the same name already exists:
1. System returns error message
2. User returns to step 1

1.b Required data store fields are missing:
1. System returns error message
2. User returns to step 1

1.c Fields are filled with invalid characters:
1. System returns error message
2. User returns to step 1

1.d The credentials for the target data store are invalid:
1. No error is returned, invalid credentials are detected during the first

request.

Table 4.3.: Use Case Register Data Store

FR 1.4: Attach a Target Data Store

Name Attach Target Data Store

Goal The tenant operator wants to add additional target data stores to an existing
data store configuration.

Actor Tenant operator

Pre-Condition The tenant operator has been added with permission to add new data store
configurations.
All systems are running (PostgreSQL DB, JOnAS, ServiceMix).
The Unified Blobstore component has been deployed to ServiceMix.
SoapUI is running and can be used to send requests to the JOnAS JBIMulti2
management application.
At least one data store configuration exists.

Post-Condition The data store configuration has been altered and the end-user can use the new
target data store to reference in a main information structure.

Post-Condition in
Special Case

Source and target data store configuration data are not stored.

Normal Case The operator sends a request to JBIMulti2 using SoapUI with the configuration
for the attachment of the new target data stores to the existing configuration.

* continued on the next page

26

4.2. Use Cases

Special Cases 1.a One of the target data stores has a name that is already registered:
1. System returns error message
2. User returns to step 1

1.b Required data store fields are missing for one of the target data stores:
1. System returns error message
2. User returns to step 1

1.c One of the fields contains invalid characters:
1. System returns error message
2. User returns to step 1

1.d The credentials for one of the target data stores are invalid:
1. No error is returned, invalid credentials are detected during the first

request.

Table 4.4.: Use Case Attach Target Data Store

FR 1.5: Register a Main Information Structure

Name Register MIS

Goal The tenant operator wants to add a main information structure to connect a
source data store and a target data store.

Actor Tenant operator

Pre-Condition The tenant operator has been added with permission to add new data store
configurations.
All systems are running (PostgreSQL DB, JOnAS, ServiceMix).
The Unified Blobstore component has been deployed to ServiceMix.
SoapUI is running and can be used to send requests to the JOnAS JBIMulti2
management application.

Post-Condition The data store configuration has been added and the end-user can use the data
store configuration.

Post-Condition in
Special Case

No main information structure has been added.

Normal Case The operator sends a request to JBIMulti2 using SoapUI with the configuration
for the attachment of the new target data stores to the existing configuration.

Special Cases 1.a Required fields are missing:
1. System returns error message
2. User returns to step 1

1.b Source or target data store does not exist:
1. System returns error message
2. User returns to step 1

1.c Main information structure name is invalid:
1. System returns error message
2. User returns to step 1

Table 4.5.: Use Case Register MIS

27

4. Specification

FR 1.6: Register a Secondary Information Structure

Name Register SIS

Goal The tenant operator wants to add a new secondary information structure to
connect a source data store with a target data store.

Actor Tenant operator

Pre-Condition The tenant operator has been added with permission to add new data store
configurations.
All systems are running (PostgreSQL DB, JOnAS, ServiceMix).
The Unified Blobstore component has been deployed to ServiceMix.
SoapUI is running and can be used to send requests to the JOnAS JBIMulti2
management application.

Post-Condition The data store configuration has been added and the end-user can use the data
store configuration.

Post-Condition in
Special Case

Source and target data store configuration data are not stored.

Normal Case 1. The operator sends a request to JBIMulti2 using SoapUI with the configura-
tion for the attachment of the new secondary information structure.

Special Cases 1.a Required fields are missing:
1. System returns error message
2. User returns to step 1

1.b Source or target data store does not exist:
1. System returns error message
2. User returns to step 1

1.b The main information structure does not exist:
1. System returns error message
2. User returns to step 1

1.c Secondary information structure name is invalid:
1. System returns error message
2. User returns to step 1

Table 4.6.: Use Case Register SIS

4.2.3. Usage

FR 2.1: Store a Blob using the ESB Unified Blobstore Component

Name Store a Blob with the ESB

Goal The tenant operator wants to store a blob using the Java access library and the
ESB back end.

Actor Tenant end-user

Pre-Condition ServiceMix with Unified Blobstore component is running.
The data store has been configured.

* continued on the next page

28

4.2. Use Cases

Post-Condition The blob has been added to the target data store(s) and can be read.
(see use case FR 2.2: Read a Blob using the ESB Unified Blobstore Component)

Post-Condition in
Special Case

1. The blob has been added to at least one target data store, but not all, and
can be requested by using the FR 2.2: Read a Blob using the ESB Unified
Blobstore Component operation.

2. The blob has not been added to any target data store.

Normal Case 1. Connect to the ESB via the Java access library using a tenant specific end-
point.
(see use case FR 2.5: Connect to the ESB Unified Blobstore Component)

2. Send the add request, containing of the container name, blob name, and the
blob itself.

3. Wait for all data stores to complete the upload.
4. Return success status message.

Special Cases 1.a Connection to the ESB failed, the tenant endpoint does not exist or is not
configured for this tenant user:

1. Return error message with detailed error information.

2. Upload failed.

2.a No matching target data store entry exists connected to the source data
store by the information structures, but a default target data store has been
configured.

1. Use the default configuration(s)

2. Continue with step 3.

2.b No matching target data store entry exists connected to the source data
store by the information structures, and no default target data store has been
configured.

1. System returns error specific failure message.

2. Upload failed.

2.c All matching target data stores are read only.

1. System returns error specific failure message.

2. Upload failed.

2.d All writable matching target data stores are not reachable.

1. System returns error specific failure message.

2. Upload failed.

2.e Not every, but at least one writable matching target data store is reachable.

1. Proceed with step 3 as in the normal case for all reachable target data
stores.

2. Return success status message with information about the failed send
requests.

* continued on the next page

29

4. Specification

Special Cases
(Continued)

4.a All writable and reachable target data stores return with failure status code:

1. System returns error specific failure message.

2. Upload failed

4.b All writable and reachable target data stores respond not within a reason-
able time frame (timeout):

1. System returns error specific failure message.

2. Upload failed.

4.c Not every, but at least one writable and reachable target data stores return
with failure status code:

1. Return success status message with information about the failed send
requests.

4.d Not every, but at least one writable and reachable target data stores does
not respond within a reasonable timeframe (timeout):

1. Return success status message with information about the failed send
requests.

Table 4.7.: Use Case Store a Blob with the ESB

30

4.2. Use Cases

Figure 4.2.: End-user Use Cases

FR 2.2: Read a Blob using the ESB Unified Blobstore Component

Name Read Blob from the ESB

Goal The tenant operator wants to read a blob that has been stored previously using
the Java access library.

Actor Tenant end-user

Pre-Condition ServiceMix with Unified Blobstore component is running.
The data store has been configured.
SoapUI is running and can be used to send requests to the JOnAS JBIMulti2
management application.
A blob has been added previously.

Post-Condition The end-user has local access to the blob

Post-Condition in
Special Case

1. The end-user has no access to the blob
2. FR 2.3: Read an outdated version of a Blob

Normal Case 1. Connect to the ESB via the Java access library using a tenant specific end-
point.
(see use case FR 2.5: Connect to the ESB Unified Blobstore Component)

2. Send a read request to the ESB.
3. (Automatically) select one of the target data stores that store the blob in the

latest version and allows reads.
4. Wait for the Java access library to complete the download.
5. Show success status message.

* continued on the next page

31

4. Specification

Special Cases 1.a Connection to the ESB failed, the tenant endpoint does not exist or is not
configured for this tenant user:

1. Show error message with detailed error information
2. Download failed

2.a No matching target data store entry exists for the source data store, con-
tainer and blob name combination, but a default targetds has been config-
ured.

1. Use the default configuration(s)
2. Continue with step 3.

2.b No matching target data store entry exists for the source data store, con-
tainer and blob name combination, a default has not been configured.

1. System shows error specific failure message.
2. Download failed.

2.c All matching target data stores are write only.
1. System shows error specific failure message.
2. Download failed.

2.d All readable matching target data stores are not reachable.
1. System shows error specific failure message.
2. Download failed.

2.e The selected read target is unreachable.
1. Select other target data store that stores the blob in the latest version

and allows reads.
2. Continue with step 3.

2.f None of the read targets with the latest version is available.
1. Evaluate “latest-only” parameter.

1.a If true, download failed (post condition 1)
1.b If false, continue with step 4 (post-condition 2)

4.a Target data store does not respond within a reasonable time frame (timeout):
1. Continue with step 3, mark data store (temporarily) as not reachable.

Table 4.8.: Use Case Read Blob from the ESB

FR 2.3: Read an outdated version of a Blob

Name Read Outdated Version of Blob

Goal The tenant operator wants to read a blob that has been stored previously using
the Java access library, even though none of the target data stores with the latest
version is available.

Actor Tenant end-user

Pre-Condition ServiceMix with Unified Blobstore component is running.
The data store has been configured.
SoapUI is running and can be used to send requests to the JOnAS JBIMulti2
management application.
A blob has been added previously.
None of the target data stores with the latest version of the blob is available.
A connection to the ESB has been established.

* continued on the next page

32

4.2. Use Cases

Post-Condition The end-user has local access to the blob

Post-Condition in
Special Case

1. The end-user has no access to the blob

Normal Case 1. Send a read request to the ESB.
2. (Automatically) select one of the target data stores that store the blob in the

latest version and allow reads and that are available.
3. Wait for the Java access library to complete the download.
4. Show success status message with information, that not the latest version

has been delivered.

Special Cases 2.a All matching target data stores are write only
1. System shows error specific failure message
2. Download failed.

2.b All readable matching target data stores are not reachable
1. System shows error specific failure message
2. Download failed.

2.e The selected read target is unreachable
1. Select other target data store that stores the blob with the latest available

version.
2. Continue with step 2.

4.a Target data store does not respond within a reasonable time frame (timeout):
1. Continue with step 2, mark data store (temporarily) as not reachable.

Table 4.9.: Use Case Read Outdated Version of Blob

FR 2.4: Delete a Blob using the ESB Unified Blobstore Component

Name Delete a Blob from the ESB

Goal The tenant operator wants to delete a blob using the Java Library and the ESB
back end.

Actor Tenant end-user

Pre-Condition ServiceMix with Unified Blobstore component is running.
The data store has been configured.

Post-Condition The blob has been added to the target data store(s).

Post-Condition in
Special Case

1. The blob has been deleted from at least one target data store, but not all, and
cannot be requested by using the FR 2.2: Read a Blob using the ESB Unified
Blobstore Component operation.

2. The blob has not been deleted to any target data store.
* continued on the next page

33

4. Specification

Normal Case 1. FR 2.5: Connect to the ESB Unified Blobstore Component to the ESB via the
Java access library using a tenant specific endpoint.

2. Send the delete request, containing of the container name, blob name, and
the blob itself.

3. Update timestamp for each target data store, container and blob name if
writing was successful.

4. Wait for all data stores to complete removal.
5. Return success status message.

Special Cases 1.a Connection to the ESB failed, the tenant endpoint does not exist or is not
configured:

1. Return error message with detailed error information.

2. Deletion failed.

2.a No matching target data store entry exists for the source data store, con-
tainer and blob name combination, but a default target data store has been
configured.

1. Use the default configuration(s)

2. Continue with step 3.

2.b No matching target data store entry exists for the source data store, con-
tainer and blob name combination, a default has not been configured.

1. System returns error specific failure message.

2. Deletion failed.

2.c All matching target data stores are read only.

1. System returns error specific failure message.

2. Deletion failed.

2.d All writable matching target data stores are not reachable.

1. System returns error specific failure message.

2. Deletion failed.

* continued on the next page

34

4.2. Use Cases

Special Cases
(Continued)

2.e Not every, but at least one writable matching target data store is reachable.

1. Proceed with step 3 as in the normal case for all reachable target data
store

2. Return success status message with information about the failed send
requests

3.a No blob with the exact same name exists in the specified container:

1. Issue a warning but update the timestamp

2. Continue with step 4

4.a All writable and reachable target data stores return with failure status code:

1. System returns error specific failure message

2. Deletion failed

4.b All writable and reachable target data stores respond within a reasonable
time frame (timeout):

1. System returns error specific failure message

2. Deletion failed

4.c Not every, but at least one writable and reachable target data store returns
with failure status code:

1. Return success status message with information about the failed send
requests.

4.d Not all, but at least one writable and reachable target data stores does not
respond within a reasonable timeframe (timeout):

1. Return success status message with information about the failed send
requests.

Table 4.10.: Use Case Delete a Blob from the ESB

FR 2.5: Connect to the ESB Unified Blobstore Component

Name Connect to ESB

Goal The tenant operator wants to establish a connection with the ESB NoSQL Com-
ponent using the Java access library

Actor System

Pre-Condition ServiceMix with Unified Blobstore component is running.
The data store has been configured.
SoapUI is running and can be used to send requests to the JOnAS JBIMulti2
management application.
A blob has been added previously.

* continued on the next page

35

4. Specification

Post-Condition The end-user is connected to the ESB, he can now perform read, write and
delete operations.
(see use case: FR 2.2: Read a Blob using the ESB Unified Blobstore Component,
FR 2.1: Store a Blob using the ESB Unified Blobstore Component, FR 2.4: Delete
a Blob using the ESB Unified Blobstore Component

Post-Condition in
Special Case

The Enduser is not connected to the ESB.

