
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 157

Infrastructure support for
augmented memory

Paul Metzger

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Albrecht Schmidt

Supervisor: Prof. Dr. Nigel Davies
Dr. Alireza Sahami
Dipl.-Medieninf. Tilman Dingler

Commenced: May 27, 2014

Completed: November 25, 2014

CR-Classification: H.3.4

Acknowledgments

I would like to thank Prof. Dr. Albrecht Schmidt and Tilman Dingler for giving me the
opportunity to work on my Bachelor thesis in the context of the European project RECALL at
the Lancaster University.

Thank you to Prof. Dr. Nigel Davies for his support, patience and supervision at the Lancaster
University. He gave me valuable feedback throughout my Bachelor thesis and, in particular,
came up with the initial idea of the map based user interface (chapter 4.6). Furthermore, I
would like to thank the colleagues with whom I shared an office space, as well as Dr. Adrian
Friday and Jamie Jellicoe for supporting me and creating a pleasant working environment.

Finally, I would like to thank my parents Harald Metzger and Stephanie Frech-Metzger, as well
as my grandparents for their constant support.

3

Abstract

During the past few decades, we have witnessed the development of an increasing number
of products and research projects in the area of lifelogging. These range from early works by
Steve Mann and Microsoft’s MyLifeBits project up to wearable cameras like the Autographer
and Narrative Clip. These and other previous approaches focused on sensors worn by the
user rather than sensors in the environment. However, as the author already discussed in
[CMD14] wearable sensors have several shortcomings. These include blurry pictures due to
the user’s movements, sensors occluded by clothes and failing devices due to drained batteries
or insufficient storage.
In this thesis we pursue a complementary approach. We designed and implemented a middle-
ware for memory augmentations that can aggregate sensor data from a diverse set of sources.
We focus on privacy protection and scalability due to the system’s ubiquity and comprehensive
use of sensors. The system therefore features a location based access control system that
does not make users traceable. We lowered bandwidth requirements via distributed storing of
sensor data and duplicate avoidance. In parallel, we designed an Android library to process
location based information. The Android library can be used with the system designed in this
bachelor thesis, as well as the display appropriation framework Tacita developed by researchers
at Lancaster University.
We demonstrate the system’s scalability by showing that response times increase linearly with
the scale at which the system operates. Our measurements thereby included the simulation of
up to 10000 recordings and 2000 sensors on one of the system’s nodes. Finally, we investigated
the system’s financial feasibility by estimating its operational costs.

4

Contents

1 Introduction 11
1.1 Overview . 11
1.2 Contribution . 12
1.3 Structure of this Thesis . 13

2 Requirements 15
2.1 Overview . 15
2.2 Scenarios . 15

2.2.1 Perfect Recall . 15
2.2.2 Privacy Awareness . 16
2.2.3 Scores . 16
2.2.4 Password . 16
2.2.5 Feedback . 17
2.2.6 Practicing . 17

2.3 Requirements . 18
2.4 Operational Environment . 20
2.5 Summary . 21

3 Technologies 23
3.1 Overview . 23
3.2 Django . 23

3.2.1 The Django Admin Site . 24
3.2.2 The Django REST Framework . 24
3.2.3 GeoDjango . 24

3.3 Wireless Short Range Communication . 25
3.3.1 Bluetooth Low Energy . 25
3.3.2 iBeacon . 25
3.3.3 BlueZ . 25
3.3.4 Radius Networks iBeacon Library . 25
3.3.5 Raspberry Pi . 26

3.4 Tacita . 26
3.5 Summary . 26

4 Design 27

5

4.1 Overview . 27
4.2 Architecture and System Overview . 27
4.3 Presence Tokens . 28
4.4 Privacy Preference . 31
4.5 Central Storage . 31
4.6 Maps . 32
4.7 Privacy Preference Storage . 33
4.8 Personal Device . 34
4.9 Sensor Management . 34

4.9.1 Overview . 34
4.9.2 Presence Source . 35
4.9.3 Sensors . 35
4.9.4 Encryption . 36
4.9.5 Filters . 36
4.9.6 Data Management . 36

4.10 Trust Relationship . 36
4.11 Android Library . 37

4.11.1 Overview . 37
4.11.2 Presence Token Management . 38
4.11.3 Service Directory Cache . 39
4.11.4 Location . 39
4.11.5 Payload Management . 39

4.12 Summary . 39

5 Implementation 41
5.1 Overview . 41
5.2 Development Process . 41
5.3 Development Tools . 42
5.4 Quality Assurance . 42
5.5 Implemented Functionality . 43

5.5.1 Sensor Management . 44
Presence Token . 47
iBeacon Server . 48

5.5.2 Central Storage . 49
5.5.3 Personal Device . 50
5.5.4 Rest-API . 50

Sensor Management . 50
iBeacon Server . 52
Central Storage . 52

5.6 Summary . 52

6 Evaluation 53

6

6.1 Overview . 53
6.2 Performance Analysis . 53

6.2.1 Overview and Testbed Configuration . 53
6.2.2 Measured Response Times . 54

6.3 Cost Assessment . 58
6.4 Summary . 60

7 Related Work 61
7.1 Smart Environments . 61
7.2 Memory . 62
7.3 Privacy Protection . 63
7.4 Summary . 64

8 Conclusion 65
8.1 Overview . 65
8.2 Future Work . 65
8.3 Closing Remarks . 66

Appendices 69

A Android Library 69

B Zusammenfassung 75

Bibliography 77

7

List of Figures

4.1 This figure shows the system’s architecture. Green components are comprised
by the system discussed in this thesis. The blue component represents memory
augmentations using the system. The purple box represents users. Orange
arrows show paths over which privacy preferences are transferred. Purple
arrows show paths over which presence tokens are transferred. 28

4.2 This figure illustrates the concept of presence tokens. A unique and randomly
generated presence token is assigned to each coloured area. Areas with different
colours have different presence tokens. 29

4.3 This figure shows from left to right the same room with changing presence
tokens. The texts above the rooms are example presence tokens. The time is
shown below the rooms. 30

4.4 The figure shows UI mockups belonging to the maps component. Users can
check privacy relevant information manually (left hand side) or automatically
check if his/her privacy preferences are met (right hand side). 33

4.5 This figure shows the sensor management’s subcomponents (green) and external
components (purple). 35

4.6 This figure illustrates the trust relationships within the system. To be of benefit
k must be a much smaller number than m. 37

4.7 This figure shows the Android library targeting Tacita and the system designed
in this thesis. It shows the library’s components (green), external and internal
interfaces as well as the data flow (black arrows). 38

5.1 This figure shows implemented components (green) and communication paths
between them. The dashed arrow depicts the transfer of recordings and solid
arrows the communication of presence tokens. Sensors and presence sources
are attached to the sensor management component. 44

5.2 This sequence diagram shows steps necessary for a central storage component
to download a recording from a sensor management component. 45

5.3 This figure shows the sensor management component’s administration interface.
A broadcaster can be registered using this form. Besides name, description and
type, an approximation of the broadcaster range can be specified by using a
map. The plugin to register can be selected at the bottom of the form. 47

8

5.4 This figure shows the sensor management component’s administration interface.
In the upper part and middle of the form broadcasters and sensors can be
grouped by area. 48

5.5 This figure shows on the left hand side, a Raspberry Pi running the iBeacon
server. On the right hand side, an Android smartphone receiving a UUID
broadcasted via the Raspberry Pi. 49

6.1 This graph shows measured processing times depending on the amount of
attached sensors. We took 500 samples per data point. 56

6.2 This graph shows measured processing times depending on the amount of
attached broadcasters. We took 500 samples per data point. 57

6.3 This graph shows measured processing times depending on a large number of
stored text based recordings. Wee took 500 samples per data point. 57

6.4 This graph shows measured processing times depending stored video recordings.
We took 1000 samples per data point. 58

A.1 This figure shows the Android library targeting the display appropriation frame-
work Tacita and the system designed in this thesis. 70

A.2 This figure shows the presence token management component’s classes. 71
A.3 This figure shows the location component’s classes. 71
A.4 This figure shows the service directory cache component’s classes. 72
A.5 This figure shows the payload management component’s classes. 73

List of Tables

6.1 This table shows the performance evaluation’s results. We took 500 samples per
data point in the first two columns, 200 for the third and 1000 for the fourth . . 55

6.2 This table shows the performance evaluation’s results. The table shows pro-
cessing times depending on large amounts of recordings stored. We took 500
samples per data point. 56

6.3 This table shows the estimated quantity of data generated by the system in three
different scenarios. The first rows show assumptions made for each scenario. . . 59

6.4 This table shows costs for running the system via Amazon EC2. The calculated
storage and bandwidth costs are the same. 60

9

1 Introduction

1.1 Overview

In the last decades we have seen an increasing amount of products and research in the area of
lifelogging. Steve Mann was one of the first who was recording physiological data and video
streams from wearable cameras [Man97]. In Microsoft’s MyLifeBits project [GBL+02], which
was inspired by Vannevar Bush’s vision of the Memex computer [B+45], Gorden Bell digitised
vast amounts of his personal belongings and activities ranging from books, documents and CDs
to web pages and instant messaging conversations [Mic]. In recent years products based on
wearable cameras similar to Micorsoft’s SenseCam [HWB+06] have appeared in the market
[Aut] [Mem]. With the recent advent of wrist worn devices a health care trend propelled by
lifelogging techniques seems set to emerge [Fit] [Nik].

Previous lifelogging approaches have focused on data capture on the user rather than using
sensors in the environment. This is the case even though there has been exhaustive research on
smart environments [SKB+98] [BRTF02]. MIT’s Oxygen project made heavy use of sensors in
the environment in order to provide technologies like indoor navigation and speech recognition
ubiquitously [Mas]. GaiaOS is an operating system for smart environments which runs on top
of an established operating system [RHR+01].

The main outcome of this thesis is a distributed system that collects a diverse set of data from
ubiquitous sensors installed in the environment and worn by users. Therefore, the design
focused heavily on privacy protection and scalability. We made use of techniques similar to
privacy beacons described by Langheinrich [Lan05] and Kindberg’s context authentication
protocol [KZS02]. Furthermore, the system aims to be a middleware for memory augmentation
since it has been designed in the context of the EU-project RECALL [Rec14]. Lastly, an
evaluation shows the feasibility and performance of the system. Based on our cost estimate we
outline possible business models financing the system.

A prototype has been implemented using state of the art technologies including the Django
Web Framework, Apple’s iBeacon standard and Google’s Android SDK. Besides being a research
project, it comprised all stages of software development including requirements engineering,
specification, design, implementation and a performance evaluation.

Additionally, an Android library for sensing proximity to public displays as well as sensors has
been designed. Due to its general design, it can be used with Apple’s iBeacon standard and

11

1 Introduction

similar technologies as well as different approaches like QR-Tags. It is designed in the context
of this bachelor thesis and can be used with systems like Tacita [CKDL12], which has been
developed at the Lancaster University as well.

This chapter paves the way for the following chapters. We describe previous work on lifelogging
as well as smart environments and give an overview of the outcomes of this thesis.

This work was conducted while visiting Lancaster University.

1.2 Contribution

Wearable sensors are already widely deployed in the context of lifelogging. However, as the
author already outlined in [CMD14] this approach has several short comings. Those include
blurry pictures due to the user’s movements, sensors occluded by cloths and failing devices
due to drained batteries or insufficient storage. A complementary infrastructure approach can
help to overcome these problems and provide further benefits in terms of recording quality,
maintenance and cost-efficiency.

To benefit the already existing Keepsake framework [Nic14], the system was designed as
middleware for memory augmentations. Keepsake is a research platform for memory augmen-
tations developed in the course of the EU-Project RECALL. It forwards memory triggers to the
user via channels like pervasive displays and smartphones. So far, its data sources are mainly
the user’s smartphone and social networks.

The system designed in this thesis needs to aggregate data from ubiquitous sensors and
forwards them to memory augmentation systems. Having recent surveillance scandals in mind
[Gre13] [Unt13] it is obvious that privacy protection is key for user acceptance. Additionally, a
trust relationship between user and sensor owner needs to be established. Otherwise, users
might fear that data fed into their memory augmentation has been manipulated. Furthermore,
large amounts of data generated by sensors must not render the system inoperable due to high
bandwidth and storage requirements.

Our theoretical design provides several means for privacy protection ranging from the encryp-
tion, deletion and filtering of recordings with for example a face blurring algorithm to the
deactivation of data streams on behalf of the user. Access to recordings can be restricted to
users who have been in sensor range. This can be checked by the system without disclosing
the user’s identity or making him/her traceable. Furthermore, a map visualisation allows
users to check if their privacy preferences are met in certain areas and other privacy relevant
information. Techniques lowering bandwidth and storage requirements comprise duplicate
avoidance and distributed storing of sensor data. Finally, we present a trust relationship
between the system’s stakeholders.

12

1.3 Structure of this Thesis

A partial implementation based on the design has been conducted. Functions implemented
range from the recording and aggregation of sensor data up to a sophisticated access control
mechanism using a self made iBeacon broadcaster. To support future development we made
extensive use of modularisation, and already implemented APIs and components going beyond
the system’s current functionalities. Finally, using the implementation we could investigate the
system’s scalability.

1.3 Structure of this Thesis

This thesis has the following structure:

Chapter 2 - Requirements describes a set of distinctive requirements based on a set of
scenarios.

Chapter 3 - Technologies describes all technologies important for this thesis including Apple’s
iBeacon standard and the web framework Django.

Chapter 4 - Design presents the design of the overall system, discusses design consider-
ations and describes core concepts.

Chapter 5 - Implementation describes the implementation of a prototype, which shows
the system’s feasibility and paves the way for future development.

Chapter 6 - Evaluation is composed of a performance and a feasibility analysis.

Chapter 7 - Related Work analyses previous works about smart environments, memory
augmentations and privacy related topics.

Chapter 8 - Conclusion underlines outcomes of the design and evaluation phase.

13

2 Requirements

2.1 Overview

This chapter focuses on the requirements for the system discussed in this bachelor thesis. Firstly
we present a set of scenarios illustrating the future system, its features and how it will be used.
Secondly, we outline key requirements drawn from these scenarios. The requirements will
then function as a foundation for the system’s design.

2.2 Scenarios

The following scenarios illustrate the system’s functions and how it will be used. Our aim
was to come up with a diverse set of scenarios that outline the system’s behaviour in different
situations. Hence, each scenario falls into one of the following categories: public; semi-public;
private; and involves either a single person or many people.

2.2.1 Perfect Recall

Ian is a journalist and wants to write an article about a conference, but he can’t recall it very
well. His visit included various talks and exhibits as well as chats with academics and company
representatives. Since his e-memory used locally installed cameras to record his visit he is now able
to review the conference. Furthermore, his e-memory recommends certain parts of the conference
based on his level of arousal during the recording. While writing the article, he can have a look at
exhibits from different angles since more than one camera was installed in the room. Due to his
e-memory, he can write the article quickly and inform his readers in rich detail.

Memory augmentations will enable us to retrieve past events in great detail. Ian can re-
play arbitrary conversations without worrying about the technology at the time of recording.
Moreover, even conversations which only turn out to be interesting in retrospect are available.
Furthermore, we often have to focus on many things at once and shift the focus after short
periods. E-Memory will lessen this burden by giving us the certainty to be able to re-experience
situations and retrieve details we did not pay attention to. Therefore, we can deliberately focus
on fewer and more important things over a long time.

15

2 Requirements

2.2.2 Privacy Awareness

Layla and Killian are visiting the zoo. As well as spending time together, this is a great opportunity
to take pictures of them and the animals. Clearly visible signage in front of the entrance indicates
that various types of recordings are allowed in large parts of the zoo. Furthermore, video recordings
are allowed in all public areas. While strolling through the zoo their memory augmentation
collects pictures from various cameras worn by them, people nearby and installed locally. As
they arrive at the bird house a sign and their mobile phones inform them that additional audio
recordings are allowed inside. Being warned, they decide to continue their private conversation
and visit the bird house later on.
At the end of the day, Layla and Killian have a wonderful keepsake of their visit. Moreover, they
were aware of restrictions to their privacy at all time.

Sensor infrastructures must strengthen our privacy. Layla and Killian are able to choose
if they want to enter an area in which recordings are allowed. Moreover, they are aware of
recordings and can be careful to not disclose private information. Furthermore, our desire
for recordings and need for privacy can be contrary. An infrastructure as described above,
guarantees that our desire for recordings in certain settings is satisfied. However, it enables us
to protect our privacy at the same time by deliberately avoiding certain areas.

2.2.3 Scores

Frank, Colin and Julian are arguing about the scores of their recent video game evening. Since
they can’t remember well, Frank starts using his e-memory. It retrieves the scores from Colin’s
video game console and displays them. While figuring out that Julian has won a lot of games,
they have great fun watching small recaps of each game alongside a recording of them playing the
game. Reminded of the terrific evening, they make an appointment for another match.

E-memories in combination with ubiquitous sensors will help us to maintain and deepen
our friendships. Reminded of the great evening, Frank, Colin and Julian schedule a new
appointment. No matter if we meet at home, in a cafe, or or by chance in the city centre such
systems will keep track of our relationships. Therefore, they will improve our quality of life
by reminding us to spend time with people we like. Furthermore, a ubiquitous system, which
records gatherings of our loved ones, allows us to keep precious moments even when we do
not carry a camera.

2.2.4 Password

Dorothee takes part in a meeting. All participants are wearing cameras connected to their memory
augmentations. However, the password securing Dorothee’s computer has been captured by one of

16

2.2 Scenarios

those cameras. Before the meeting, Dorothee has set her privacy settings to allow others’ memory
augmentations to capture her during the meeting, given that they grant her control over those
recordings. Furthermore, her memory augmentation is running a service which detects password
entries in those recordings, deletes them and eventually reminds her to change the password.
Dorothee’s computer is still secure and all participants can recap the meeting at home.

Memory augmentations will capture sensitive information ranging from passwords, corporate
secrets, to political opinions and embarrassing moments. Therefore, being able to claim control
over recordings related to oneself is crucial. Control over deleting them is essential in this. In
this scenario, all participants have an interest in recording the meeting. Therefore, Dorothee
uses this interest to persuade other participants to let her access their recordings. Eventually,
she can run a program which warns her about captured passwords and deletes the recording.

2.2.5 Feedback

The Scottish Kickers are one of the best football teams, but they lost the last game against Edin-
burgh United. By combining the team player’s e-memories of the game, they are able to review
the game in great detail. Subsequently, they enhance their formation based on recordings from
various angles, ranging from the perspectives of each player and CCTVs installed in the stadium up
to a tremendous number of viewers. Furthermore, based on a combination of bio data and actions
a player took, they recognise weaknesses in their training schedule and do further improvements
on their strategy. Eventually, they celebrate a great success after the next match against Edinburgh
United.

Detailed feedback is one of the most helpful ways to improve oneself. Recordings from
several perspectives reveal weaknesses in strategy and cooperation within the team as well as
the opponent’s strategy. Moreover, detailed data ranging from video material, bio data and
relative positions of players and the ball provide a means for improvement beyond ordinary
methods. A diverse set of video recordings enables doctors to recognise slightest movements
that strain joints and therefore are unhealthy for the player. Even amateur sport clubs or
dancing schools can use systems reminding them of room for improvement based on their last
training session.

2.2.6 Practicing

John wants to play the piano. Practicing the piano is a great pleasure for him, but he can’t bring
himself to practice regularly. However, his e-memory system shows him pictures of the last practice
session if he is bored or procrastinating. John is reminded of his aim to play the piano and how
much fun he had the last time by looking at those pictures. Therefore, he sits down at the piano
and starts practicing his favourite piano pieces. By using his e-memory John learns how to play

17

2 Requirements

the piano. Furthermore, he is less often bored and reaches more of his goals.

Procrastinating is a problem for many students. John has problems motivating himself
to practice even though he wants to play the piano. A system, which can learn about the user
via long-term recordings, can help us to change our behaviour. Due to the ubiquity of such
a system it can detect unintended behaviour and draw the user’s attention to it just in time.
In this example, John is reminded of his aim to play the piano as he is procrastinating. This
stands in contrast to today’s approaches, such as to-do lists, which have a very restricted ability
to reach the user proactively.

2.3 Requirements

The previous section has illustrated the future system. The requirements shown in this section
are based on these scenarios and used to motivate the design.