Normal Case 1. Send a “connect” request to the ESB tenant endpoint, authenticate by provid-
ing tenant id and tenant user name.

2. Wait for the connection to be established.
3. Show success status message.

Special Cases 1.a The tenant endpoint is not reachable.
1. Show error message with detailed error information
2. Connection failed

1.a The tenant endpoint does not exist
1. Show error message with detailed error information
2. Connection failed

1.b The tenant is not allowed to access the endpoint connection
1. Show error message with detailed error information
2. Connection failed

1.c The tenant is not registered
1. Show error message with detailed error information
2. Connection failed

1.d The maximum number of concurrent connections has been reached
1. Show error message with detailed error information
2. Connection failed

2.a The endpoint does not respond in a timely fashion
1. Show error message with detailed error information
2. Connection failed

Table 4.11.: Use Case Connect to ESB

4.3. Non-Functional Requirements

Besides the requirements that are bound with specific tasks in Section 4.2 (Use cases) there
are requirements that define the mode of operation in a general way. These non-functional
requirements are highly influenced by the requirements of the already existing system and its
components.

4.3.1. Multi-Tenancy

As a multi-tenant aware system, the system has to comply with the requirements as listed
in Section 2.1.1. In a multi-tenant environment, resources are used by several independent

36

4.3. Non-Functional Requirements

parties. Ideally, the parties are able to share these resources without any knowledge and
influence of each other.

The requirements to reach this goal are listed below:

NFR 1.1: Performance Isolation

Even though the resources are limited and shared among the tenants, the tenants should not
influence the response time and data throughput of other tenants. At least, tenants that use
the system in a non-malignant way should not be able to block the system for other tenants.

NFR 1.2: Data Isolation

The data of the tenants are stored separately. Configurations and end-user data that has been
added for the users of one tenant cannot be seen or changed by users of other tenants.

The communication paths used by the message flow are created separately for each tenant.

4.3.2. Performance and Resource Usage

NFR 2.1: Minimal Performance Losses

Many of the resources needed to comply with Quantity Structure are used by external
components that cannot be influenced like the network connectivity or the response time of
the cloud provider. The main goal must be to reduce the performance loss of routing through
the ESB and unification steps compared to a direct connection between the vendor specific
API and the data store.

NFR 2.2: Scalability

The large demand created by the number of tenants and tenant users estimated in Section
4.1 (quantity structure) cannot be managed by a single static system. It should therefore be
possible to add additional resources to the ESB component, if necessary.

NFR 2.3 Modest Resource Usage

Resources are limited and shared among the tenants. Beyond that, the resources of external
(cloud) data stores might have to be paid separately, either static for the time available or
dynamic dependent on the usage.

The component should use these resources modest and avoid unnecessary and expensive
requests.

37

4. Specification

4.3.3. Consistency and Security

NFR 3.1 Consistent Management Configuration

All administrative actions have to be put into action in a timely fashion.

NFR 3.2: Consistent Data Storage

Depending on the configuration, the data can be distributed and replicated among several
target data stores. This is useful if not all target data stores are available at all times. In this
case, it is possible that the end-user receives different versions of the requested file, depending
on which back end target data stores are available. In this scenario the end-user must be able
to influence the behavior and only receive the latest version or none at all.

NFR 3.3: Security and Access control

The data of the user must be protected against access form unauthorized parties. Enduser are
only allowed to access the data in a way that the tenant operator defined previously (read or
write).

Additionally, the end-user should have no access to the configuration data, e.g. the name of
the target data store or the access credentials.

The data transfer between end-user and the ESB endpoint, and between the ESB and the
target data store must be encrypted. Connections between the internal components of the
database are assumed to be in a demilitarized zone, security measures in this area are not
necessary [Muh12].

NFR 3.4: Transparency

The data store configuration must be transparent to the end-user. Routing, target data store
selection, and replication configuration is done by the ESB administrator.

Since this is a prototype, error messages can be communicated to the end-user, even if it
contains information that should be hidden in a productive system.

4.3.4. Backward Compatibility, Extensibility, and Reusability

FR 4.1: Backward Compatibility and Ease of Integration

The NoSQL extensions integrate in a system based on ServiceMix with many extensions to
internal JBI and OSGi, as well as new components. It is essential that these components
continue to function.

38

4.3. Non-Functional Requirements

FR 4.2: Extensibility

NoSQL is a growing field, ServiceMix components that provide access to NoSQL databases
are currently developed and improved. If it is possible, independent components should
be used to handle the connections between the ESB and the NoSQL data store. Therefore,
it is important that other NoSQL provider can be integrated easily and in a timely fashion,
and that updates to the OSGi NoSQL connections can be integrated and new functionality
provided by external providers can be integrated.

This also affects the Java access library, that has to follow the changes in the back end. The
implemented components must provide a simple and generic API to make it usable in other
applications.

4.3.5. Maintainability and Documentation

The code will be developed further in the future, most likely by different developers without
any further introduction to the code. Developer documentation is therefore an important part
of this project.

NFR 5.1: Code Maintainability

The code must be maintainable by other developers without much training. To accom-
plish that, the code must be well documented and structured with a clear separation of the
components. Forking should be avoided at all costs.

NFR 5.2: Documentation

Design decisions and the architecture has to be well-documented. The API and all functions
must be described in detail.

NFR 5.3: Installation and Development Ease

It must be ensured that the administrator as well as coming developers are able to take the
application to use and start customization and development. The installation procedure must
be described with all required third party products and their versions.

NFR 5.4: Accessibility

The provided functionality must be easy accessible for many end-users. Developers must be
able to implement new applications using the provided functionality without huge invest-
ment.

39

4. Specification

40

5. Design

This chapter describes in detail the design decisions for the imlementation in Chapter 6.
Section 5.1 describes the logic of the matching algorithm that is used by by filter and router in
Camel to connect source and target data stores based on predefined rules and the message
parameter “containername” and “blobname”.

Section 5.2 shows architecture of JBIMulti2 with Cloud Data Access Support for ServiceMix
(CDASMix) the modifications that that need to be implementded.

The last two sections show the design of the ServiceMix components in Section 5.5 and the
Java access library in Section 5.6.

5.1. Matching

The matching algorithm is used to define the rules of the connection between source and
target data stores. Possible scenarios are one source data store to one of several target data
stores depending on the name of the container and blob, data replication, and read- and
write-only data stores.

A minimal configuration consists of one source data store an one target data store with main
and secondary information structures connecting them.

The data store configurations are configured independently for each tenant and tenant user. In
the following, the tenant and tenant user information is not shown to simplify the descriptions
and examples.

5.1.1. Definitions

Source Data Store

The source data store is used to configure the endpoint used by the end-user to connect to
the ESB using the java access library. It must contain the Camel component that provides the
endpoint as well as the connection URL and the authorized tenant user.

41

5. Design

Target Data Store

The target data store contains the information needed to connect the ESB component to the
NoSQL provider e.g. the provider credentials and the Jclouds component. The target data
store also contains the information whether the data store can be used to handle read and/or
write requests.

A source data store is created with a single target data store configuration, additional target
data stores can be added later. If several source data stores use a connection to a single
provider, each of the source data stores needs to create a separate target data store configura-
tion.

Information Structures

The inforamtion structure is used to define the rules of the connection between source data
store and target data store. It consists of two parts, the main information structure, and the
secondary information structure.

The information structures are used as defined in CDASMix [Sá13, p. 50] but with extended
functionality. The main information structure contains the “first layer” of abstraction of the
stored data. The blobstore is related to the the name of the container1, in which the blob is
stored. The secondary information structure is the “second layer”. It is connected to the name
of the blob2.

Main and secondary information structure are evaluated separately and only match if both
evaluations return true.

5.1.2. Matching Types

There are several types that define how the request parameters are compared.

Absolute

Absolute matching types contain the expected name of the entity. It matches only if the
request has the exact same value. A main information structure with the absolute value
“container1” would only match requests with the container “container1”, not “conTainer1”,
“container” or “container12”.

Absolute information structures can be defined by using the expected value, or with the prefix
“<absolute>”. The previous example can be created using the value “container1” as well as
“<absolute>container1”.

1microsoft calls it container, amazon prefers the name bucket
2usually the filename

42

5.1. Matching

Regular Expression

Information structures of the type regular expression (regex) will match the request pa-
rameter against the defined regular expression. Regular expressions are defined using
the prefix “<regex>”. Overlapping expressions are allowed, for example the information
structures “<regex>.*\.txt” and “<regex>Example\..*” would both match the blob name
“Example.txt”.

Default

Default matching types match every request parameter, as long as the request is not served
by a configuration of any other type. For this type of matching, the information structure
needs to be aware of the other information structures.

Priority

The information structures that are created using these types have different matching prior-
ities. If two of the information structures match, the information structure with the lower
priority is ignored.

Information structures with the same priority are equal. Table 5.1 shows the partitioning of
information structures in priority classes based on type of their parts.

Main Information Structure Secondary Information Structure Priority

absolute or regex absolute or regex high
absolute default medium
default default low

Table 5.1.: Priority of Information Structures

5.1.3. Restrictions

Matching should be as distinct and intuitive as possible. We added the following restrictions
to simplify the configuration process and to reduce the number of possibilities to a consistent
subset.

As mentioned before, information structures including a default match only if no other
information structure with a higher priority matches. Replication in these cases is only
possible if the main, or the main and secondary information structure are identical, as shown
in Table 5.2.

43

5. Design

MIS SIS

absolute absolute
absolute regex (regular expression)
absolute default
regex absolute
regex regex
default default

Table 5.2.: List of all Valid Configurations

The configurations listed in Table 5.3 lists the configurations that were marked as invalid
configurations and will cause an exception during the start of the ServiceMix component.

MIS3 SIS4 Problem

default absolute Conflicts with MIS = absolute and SIS = default.
default regex Overlapping with similar information structure possible.
regex default Overlapping with similar information structure possible.

Table 5.3.: List of all Invalid Configurations

The first configuration can conflicts with another configuration that has an absolute main
information structure and default type as secondary information structure. Since only one
of these cases can be allowed, the more common case, the container set as absolute with the
blob name as default, has been selected as valid. The next two constellations are prohibited to
hinder the administrator to add configurations that lead to unwanted data replication. These
restrictions do not limit the functional scope of the applications since the described behavior
can still be implemented using regular expressions without default configurations.

5.1.4. Routing Types

With the valid configurations, it is possible to run the NoSQL storage with different configu-
rations.

Content Dependent Routing

The Unified NoSQL component matches the information structure dependent on the container
and blob name to one of several target data stores. This can be accomplished by using
information structures that do not overlap, by using information structures with different
priorities, or by a combination of both.

3MIS: Main Information Structure
4SIS: Secondary Information Structure

44

5.1. Matching

Data Replication

The information structures have the same priority and information structures that overlap at
least partially. A partial overlap could be configured as an absolute information structure and
a regular expression that also matches the value of the absolute information structure.

For the absolute overlap, the information structure values are identical. If no matching
information structure exists for the request, an error message will be returned.

Mixed Configurations

Data replication can be combined with content dependent routing, allowing a flexible config-
uration of the system landscape.

5.1.5. Examples

Goal of this section is to demonstrate the system is expected to work with a few examples.
The first part will describe configurations, the second part will describe how requests are
affected.

Before the requests can be sent to the ESB by the end-user, the following NoSQL data stores
have to be configured:

C. No.5 SDS6 TDS7 MIS SIS r8 w9

1 sds1 tds1 container1 example.txt 3 3

2 sds1 tds2 container1 example.txt 7 3

3 sds1 tds3 container1 <default> 3 3

4 sds1 tds4 <default> <default> 3 3

5 sds1 tds1 cont2 example.txt 3 3

6 sds1 tds-bu cont2 <regex>(.*)\.txt 7 3

7 sds2 tds-readonly c1 example.txt 3 7

8 sds2 tds-writeonly c1 example.txt 7 3

9 sds2 tds5 cont2 example.txt 3 3

10 sds2 tds6 cont2 <regex>(.*)\.txt 3 3

11 sds3 tds7 cont hello.txt 7 3

12 sds3 tds8 <default> <default> 3 3

Table 5.4.: Data Store Configuration for the Example

5Configuration number, referenced in the following description.
6Source Data Store
7Target Data Store
8read
9write

45

5. Design

Requests

With these configurations request will be mapped as follows:

M. No.10 req. SDS MIS SIS C. No.11 TDS

1 PUT sds1 container1 example.txt 1, 2 tds1 and tds2
2 GET sds1 container1 example.txt 1 tds1
3 PUT sds1 container1 asdf.txt 3 tds3
4 GET sds1 newcontainer1 example.txt 4 tds4
5 PUT sds1 cont2 example.txt 5, 6 tds1 and tds-bu
6 GET sds1 cont2 example.txt 5 tds1
7 PUT sds1 cont2 example2.txt 5 tds-bu
8 GET sds1 cont2 example2.txt
9 PUT sds2 c1 example.txt 8 tds-writeonly
10 GET sds2 c1 example.txt 7 tds-readonly
11 PUT sds2 cont2 example.txt 9, 10 tds5 and tds6
12 GET sds2 cont2 example.txt 9, 10 tds5 or tds6
13 GET sds3 cont hello.txt
14 GET sds3 cont hello2.txt 12 tds8

Table 5.5.: Requests and the Matching Configurations

Further Explanation

M. No.10 Explanation

1 The PUT request 1 matches with two absolute configurations, so both
target data stores are used (tds1 and tds2).

2 The GET request with the same parameters only matches the first target
data store because the second one does not allow write operations.