R1 Retain recordings

This work focuses on gathering data for memory augmentations. As seen in the scenarios
"Perfect recall" and "Feedback" above it is not always clear if a certain recording will be needed.
Therefore, the system needs to retain them in case the user or a service acting on behalf of the
user shows an interest in them.

R2 Support various data sources

Different data sources ranging from mobile and static sensors up to game consoles are described
by the scenarios above. The system has to utilise them and therefore comply with their different
characteristics. Mobile sensors might be restricted in terms of connectivity and bandwidth due
to their mobile nature. In contrast, static sensors and data stores like game consoles might have
high requirements on bandwidth especially when it comes to HD video recordings. Besides
that, the system must function with various data formats, which might not be known at the
time of its deployment.

All data sources must still fulfil their initial purposes. CCTV operators are unlikely to be willing
to connect their cameras to the system if they can’t use them for surveillance anymore.

18

2.3 Requirements

R3 Diminish privacy concerns

Ubiquitous data capture easily awakes Orwellian visions. Stakeholders like system maintainers
and infrastructure providers must not be able to invade people’s privacy. Especially monitoring
large areas or certain people via the system should not be possible. This includes tracking
the location of users, monitoring their usage of the system or identifying them on recordings.
Accordingly, we state as a requirement:

R3.1 Protect the system from being turned into a comprehensive surveillance tool

Unnecessary disclosure to other users also gives rise to privacy concerns. As seen in the scenario
"Password", critical information like passwords might be recorded by chance. Therefore, the
system will:

R3.2 Support filtering and deletion of recordings before they are disseminated

Deleting or filtering recordings in hindsight is one way to avoid data spills, evading recordings
at all is another. In the scenario "Privacy awareness" Layla and Killian are able to avoid audio
recordings intentionally since the system keeps them informed about ongoing recordings. We
derive the following requirement:

R3.3 Forward privacy relevant information to the user

People’s privacy needs change with the context. For instance, in the scenario "Privacy aware-
ness" Layla and Killian don’t want their private conversation to be recorded. By contrast, it is
likely that meeting participants want to record discussions for later review. Therefore, we state
as requirement:

R3.4 The system respects different privacy needs in different situations

R4 Scalability

The system has to serve a vast amount of users and stakeholders. The scenarios above illustrate
that it aims to support a very broad range of applications starting with business and health
applications up to daily use. Therefore, it is to be expected that it will attract a great portion of
the population. Furthermore, sensors will cover large portions of our environment and serve
resource intensive data like video recordings to the system.

R5 Responsiveness

The system has to provide nearly instant access to memories. In the scenario "Scores" Frank
Colin and Julian are spontaneously accessing game stats. A lengthy loading process would
render the system useless since the conversation might shift to another topic quickly.

19

2 Requirements

R6 Interface to third party systems

As illustrated in the scenarios above, the system does not only have to interface with memory
augmentations. Systems analysing recordings or acting on behalf of the user can be of great
value. These include services protecting the user’s privacy or providing feedback like the
examples shown in the scenarios "Password", "Feedback" and "Practicing".

R7 Allow user to share and join their memories

Sharing content with others is common place nowadays. Everyday devices like smartphones
and services like Facebook 1 and WhatsApp 2 feature corresponding functions. Some services
are even specialised on sharing content like pictures and video recordings [Fac] [Cou] [Vin],
which is similar to the one aggregated by the system discussed in this thesis. This shows that
users have a strong interest in being able to share recordings served by the system. This is
underlined by the scenario "Feedback" which shows how users can gain deeper insights by
sharing and joining their e-memories.

2.4 Operational Environment

Requirements on the operational environment are given by the Lancaster University and the
already existing ecosystem of applications within the RECALL project [Rec14]. This includes
the programming language and web framework used to build the prototype and the operating
system on personal devices.

Python The web service prototype needed to be built with the programming language
Python3. Python is one of the most popular programming languages [Cas14] and features a
vast set of mature libraries, frameworks and other extensions. Due to its popularity, it has
a vibrant developer community providing a rich source of documentation and solutions to
common problems.

Django Framework A further requirement on the web service prototype was to build it with
the Django Web Framework [Djac]. Django aims to support rapid development and brings
other amenities like a built-in ORM and an automatically generated administration interface.
This suits the project well since the time given to develop the prototype was highly restricted.
Django also has a vibrant community providing valuable documentation and various extensions.

1https://www.facebook.com/
2http://www.whatsapp.com/
3https://www.python.org/

20

2.5 Summary

Furthermore, the fact that Django is well known among the research group, which will use
and maintain the future software underlined this requirement.

Integration with the existing ecosystem The software developed in this bachelor thesis
stands in the context of a bigger project. Therefore the system should integrate with the already
existing ecosystem of applications. At the time this bachelor thesis took place, the ecosystem
consisted of a memory augmentation research prototype called Keepsake [Nic14], which has
been developed at the University of Stuttgart. Keepsake’s key components include an Android
application. In order to be able to run both systems in concert, mobile applications developed
in the course of this bachelor thesis should run on Android smartphones as well.

2.5 Summary

In this chapter we outlined the system’s functionalities and derived properties it has to feature.
A set of scenarios has outlined the system’s functions and how users will use it. The scenarios
aimed to be a diverse set and ranged from health and business applications to casual users using
it in their leisure time. Motivated by those scenarios we subsequently described requirements
for the future system. Those requirements were distinctive for such a system in the context
of memory augmentations rather than an exhaustive list. The system should, for example,
gather data via a wealth of ubiquitous sensors and protect users’ privacy at the same time.
Furthermore, it should scale well since it is targeting a large portion of the population as a
user group.

Lastly, we described the operational environment of the future software. The prototype has to
be built with the Python programming language and the Django Web Framework. Both have a
vibrant community providing a rich source of documentation, problem solutions and matured
software components. Furthermore, researchers at the Lancaster University are familiar with
both and will therefore be able to run and maintain the system easily.

The next steps are to design and implement the system. Decisions made in both steps will be
motivated by the requirements stated in this chapter.

21

3 Technologies

3.1 Overview

This chapter will describe core technologies. First we describe Django, a Python based web
framework that has been used to build the prototype’s web servers. We used two additional
frameworks to extend Django’s capabilities. Firstly, a framework focusing on REST APIs and
secondly GeoDjango that allows us to handle geographical data. Subsequently, we discuss
Apple’s Bluetooth Low Energy based iBeacon standard, the standard Linux Bluetooth stack
BlueZ, and the Raspberry Pi. Together these were used to build one of the system’s characteristic
features, the access control mechanism in an unobtrusive, privacy aware and power saving
way. Finally, we outline the display appropriation system Tacita, which will be able to use the
Android library designed in this thesis as well.

3.2 Django

Django is a Web Framework for the Python programming language. It aims for "automating as
much as possible" and it "encourages rapid development and clean, pragmatic design" [Djac]. It
suits projects like this with highly restricted development time very well. It features techniques,
to ease and speed up development. One of them is an Object Relational Mapper (ORM), to
take the burden of maintaining database tables from the user. Furthermore, the developer
does not have to query the database directly. He/she, for example, does not necessarily need
to write SQL queries if a SQL database is is used. This can save effort during development
and eliminate an error source. Another technique is the automatically generation of the
administration interface which is described in more detail below. Both are in line with Django’s
general adherence to the don’t repeat yourself (DRY) software engineering principle. Due to
its popularity and active community, Django comes with a wealth of software components
and extensions. The website Django Packages, for example, currently lists over 2000 such
components ranging from whole frameworks and custom data models to smaller libraries
[Dan].

Django is used by a diverse set of companies. This includes companies focused on software
engineering and web development:

23

3 Technologies

Mozilla Mozilla is known for developing the very popular Firefox web browser and Thunder-
bird mail client. Mozilla uses Django during web development, for example, for the Firefox
Marketplace [McK13] [Moz].

Bitbucket Bitbucket provides repositories using common revision control systems. It is one
of Atlassian’s products, a company focusing heavily on software development and project
management tools. It currently serves 35000 customers including NASA and Audi [Djab]
[Atl].

Disqus Disqus hosts comments on web blogs. Its Django based website has to deal with
heavy load since it has "nearly 500 million unique visitors every month" [Dis13] [Dis11].

3.2.1 The Django Admin Site

The admin site is one of Django’s distinctive features. Using the data model, Django automati-
cally generates an administrative interface developers can customise by modifying underlying
classes and functions. Since a large part of the UI’s code basis is automatically generated,
developers don’t need to handcraft it. This can help to save development time and eliminate
malfunctions caused by programming errors. Furthermore, the admin site comes with a consis-
tent and straightforward appearance and therefore supports the developer in the UI design
process. These features enabled us to produce an administrative interface in a short amount of
time. It featured the intended workflows and came with a built-in user authentication.

3.2.2 The Django REST Framework

This component extends Django with functions necessary to build a REST API. These include a
browsable API, integration with Django’s user authentication and a test framework.

The architecture designed in this bachelor thesis makes heavy use of machine-to-machine
communication. Using the Django REST framework we were able built a corresponding
REST-API along with a rich set of test cases.

3.2.3 GeoDjango

GeoDjango equips Django with the capabilities to handle and process geographic data. It inte-
grates with Django’s ORM and adds spatial queries, for example, for intersections, containment
and distance. Further features include the definition and display of polygons on top of maps in
the administration user interface.

24

3.3 Wireless Short Range Communication

The system designed in this bachelor thesis has to handle geographic data at several points.
Devices and privacy relevant information are assigned to certain areas. Users can check if their
privacy preferences are violated in areas they reside and on paths they take. Once again by
using this component, we could provide important and complex features in reasonable time.

3.3 Wireless Short Range Communication

Wireless short range communication allowed us to implement an access control mechanism
(see chapter 4.3) that does not require user intervention.

3.3.1 Bluetooth Low Energy

The system’s design requires mobile devices like smartphones to constantly listen for trans-
mitters. This can easily drain the battery and therefore affect the practicality of the system.
Therefore, we chose to use Bluetooth Low Energy (BLE), which targets a significantly reduced
power consumption [Blu].

3.3.2 iBeacon

iBeacon is an Apple trademark and an indoor navigation standard based on BLE, which is
discussed above. It involves transmitters broadcasting unique identifiers that indicate the
receiver’s position or context. We could use iBeacons to disseminate information to users in
certain areas. The iBeacon standard constitutes a one way communication channel from the
transmitter to the receiver and therefore does not make receivers traceable.

3.3.3 BlueZ

BlueZ is the Linux standard bluetooth stack. It supports BLE since version 5.0 [Pad13] and
is therefore compatible with the iBeacon standard. It allowed us to build our own iBeacon
transmitters as discussed in chapter 5.5.1.

3.3.4 Radius Networks iBeacon Library

On the receiving end, we used the Radius Network iBeacon library [You]. Using this open
source library we were able to receive iBeacons on Android smartphones. By contrast, other
libraries only allowed us to receive identifiers specific to a certain product.

25

3 Technologies

3.3.5 Raspberry Pi

We used Raspberry Pis as basis for the self-made iBeacon transmitters. The Raspberry Pi is
a credit card sized computer equipped with an ARM CPU running at 700MHz, 512MB RAM
and two USB ports. Via the USB ports we were able to add a Bluetooth as well as a WiFi
adapter that are connecting the Raspberry Pi to the rest of the system. It is capable of running
a fully fledged Linux and therefore the BlueZ bluetooth stack discussed above. Furthermore,
its hardware resource are sufficient to run the Django iBeacon server, which is discussed in
chapter 5.5.1.

3.4 Tacita

Tacita is a framework for display appropriation developed at the Lancaster University [DLC+14].
Using their smartphones, it allows users to select content on nearby public displays. To achieve
this, different localisation techniques are used to determine the closest display. Furthermore,
a concept similar to our presence token (see chapter 4.3) is used to prove that a user is in
front of a display. In the course of this thesis we will design an Android library, supporting
localisation as well as presence token for Tacita and our system.

3.5 Summary

In this chapter we described key technologies used in the course of this bachelor thesis. Firstly,
we described Django, which was used to build the prototype’s majority of components. Due to
its adherence to rapid development and the don’t repeat your self paradigm, it is well-suited
for development in a research project with a restricted amount of time. Thanks to its auto
generated administration interface, we could build in a short amount of time a consistent and
well structured user interface implementing the desired workflows. Django’s built in ORM is a
further convenience feature, which allowed us to maintain database tables easily and query
them via Python code. Subsequently, we discussed Bluetooth based technologies as well as the
credit card sized computer Raspberry Pi, which enabled us to implement a key feature in an
unintrusive and power saving way. Finally, we outlined the display appropriation framework
Tacita. The design of an Android library for this and our system will be part of the following
section.

26

4 Design

4.1 Overview

In the first part of this chapter we present an overall architecture of the system based on
the requirements stated in chapter 2.3. We motivate and discuss key concepts as well as
components, their functionalities and connections to each other. Finally, we describe a trust
relationship between the stakeholders and discuss how it is supported by the system. In
the second part of this chapter we discuss the design of an Android library that processes
location-oriented data for the display appropriation framework Tacita and our system. We
present the library’s overall architecture and subsequently discuss its components and their
relationships. This chapter will be the foundation for the implementation discussed in the
following chapter.

4.2 Architecture and System Overview

The system is a middleware for memory augmentations that aggregates data from a diverse set
of sources including fixed infrastructure and mobile sensors. For instance, sensor owners can
attach already installed fixed infrastructure sensors to it. However, sensors like CCTV cameras
must still fulfil their initial purpose. Finally, the middleware must provide aggregated data to
memory augmentations and third party services built on top of the system. Furthermore, the
system provides means to avoid recordings or delete and filter them at a later point in time in
order to protect the privacy of users and bystanders.

An architecture based on the requirements stated in chapter 2 is shown in fig 4.1. At the
highest level the system consists of five different components, whereby only the central storage
component provides an interface for memory augmentations. User interaction takes place
either with the memory augmentation, with the maps component or the user’s personal device.
Those component’s relationships and the central concepts of presence tokens and privacy
preferences are described in the following sections.

27

4 Design

Figure 4.1: This figure shows the system’s architecture. Green components are comprised
by the system discussed in this thesis. The blue component represents memory
augmentations using the system. The purple box represents users. Orange arrows
show paths over which privacy preferences are transferred. Purple arrows show
paths over which presence tokens are transferred.

4.3 Presence Tokens

Ubiquitous recording easily triggers Orwellian visions. Therefore, it must not be possible to
turn the system into a comprehensive surveillance tool (R3.1). To achieve this we use presence
tokens as a means to restrict access to recordings to people potentially featured by them. This
is possible since holding a presence token proves that a person has been in a certain area
at a certain point in time. Before access to a recording under access control is granted, the
requester must prove that he has been in the recorded area while the recording has been
taken by showing the corresponding presence token. This mechanism based on the context
authentication protocol described by Kindberg [KZS02] will be explained in more detail in the
following section.

Figure 4.2 illustrates the concept of presence tokens. Each coloured area has an unique
presence token at any point in time, which can’t be captured by persons in neighbouring
rooms. An area must at least cover the range of sensors in it. Otherwise, people recorded by
these sensors might not have access to recordings featuring them. This would, for instance,
prevent them from requesting the filtering or deletion of these recordings and therefore violate

28

4.3 Presence Tokens

Figure 4.2: This figure illustrates the concept of presence tokens. A unique and randomly
generated presence token is assigned to each coloured area. Areas with different
colours have different presence tokens.

requirements R3 and R3.2. In settings like office buildings it must not be possible to spy on
coworkers in other rooms. Therefore, the area needs to cover no more than the range of vision
people in that area have. In other settings like lecture theatres however the area might need to
go beyond what people normally can see or hear so they have a better sight of the lecturer.

Figure 4.2 discussed above aims to clarify the concept and is therefore idealised. Presence
tokens are communicated via broadcasters to personal devices carried by the user. Broadcasting
devices might be radio based and therefore not cover a confined area as the figure might
indicate. These broadcasting devices, which don’t cover a confined area can be appropriate
for cases in which the range of sensors or a person’s perception is not constrained as well. For
instance, a person might be able to see or hear others through open doors or windows and so
does he/she if his personal device picks up a broadcaster’s signal coming through that door or
penetrating a weakly dampening window. Similarly, a person sitting next to a wall might be
able to hear people in the neighbouring room and so does he/she if his personal device picks up
a broadcasters signal penetrating the wall. However, he/she can’t hear people two rooms down
since the acoustic waves can’t penetrate two walls and neither can the radio signal originating
in the room. Our system though does not reflect the degradation of acoustic waves penetrating
walls or visual covers. Future work could investigate on the degradation of delivered recordings
based on the signal’s strength with which a presence token has been received. On the other
hand, settings like meeting rooms might have a high security demand making the radio-based

29

4 Design

Figure 4.3: This figure shows from left to right the same room with changing presence tokens.
The texts above the rooms are example presence tokens. The time is shown below
the rooms.

broadcasts discussed above inappropriate. To prevent eavesdropping presence tokens could
be disseminated via a cable e.g. in combination with a docking station for the user’s personal
device, very short range radio or copying from local displays as suggested in [DLC+14].

As illustrated in figure 4.3 presence tokens change periodically. From left to right the figure
shows the changing presence token above the room. The presence tokens shown are examples
with the aim to clarify the concept and not to put any restrictions on their implementation e.g.
in terms of length and format. As indicated in the lower part of the figure, presence tokens
change with the frequency 1/∆t, which is specific to an area. As a result, users leaving an
area do not have access to subsequent recordings in it since they don’t receive the necessary
subsequent presence tokens. However, if a user leaves an area he/she has access to recordings
of that area until the current presence token changes. Therefore, during a certain timeframe
the user has access to recordings of that area even though he/she is not in it. This timeframe
starts with the user leaving the area and ends with the change of the current presence token.
This timeframe’s size can be decreased by increasing the frequency with which presence tokens
change. However, this is not appropriate in all situations, for instance if the presence token is
disseminated via QR-Tags and has to be scanned manually by the user. Furthermore, frequently
changing presence tokens may also result in greater requirements on the reliability with which
they are received and the battery consumption on the receiving end. Therefore, the frequency
providing a maximum of privacy and convenience will vary with the context.

Obviously, a statically installed device that forwards presence tokens to an attacker could
subvert our access control mechanism. Our aim however was to prevent the system from being
turned in to a comprehensive surveillance tool. An attacker would need to use a significant
number of forwarding devices in order to achieve this. Therefore, we consider this mechanism
to be sufficiently secure due to the high costs of an attack.

Presence tokens allow the implementation of a location based access control mechanism
that does not make users traceable. The central storage component stores presence tokens
on behalf of the user and must be able to link presence tokens to a sensor management

30

4.4 Privacy Preference

component. However, the central storage can’t link presence tokens to a certain location since
a sensor management component is likely to maintain several areas (see figure 4.2). The
sensor management component in turn can’t link a request containing a presence token to a
user since these requests are sent by central storage components on behalf of several users.
Communication paths over which presence tokens are transferred are depicted in figure 4.1. A
similar approach preventing public display owners from creating user profiles is described in
[DLC+14].

4.4 Privacy Preference

A means for users to express their privacy preferences is important for ensuring respect and
trust between users and service providers (R3). Using privacy preferences, users can state
which kind of recordings they are willing to accept. A user might be indifferent about video
recordings but does not want to have audio recordings in his/her vicinity. Privacy preferences
can also depend on place and time (R3.4). For instance, a users can state that they do not want
to be videotaped on their daily commute to work. Besides that, users can issue the filtering
or deletion of recordings (R3.2) or put conditions on their dissemination. For instance, users
might be willing to share recordings taken by their personal device upon the condition that
others share their recordings as well.

A significant volume of existing work has been conducted around the use of machine read-
able languages used to communicate privacy preferences and policies [CLM02a] [CLM+02b]
[EFH+97] [KKH+05] [MFD03]. Further research on the design of such a language is not
included here as it is beyond the scope of this bachelor thesis.

4.5 Central Storage

Recordings aggregated via wearable and fixed infrastructure sensors (R2) are made available
by the central storage (R1). Connected memory augmentations and third party systems can
access those recordings on behalf of a user, for further processing (R6). However, access is only
granted if the user holds the corresponding presence token (R3.1) or if another user grants
access to his/her recordings (R7).