3 and 4 The third request is matched to the first configuration with default values
(configuration 3). Configuration 4 with <default> as main and secondary
information structure is not used, since the configuration with an absolute
value as main information structure and <default> only as secondary
information structure has a higher priority. Configuration 4 is used for the
fourth request, since no other configuration exists.

5 Request No. 5 is an example of a request with a secondary target data store
that is used as a backup. The backup data store matches every .txt file so it
is easy to configure a general backup service for all files of a given type.

6 The Get-Request will be served by “tds1” and not the backup “tds-bu”,
since “tds-bu” only supports write operations.

10Matching number
11Configuration number

46

5.2. Architectural Overview

7 and 8 The configuration is still tricky, wrong configuration can easiliy result in
unwanted behaviour. In the above backup example 7, if the main data
store is not configured, the blobs will be sent only to the backup target data
store. Reading will fail.

9 and 10 If the update of the data stores should be managed outside of the ESB, even
different data stores for reading and writing can be configured.

11 and 12 Regular expressions and absolute entries are evaluated equally. This means
that the put request will be sent to both tds5 and tds6, and get requests will
be served by either tds5 or tds6 (the data store with the later timestamp
will be preferred, if it is not reachable the other will be used.).

13 and 14 Request 13 cannot be fulfilled because none of the data store configured is
able to perform a read operation. The default data store is not used because
a “non-default" configuration exists, even though it is not able to perform
the required request. If the end-user tries to perform this get operation, he
will see an error message. Request 14 on the other hand can be fulfilled by
the default configuration with target data store tds8.

Table 5.6.: Detailed Explanation of the Matchings

5.2. Architectural Overview

Figure 5.1 shows the components of CDASMix as implemented in [Sá13]. JBIMulti2 handles
the configuration through the Web Service API and the business logic, stores the configura-
tions in the service registry database, and deploys the service assemblies through the JMS
Mangement Service.

The implementation of the Unified NoSQL component uses the same configuration compo-
nents but a different design for the ServiceMix components. Instead of a mix of JBI service
units and OSGi components, only two OSGi components are used, one of which provides
access to the service registry of the other component.

The JBIMulti2 component has alredy been extended for the implementation of the CDASMix
components. These extensions need to be modified to store all the information needed
configure the connections. For that, the Web Service API as well as the Business Logic need to
be extended to store the additional options needed for the NoSQL component. Storage from
JBIMulti2 to the service registry database is done using Hibernate. The tenant registry an the
configuration registry can be used as they are.

The ServiceMix components are implemented independently from the CDASMix components
and work without influencing each other.

The NoSQL Registry connects to the service registry and loads the NoSQL routing informa-
tion. On startup, the Unified Blobstore component uses the NoSQL Registry to access the
configurations and configure the Camel routes accordingly.

47

5. Design

Figure 5.1.: CDASMix Before the Modifications [Sá13]

5.3. JBIMulti2 and CDASMix Modifications

5.3.1. JBIMulti2 Web Service API

The implementation of the use cases scenarios as described in Section 4.2 involves the config-
uration of the application required a modification of JBIMulti2 components.

The Web Service API and the underlying business logic needed to be modified. The API
is accessed through Web Services Description Language (WSDL) messages sent using the
application SoapUI.

48

5.3. JBIMulti2 and CDASMix Modifications

Data Store

Table 5.7 shows the fields that are used to configure the application as described in the use
cases FR 1.1: Add a new Data Store Configuration and FR 1.4: Attach a Target Data Store.

The column “SQL” shows the values that are needed to create an sql connection, the column
“NoSQL” the values that are needed for a unified NoSQL connection.

Field Description SQL NoSQL

serviceAssemblyName JBI Service assembly used by the data store. 3 7

sourceDataSourceName Name of the data source used by the end-user
to identify the connection configuration.

3 3

sourceDataSourceType Storage type, for example SQL or any type of
NoSQL.

3 3

sourceDataSourceProtocol Protocol used by the end-user to connect to the
ESB, http for NoSQL.

3 3

sourceDataSourceURL URL used to connect to the ESB. 3 o12

targetDataSourceName Internal name of the target data store configu-
ration.

3 3

targetDataSourceType Type of the target data store. If targetData-
Source differs from the targetDataSource, the
ESB data store provider must handle the trans-
formation.

3 3

targetDataSourceProtocol Protocol used to connect to the external data
store provider.

3 3

targetDataSourceURL URL used to connect to the target data store.
Can be used to configure special proxy config-
urations for some Camel providers.

3 3

targetDataSource-
NativeDriverName

3 7

targetDataSourceUser Username or access name. 3 3

targetDataSourcePassword Password or access credentials. 3 3

targetDataSource-
CamelProvider

Camel component used to connect to the exter-
nal component.

7 3

targetDataSourceReadable Target data store can be used for get opera-
tions. Needed for advanced data replication
configuration (boolean) .

7 3

targetDataSourceWritable Target data store can be used for put opera-
tions. Needed for advanced data replication
configuration (boolean) .

7 3

Table 5.7.: WSDL Fields Used to Configure the Data Store Configurations

12optional

49

5. Design

Information Structures

Usage of the main and secondary information structure is the same as for CDASMix. The
only difference is that no service assembly is neeeded therefore the validity checks had to be
modified.

Field Description

serviceAssemblyName SQL only, reference to the corresponding service
assembly.

sourceDataSourceName Reference to the corresponding source data store.
targetDataSourceName Reference to the corresponding target data store.
sourceDataSourceType Type of the corresponding source data store.
targetDataSourceType Type of the corresponding target data store.
mainInformationStructureName Content of the main information structure.

Table 5.8.: WSDL Fields Used to Configure the Main Information Structure

Field Description

serviceAssemblyName SQL only, reference to the corresponding service
assembly.

sourceDataSourceName Name of the corresponding source data store.
targetDataSourceName Name of the corresponding target data store.
sourceDataSourceType Type of the corresponding source data store.
targetDataSourceType Type of the corresponding target data store.
mainInformationStructureName Content of the main information structure.
secondaryInformationStructureName Content of the main information structure.

Table 5.9.: WSDL Fields Used to Configure the Secondary Information Structure

5.3.2. JBIMulti2 Domain

The domain module of JBIMulti2 creates the class representation of the configurations and
stores the entries in the database using Hibernate.

Since CDASMix uses custom SQL requests to access the tables in the database the generated
tables must remain identical. The only option to store the parameter needed for the Unified
Blobstore component is to generate new tables that reference the existing tables.

CDASMix uses the parameter “datasourcetype” to identify CDASMix SQL entries, therefore
no complications with entries of a different types of data sources are expected.

50

5.4. Unified NoSQL

5.4. Unified NoSQL

The only NoSQL-type dependent components are the message translator and the message
endpoints.

In the following sections we describe the functionality on the basis of a Unified Blobstore
example configuration.

The component is an OSGi component. On startup, it accesses the ServiceMix registry to
access the NoSQL configurations.

To ensure message isolation, each tenant is assigned a separate Camel context. The different
tenant contexts can be shut down and restarted separately.

5.4.1. Blobstore Example

In this section, we describe the context configuration for a single user. The following text
describes the EIP components in the same order as shown in Figure 5.2

1) Jetty Endpoint for Each Tenant User

The Camel-Jetty component is used to start an HTTP server that listens to inbound HTTP
requests. The HTTP requests are transformed in the Camel message format, HTTP parameter
of the request are translated in Camel message parameter.

The used URL for our Jetty-endpoint is in the following format:
http://<SERVER-IP>:<PORT>/<TENANT-UUID>/<USER-UUID>

• <SERVER-IP>: The IP of the server. This value is usually set to 0.0.0.0, thus configuring
the endpoint to listen to any connections sent to the IP of the running machine.

• <PORT>: The server port, we selected 8082 for the Unified Blobstore.

• <TENANT-UUID>/<USER-UUID>: These UUID are generated by JBIMulti2 and iden-
tify the user.

The required HTTP header are UUID for tenant and user, source data store name and source
data store type.

We also include a validator behind the Jetty endpoint that rejects incomplete message and
unauthorized requests (not shown).

Since the requests can take some time to process (in case of a blobstore, sending several MB
or GB to the cloud provider), we suggest increasing the parameter MaximumIdleTime, the
time Jetty keeps a connection open.

51

http://<SERVER-IP>:<PORT>/<TENANT-UUID>/<USER-UUID>

5. Design

Figure 5.2.: Generated Camel Context

52

5.4. Unified NoSQL

2) Router to Separate Source Data Stores

The next EIP component we use is a Content Dependent Router to separate messages depend-
ing on the source data store message header.

If the source data store has not been configured, an exception is thrown and communicated
through Jetty as a server error.

In this scenario, we examine the path in case of source data store “s1” further.

3) Direct Endpoint

Direct is a Camel component that generates endpoints that provides synchronous invocation
of any consumers when a producer sends a message exchange.

Each source data store has its own direct endpoint.

4) Additional Jetty Endpoint

It is possible to add additional message endpoints in the source data store configuration.

This can be used to configure custom URLs that are used for a single source data store
endpoint. In this example, we configure another Jetty endpoint that listens to the URL
http://<SERVER-IP>:8081/s1.

5) Read/Write Router

Requesting data from the NoSQL data store must be handled differently than changing it. In
case of data replication, read requests can be responded by a single target data store while
requests modifying the data like read or write must be performed by every target data store.

6a) Multicast and Information Structure Filter

The message to edit a database entry is broadcast to the route of every target data store that is
writable. Based on the information structure, requests that do not concern target data store
are then filtered out.

6b) Message Translation

We then need to transform the message in a format that the NoSQL Camel endpoint can
process. The transformation in case of blobstores is simple, the header names and values
defining the the operation, container and blob name are modified.

Other NoSQL types may require a more complex translation.

53

http://<SERVER-IP>:8081/s1

5. Design

6c) NoSQL Endpoint

The message is then sent to the provider specific endpoint that sends the request to the actual
database. The status message of the operation (success or failure) is set as the message body
by the NoSQL endpoint.

6d) Aggregate

Last step is to aggregate the status messages of the different endpoints to a single message
that can then be sent back through the initial Jetty endpoint and in case of an error displayed
by the Java access library.

7a) Route to Matching Endpoint

In case of a read request, the message is sent to the first target data store that fits the informa-
tion structure.

7b) and 7c) Message Translation and NoSQL Endpoint

The message is then similar to the read request translated from the unified format in a format
that the NoSQL endpoint can process. Since the request is fulfilled by a single endpoint,
aggregation is not necessary, and the result of the read request is then sent back using the
initial Jetty Endpoint.

5.4.2. Modifications Needed for Other NoSQL Data Stores

The described design is modular and usable for any type of NoSQL data store. The only
NoSQL type dependent components are the message translator and the NoSQL message
endpoint.

As listed in Section 2.2.5, Apache Camel provides many Camel components that can be used
to generate NoSQL message endpoints. If they provide the required functionality, if they need
to be extended or if they work at all should be checked before starting the implementation.

5.5. ServiceMix Components

5.5.1. NoSQL Registry

The NoSQL Registry component loads the configurations added through JBIMulti2 and
provides access to the Unified Blobstore in a easily processable format.

54

5.5. ServiceMix Components

The NoSQL Registry is split in two parts: an interface that is used to abstract the functionality
needed by the NoSQL component, and the actual implementation.

The implementation uses the interface to register itself to the OSGi BundleContextRegistry.
The Unified Blobstore component then loads the registry on startup, accessing only the
functions provided by the interface. This increases the modularity and affects the NFR 5.1:
Code Maintainability, since the registry can be replaced later on without affecting the Unified
Blobstore component.

The registry uses Hibernate and the same class model as JBIMulti2 in the application domain.
Therefore, further changes and additions to the class model are added automatically to the
registry, which increases maintainability

5.5.2. Unified Blobstore

The Unified Blobstore component loads the configuration from the NoSQL Registry on startup
and configures the Camel contexts, one for each tenant. The ESB component uses Camel
components, and the configuration dependent routing is implemented using Camel routes.

The context can be stopped and reconfigured independently from all the other tenant contexts,
and the routes of each tenant have no intersections to comply with NFR 1.2: Data Isolation.

The ServiceMix Blobstore uses Camel-Jetty to configure an access point to receive messages.
For each tenant user a separate Jetty endpoint is configured. Jetty provides an http endpoint
that can be accessed using a predefined URL. The URL for the user is in the following
format:

http://<SERVER-IP>:<PORT>/<TENANT-UUID>/<USER-UUID>

The server IP is usually set to 0.0.0.0 to configure Jetty to creates a public access point that can
be used by replacing it with the actual server Internet Protocol (IP) address. The Universally
Unique Identifiers (UUIDs) are generated by JBIMulti2 and must be known by the user.

A Camel route is then defined that directs messages according to the configured rules defined
as in Matching and sent to one or more Camel-Jclouds endpoints that manage the connection
from to the NoSQL provider. The routing is implemented using EIP.