Recordings can easily consume large amounts of storage especially when it comes to videos.
A naive approach of storing recordings on a per user basis would exacerbate this since many
duplicates would be hold by the central storage. A solution for this is to store recordings per
presence token rather than per user. This requires the central storage to hold a user’s presence
tokens in order to check if he/she has access to a recording. However, we expect presence
tokens to consume far less storage than recordings on average. This is due to the fact that a
portion of the recordings will be storage consuming audio and video recordings. A further

31

4 Design

benefit of this optimisation is a decreased bandwidth demand. The central storage might need
to download recordings from a sensor management component before it can serve them. Using
the technique discussed above it can serve a downloaded recording to an arbitrary amount of
users without the need to download it again. This technique works only for recordings served
by sensor management components. However, recordings directly fed in to the central storage
by, for instance, wearable sensors and other personal devices need to be stored only once as
well. In this case the system only needs to keep track of to whom access permissions have been
granted.

Recordings stored by the central storage can be encrypted. Those recordings may not be
decrypted by the central storage if the user withholds their decryption key. This can be
advantageous if the provider of the central storage is not fully trusted. For instance, if
recordings reveal company secrets, passwords or private information, which might negatively
impact a person’s private or professional life (R3 and R3.4). However, this has certain
drawbacks conflicting with requirements R4 and R5 and should therefore not be the general
case. In order to process such a recording the whole recording needs to be transferred to the
memory augmentation, which in turn needs to decrypt and process it then. This can easily lead
to high requirements on bandwidth and computational power especially when the memory
augmentation needs to examine several recordings. For instance, if the user searches for a
video recording by a certain feature in it, it is likely that the memory augmentation needs to
download and decrypt several video recordings until the sought recording is found. Using
unencrypted recordings these problems can be overcome. The central storage itself could
search through recordings and therefore provide a rich query interface. This reduces bandwidth
requirements drastically since only search requests and results are transferred. Furthermore,
overheads arising from the repeated decryption of recordings are eliminated.

4.6 Maps

The maps component is intended to help the user to protect his/her privacy. This component
provides detailed information about installed sensors and recording policies (R3.3) via a map
visualisation similar to Google Maps1 or OpenStreetMap2. Furthermore, the user can upload
privacy preferences for selected areas and intervals (R3.4). For instance, a user can state that
audio and video recordings should be deactivated on his daily commute to work. Figure 4.4
shows mockups of the map based visualisation. User can manually check privacy relevant
information including the position and kind of sensors deployed, allowed and forbidden
recordings, and if recordings are encrypted. Alternatively, using the UI users can perform an

1https://maps.google.com/
2http://www.openstreetmap.org

32

4.7 Privacy Preference Storage

Figure 4.4: The figure shows UI mockups belonging to the maps component. Users can check
privacy relevant information manually (left hand side) or automatically check if
his/her privacy preferences are met (right hand side).

automatic check to see if their privacy preferences are met, for example, in a certain area or
along a certain route.

Using a map visualisation has several benefits. Maps have a widespread use in combination
with information technology but also a long tradition as non digital objects and can therefore be
assumed as common knowledge. Hence, map visualisations provides a well known and intuitive
way to interact with the system for a large and diverse set of the population. Furthermore, it
provides many memory cues which are especially helpful if the user schedules his/her privacy
preferences according to daily habits, which requires the knowledge of, for instance, daily
taken routes and entered buildings.

Informing the user about privacy relevant details via a map can have advantages compared
to other systems like privacy beacons suggested in [Lan02]. Privacy beacons require the user
to be in a certain area to receive privacy relevant information. This has drawbacks in some
situations e.g. a user might have chosen another route if he/she would have known that not
the entire route complies with his/her privacy preferences. Our approach enables the user to
check for violations of their privacy preferences ahead of time and make decisions accordingly.
However, privacy beacons have clear advantages e.g. when it comes to warning users just in
time. Therefore, these two approaches can be considered to be complementary.

4.7 Privacy Preference Storage

The user’s privacy preferences are synchronised across different components via the privacy
preference storage. The user can add, edit and delete privacy preferences via the map based
visualisation (see section 4.6), which in turn forwards these changes to the privacy preference

33

4 Design

storage. Once the privacy preference storage has updated its record of privacy preferences
then personal devices can download them and update their records.

4.8 Personal Device

The personal device has a key role in privacy protection. It collects presence tokens in order
to prove that a user has been in sensor range at a certain point in time. This can be done
either automatically or manually e.g. via BLE for the first one or QR-Tags for the latter. Those
presence tokens are then forwarded to two other components. Firstly, to a central storage
which uses them to retrieve the corresponding recordings. Secondly, to a sensor management
component as credentials alongside a request to delete or filter recordings.

Encryption keys securing sensitive recordings are collected by the personal device as well. This
can be done in various ways ranging from wireless short range transmitters, which ensure
that only people in sensor range can decrypt a recording to manual text input after user
authentication to ensure that only designated people can decrypt a recording. The personal
device forwards them either to a central storage component or an application trusted by the
user and connected to a central storage component. The benefits and drawbacks of both
alternatives have been discussed in section 4.5.

On the UI side, information about nearby recordings and guidelines are forwarded to the
user (R3.3). This includes especially warnings about possible violations of the user’s privacy
preferences. For instance, a user who does not want to be video taped will be warned via his
personal device if he is near an area in which video recordings take place. Once a user enters
a recorded area he/she might want prevent a recording from being disseminated (R3.2). By
providing this functionality through the personal device with its ubiquitous nature, the user
can issue the filtering or deletion of the recording in situ and does not have to remember to do
it at a later point in time. This in turn decreases the probability that the user forgets about it
and therefore strengthens his/her privacy.

4.9 Sensor Management

4.9.1 Overview

Stationary sensors in a certain area, for instance, a floor in an office building are attached to a
sensor management component. Recordings taken via these sensors are cached by the attached
sensor management component from which the central storage components can download
them (see section 4.5) (R1). Furthermore, sensor management components feature several
mechanisms protecting user’s and bystander’s privacy (R3) ranging from the dissemination of
presence tokens to the encryption, degradation and deletion of recordings (R3.1 and R3.2).

34

4.9 Sensor Management

Figure 4.5: This figure shows the sensor management’s subcomponents (green) and external
components (purple).

This diverse set of functionalities featured by the sensor management component makes it
more complex than the components discussed above. Due to that, we grouped those functions
in subcomponents as shown in figure 4.5. These subcomponents are discussed in the following
sections.

4.9.2 Presence Source

Before granting access to a recording, the system proves if the user has been in sensor range
during the recording (R3.1). Being able to do this without disclosing the user’s identity at any
point in time is one of the system’s distinctive functionalities (see section 4.3) (R3). To achieve
this, presence sources broadcast presence tokens (see section 4.3). Examples for such devices
and their deployment are wireless stations like Apple iBeacons [App] or displays showing
presence tokens as QR tags [DLC+14]. The selection of a device for broadcasting tokens will
be dependent on context.

4.9.3 Sensors

The sensor management’s main purpose is to make the recordings of attached sensors avail-
able to central storage components (R1). Sensors range from cameras and microphones
to thermometers and motion sensors (R2). However, they are not constituents of a sensor

35

4 Design

management component but rather external parts. If sensors are already integrated into an
infrastructure a sensor management component can be seen as a further data sink (R2).

4.9.4 Encryption

Encrypting recordings is a further strategy to protect user’s and bystander’s privacy. A central
storage component aggregates recordings on behalf of a large number of users. Therefore, the
operator of a central storage component may have access to a comprehensive set of recordings
in private and public spaces. Encrypting recordings before they are aggregated prevents the
operator from turning the system into a surveillance tool and reduces the risk of data breaches
(R3.1).

4.9.5 Filters

These subcomponents are used to filter recordings before central storage components can
retrieve them (R3.2). System users can, using their privacy preferences, trigger the filtering of
recordings. Such filters include screen and face blurring, voice changing or quality degradation.
Furthermore, this functionality can help to avoid security breaches e.g. via the blurring or
deletion of recorded computer screens and passwords.

4.9.6 Data Management

A sensor management component caches and manages recordings captured by attached sensors.
Central storage components can retrieve recordings from it. However, recordings can be locked
for a certain amount of time. While being locked, recordings are either not delivered or are
delivered in a degraded form. This gives people who have been recorded a chance to request
the deletion or filtering of a recording before central storage components can retrieve the
recording (R3.2). Downloadable recordings can be either publicly accessible or the requester
has to proof that he/she has been in sensor range during the recording. This is possible via
presence tokens as described in section 4.3.

4.10 Trust Relationship

Since we envisage memory augmentations as ubiquitous systems supporting the user on a daily
basis a trust relationship between the user and sensor owner has to established. Users might be
reluctant to use the system if they fear that recordings may be manipulated. Besides that, trust
in the reliable functioning also plays an important role. The users may abandon the system if it
fails to record important information and the resulting costs outweigh any benefit. However,

36

4.11 Android Library

Figure 4.6: This figure illustrates the trust relationships within the system. To be of benefit k

must be a much smaller number than m.

it might be impossible or too time consuming for users to check the reliability of individual
sensors and sensor owners. This is particularly likely to be true if the user utilises sensors
owned by multiple sensor owners on a daily basis. Therefore, we introduce the intermediary
as a third role that establishes trust relationships with sensor owners. Thus the user has to
trust a single or a few intermediaries instead of a wealth of sensor owners. If for instance, a
sensor has an obvious malfunction the user can blame the intermediary and doesn’t have to
find out the sensor owner or get in touch with him/her. The intermediary in turn can then
forward the complaint to the sensor owner. We did not investigate techniques enabling the
intermediary to check sensors or recordings for subtle manipulations since this would go well
beyond the scope of this bachelor thesis. Figure 4.6 illustrates this trust relationship. To be of
benefit k must be a much smaller number than m.

Our system supports this trust relationship. The intermediary could run a service providing a
list of trusted sensors to the user’s personal device, the central storage and the map component.
Using this list of trusted sensors the central storage could retrieve recordings only from sensor
management components with trusted sensors attached or mark recordings as untrusted.
Furthermore, warnings about untrusted sensors can be displayed using the personal device
and the map component. Alternatively, the intermediary could run the central storage directly
instead of providing a list of trusted sensors to a third party central storage.

4.11 Android Library

4.11.1 Overview

In this chapter we will describe the library targeting the system designed in thesis and the
display appropriation framework Tacita described in section 3.4. This library provides a means
for both systems to forward location dependent information to the user and other parts of
the system. For instance, the system designed in this thesis can use the library to inform the
user about nearby recordings and forward presence tokens to a central storage component.

37

4 Design

Figure 4.7: This figure shows the Android library targeting Tacita and the system designed
in this thesis. It shows the library’s components (green), external and internal
interfaces as well as the data flow (black arrows).

In the context of Tacita, the library can be used to schedule the display of applications if a
user enters the vicinity of a display. Furthermore, the user’s personal device can show nearby
displays along with a selection of display applications to choose from. While the sections
above were discussing a new kind of system this section is describing the design of a technical
component. Therefore, this section will be much more of a technical nature than the sections
above. Figure 4.7 shows the library and its subcomponents. Arrows depict internal and external
interfaces as well as the data flow between them. The subcomponents are discussed below.
Detailed UML class and component diagrams are in Appendix A.

4.11.2 Presence Token Management

This component receives presence tokens (a) via arbitrary sources. It checks if the current
presence token has changed or, if more than one has been received, if a new one is among the
received presence tokens. New presence tokens are received if, for instance, the user enters the
range of a presence source or the current presence token changes as described in section 4.3.
New presence tokens are passed on via a callback to the payload management (c) and location
subcomponent (d).

38

4.12 Summary

4.11.3 Service Directory Cache

This component caches information based on the user’s location (b). Cached information in-
cludes nearby displays and their supported applications as well as privacy relevant information
such as nearby sensors and recording policies. With this component, the mobile application
can still operate if the device has lost its internet connection and the services providing these
information are not available. Furthermore, the mobile application needs to display informa-
tion in a timely fashion. Time consuming queries over the internet however may thwart this. A
user, for instance, might not be warned early enough about recordings in an area he/she is
entering if the processing of the request for these information needs too much time. With this
component, the application can circumvent this and retrieve this information quickly using a
cache (e).

4.11.4 Location

If this component receives a new presence token (d) it queries the cache (e) for e.g. nearby
displays and sends this information to another component using a callback (g). In the context
of Tacita and the system designed in this thesis, the receiver will be most likely the UI.

4.11.5 Payload Management

Once this component receives a new presence token (d) it creates a payload for an HTTP
request and queues it. In the context of the system designed in this thesis, this payload contains,
for instance, a presence token and will be sent to the central storage. Another component, can
than pull the payload out of the queue (f) and send it. To avoid constant polling of the queue,
the Payload Management component informs registered components about new entries in the
queue via a callback (f).

4.12 Summary

In this chapter we presented an architecture and design based on the requirements in chapter 2.
We discussed the key concepts of presence tokens and privacy preferences, which are used to
protect privacy of users and bystanders. Subsequently, we discussed the system’s components
starting with the central storage, which aggregates recordings on behalf of the user. Those
recordings are retrieved from sensor management components which are directly connected
to sensors. We introduced a map based UI that enables the user to check privacy relevant
information before he/she enters a recorded area. Furthermore, we use the user’s personal
device to realise an access control mechanism based on the constant collection of presence

39

4 Design

tokens. Finally we motivated a trust relationship between the stakeholders and discussed how
the system supports this relationship.

In the second part of this chapter we presented an Android library targeting the display
appropriation framework Tacita and the system designed in this thesis. Both systems forward
information to users based on their location and collect presence tokens via the personal
device.

40

5 Implementation

5.1 Overview

In the previous chapters we were discussing requirements for the future system (chapter 2)
as well as an architecture that would meet them (chapter 4). We decided to implement the
system partially due to the vastness of the designed architecture and the limited amount of
time. This implementation shows the feasibility of key concepts and components and provides
a foundation for the preceding evaluation and future development.

Firstly, we discuss the development process as well as programming and quality assurance tools.
Subsequently, we give an overview of the implemented components and their relationships,
followed by a discussion of them. The implementation comprises of three Django web servers
and an Android application. It is capable of recording data streams and transferring them to a
central storage component. Furthermore, it features the presence token based access control
mechanism, which, for instance, stops the transfer of recordings if the user leaves the sensor
range. Finally, we present an exhaustive documentation of the webservers’ REST-APIs.

5.2 Development Process

The development was governed by the waterfall model and comprised the following stages in
the given order:

Requirements analysis Requirements were drawn from three sources; meetings with Prof.
Dr. Davies at the Lancaster University and a set of scenarios approved by him. The third source
was intensive literature research which included similar projects (see chapter 7).

Specification We created a specification based on the preceding requirements analysis phase.
The specification describes the demands on the future system and includes a quantity struc-
ture, scenarios, functional and non-functional requirements, use-cases, and initial set of user
interface mock-ups as well as a dictionary of terms. The specification builds the foundation for
the succeeding phases and motivates the system’s design presented in the draft. Furthermore,
the use cases can be used to derive system test cases.

41

5 Implementation

Draft We designed the future system based on the specification. This included the creation
of several UML diagrams showing the system’s architecture as well as its internal and external
interfaces on different abstraction levels. On the lowest level we specified the system’s classes
via UML class diagrams.

Implementation and Testing Since this thesis is focusing on the design of the system both
phases, implementation and test were only a total of 22 days long. In this time, we implemented
three servers and one mobile application featuring distinctive system components. Furthermore,
we created a broad set of module tests, which allows for regression tests during future
development.

5.3 Development Tools

We used two Integrated Development Environemts (IDE) during the development. Firstly,
JetBrain’s free community edition of PyCharm [Jet] for all system parts implemented in Python.
Secondly, Google’s Android Studio [Goob] for the mobile application running on the user’s
personal device. We made extensive use of the following features: code completion, syntax
highlighting, static code analysis and error highlighting as well as refactoring functionalities.
Besides that, PyCharm offers type hinting, which allows the programmer to make types of
function parameters explicit. This has proven useful since it allows autocompletion where it
has not been possible before and detects bugs caused by erroneous function calls.

Mercurial [Mer] was our revision control system. It provided a means for collaboration and
the ability to manage changes on documents and the source code. It has been made available
to us by the Lancaster University and therefore also functioned as backup for documents and
source code.

We used UMLet [UML] during design and implementation to create UML diagrams. It focuses
on drawing rather than modelling functionalities and brings a minimalistic, easy to use, user
interface. We made heavy use of it while creating architecture and class diagrams.

5.4 Quality Assurance

Besides the tools mentioned above we used the following for quality assurance:

Android unit tests Android test cases are JUnit based and part of the Android test framework,
which includes further functions and tools. Unfortunately, Android test cases need to run on
an Android device or an emulator and therefore consume a considerable amount of time.

42

5.5 Implemented Functionality

Django unit tests Django brings its own unit tests based on the standard Python unit tests
[Dja05]. Unit tests are by default written in the tests.py file which is in the root directory
of a Django application. However, we organised test cases in different files for better clarity.
The tester can then execute them easily via the command ./manage.py test or, for example,
./manage.py test -pattern="./SensorManagementApp/test/testRESTAPIInfo.py" for tests
in a different file. While running tests, Django automatically uses a dedicated test database
rather than the production database. This avoids unwanted modifications on the production
system and takes the burden from the developer to set up a test database.

Django REST framework unit tests The Django REST framework [Djaa] extends the Django
unit tests to simulate REST-API requests and assess the corresponding responses. More
specifically, the developer can specify the HTTP request method, send and receive JSON objects
and check for returned error codes or exceptions on the server side.

Checkstyle In combination with Android Studio we were using Checkstyle [Shi06] while
developing the mobile application. It is a static code analysis tool checking for compliance with
built-in programming guidelines, which help to increase readability and re-usability. Since it
is targeting Java applications only we couldn’t use it for the remaining Python based system
parts.

Autopep8 Autopep8 [Hat] automatically formats Python code so that it conforms with the
Python standard styleguide pep8 [RWC01]. This gives Python code a consistent appearance
across the whole project and helps to increase the readability.

isort Isort [Cro] automatically arranges import statements in Python source code alphabeti-
cally and into groups.

5.5 Implemented Functionality

In the previous sections we described the requirements on the future system and its design.
Based on that, we conducted an implementation, which will be described here. Due to
the limited amount of time and the size of the overall system we decided to restrict the
implementation to distinctive functionalities. The aim of the implementation is to:

• Show the feasibility of the designed system.

• Build the foundation for the succeeding evaluation.

• Build a foundation for future development.

43

5 Implementation

Figure 5.1: This figure shows implemented components (green) and communication paths
between them. The dashed arrow depicts the transfer of recordings and solid
arrows the communication of presence tokens. Sensors and presence sources are
attached to the sensor management component.

In our implementation we focused on recording sensor data and their delivery to memory
augmentations. Furthermore, we implemented privacy relevant components. This includes the
access control mechanism based on presence tokens (see chapter 4.3). Implemented parts and
the communication paths between them are depicted in figure 5.1 and are discussed in more
detail below.

5.5.1 Sensor Management

The sensor management component aggregates sensor data from sensors attached and makes
them available to the central storage component (see chapter 4.9). Aggregated recordings
are made available via a REST API, which is designed in an asynchronous fashion in order
to avoid long response times while the system is preparing the requested recoding. The
following passage describes the process of requesting and downloading a recording. Firstly, in
order to retrieve a recording, the central storage has to provide the corresponding presence
token (see chapter 4.3). As a response, it receives a URL pointing to a dynamically generated
JSON object, which contains a flag that indicates if the recording is ready for download or
still in preparation. Once the recording is ready to download, this object contains a URL to

44

5.5 Implemented Functionality

Figure 5.2: This sequence diagram shows steps necessary for a central storage component to
download a recording from a sensor management component.

the downloadable archive. Recordings are shipped as tarballs in order to reduce bandwidth
and storage requirements (R4). This process is illustrated by figure 5.2 and an exhaustive
documentation of the REST-API can be found in chapter 5.5.4.

As described in chapter 4.9.6, recordings can be prevented from being downloadable in order
to give users a chance to request their deletion or filtering. In this case the requester receives a
corresponding status message and the amount of time until the recording is available.

As described in chapter 4.9.4, recordings can be shipped encrypted in order to avoid unneces-
sary disclosure. The command line tool OpenSSL [Ope] has been used to encrypt recordings
with AES 256bit. AES is a state of the art encryption algorithm used by major applications
[App14] and can therefore be assumed secure.