Alternative Design

Another possibility to implement the ServiceMix NoSQL component would be to create an
OSGi component without Camel, that handles the request directly, transforms it to a format
that is supported by the native driver, and sends the request using the native driver. The
component could easily use the native driver and therefore use the full support of the available
operations with the performance of the native driver. This design has been rejected due to
the fact that the connection driver for every NoSQL store had to be implemented manually.
Using Camel, a lot of components are already available, or will be in future releases.

55

http://<SERVER-IP>:<PORT>/<TENANT-UUID>/<USER-UUID>

5. Design

5.6. Java Access Library

The java access library can be used by local implementations to connect to the ServiceMix
endpoint. Each request is self-contained, meaning that no connection has to be established
beforehand.

Connection details are configured in the constructor, the needed parameters are:

• URL to the Jetty endpoint

• tenant and user UUID

• name of the source data store

Supported methods are as defined in Section 4.2 put, get and delete. Error messages during
the routing are disclosed by the Unified Blobstore component with an http error code, the
message is wrapped in a application specific exception and presented to the user.

56

6. Implementation

This chapter covers the implementation and modification of the components as described in
Chapter 5 Design.

The first section describes the third party components that are used in the implementation
and the steps required to set up the development environment and run CDASMix.

The second section shows the required modifications to the JBIMulti2 management applica-
tion.

The last two sections provide the details of the implementation of the ServiceMix components
and the Java access library that can be used to connect from local applications to the ESB.

6.1. Third Party Components

The installation guide of JBIMulti2 and CDASMix uses ServiceMix in version 4.3.0 that
includes Camel in version 2.6 (released in January 2011).

Since then, Camel implemented several features that can be used to connect from Camel
routes to different NoSQL databases. The development is still active, and new functions and
bug-fixes are implemented in each release. Therefore it would be the best solution to keep
ServiceMix and Camel up to date to profit from the continuing development.

To comply with the backwards compability non-functional requirement in Section 4.3.4, the
existing JBIMulti2 and CDASMix modules must continue to work. Apache removed JBI
support from the ServiceMix implementation from version 5 upwards which is needed to run
the JBIMulti2 and CDASMix ServiceMix components.

The compromise is to update ServiceMix to the latest stable version that still supports JBI
which is ServiceMix 4.5.3. Every other program has been used in the version as suggested in
the CDASMix installation manual.

This decision determined the selection of other dependent components. Table 6.1 lists the
applications that are used during the implementation. This information is useful to find the
right source code, documentations and support.

Program Version Remark

JOnAS 5.2.2 Runs the configuration server of JBIMulti2
ServiceMix 4.5.3 Latest version that supports JBI and therefore JBI-

Multi2

57

6. Implementation

Camel 2.10.7 Part with ServiceMix 4.5.3
Camel-Jclouds 2.10.7 Camel component.
Camel-Jetty 2.10.7 Camel component.
Jclouds-Blobstore 1.4.0 Version used by Camel-Jclouds 2.10.7.
Hibernate 3.6.4.Final Used by JBIMulti2 to store management configura-

tions to the PostgreSQL database
PostgreSQL 9.1-901.jdbc3 Used by JBIMulti2.
Httpclient 4.3.5 Library used by the Unified Blobstore Client Li-

brary to send requests from a local application to
the Jetty component.

Table 6.1.: Selected Programs and Version Used for the Implementation

Another possibility would have been to upgrade the Camel version inside of ServiceMix.
Posts on the mailing list suggest that it is possible1, but it there are no official guides and the
risk of unexpected side effects seemed too high.

6.1.1. Update of ServiceMix

Before the implementation, we had to upgrade ServiceMix to version 4.5.3, and install the
ServiceMix part of JBIMulti2 and CDASMix.

One possibility is to download the default assembly2 from the website and add JBI support
using the Karaf management console. After that, an error message is written in the startup log
file3. This can be solved by uninstalling one of the two Apache Aries Transaction Manager.

There are no working test scenarios for JBIMulti2 and CDASMix, verifying the functionality
thoroughly after a major update cannot be conducted thoroughly. We did, however, install
the JBIMulti2 and CDASMix components in ServiceMix, verified that no startup error was
shown in the error log, and then started the existing SoapUI use scenario.

6.2. JBIMulti2 and CDASMix Modifications

This section describes the modifications to the management interface. The order is following
the path of a configuration requests, from the modified Simple Object Access Protocol (SOAP)
requests sent through SoapUI to the modified JBIMulti2 request handler and then to the
configuration database.

We tried to ensure the that the other JBIMulti2 and CDASMix components continue to function
by only changing these components when absolutely necessary.

1http://servicemix.396122.n5.nabble.com/-td5638386.html
2http://servicemix.apache.org/downloads/servicemix-4.5.3.html
3http://servicemix.396122.n5.nabble.com/-tp5719860.html

58

http://servicemix.396122.n5.nabble.com/-td5638386.html
http://servicemix.apache.org/downloads/servicemix-4.5.3.html
http://servicemix.396122.n5.nabble.com/-tp5719860.html

6.2. JBIMulti2 and CDASMix Modifications

6.2.1. WSDL Request

Listing 6.1 shows an example SOAP request that adds a minimal NoSQL source and target
data store configuration. Additional target data stores can be added in additional steps.

The requests are similar structured to the CDASMix requests that are used to configure SQL
connections. The keyword of the blobstore has been defined as “unified-nosql-blobstore”, to
separate these configurations from the configurations of CDASMix.

Source and target data store are then connected by a main and secondary information structure
as shown in Listing 6.2 and Listing 6.3. The request is then handled by the JBIMulti2 API.

1 <wsdl:attachNoSQLDataSource>
2 <wsdl:sourceDataSourceName>nosqlsource</wsdl:sourceDataSourceName>
3 <wsdl:sourceDataSourceType>unified-nosql-blobstore-1.0.0</wsdl:sourceDataSourceType>
4 <wsdl:sourceDataSourceComponent>camel-jetty</wsdl:sourceDataSourceComponent>
5 <wsdl:sourceDataSourceConnectionURI>http://0.0.0.0:8182/nosqlsource</

wsdl:sourceDataSourceConnectionURI>
6 <wsdl:targetDataSourceName>targetds</wsdl:targetDataSourceName>
7 <wsdl:targetDataSourceType>unified-nosql-blobstore-1.0.0</wsdl:targetDataSourceType>
8 <wsdl:targetDataSourceComponent>jclouds</wsdl:targetDataSourceComponent>
9 <wsdl:targetDataSourceProvider>azureblob</wsdl:targetDataSourceProvider>

10 <wsdl:targetDataSourceUser>${CDAS Accounts#azure_1_user}</wsdl:targetDataSourceUser>
11 <wsdl:targetDataSourcePassword>${CDAS Accounts#azure_1_password}</

wsdl:targetDataSourcePassword>
12 <wsdl:targetDataSourceReadable>true</wsdl:targetDataSourceReadable>
13 <wsdl:targetDataSourceWritable>true</wsdl:targetDataSourceWritable>
14 </wsdl:attachNoSQLDataSource>

Listing 6.1: SoapUI Request to add a NoSQL Data Store Configuration.

1 <wsdl:attachDataSourceSecInformationStructure>
2 <wsdl:sourceDataSourceName>nosqlsource</wsdl:sourceDataSourceName>
3 <wsdl:targetDataSourceName>targetds</wsdl:targetDataSourceName>
4 <wsdl:sourceDataSourceType>unified-nosql-blobstore-1.0.0</wsdl:sourceDataSourceType>
5 <wsdl:targetDataSourceType>unified-nosql-blobstore-1.0.0</wsdl:targetDataSourceType>
6 <wsdl:mainInformationStructureName><default></wsdl:mainInformationStructureName>
7 <wsdl:secondaryInformationStructureName><default></

wsdl:secondaryInformationStructureName>
8 </wsdl:attachDataSourceSecInformationStructure>

Listing 6.2: SoapUI Request to add a Default Main Information Structure.

59

6. Implementation

1 <wsdl:attachDataSourceMainInformationStructure>
2 <wsdl:sourceDataSourceName>nosqlsource</wsdl:sourceDataSourceName>
3 <wsdl:targetDataSourceName>targetds</wsdl:targetDataSourceName>
4 <wsdl:sourceDataSourceType>unified-nosql-blobstore-1.0.0</wsdl:sourceDataSourceType>
5 <wsdl:targetDataSourceType>unified-nosql-blobstore-1.0.0</wsdl:targetDataSourceType>
6 <wsdl:mainInformationStructureName><default></wsdl:mainInformationStructureName>
7 </wsdl:attachDataSourceMainInformationStructure>

Listing 6.3: SoapUI Request to add a Default Main Information Structure.

6.2.2. JBIMulti2

The required modification to JBIMulti2 are the extension of the Web service API, and adding
methods to handle the requests including validation and storage.

JBIMuitl2 Web Service API

The first step to extend the JBIMulti2 configuration back-end was to add new requests to
the JBIMulti2 WSDL file. A listing of the required additions of the WSDL file an be found in
Appendix A.1.

Maven is then used to generate the Java classes that are used to access the data of the SOAP
messages. Validation methods for the new requests are added. The handling of the requests
to add main- and secondary information structure requests had to be modified since the
unified NoSQL store does not need a service assembly.

After the validation the information is stored in the database “ServiceRegistry”. Hibernate is
used for this step, the new NoSQL classes had to be added to the persistence.xml configuration
file.

Service Registry Database and Persistence Manager

To store the entries in the database the class structure representing the database has to be
written and marked with Hibernate annotations. The classes are then added to the Hibernate
configuration file.

In result the configuration “validate” should be used. The generated database can be seen in
Figure 6.1. Yellow tables are new, grey tables already existed, and the light grey table is not
used for NoSQL blobstores.

60

6.2. JBIMulti2 and CDASMix Modifications

tenant_backendds

ds_name CHARACTER VARYING(255)

ds_type CHARACTER VARYING(255)

location_id CHARACTER VARYING(255)

user_id CHARACTER VARYING(255)

tenant_id CHARACTER VARYING(255)

beandsname CHARACTER VARYING(255)

ds_passw CHARACTER VARYING(5000)

ds_protocol CHARACTER VARYING(255)

ds_user CHARACTER VARYING(255)

endpointurl CHARACTER VARYING(255)

native_driver_name CHARACTER VARYING(255)

saname_fk CHARACTER VARYING(255)

ds_user_id_fk CHARACTER VARYING(255)

ds_tenant_id_fk CHARACTER VARYING(255)

source_ds_name_fk CHARACTER VARYING(255)

source_ds_type_fk CHARACTER VARYING(255)

source_location_id_fk CHARACTER VARYING(255)

source_user_id_fks CHARACTER VARYING(255)

source_tenant_id_fks CHARACTER VARYING(255)

main_information_structure

main_info_struct_id BIGINT

dstenant_id CHARACTER VARYING(255)

location_id CHARACTER VARYING(255)

name CHARACTER VARYING(255)

data_source_name_fk CHARACTER VARYING(255)

data_source_type_fk CHARACTER VARYING(255)

data_source_location_fk CHARACTER VARYING(255)

data_source_user_id_fk CHARACTER VARYING(255)

data_source_tenant_id_fk CHARACTER VARYING(255)

secondary_info_structure

secondary_info_struct_id BIGINT

dstenant_id CHARACTER VARYING(255)

location_id CHARACTER VARYING(255)

name CHARACTER VARYING(255)

main_info_struct_fk BIGINT

service_assembly

saname CHARACTER VARYING(255)

user_id CHARACTER VARYING(255)

tenant_id CHARACTER VARYING(255)

zip_file OID

nosqlsourcedsconfig

nosqlsourcedsconfig_id BIGINT

dstenant_id CHARACTER VARYING(255)

dsuser_id CHARACTER VARYING(255)

name CHARACTER VARYING(255)

source_data_source_component CHARACTER VARYING(255)

source_data_source_connectionuri CHARACTER VARYING(255)

data_source_name_fk CHARACTER VARYING(255)

data_source_type_fk CHARACTER VARYING(255)

data_source_location_fk CHARACTER VARYING(255)

data_source_user_id_fk CHARACTER VARYING(255)

data_source_tenant_id_fk CHARACTER VARYING(255)

nosqltargetdsconfig

nosqltargetdsconfig_id BIGINT

dstenant_id CHARACTER VARYING(255)

dsuser_id CHARACTER VARYING(255)

name CHARACTER VARYING(255)

target_data_source_component CHARACTER VARYING(255)

target_data_source_password CHARACTER VARYING(255)

target_data_source_provider CHARACTER VARYING(255)

target_data_source_readable BOOLEAN

target_data_source_user CHARACTER VARYING(255)

target_data_source_writable BOOLEAN

data_source_name_fk CHARACTER VARYING(255)

data_source_type_fk CHARACTER VARYING(255)

data_source_location_fk CHARACTER VARYING(255)

data_source_user_id_fk CHARACTER VARYING(255)

data_source_tenant_id_fk CHARACTER VARYING(255)

Figure 6.1.: Modified Service Registry Database

61

6. Implementation

6.3. ServiceMix Components

The ServiceMix components are new implementations, with no code reuse from JBIMulti2
or CDASMix. The Unified Blobstore component is pure OSGi without any JBI components,
therefore the in CDASMix required connection to service units is not necessary.