45

5 Implementation

As stated by requirement R2, the system has to support a heterogeneous set of sensors and
presence sources. Furthermore, those might be added in the future and not known at the
time of this bachelor thesis. Therefore, the sensor management component features a plugin
interface. Each plugin type, its functionalities, interface and an example implementation are
described bellow.

Sensor plugin A sensor plugin is connected to a single, or group of sensors. It has to record
sensor data for a given amount of time. Recordings are stored in the folder raw_data, which
is located in sensor managements root folder. In-line with the requirement for extensibility
discussed above, recordings can be stored in arbitrary file types. The start time of the recording,
its duration and the filename to use are passed to the plugin via its constructor. As an example
and in order to have a working prototype, we implemented a plugin for a camera attached
to the machine running the sensor management server. During development this camera has
been the webcam integrated into an Apple MacBook Air. The plugin uses OpenCV [Ope14] in
order to record a video feed for the given amount of time. The recording is saved in an AVI
container and uses the XVID [Xvi14] MPEG-4 codec.

Broadcaster plugin Broadcaster connected to a broadcaster plugin function either as pres-
ence source or are used to disseminate encryption keys. The presence token or encryption key
and the duration they need to be broadcasted are passed to the plugin via its constructor. We
implemented a broadcaster plugin for the iBeacon server discussed below. In order to save
development time we used a single broadcaster for both, as presence source and to disseminate
encryption keys. The underlaying iBeacon standard does not allow us to send both at the same
time. Therefore, the presence token is broadcasted in the first half of the specified time and
the encryption key in the second half. A device entering the range of the broadcaster needs a
way to distinguish between both. We repurposed the major and minor value, which are part of
the iBeacon specification and therefore part of the broadcasted data. Presence token have a
major and minor number of zero. Encryption keys have a major and minor value of one.

Plugins are set up and maintained via the sensor management component’s administration
interface. Firstly, the user has to register plugins by providing a name, description and an area,
which is either recorded or an approximation of the broadcaster’s range. Subsequently, the
user can group registered broadcasters and sensors by area. Recordings can be downloaded
via presence tokens disseminated by broadcasters in the same area as the recording sensors.
Figure 5.3 and 5.4 show the corresponding parts of the administration interface. We used
Django’s automatically generated administration interface and the GeoDjango framework to
implement it.

46

5.5 Implemented Functionality

Figure 5.3: This figure shows the sensor management component’s administration interface.
A broadcaster can be registered using this form. Besides name, description and
type, an approximation of the broadcaster range can be specified by using a map.
The plugin to register can be selected at the bottom of the form.

Presence Token

Presence tokens are used to enforce access control and to unambiguously identify a requested
recording. Therefore, they should be hard to guess and the probability that two different
recordings have the same presence token should be very low. We used UUIDs as presence
tokens. A UUID is 128bit long and therefore satisfies the requirements stated above very
well.

47

5 Implementation

Figure 5.4: This figure shows the sensor management component’s administration interface.
In the upper part and middle of the form broadcasters and sensors can be grouped
by area.

iBeacon Server

The iBeacon server offers a means to remotely control an iBeacon device via a REST API. This
includes the following functionalities: setting the UUID, major and minor value to broadcast as
well as start and stop broadcasting. In the context of this system, we used the iBeacon server
to disseminate presence tokens and encryption keys. In order to broadcast via the iBeacon
standard, we needed low level control of the Bluetooth device. To achieve that, we used
the command line tools hciconfig and and hcitool, which are part of the standard Linux
Bluetooth stack BlueZ.

48

5.5 Implemented Functionality

Figure 5.5: This figure shows on the left hand side, a Raspberry Pi running the iBeacon server.
On the right hand side, an Android smartphone receiving a UUID broadcasted via
the Raspberry Pi.

The iBeacon server has been tested under Raspbian, which is based on the Debian distribution
and tailored to the Raspberry Pi. The underlaying Raspberry Pi has a CSR Bluetooth 4.0 Dongle
attached, which was used to broadcast via the iBeacon standard. Also attached was a WiFi
Dongle which allowed it to connect to the sensor manager wirelessly. Figure 5.5 shows a
Raspberry Pi running the iBeacon server while an Android device is receiving the broadcasted
UUID.

5.5.2 Central Storage

The central storage is aggregating recordings and provides them to memory augmentations
(see chapter 4.5). It interfaces with personal devices and sensor management components,
which are also discussed in this chapter. It features a REST-API at these connection points
and a corresponding client for sensor management components. Once it receives a presence
token from a personal device it starts querying the sensor manager for the corresponding
recording. Downloaded recordings will be decompressed and stored in the folder plain_data
in the application’s root directory. Figure 5.2 illustrates the download process.

49

5 Implementation

5.5.3 Personal Device

The personal device component is implemented as an Android application. It collects presence
tokens via the iBeacon standard and forwards them to the central storage component (see
chapter 4.8). Using the Radius Networks Library discussed in chapter 3.3.4, it scans periodically
for iBeacon UUIDs. It checks if the received UUID is a presence token or an encryption key via
the major and minor value sent with it. Complete pairs of presence tokens and encryption keys
are stored in a queue. Once the device is connected to a WiFi network it dequeues these pairs
and sends them to the central storage component. Pairs not reaching the central storage are
queued again.

5.5.4 Rest-API

Sensor Management

Request a recording
URL /recording/get/
Request method POST
Description Recordings are requested via this resource. The requester has to send

a presence token encapsulated in a JSON object. As a response the
system provides a URL pointing to an automatically generated JSON
object, which contains a flag that indicates if the recording is ready
for download or still in preparation.

Get the processing status of a request for a recording
URL /recording/task/«presence_token»/
Request method GET
Description After a recording has been requested the status of its processing can

be checked via this resource. This includes if the processing has failed
or is still running, a human readable status message and a URL to the
requested recording if it is downloadable.

Download a recording
URL /recording/resources/«presence_token»/
Request method GET
Description If a recording has been successfully prepared for download, a client

can download it via this URL.

50

5.5 Implemented Functionality

Get the types of sensors attached
URL /info/sensor-types/
Request method GET
Description Responds with a list of attached sensors and their types (e.g. video,

audio).

Get information about the used encryption algorithm
URL /info/encryption/
Request method GET
Description Responds with information about the algorithm used to encrypt record-

ings.

Get a list of filter provided
URL /info/filter/
Request method GET
Description Responds with a list of available filters. Filters are used on behalf of

users to protect their privacy (e.g. face blurring).

Information about the maintainer
URL /info/maintainer/
Request method GET
Description Responds with information about the sensor management compo-

nent’s maintainer. This includes the maintainer’s name, a description
and a homepage.

Add an announced recording
URL /privacy-preference/announcements/add/
Request method POST
Description The user can announce his/her privacy preferences for a certain area.

After receiving them the system checks if they conflict with the record-
ing guidelines in that area. For instance, the user does not want to
be video taped but the allowance for video recordings in that area is
guaranteed. If that is the case, the system returns a list of conflicts
and a corresponding HTTP status message.

Get a list of announced recordings
URL /privacy-preference/announcements/get/
Request method POST
Description Responds with a list of announced privacy preferences in a certain

area.

51

5 Implementation

Request compliance with privacy preferences
URL /privacy-preference/add/
Request method POST
Description If the user has been in sensor range during a recording, the deletion

or filtering of a recording according to his/her privacy preferences
will be performed.

iBeacon Server

Start broadcasting
URL /beacon/broadcast/
Request method POST
Description Expects a JSON object containing a major and minor value as well as

a UUID.

Stop broadcasting
URL /beacon/stop_broadcasting/
Request method POST
Description Stops the device from broadcasting.

Central Storage

Add a presence token
URL /presence-token/
Request method POST
Description The central storage receives presence tokens via this API.

5.6 Summary

In this chapter we described our implementation of key components and concepts. The
implementation comprises an Android application and three Django web servers making heavy
use of REST APIs for internal communication. The system can record a webcam’s video stream
and transfer it to the central storage component. Furthermore, it features the previously
described access control mechanism based on presence tokens and disseminates them via a self
made iBeacon device. Future developers can easily add other presence sources and sensors due
to the system’s modularisation. The implementation will build the foundation for the following
investigation on the system’s scalability and future development.

52

6 Evaluation

6.1 Overview

The previous chapters have described a prototype implementation and the system’s design
based on the requirements stated in chapter 2. In this chapter we will evaluate the developed
system. The evaluation has two parts: Firstly, a quantitative evaluation showing the system’s
scalability by measuring the prototype’s response times depending on several factors. Secondly,
a qualitative analysis on the system’s feasibility in terms of operational costs.

6.2 Performance Analysis

6.2.1 Overview and Testbed Configuration

In this chapter, we present our evaluation of the system’s scalability (R4). The system must
process large quantities of data and operate with a large number of attached devices. Therefore,
processing times should increase no more than linearly with the amount of attached sensors
and presence sources or stored recordings. Our focus was on the type of growth (e.g. linear,
exponential) with which processing times increase rather than absolute times since the system
was not running on a high-end machine or optimised for fast responses.

To measure processing times we needed to generate test data comprising sensors, presence
sources and recordings. Sensors and presence sources were attached via the system’s plugin
interface, which caused the system to behave as if actual devices were attached. However,
these sensors were not providing any data. Otherwise, our test cases would generate a vast
quantity of data since they simulate several thousand sensors. This would clearly exceed the
computational power and storage we had available. We assume that the missing data stream
will not change the type of growth with which the processing times increase since recordings
are just stored and not further processed. Again, we are focusing on the type of growth rather
than absolute processing times. Two types of recordings have been used: plain text (e.g. as
provided by sensors such as thermometers); and video files. However, we could only store a
restricted amount of video files due to storage limitations.

All tests were performed on a virtual machine maintained by the Lancaster University’s
datacenter. The virtual machine ran Ubuntu 14.04 and had 2GB RAM, 23GB hard disk and

53

6 Evaluation

two Intel Xeon CPU’s with 3.47GHz clock frequency available. All performance tests were
conducted using the sensor management component. We did not run a performance analysis
with the personal device since it only stores presence tokens and encryption keys using a FIFO
queue and is not directly affected by an increasing number of sensors or recordings. The central
storage component receives presence tokens from personal devices and retrieves recordings
from the sensor management component. Due to its prototypical nature it does not perform
queries on recordings that could affect the system’s performance. Hence, it is not interesting
for a performance evaluation.