Due to the version restrictions listed in Table 6.1, it was not possible to use the latest version
of ServiceMix, Camel and JClouds. Thus getting help from the user mailing list is complicated
if the concerning version is deprecated.

The components are not equally well-implemented, some offer only limited functionality or
have errors in documentation4 and implementation5.

The best practice for the implementation using Camel components is to read the description of
the components on the website6, download the source code, check the examples and the JUnit
test cases, and then examine the behaviour using a debugger once the component conducts
unexpectedly.

ServiceMix can be started “out of the box” with a debug parameter and waits for connection
on port 5005 for debugging with eclipse. Source code of the libraries and their dependencies
can be obtained using maven in the pom.xml configuration, as shown in Listing 6.4.

1 <plugin>
2 <groupId>org.apache.maven.plugins</groupId>
3 <artifactId>maven-eclipse-plugin</artifactId>
4 <configuration>
5 <downloadSources>true</downloadSources>
6 <downloadJavadocs>true</downloadJavadocs>
7 </configuration>
8 </plugin>

Listing 6.4: Maven Snippet to Configure Autmatic Source Code and Javadoc

6.3.1. NoSQL Registry

The NoSQL registry abstracts the access to the NoSQL configurations.

It is composed of two parts: an NoSQL Registry interface that defines the access methods and
implements the back end independent functions, and the NoSQL Registry OSGi component.
The NoSQL Registry registers a reference of itself in the context registry of the OSGi container
manager with the implemented interface, as shown in Listing 6.5.

This reference can be accessed by the Unified Blobstore end every other Unified NoSQL
components.

4http://camel.465427.n5.nabble.com/-tp5750789.html
5http://camel.465427.n5.nabble.com/-td5757810.html
6http://camel.apache.org/components.html

62

http://camel.465427.n5.nabble.com/-tp5750789.html
http://camel.465427.n5.nabble.com/-td5757810.html
http://camel.apache.org/components.html

6.3. ServiceMix Components

The OSGi implementation uses the same classes and Hibernate configuration as JBIMulti2 to
access the database.

Connection to Hibernate

Using applications that were not implemented for OSGi in an OSGi environment can be tricky.
Each bundle has an associated classloader that is responsible for loading the classes inside
the bundle [CW13, p. 16].

Hibernate uses the classloader to access the configuration file containing the configuration for
the connection as well as the path to the classes representing the database content.

OSGi modules started by ServiceMix have the classloader of ServiceMix configured, which
means that Hibernate is unable to load the configurations from the expected location inside
the OSGi component, but will instead look in a directory of ServiceMix.

Listing 6.6 shows the workaround7. The classloader has to be temporarily set to the classloader
of the current class, then Hibernate is able to find the configurations.

After this modification, Hibernate works as usual.

Matching

Listing 6.7 shows the matching check. First step is to validate that the input matches the
information structure by matching the container name against the main information structure
and the blob name against the secondary information structure. If the information structure is
completely or partially based on a default type, the other “competing” information structures
are checked. If none of them matches and has a higher priority (no replication involving
default), the information structure “matches”.

This method is later used in the camel routes to configure router and filter.

6.3.2. Camel-Jclouds

Camel-Jclouds is the component of the unified datastore that establishes the connection
between the ESB and the blobstore cloud provider.

7http://apache-felix.18485.x6.nabble.com/-td4835872.html

63

http://apache-felix.18485.x6.nabble.com/-td4835872.html

6. Implementation

1 public void start(BundleContext context) throws Exception {
2 registry = Registry.getInstance();
3 reg = context.registerService(IRegistry.class.getName(), registry, null);
4 }

Listing 6.5: Registration in the Activator Using the Interface

1 ClassLoader cl = Thread.currentThread().getContextClassLoader();
2 Thread.currentThread().setContextClassLoader(this.getClass().getClassLoader());
3

4 emf = Persistence.createEntityManagerFactory("serviceRegistry");
5 entityManager = emf.createEntityManager();
6

7 Thread.currentThread().setContextClassLoader(cl);

Listing 6.6: Workaround for Hibernate in an OSGi Environment

1 public boolean matches(String containername, String blobname) {
2 boolean matches = matchesIsolated(containername, blobname);
3

4 if(isDefault() && matches) {
5 // Only match if no other information structure with a higher priority matches.
6 // ABSOLUTE and REGEX > mis ABSULUTE or REGEX and sis DEFAULT > mis and sis DEFAULT
7 for (InformationStructure is : competingInformationStructures) {
8 if(is.priority > priority && is.matchesIsolated(containername, blobname)) {
9 matches = false;

10 break;
11 }
12 }
13 }
14 return matches;
15 }

Listing 6.7: Matching of Information Structures

64

6.3. ServiceMix Components

Delete Implementation

In the current version, Camel Jclouds only supports read and write operations, no deletions.
To offer the full functionality as described in Section 4.2, we extended the component.

Like every Camel component, the main function of the Camel-Jclouds component is the
mapping of messages to the API of the implemented application. The code required to to add
mapping for delete operations can be seen in Listing 6.8.

Other functionality, like listing existing container and blobs, can be added like that.

1 } else if (JcloudsConstants.DELETE.equals(operation)) {
2 blobStore.removeBlob(container, blobName);
3 }

Listing 6.8: Required Modifications to Camel-Jclouds to add Delete

StackOverflowError Workaround

Camel Jclouds has a bug in the used version that prevents the processing of messages of a
specific type and larger than a certain threshold8. The bug will be fixed in the next releases9,
but since we are bound in the development to a version that is no longer actively developed,
we had to implement a workaround.

As workaround, we deactivated caching and added a processor that extracts the message and
stores it in a temporary file. The behavior is almost the same as the default caching, but since
the format of the message is a different the StackOverflowError is not triggered.

If the implementation is run using a Camel version 2.13.3, 2.14.1 or 2.15.0 or later, the
workaround can be removed.

6.3.3. Unified Blobstore

The Unified Blobstore component provides the entry point for the connections from the java
access library and manages the routing to the target blobstores. Like the NoSQL registry, it is
a OSGi component.

On startup, the activator accesses the NoSQL Registry to load the source and target data store
configurations and the information structures.

The component was implemented after the design in Section 5.4. Blobs can be very huge,
performing the read and write operations can thus take much longer than for any other SQL
and NoSQL request.

8http://camel.465427.n5.nabble.com/-td5757810.html
9http://camel.465427.n5.nabble.com/-td5757810.html

65

http://camel.465427.n5.nabble.com/-td5757810.html
http://camel.465427.n5.nabble.com/-td5757810.html

6. Implementation

The maximum idle time of the Jetty component must be set to a value that cannot be exceeded
in normal usage, as shown in Listing 6.9.

1 List<String> tenants = registry.getNoSQLTenants();
2 for (String tenant : tenants) {
3 CamelContext camelContext = camelContextFactory.createContext();
4

5 // Increase maxIdleTime of Jetty, otherwise the request will be resent to the following
components after 200 seconds

6 // This has been fixed in later versions of camel.
7 JettyHttpComponent jettyComponent = camelContext.getComponent("jetty",

JettyHttpComponent.class);
8 jettyComponent.addSocketConnectorProperty("maxIdleTime", (60 * 60 * 1000));
9

10 List<INoSQLSourceDataStore> sourceDataStores = registry.getNoSQLSourceDataStores(tenant)
;

11

12 RouteBuilder sourceRouter = new TenantEntryRouteBuilder(sourceDataStores);
13 camelContext.addRoutes(sourceRouter);
14 for (INoSQLSourceDataStore sourceDataStore : sourceDataStores) {
15 RouteBuilder route = new NoSQLDataRouteBuilder(sourceDataStore);
16 camelContext.addRoutes(route);
17 }
18 camelContext.start();
19 camel.put(tenant, camelContext);
20 }

Listing 6.9: Configuring the Camel Contexts for Each Tenant

The message translator that transforms the message from the uniform format to the format of
the target message endpoint only needs to rename the header to the format required by the
Camel-Jclouds component.

6.4. Java Access Library

The Java library can be included by the end-user to connect to the Unified Blobstore compo-
nent. It provides a simple interface to write, read, and delete blobs. The interface can be seen
in Listing 6.11.

1 public interface BlobStore {
2 public void put(File f, String container, String blob) throws UnifiedBlobstoreException;
3 public void get(File f, String container, String blob) throws UnifiedBlobstoreException;
4 public void delete(String container, String blob) throws UnifiedBlobstoreException;
5

6 public String getName();
7 }

Listing 6.11: Methods Provided by the Unified NoSQL Library to Access Blobstores

66

6.5. Validation

1 # Operation
2 cdasmix-operation=CamelJcloudsOperation
3 cdasmix-operation.PUT=CamelJcloudsPut
4 cdasmix-operation.GET=CamelJcloudsGet
5 cdasmix-operation.DELETE=CamelJcloudsDelete
6

7 # Name of the Container / Bucket. Used in the Main Information Structure.
8 cdasmix-container=CamelJcloudsContainerName
9

10 # Name of the Blob / File. Used in the Secondary Information Structure.
11 cdasmix-blob=CamelJcloudsBlobName

Listing 6.10: Mapping Between the Unified Format and the Camel-Jclouds Format

The Java Blobstore Library a simple HTTP client that uses the Apache Httpclient library to
establish the connection. Required message parameters are set as message header. Listing
6.12 shows as an example the HTTP request to write a blob.

1 HttpPost httppost = new HttpPost(connectionURL);
2 httppost.setConfig(config);
3

4 httppost.setHeader(Constants.CDASMIX_SOURCE_DATA_STORE, sourceDataStore);
5 httppost.setHeader(Constants.CDASMIX_OPERATION, Constants.CDASMIX_PUT);
6 httppost.setHeader(Constants.CDASMIX_CONTAINTER, container);
7 httppost.setHeader(Constants.CDASMIX_BLOB, blob);
8

9 httppost.setHeader(Constants.TENANT_UUID, tenantUUID);
10 httppost.setHeader(Constants.USER_UUID, userUUID);
11

12 FileEntity reqEntity = new FileEntity(file);
13 reqEntity.setChunked(true);
14 httppost.setEntity(reqEntity);
15 CloseableHttpResponse response = httpclient.execute(httppost);

Listing 6.12: Excerpt of the Write Operation in the NoSQL Library

6.5. Validation

We evaluate the modifications to JBIMulti2 and the implementation of the NoSQL Registry
and the Unified Blobstore by configuring and using an extensive use case scenario. The
evaluation takes place in a single virtual machine.

The scenario create has three tenants with one user each T1U1, T2U1 and T3U1.

Tenant T1U1 is used to validate default configurations, T2U1 is used for the validation of

67

6. Implementation

content dependent routing, and replication is validated by the configurations for tenant
T3U1.

The added configurations can be seen in Table 6.2.

Tenant SDS10 TDS11 IS12 in the format (MIS/SIS)13, regular expressions are not used.

T1U1 sds1 tds1s3 («default»/«default»)
T1U1 sds1 tds2sAzure (’container1’/«default»)
T1U1 sds1 tds1s3 (’container1’/’s3.txt’)
T2U1 sds2 tds3s3 (’container2’/’hello1.txt’), (’container2’/’hello2.txt’)
T2U1 sds2 tds4Azure (’container2’/’hello3.txt’), (’container2’/’hello4.txt’)
T3U1 sds3 tds5s3 (’cont3’/’a.txt’), (’cont4’/«default»)
T3U2 sds3 tds6Azure (’cont3’/’a.txt’), (’cont4’/«default»), («default»/«default»)

Table 6.2.: NoSQL Data Store Configurations of the Evaluation

In the first step, we validate that the configuration were correctly entered in the PostgreSQL
database. We start the NoSQL Registry and the Unified Blobstore component. The component
has a debugging function that writes the content of the NoSQL Registry to the console on
startup, thereby making sure that the NoSQL Registry is working correctly.

In the second step, we send write requests to through the Unified NoSQL component and
validate that the correct target data store is selected.

Tenant SDS Container Blob name S3 Azure

T1U1 sds1 container0 example.txt 7 3

T1U1 sds1 container1 example.txt 3 7

T1U1 sds1 container1 s3.txt 7 3

T2U1 sds2 container2 hello1.txt 3 7

T2U1 sds2 container2 hello2.txt 3 7

T2U1 sds2 container2 hello3.txt 7 3

T2U1 sds2 container2 hello4.txt 7 3

T3U1 sds3 cont3 a.txt 3 3

T3U2 sds3 cont4 something.txt 3 3

T3U2 sds3 something something.txt 7 3

Table 6.3.: NoSQL Data Store Configurations of the Evaluation

As seen in the first three requests sketched in Table 6.3, the priority works as defined. The

10SDS: Source Data Store
11TDS: Target Data Store
12IS: Information Structures
13(Main Information Structure/Secondary Information Structure). Type default use the keyword «default», type

absolute are in quotation marks

68

6.5. Validation

absolute configuration is preferred to configuration that is partially of the type default. The
completely default configuration has the lowest priority and is only selected if no other
information structure can be used.

The second block proves that it is possible to define explicit routes, separating the message
based on predefined rules and sending them to the correct target data store.

Replication is validated by the remaining requests, both for default configurations as well as
information structures of the type absolute.

69

6. Implementation

70

7. Evaluation

This chapter documents the performance of the created blobstore prototype. The evaluation
is conducted from the perspective of the end-user with focus on the performance difference
introduced by routing through a middleware and by using a different driver to establish the
connection.

The performance test measures the time (in ms) needed for the execution of a specific request
with focus on the difference between a direct connection using the driver provided by the
vendor, the direct connection using the Jclouds driver and the connection through the ESB
middleware using the Java access library.

7.1. Execution Environment

The test environment is deployed in a single Virtual Machine (VM) running on Ubuntu
10.04.The resources assigned to the VM are four processors (3.4 GHz) and four GB of dedicated
memory. During the execution the processor and memory usage is monitored and is ensured
that processor usage on any processor never exceeds 60 percent and that the memory usage
of never exceeds 3 GB.

The VM is connected to the internet with a connection allowing up to 50 MBit/s download
and 2,5 MBit/s upload speed.

7.1.1. Preparation

Before the first test run we created both, the accounts with the target data store provider and
the used container. We used the default configuration for each step.

ServiceMix, PostgreSQL and JOnAS with the modified JBIMulti2 management interface are
installed and configured according to the manual. The performance test scenario consists of
one tenant with one user. One souce data store is configured to route all requests with the
container ‘amazononly” to the provider S3, and all requests to the container “azureonly” zu
Azure Blob.

After these configurations the JOnAS server was closed to free resources and ServiceMix with
the Unified Blobstore component was started.

71

7. Evaluation

7.2. Test Program

There are no sufficient benchmark programs available for blobstores. Yahoo offers a general
framework for NoSQL benchmark tests named Yahoo Cloud Serving Benchmark (YCSB),
but drivers for blobstores are currently not part of the implementation. JClouds has in its
repository a very basic performance test that they use to compare the native driver with the
Jclouds driver by repeatedly uploading a single file to the cloud in its repository1.

The JClouds performance test has been used as a reference for the implementation of a custom
benchmarking tool that can be used to compare the upload times using several drivers and
several providers. The implementation creates a simple wrapper class for each driver that
directs the read, write and delete requests to the driver implementation. Requests to the
blobstore driver are by design self-sufficient, therefore opening and closing connections was
done by the driver.

1 @Override
2 public void put(File file, String container, String blob) throws Exception {
3 CloudBlobContainer c = blobClient.getContainerReference(container);
4 CloudBlockBlob b = c.getBlockBlobReference(blob);
5 b.upload(new FileInputStream(file), file.length());
6 }
7 @Override
8 public void get(File file, String container, String blob) throws Exception {
9 CloudBlobContainer c = blobClient.getContainerReference(container);

10 CloudBlockBlob b = c.getBlockBlobReference(blob);
11 b.download(new FileOutputStream(file));
12 }
13 [...]

Listing 7.1: Wrapper for the Azure Driver

1 Blobstore;File;Size;Operation;Start;End;Result;Comment
2 Amazon AWS S3;a-1kB.bin;1024;put;1415341327332;1415341328211;879;ok
3 Amazon AWS S3;a-1kB.bin;1024;put;1415341328211;1415341329092;881;ok
4 [...]
5 UnifiedBlobstore;c-100kB.bin;102400;get;1415343588922;1415343591421;2499;ok
6 UnifiedBlobstore;c-100kB.bin;102400;get;1415343591422;1415343593920;2498;ok
7 UnifiedBlobstore;c-100kB.bin;102400;get;1415343593921;1415343597251;3330;ok
8 [...]

Listing 7.2: Output of the Test Evaluation Program

1https://github.com/jclouds

72

https://github.com/jclouds

7.2. Test Program

The evaluation compares the native drivers (aws-java-sdk and auzre-storage) with a direct
connection using the Jclouds-blobstore driver and the connection through the ServiceMix
middleware using the unified-nsql-library. The native drivers were used in the latest version
as provided by the vendor Software Development Kit (SDK) (aws-java-sdk 1.9.3 and azure-
storage 1.3.1), while the Jclouds driver was used in the same version that is used by the
Camel-Jclouds component (Jclouds-blobstore 1.4.0).

The test program performed each operation repeatedly and measured the system time before
and after every request. The results were stored in a Character Separated Values (CSV) file
and later analyzed using LibreOffice.

7.2.1. External Influences

There are several performance factors of a connection to a cloud NoSQL database that cannot
be influenced or predicted by the end-user like the workload of other users on the same
network and server or internal details of the management by the cloud provider. Even if the
client and the provider are in the same network performance fluctuation can occur.

The article “Runtime Measurements in the Cloud: Observing, Analyzing, and Reducing
Variance” for example measures a covariance of 54 per cent during measurements for upload
from an EC2 machine directly to S3 [SDQR10].

To get to a meaningful comparisons between the drivers it was attempted to keep the external
influences as constant as possible. The test scenarios were executed in sequential order. Long
running test scenarios were split into smaller parts to effect every driver measurement in the
same way.

7.2.2. Workload

The workload consists of files between 1 KB and 100 MB. To prevent the possibility of
compression, each file was filled with random data. File names have been changed every
time to prevent caching.

The files with the sizes 1 KB, 10 KB, 100 KB, 1 MB have been sent to, read, and then deleted
100 times using every combination of driver and provider. The test has been repeated 50
times for 10 MB Files and 8 times for 100 MB file. The last workload was only sent to the
provider Amazon.

Files larger than 100 MB had been sent during preparations, but were excluded from the
evaluation once it became apparent that the only measurable difference between the test runs
was the bandwidth performance and not the driver performance.

73

7. Evaluation

7.3. Execution

7.3.1. Warm-Up

The ServiceMix component and the provider are prepared in separate steps.

The ESB warm-up was oriented on the warm-up in the performance tests of the previous Ser-
viceMix components. To reach every component, we sent 400 requests to the Jetty component
that were routed to a dummy endpoint.

Measurements during the preparation showed that only the first operation, and sometimes
the second took significantly longer than all the following operations. As provider warm-up,
a 1 KB file was sent, read and deleted using the driver that was about to get tested 4 times.

7.3.2. Test Run

The tests for each provider were run separately, execution of the workload as described in
Section 7.2.2 for a single driver took between four minutes (1 KB) and two hours (10 MB). To
keep external conditions as as described in Section 7.2.1 as constant as possible, the 100MB
workload file was sent once to each driver, this step has been repeated eight times. The aim
was to distribute time dependent fluctuations equally to the measurements of all drivers.

As measurement, the system time was taken before and after every request and stored in a
CSV file that was later imported in LibreOffice.

7.3.3. Result Validation

Results were consistent, the results during the actual measurements and runs during the
configuration process where the same. Larger files can be sent but measurements have been
excluded due to the fact that it can be expected that the only influential factor for differences
between the measurements was the workload of network and provider hardware of other
users.

Most of the measurements only differ in a minor percentage. There are, however, some
requests that take up to tree times the median time to complete. Since these spikes occurred
equally with every driver, it is assumed that they are caused by internal factors of the provider
or the connection.

7.4. Results

During the test phase, all requests were fulfilled and no connection errors occurred. The
measurements are commented in the following paragraphs itemized by request type.

74

7.4. Results

7.4.1. Delete

As seen in Figure 7.1 and Figure 7.2, the delete operation is not influenced by the size of the
corresponding file.

The performance of the amazon SDK is almost identical to the performance using the Java
access library. On average, the request time for a delete operation as shown in Figure 7.1 and
the corresponding Table 7.1 is between 456 ms and 486 ms with all drivers. The measurements
indicates that the JClouds driver and the native driver have almost the same performance,
and the overhead of the Unified Blobstore is barely measurable.

The native driver provided by the provider azure as shown in Figure 7.2 on the other hand is
about 2.5 times faster than the Jclouds driver and the unified driver. Since the unified NoSQL
blobstore driver uses the Jclouds driver, it is safe to assume that the overhead is caused by
the Jclouds driver implementation, and not by other components of the middleware.

The slightly better results of the unified driver compared to the Jclouds driver can be attributed
to a few outliers, as the median as shown in Table 7.2 is almost identical.

Native Driver Jclouds Driver Unified NoSQL
avg med min max avg med min max avg med min max

1 KB 460 450 444 1327 456 448 410 1267 463 457 419 1104
10 KB 461 452 446 1271 458 451 439 1070 471 460 422 1305

100 KB 460 451 439 1106 456 448 408 1080 475 462 433 1352
1 MB 461 450 413 1608 460 451 412 1130 477 462 423 1327

10 MB 471 452 446 1326 458 446 431 1078 465 455 445 889
100 MB 465 466 451 481 449 456 415 460 480 486 426 498

Table 7.1.: Delete Request Sent to Provider AWS S3 (in ms)

Native Driver Jclouds Driver Unified NoSQL
avg med min max avg med min max avg med min max

1 KB 238 236 231 343 622 600 578 1448 615 601 591 948
10 KB 246 235 231 630 617 600 569 1325 615 600 588 1058

100 KB 231 225 222 727 610 600 556 953 618 601 558 1209
1 MB 242 235 231 540 636 600 585 1498 622 601 563 1259

10 MB 260 232 227 1250 606 601 582 690 627 602 582 1196

Table 7.2.: Delete Request Sent to Provider Azure (in ms)

7.4.2. Read

Figures 7.3 and 7.4 show the measurements for read operations on a logarithmic scale. Read
performance of the S3 driver and the Jclouds driver is almost identical, while the Unified
Blobstore drivers is significantly slower.

The time needed to read a small file using Unified Blobstore is on average twice as long as it
is to read using the S3 or JClouds driver. This trend is also present with operations that use

75

7. Evaluation

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

0 100 200 300 400 500 600 700

Unified NoSQL (average) JClouds Driver (average) Native Driver (average)

Figure 7.1.: Delete Measurements for Provider AWS S3 (Table 7.1)

1 KB

10 KB

100 KB

1 MB

10 MB

0 100 200 300 400 500 600 700

Unified NoSQL (average) JClouds Driver (average) Native Driver (average)

Figure 7.2.: Delete Measurements for Provider Azure (Table 7.2)

76

7.4. Results

large files, even though the difference reduces to around 20 percent2.

In contrast, receiving files using JClouds takes considerably longer compared to Azure Blob,
as shown in Figure 7.4.

Reading small files as shown in Table 7.3 takes about 400 ms longer using the JClouds driver,
and an additional second using the Unified Blobstore driver. The effect on larger files still
measurable, with JClouds being about 10 percent slower than the native driver and Unified
Blobstore being 15 percent slower than the native driver.

Native Driver Jclouds Driver Unified NoSQL
avg med min max avg med min max avg med min max

1 KB 248 237 232 758 645 601 566 2140 1579 1313 1158 2897
10 KB 244 237 232 690 662 601 572 2186 1753 1519 1180 3165

100 KB 521 458 230 1379 1018 923 568 2165 2382 2380 1226 3817
1 MB 3695 3480 1675 9225 3560 3413 1758 6135 5285 4990 2711 11631

10 MB 26822 26185 16409 37376 29746 28766 19895 44941 30407 30125 23446 47249

Table 7.3.: Read Request Sent to Provider Azure (in ms)

Native Driver Jclouds Driver Unified NoSQL
avg med min max avg med min max avg med min max

1 KB 462 453 445 1310 478 441 403 1805 1128 905 849 2113
10 KB 597 627 433 1496 470 449 411 1716 1191 1090 863 2833

100 KB 1384 1422 805 2611 1048 1044 611 1821 2622 2507 1737 4706
1 MB 3913 3838 1841 9388 4471 4345 1851 7980 5821 5469 3908 10746

10 MB 30905 27903 18909 71433 27823 24457 16866 62155 31745 30252 22108 67534
100 MB 283656 223874 170777 671048 247178 219681 158692 372518 277097 276835 234597 337946

Table 7.4.: Read Request Sent to Provider AWS S3 (in ms)

2Using formula (|V1-V2|/((V1 + V2)/2)) * 100, rounded to nearest multiple of five

77

7. Evaluation

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

1 10 100 1000 10000 100000 1000000

Unified NoSQL (average) JClouds Driver (average) Native Driver (average)

Figure 7.3.: Read Measurements for Provider AWS S3 (Table 7.4)

1 kB

10 kB

100 kB

1 MB

10 MB

1 10 100 1000 10000 100000

Unified NoSQL (average) JClouds Driver (average) Native Driver (average)

Figure 7.4.: Read Measurements for Provider Azure (Table 7.3)

78

7.4. Results

7.4.3. Write

The outcome of the write test operation are the most interesting. As seen in Figures 7.5 and
7.6, sending smaller files to the provider using the Unified Blobstore driver can be even faster
than sending it via the native driver, for both S3 and Azure Blob.

For bigger files, the measurements adjust to similar values, and the native drivers seem to
become faster than the Jclouds and the unified driver, but this might also be due to the limited
measurements that were performed for huge files.

Reason might be that the native driver performs additional steps for advanced error handling,
e.g. S3 calculates MD5 hash value before the transmission.

Native Driver Jclouds Driver Unified NoSQL
avg med min max avg med min max avg med min max

1 KB 885 871 862 1768 238 218 212 1450 252 233 226 1269
10 KB 865 855 827 1830 434 416 407 1503 463 439 412 1522

100 KB 1415 1397 1182 2624 992 940 740 2370 992 953 757 2211
1 MB 8334 8234 7855 9780 7925 7777 7259 9810 8036 7903 7108 10237

10 MB 76623 76916 67103 82827 77153 76987 70390 92211 76251 76257 69820 82151
100 MB 742663 733505 681109 906160 739534 744264 707629 769204 765534 761962 743388 793014

Table 7.5.: Write Request Sent to Provider AWS S3 (in ms)

Native Driver Jclouds Driver Unified NoSQL
avg med min max avg med min max avg med min max

1 KB 1251 1202 1180 1838 256 244 236 1113 266 257 249 867
10 KB 1121 1100 1033 2093 488 472 464 1205 487 482 470 688

100 KB 1642 1604 1374 2099 1043 1023 794 1557 1075 1074 801 1445
1 MB 9416 9393 7592 11304 9064 8992 7698 11170 8986 8957 6776 10704

10 MB 86142 87164 73902 91526 87045 88154 60041 91696 92415 89957 70350 121837

Table 7.6.: Write Request Sent to Provider Azure (in ms)

7.4.4. Conclusion

The overview in Figure 7.7 and 7.8 shows the average time for the three supported normed to
the performance of the native driver, shown as green line with 100 percent.

It shows that for both provider S3 and Azure Blob, the performance advantages and dis-
advantages are most important for small files. The difference becomes negligible when the
transferred file is large.

Most of the difference is caused by the difference between Jclouds and the native driver, not
by the overhead introduced by the middleware.

79

7. Evaluation

1 kB

10 kB

100 kB

1 MB

10 MB

100 MB

1 10 100 1000 10000 100000 1000000

Unified NoSQL (average) JClouds Driver (average) Native Driver (average)

Figure 7.5.: Write Measurements for Provider Azure (Table 7.5)

1 KB

10 KB

100 KB

1 MB

10 MB

1 10 100 1000 10000 100000

Unified NoSQL (average) JClouds Driver (average) Native Driver (average)

Figure 7.6.: Write Measurements for Provider Azure (Table 7.6)

80

7.4. Results

1 KB 10 kB 100 kB 1 MB 10 MB 100 MB
0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

Read (average)

Write (average)

Delete (average)

Native Driver (100 %)

Figure 7.7.: Compact Overview of the Amazon Results

1 KB 10 kB 100 kB 1 MB 10 MB
0.00%

100.00%

200.00%

300.00%

400.00%

500.00%

600.00%

700.00%

800.00%

Read (average)

Write (average)

Delete (average)

Native Driver (100%)

Figure 7.8.: Compact Overview of the Azure Results.

81

7. Evaluation

82

8. Conclusion and Future Work

In the last chapter, we recap the findings of the thesis and go into the possibilities to extend
the functionality.

8.1. Conclusion

In this thesis, we were able to modify the existing JBIMulti2 management application to
support the registration of data required for the Unified NoSQL design.

We compared different possibilities of implementing an OSGi container that is able to to
manage the data access layer as part of a multi-tenant aware ESB with CDASMix extensions.
We decided to use the EIP pattern support of Camel for the implementation. Thus, we were
able to create an easily portable design that can be adapted for other NoSQL data store
types.

Then we implemented the design by the Unified Blobstore component which provides access
to the blob storage provider Amazon S3 and Azure Blob Storage.

We evaluated the performance and compared the results to the performance of direct con-
nections using the providers native SDKs and JClouds. We proved that the performance loss
introduced by routing through the ESB is manageable and in most cases smaller than the
difference introduced by using a different connection library.

8.2. Future Work

In the limited time frame of this thesis, we were unable to implement and verify every possible
use case that occurred during the specification. In this section, we will describe briefly the
possibilities to extend this implementation for additional use case scenarios including the
required modifications.

8.2.1. Support for other NoSQL Data Stores

In the current implementation, JBIMulti2 can be used to add the configuration universally for
every NoSQL data store type. To add a new NoSQL data store implementation, the first step
is to select or implement the Camel component that produces the message endpoint for the
NoSQL database connection. A full list of the existing endpoints can be found on the Camel

83

8. Conclusion and Future Work

website1. If the required component does not exist or does not provide the required functions
and needs to be implemented, it might be possible to add the component to the official
Camel repository2. The step is to design unified message model that can be transformed
in the format that the NoSQL data stores require. Last, the message translator needs to be
implemented.

8.2.2. Performance Isolation

Performance isolation is currently not implemented. Camel supports the Throttler Pattern3,
that can be used to limit the throughput on message paths. The parameter can be added to
the source data store configuration, thus, a throttler can be used to ensure an upper limit of
throughput and utilization for each tenant, because it is configurable per Camel route.

8.2.3. Camel Route Update at Runtime

Each tenant has its own Camel context, that can be stopped, edited, and started independently
from the other tenants. To implement modification updates without restarting the Unified
Blobstore component, we would have to implement a mechanism that detects route changes,
then stops the concerning context, and restarts it with the updated configurations.

1http://camel.apache.org/components.html
2http://camel.apache.org/contributing.html
3http://camel.apache.org/throttler.html

84

http://camel.apache.org/components.html
http://camel.apache.org/contributing.html
http://camel.apache.org/throttler.html

Appendix A.

Sourcecode

A.1. jbimulti2.wsdl

Extracts of modifications of the the jbimulti2.wsdl file.

A.1.1. attachNoSQLDataSource

1

2 <xs:element name="attachNoSQLDataSource">
3 <xs:complexType>
4 <xs:sequence>
5 <xs:element name="sourceDataSourceName" type="xs:string"/>
6 <xs:element name="sourceDataSourceType" type="xs:string">/>
7 <xs:element name="sourceDataSourceComponent" type="xs:string" default="camel-jetty"/>
8 <xs:element name="sourceDataSourceConnectionURI" type="xs:string"/>
9 <xs:element name="targetDataSourceName" type="xs:string"/>

10 <xs:element name="targetDataSourceType" type="xs:string"/>
11 <xs:element name="targetDataSourceComponent" type="xs:string"/>
12 <xs:element name="targetDataSourceProvider" type="xs:string"/>
13 <xs:element name="targetDataSourceUser" type="xs:string"/>
14 <xs:element name="targetDataSourcePassword" type="xs:string"/>
15 <xs:element name="targetDataSourceReadable" type="xs:boolean" default="true"/>
16 <xs:element name="targetDataSourceWritable" type="xs:boolean" default="true"/>
17 </xs:sequence>
18 </xs:complexType>
19 </xs:element>

Listing A.1: Request to add a new NoSQL Data Store

A.1.2. attachNoSQLTargetDataSource

1

2 <xs:complexType name="NoSQLTargetDataSource">
3 <xs:sequence>
4 <xs:element name="targetDataSourceName" type="xs:string" minOccurs="1" maxOccurs="1"/>
5 <xs:element name="targetDataSourceType" type="xs:string" minOccurs="1" maxOccurs="1"/>

85

Appendix A. Sourcecode

6 <xs:element name="targetDataSourceComponent" type="xs:string" minOccurs="1"
7 maxOccurs="1"/>
8 <xs:element name="targetDataSourceProvider" type="xs:string" minOccurs="1" maxOccurs="1"/>
9 <xs:element name="targetDataSourceUser" type="xs:string" minOccurs="1" maxOccurs="1"/>

10 <xs:element name="targetDataSourcePassword" type="xs:string" minOccurs="1" maxOccurs="1"/>
11 <xs:element name="targetDataSourceReadable" type="xs:boolean" default="true"/>
12 <xs:element name="targetDataSourceWritable" type="xs:boolean" default="true"/>
13 </xs:sequence>
14 </xs:complexType>
15 <xs:element name="attachNoSQLTargetDataSource">
16 <xs:complexType>
17 <xs:sequence>
18 <xs:element name="sourceDataSourceName" type="xs:string" minOccurs="1" maxOccurs="1"/>
19 <xs:element name="sourceDataSourceType" type="xs:string" minOccurs="1" maxOccurs="1"/>
20 <xs:element name="targetDataSources" type="tns:NoSQLTargetDataSource"
21 maxOccurs="unbounded"/>
22 </xs:sequence>
23 </xs:complexType>
24 </xs:element>

Listing A.2: Request to Attach a NoSQL Target Data Store

A.2. NoSQL Registry

NoSQL Registry interface, including the database independant functionalities. We removed
some comments and formatting spaces to compress the appendix size.

A.2.1. IRegistry.java

1 package de.unistuttgart.iaas.cdasmix.nosql.registry;
2

3 import java.util.List;
4

5 public interface IRegistry {
6 public abstract INoSQLTargetDataStore getNoSQLTargetDataStore(String targetDataStoreName,

String dsTenantId, String dsUserId);
7 public abstract INoSQLSourceDataStore getNoSQLSourceDataStore(String sourceDataStoreName,

String dsTenantId, String dsUserId);
8 public abstract List<INoSQLSourceDataStore> getNoSQLSourceDataStores();
9 public abstract List<INoSQLSourceDataStore> getNoSQLSourceDataStores(String dsTenantId);

10 public abstract List<String> getNoSQLTenants();
11 /**
12 * @return a string containing the content of the registry in a user-friendly string.
13 */
14 public abstract String dumpRegistry();
15 }

Listing A.3: IRegistry, the NoSQL Registry Interface

86

A.2. NoSQL Registry

A.2.2. InformationStructure.java

1 package de.unistuttgart.iaas.cdasmix.nosql.registry;
2

3 import java.util.Set;
4

5 public class InformationStructure {
6 [...]
7 public InformationStructure(String mis, String sis) {
8

9 if(mis.startsWith(Keywords.DEFAULT)) {
10 misType = Type.DEFAULT;
11 this.mis = null;
12 } else if(mis.startsWith(Keywords.REGEX)) {
13 misType = Type.REGEX;
14 this.mis = mis.substring(Keywords.REGEX.length());
15 } else {
16 misType = Type.ABSOLUTE;
17 if(mis.startsWith(Keywords.ABSOLUTE))
18 this.mis = mis.substring(Keywords.ABSOLUTE.length());
19 else
20 this.mis = mis;
21 }
22

23 if(sis.startsWith(Keywords.DEFAULT)) {
24 sisType = Type.DEFAULT;
25 this.sis = null;
26 } else if(sis.startsWith(Keywords.REGEX)) {
27 sisType = Type.REGEX;
28 this.sis = sis.substring(Keywords.REGEX.length());
29 } else {
30 sisType = Type.ABSOLUTE;
31 if(mis.startsWith(Keywords.ABSOLUTE)) {
32 this.sis = sis.substring(Keywords.ABSOLUTE.length());
33 else
34 this.sis = sis;
35 }
36

37 if (misType == Type.DEFAULT && sisType == Type.DEFAULT)
38 priority = 0;
39 else if (misType != Type.DEFAULT && sisType == Type.DEFAULT)
40 priority = 1;
41 else if (misType != Type.DEFAULT && sisType != Type.DEFAULT)
42 priority = 2;
43 else
44 throw new IllegalArgumentException("Invalid Input: " + mis +"/"+ sis + " default sis

is only valid when mis is also default");
45

46 }
47 [...]
48 public boolean isDefault() {
49 return misType == Type.DEFAULT || sisType == Type.DEFAULT;
50 }

87

Appendix A. Sourcecode

51

52 public boolean matches(String containername, String blobname) {
53 boolean matches = matchesIsolated(containername, blobname);
54

55 if(isDefault() && matches) {
56 // Only match if no other information with a higher priority matches.
57 // ABSOLUTE and REGEX > mis ABSULUTE or REGEX and sis DEFAULT > mis and sis DEFAULT
58 for (InformationStructure is : competingInformationStructures) {
59 if(is.matchesIsolated(containername, blobname) && is.priority > priority)
60 matches = false;
61 }
62 }
63 return matches;
64 }
65

66 /**
67 * Checks if the container/blobname matches, ignoring other information structure with a

higher priority.
68 */
69 public boolean matchesIsolated(String containername, String blobname) {
70 boolean mismatches = false;
71 boolean sismatches = false;
72

73 if(Type.ABSOLUTE == misType) {
74 mismatches = mis.equals(containername);
75 } else if(Type.REGEX == misType) {
76 mismatches = containername.matches(mis);
77 } else { // if (Type.DEFAULT = misType).
78 mismatches = true;
79 }
80

81 if(Type.ABSOLUTE == sisType) {
82 sismatches = sis.equals(blobname);
83 } else if(Type.REGEX == sisType) {
84 sismatches = blobname.matches(sis);
85 } else { // if (Type.DEFAULT = misType).
86 sismatches = true;
87 }
88 return mismatches && sismatches;
89 }
90 [...]
91 }

Listing A.4: InformationStructure

88

A.2. NoSQL Registry

A.2.3. INoSQLSourceDataStore

1 package de.unistuttgart.iaas.cdasmix.nosql.registry;
2

3 import java.util.Map;
4

5 public interface INoSQLSourceDataStore {
6

7 String getName();
8

9 public abstract Map<InformationStructure, INoSQLTargetDataStore> getTargetDataStores(
String container, String blobname, Operation operation);

10 public abstract Map<InformationStructure, INoSQLTargetDataStore> getTargetDataStores();
11 public abstract String getUserId();
12 public abstract String getTenantId();
13 public abstract String getComponent();
14 public abstract String getURI();
15 public abstract String getPassword();
16 @Override
17 public boolean equals(Object obj);
18 }

Listing A.5: INoSQLSourceDataStore

A.2.4. INoSQLTargetDataStore

1 package de.unistuttgart.iaas.cdasmix.nosql.registry;
2

3 public interface INoSQLTargetDataStore {
4

5 String getName();
6

7 boolean supportsRead();
8 boolean supportsWrite();
9

10 String getType();
11 String getUser();
12 String getPassword();
13 String getComponent();
14 String getProvider();
15 }

Listing A.6: INoSQLTargetDataStore

89

Appendix A. Sourcecode

A.3. Performance Test

A.3.1. BlobStorePerformanceTest.java

1 package de.unistuttgart.iaas.cdasmix.nosql.evaluation;
2

3 import java.io.File;
4 import java.io.FileNotFoundException;
5 import java.io.IOException;
6 import java.io.PrintWriter;
7 import java.net.URISyntaxException;
8 import java.security.InvalidKeyException;
9

10 import de.unistuttgart.iaas.cdasmix.access.BlobStore;
11 import de.unistuttgart.iaas.cdasmix.access.UnifiedBlobstore;
12 import de.unistuttgart.iaas.cdasmix.nosql.evaluation.helper.Array;
13 import de.unistuttgart.iaas.cdasmix.nosql.evaluation.wrapper.AmazonWrapper;
14 import de.unistuttgart.iaas.cdasmix.nosql.evaluation.wrapper.AzureWrapper;
15 import de.unistuttgart.iaas.cdasmix.nosql.evaluation.wrapper.JCloudsWrapper;
16

17 public class BlobStorePerformanceTest {
18

19 private static String amazonBucket = "amazononly";
20 private static String azureBucket = "azureonly";
21 private static String replication = "unistuttgart";
22 [...]
23 private File[] testFiles;
24 private File file_a = new File("testfiles/a-1kB.bin");
25 private File file_b = new File("testfiles/b-10kB.bin");
26 private File file_c = new File("testfiles/c-100kB.bin");
27

28 private int runCounter = 0;
29 public BlobStorePerformanceTest() throws Exception {
30

31 unifiedBlobstore = new UnifiedBlobstore(this.getClass().getResourceAsStream("/unified-
blobstore.properties"));

32 amazon = new AmazonWrapper(this.getClass().getResourceAsStream("/amazon.properties"));
33 jcloudsAmazon = new JCloudsWrapper(this.getClass().getResourceAsStream("/amazon.

properties"));
34 amazonBlobStores = new BlobStore[]{amazon, jcloudsAmazon, unifiedBlobstore};
35

36 azure = new AzureWrapper(this.getClass().getResourceAsStream("/azure.properties"));
37 jcloudsAzure = new JCloudsWrapper(this.getClass().getResourceAsStream("/azure.properties

"));
38

39 azureBlobStores = new BlobStore[]{azure, jcloudsAzure, unifiedBlobstore};
40

41 //testFiles = new File[]{file_a, file_b, file_c, file_d, file_e};
42 //testFiles = new File[]{/*file_a, file_b, file_c, file_d, */file_e/*, file_f, file_g

*/};
43 testFiles = new File[]{file_f};
44

45 protocolFolder = new File("protocol/" + System.currentTimeMillis()+"/");

90

A.3. Performance Test

46 protocolFolder.mkdirs();
47 }
48

49 public void run() throws Exception {
50 run(azureBlobStores, "azure", azureBucket);
51 run(amazonBlobStores, "amazon", amazonBucket);
52

53 jcloudsAzure.stop();
54 jcloudsAmazon.stop();
55 }
56

57

58 private void run(BlobStore[] targets, String provider, String bucket) throws Exception {
59 runCounter++;
60

61 PrintWriter readProtocol = new PrintWriter(protocolFolder + "/" + provider + "-read-"
+ runCounter + ".csv");

62 PrintWriter writeProtocol = new PrintWriter(protocolFolder + "/" +provider + "-write-"
+ runCounter + ".csv");

63 PrintWriter deleteProtocol = new PrintWriter(protocolFolder + "/" + provider + "-delete-
" + runCounter + ".csv");

64

65 readProtocol.println("Blobstore;File;Size;Operation;Start;End;Result;Comment");
66 writeProtocol.println("Blobstore;File;Size;Operation;Start;End;Result;Comment");
67 deleteProtocol.println("Blobstore;File;Size;Operation;Start;End;Result;Comment");
68

69 for (File file : testFiles) {
70 [...]
71 for (BlobStore blobstore : targets) {
72 warmup(blobstore, file_a, bucket, "readyUp", maxDeltaPercent, writeProtocol);
73 for(int i=0; i<numberOfOperations ; i++) {
74 System.out.print(i + " ");
75 String blobname = blobstore.getName() + file.getName() + i;
76 testPut(blobstore, file, bucket, blobname, writeProtocol);
77 writeProtocol.flush();
78 }
79

80 warmup(blobstore, file_a, bucket, "readyUp", maxDeltaPercent, readProtocol);
81 for(int i=0; i<numberOfOperations ; i++) {
82 System.out.print(i + " ");
83

84 String blobname = blobstore.getName() + file.getName() + i;
85 testGet(blobstore, file, bucket, blobname, readProtocol);
86 readProtocol.flush();
87 }
88

89 warmup(blobstore, file_a, bucket, "readyUp", maxDeltaPercent, deleteProtocol);
90 for(int i=0; i<numberOfOperations ; i++) {
91 System.out.print(i + " ");
92 String blobname = blobstore.getName() + file.getName() + i;
93 testDelete(blobstore,file, bucket, blobname, deleteProtocol);
94 deleteProtocol.flush();
95 }
96 }
97 }

91

Appendix A. Sourcecode

98 readProtocol.close();
99 writeProtocol.close();

100 deleteProtocol.close();
101 }
102 [...]
103 private static void testPut(BlobStore b, File f, String container, String blobname,

PrintWriter protocol) {
104 long start = 0;
105 long end = 0;
106

107 String operation = "put";
108 String status = "";
109

110 try {
111 start = System.currentTimeMillis();
112 b.put(f, container, blobname);
113 end = System.currentTimeMillis();
114 status = "ok";
115 }
116 catch(Throwable th) {
117 end = System.currentTimeMillis();
118 status = th.getMessage();
119 }finally {
120 String measurement =b.getName() + ";" +f.getName() + ";"+ f.length() + ";"+ operation

+ ";"+ start + ";"+ end+ ";"+ (end - start) +";"+status;
121 protocol.println(measurement);
122 System.out.println(measurement);
123 }
124 }
125 [...]
126 }

Listing A.7: Evaluation program

92

Bibliography

[Apaa] Apache Software Foundation. Apache Camel: Enterprise Integration Patterns.
http://camel.apache.org/enterprise-integration-patterns.html.

[Apab] Apache Software Foundation. Documentation. http://servicemix.apache.org/
docs/5.0.x/.

[ASM] The Apache Software Foundation. Apache ServiceMix. http://servicemix.
apache.org/.

[BBG11] R. Buyya, J. Broberg, and A. M. Goscinski. Cloud Computing Principles and Paradigms.
Wiley Publishing, 2011.

[BFM+10] A. Berglund, M. F. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh.
XQuery 1.0 and XPath 2.0 Data Model (XDM). Technical report, 12 2010.

[Cha04] D. A. Chappel. Enterprise Service Bus: Theory in Practice. O’Reilly Media, 2004.

[CW13] H. Cummins and T. Ward. Enterprise OSGi in Action: With Examples Using Apache
Aries. Manning Publications Co., Greenwich, CT, USA, 2013.

[dCA11] A. de Castro Alves. OSGi in Depth. Manning Publications Co., Greenwich, CT, USA,
1st edition, 2011.

[HW03] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[JBI05] Java Business Integration (JBI) 1.0, Final Release, 2005. JSR-208, http://jcp.org/
aboutJava/communityprocess/final/jsr208/.

[KMK12] R. Krebs, C. Momm, and S. Kounev. Architectural Concerns in Multi-tenant SaaS
Applications. In F. Leymann, I. Ivanov, M. van Sinderen, and T. Shan, editors,
CLOSER, pages 426–431. SciTePress, 2012.

[MG11] P. Mell and T. Grance. The NIST Definition of Cloud Computing. Technical Report
800-145, National Institute of Standards and Technology (NIST), Gaithersburg, MD,
September 2011.

[Muh12] D. Muhler. Extending an Open Source Enterprise Service Bus for Multi-Tenancy Sup-
port Focusing on Administration and Management. Diploma Thesis 3226, Institute
of Architecture of Application Systems, University of Stuttgart, 2012.

[OSG11] OSGi Alliance. OSGi Service Platform: Core Specification Version 4.3, 2011. http:
//www.osgi.org/Download/Release4V43/.

93

http://camel.apache.org/enterprise-integration-patterns.html
http://servicemix.apache.org/docs/5.0.x/
http://servicemix.apache.org/docs/5.0.x/
http://servicemix.apache.org/
http://servicemix.apache.org/
http://jcp.org/aboutJava/communityprocess/final/jsr208/
http://jcp.org/aboutJava/communityprocess/final/jsr208/
http://www.osgi.org/Download/Release4V43/
http://www.osgi.org/Download/Release4V43/

Bibliography

[Sá13] S. G. Sáez. Extending an Open Source Enterprise Service Bus for Cloud Data Access
Support. Diploma Thesis No. 3419, Institute of Architecture of Application Systems,
University of Stuttgart, 2013.

[SALM12] S. Strauch, V. Andrikopoulos, F. Leymann, and D. Muhler. ESBMT: Enabling
Multi-Tenancy in Enterprise Service Buses. In Proceedings of the 4th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom’12), pages 456–463.
IEEE Computer Society Press, December 2012.

[SAS+12] S. Strauch, V. Andrikopoulos, S. G. Sáez, F. Leymann, and D. Muhler. Enabling
Tenant-Aware Administration and Management for JBI Environments. In Proceed-
ings of the 5th International Conference on Service-Oriented Computing and Applications
(SOCA’12), pages 206–213. IEEE Computer Society Conference Publishing Services,
December 2012.

[SDQR10] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime Measurements in the Cloud:
Observing, Analyzing, and Reducing Variance. Proc. VLDB Endow., 3(1-2):460–471,
September 2010.

[Tiw11] S. Tiwari. Professional NoSQL. Wrox programmer to programmer. John Wiley,
Hoboken, N.J. Wiley Chichester, 2011.

[Xia13] S. Xia. Extending an Open Source Enterprise Service Bus for SQL Statement Trans-
formation to Enable Cloud Data Access. Master Thesis No. 3506, Institute of Archi-
tecture of Application Systems, University of Stuttgart, 2013.

All links were last followed on December 18, 2014.

94

Declaration

I hereby declare that the work presented in this thesis is entirely
my own. I did not use any sources and references other than those
listed.

I have marked all direct or indirect statements from other sources
contained therein as quotations.

Neither this work nor significant parts of it were part of another
examination procedure. I have not published this work in whole
or in part before.

The electronic copy is consistent with all submitted copies.

Stuttgart, December 19, 2014 ——————————–
(Christoph Schmid)

	Introduction
	Scope of Work
	Outline
	Acronyms

	Fundamentals
	Cloud Computing
	Multi-Tenancy
	Service Models
	Deployment Models
	Market Overview

	Enterprise Service Bus
	JBI
	Normalized Message Router
	OSGi
	Enterprise Integration Pattern
	Apache ServiceMix

	NoSQL Data Bases
	NoSQL Data Types

	Related Work
	Cloud Computing with Private Clouds
	Enterprise Service Bus as a Service
	NoSQL Data Bases
	Unified Access Libraries
	Shared API

	Specification
	Quantity Structure
	Use Cases
	Naming Convention
	Management
	Usage

	Non-Functional Requirements
	Multi-Tenancy
	Performance and Resource Usage
	Consistency and Security
	Backward Compatibility, Extensibility, and Reusability
	Maintainability and Documentation

	Design
	Matching
	Definitions
	Matching Types
	Restrictions
	Routing Types
	Examples

	Architectural Overview
	JBIMulti2 and CDASMix Modifications
	JBIMulti2 Web Service API
	JBIMulti2 Domain

	Unified NoSQL
	Blobstore Example
	Modifications Needed for Other NoSQL Data Stores

	ServiceMix Components
	NoSQL Registry
	Unified Blobstore

	Java Access Library

	Implementation
	Third Party Components
	Update of ServiceMix

	JBIMulti2 and CDASMix Modifications
	WSDL Request
	JBIMulti2

	ServiceMix Components
	NoSQL Registry
	Camel-Jclouds
	Unified Blobstore

	Java Access Library
	Validation

	Evaluation
	Execution Environment
	Preparation

	Test Program
	External Influences
	Workload

	Execution
	Warm-Up
	Test Run
	Result Validation

	Results
	Delete
	Read
	Write
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work
	Support for other NoSQL Data Stores
	Performance Isolation
	Camel Route Update at Runtime

	Sourcecode
	jbimulti2.wsdl
	attachNoSQLDataSource
	attachNoSQLTargetDataSource

	NoSQL Registry
	IRegistry.java
	InformationStructure.java
	INoSQLSourceDataStore
	INoSQLTargetDataStore

	Performance Test
	BlobStorePerformanceTest.java

	Bibliography