We measured processing times depending on the amount of

• video recordings stored.

• text based recordings stored.

• sensors attached.

• broadcasters attached.

Measured processing times include: sending a request to the sensor management component’s
REST-API; receiving an acknowledgement; the back-end preparing the downloadable tar
archive; sending requests to check if the recording is downloadable; receiving the recording’s
processing status and an acknowledgement that the requested recording is downloadable.

6.2.2 Measured Response Times

All measurements involved the sensor management component’s REST-API (see chapter 5.5.4).
In particular, we were using all API calls used to retrieve recordings: "Request a recording",
"Get the processing status of a request for a recording", "Download a recording". Measurements
were taken using Python scripts, which output mean and standard deviation. We took 200,
500 or 1000 samples for each data point. The number of samples depended on two factors:
the time necessary to take them; the amount of noise in previous samples. We were interested
in the system’s behaviour while it is in operation rather than its behaviour after start or longer
idle periods. Therefore, we took 50 preceding samples which were not considered by the
calculations. The script has been executed on the same machine than the server under test.
While this made the tests less realistic it enabled us to avoid random network impacts. As
already stated above we were more interested in the type of growth with which processing
times increase rather than absolute times.

The detailed evaluation results are shown in table 6.1 and 6.2 and visualised in figure 6.2
to 6.4. In all cases except for one the processing times increase linearly with the amount of
devices attached or recordings stored. The standard deviation for processing times depending
on the number of attached broadcasters and sensors increase steadily. We hypothesise that
this behaviour is due to an increasing workload. The system has to prepare the recording of

54

6.2 Performance Analysis

Number of
sensors/
broad-
casters/
recordings

Processing time
depending on
the amount
of attached
sensors [ms]

Processing time
depending on
the amount
attached broad-
casters [ms]

Processing time
depending on
the amount
of stored text
based record-
ings [ms]

Processing time
depending on
the amount of
stored video
recordings [ms]

1 58.99 65.19 62.06 2322.62
5 58.90 80.02 60.45 2357.92
25 61.84 69.08 61.49 2333.89
50 64.51 91.41 60.60 2518.13
75 75.60 74.39 61.07 2267.59
100 76.52 74.80 62.40 1986.96
200 79.79 81.69 62.07
400 95.43 98.81 63.20
600 109.64 119.30 62.53
800 115.27 107.78 62.91
1000 123.76 120.59 64.40
1200 128.29 128.58 65.10
1400 135.80 133.30 65.55
1600 136.56 136.16 64.75
1800 135.61 142.09 65.28
2000 140.18 156.67 66.16

Table 6.1: This table shows the performance evaluation’s results. We took 500 samples per
data point in the first two columns, 200 for the third and 1000 for the fourth

sensor data and broadcasting of presence token, which includes for example the creation of
presence token and database entries. An increasing workload might cause variations in the
system’s processing times and therefore lead to an increasing standard deviation.

As shown in table 6.1 processing times for videos are much higher than for text based recordings.
After receiving a request the back-end has to create a tar archive containing the requested
recording and move it to the appropriate folder. Hence, this discrepancy can be explained with
the much higher file size of video recordings. We note that above 50 recordings, the processing
time for video recordings decreases (see figure 6.4). This unexpected result was replicated in
repetition of the study. Our expectation is that on average the processing time will increase
with the amount of video recordings stored, and we cannot identify a cause for the unusual
behaviour observed.

In summary, the results suggest that the processing times increase linearly with the amount
of devices attached and recordings stored. This growth has an upper bound for two reasons.

55

6 Evaluation

Number of text
recordings

Processing time depending on
the amount of stored text
based recordings [ms]

1000 59.98
2000 61.22
3000 62.88
4000 64.69
5000 66.88
6000 69.37
7000 71.47
8000 72.80
9000 74.51
10000 76.92

Table 6.2: This table shows the performance evaluation’s results. The table shows processing
times depending on large amounts of recordings stored. We took 500 samples per
data point.

0 500 1000 1500 2000

0
50

10
0

15
0

20
0

25
0

Number of registered sensors

R
es

po
ns

e
tim

e
(m

s)

Measured processing times depending on the amount of sensors registered

Means
Regression line
Standard deviation

Figure 6.1: This graph shows measured processing times depending on the amount of attached
sensors. We took 500 samples per data point.

56

6.2 Performance Analysis

0 500 1000 1500 2000

0
50

10
0

15
0

20
0

25
0

30
0

Number of registered broadcasting devices

R
es

po
ns

e
tim

e
(m

s)

Measured processing times depending on the amount of registered broadasting devices

Means
Regression line
Standard deviation

Figure 6.2: This graph shows measured processing times depending on the amount of attached
broadcasters. We took 500 samples per data point.

2000 4000 6000 8000 10000

55
60

65
70

75
80

Number of stored text based recordings

R
es

po
ns

e
tim

e
(m

s)

Measured processing times depending on the amount of stored text based recordings

Means
Regression line
Standard deviation

Figure 6.3: This graph shows measured processing times depending on a large number of
stored text based recordings. Wee took 500 samples per data point.

57

6 Evaluation

0 20 40 60 80 100

20
00

22
00

24
00

26
00

Number of stored video recordings

R
es

po
ns

e
tim

e
(m

s)

Measured processing times depending on amount of video recordings stored
The server has been restarted between every measurement

Means
Regression line
Standard deviation

Figure 6.4: This graph shows measured processing times depending stored video recordings.
We took 1000 samples per data point.

Firstly, the sensor manager component acts as cache and deletes recordings after a certain
amount of time and therefore the amount of stored recordings has a maximum. Secondly,
a sensor management component connects to devices in a certain area. Since this area is
constrained the maximum number of devices in it has a natural limit.

The absolute response times seem reasonable, keeping in mind that each sample measures
the total processing time of multiple REST API calls, which in turn causes file manipulations
and several database queries. Furthermore, the implemented system is not optimised for fast
responses and does not run on a high-end machine. Due to the REST-API’s asynchronous
design, actual response times to HTTP requests are even faster than the measured total time
involving several HTTP requests. Furthermore, measured critical processing times increased at
maximum linearly by the scale at which the system operates. Therefore, our results indicate
that the system functions on a small as well as on a large scale.

6.3 Cost Assessment

The system designed in this thesis has high demands on bandwidth and storage capacity. This
is the case since it constantly records, stores and transfers sensor data including video feeds. In
this section we investigate the system’s operational costs and possible business models. We

58

6.3 Cost Assessment

Office building Household Restaurant
Number of people 360 Number of people 3 Number of people 30
Number of storeys 3 Number of rooms 4 Number of storeys 2
Offices per storey 60 Lower bound of

cameras per room
1 Number of cameras

per storey
4

Lower bound of
cameras per office

1 Daily amount of
hours an employed
person is at home
and awake (week-
days/week end)

5/8 Number of hours
open per day

6

Core hours of oper-
ation per day

6

GB per 30 days 68040 GB per 30 days 1476 GB per 30 days 3024
GB per 30 days and
person

189 GB per 30 days and
person

492 GB per 30 days and
person

100.8

Table 6.3: This table shows the estimated quantity of data generated by the system in three
different scenarios. The first rows show assumptions made for each scenario.

first calculate data generated per month in three different scenarios. Based on those figures we
then estimate the costs of operating the system on Amazon’s Elastic Compute Cloud (EC2) and
finally outline possible ways to fund the system.

Table 6.3 shows our estimations. The first rows show the assumptions we made for each
scenario the last one shows the calculated amount of data in GB per month and person. We
calculated the amount of GB per month independently from the the amount of persons since
the system avoids duplicates and does not store recordings on a per person basis. Furthermore,
we assume that a one hour long video recording is 2.1GB in size (based on the bit rate Youtube
uses for 720p videos [Gooa]).

Table 6.4 shows costs caused by network traffic and storage consumption. As reference we
used the prices for Amazon’s EC2 service [Ama]. Costs per outgoing TB fall in descending price
brackets with the total amount of outgoing traffic. For our calculations we used the lowest
price since we assume that the system generates enough network traffic and makes further
costs caused by traffic falling in the preceding price groups negligible. Finally, the costs per TB
and month are 50$ for outgoing traffic and storage. The monthly storage costs will increase
steadily since the system constantly adds recordings to the already existing ones.

The costs shown in table 6.4 could be covered by the user via monthly payments. However,
increasing costs caused by amassed recordings make this infeasible on the long-term. Costs
may be reduced by negotiating a custom contract or by running a data centre rather than

59

6 Evaluation

Scenario Ingoing traffic
($/month)

Outgoing traffic
($/month)

Storage
($/month)

Office building 0 9.45 9.45
House hold 0 24.60 24.60
Restaurant 0 5.04 5.04

Table 6.4: This table shows costs for running the system via Amazon EC2. The calculated
storage and bandwidth costs are the same.

using a third party one. Some sensor providers might be willing to pay for the service if
they have an interest in publishing their recordings like universities and event organisers
might do. Furthermore, not only single but comprehensive recordings might be of value. For
instance city planners or product designers might be interested in recordings revealing the
flows of people or how customers use products and when they struggle with them. A further
way to fund the system could be advertisements. Companies could use the collected data
to personalise advertisements or to shape a users electronic memory. For instance, positive
memories associated with a company’s product could be forwarded to the user with a higher
priority than other memories. However, the social, ethical and psychological implications of
these business models will need to be addressed by future research.

6.4 Summary

In this chapter we investigated the system’s scalability and financial feasibility. We checked to
which component’s the requirement for scalability applies and identified the sensor manage-
ment component as suitable for a performance evaluation. Subsequently, we set up a testbed
using Python scripts and the Lancaster University’s datacenter. Since we wanted to show the
system’s scalability we were primarily interested in the processing time’s growth rather than
absolute times. We took measurements depending on three different distinctive variables:
amount of sensors attached, amount of presence sources attached, amount of recordings stored.
The result’s show that in the worst case, we see only linear growth thereby indicating that the
system fulfils the requirement for scalability.

Considering the storage and bandwidth demands caused by the vast sensor network connected
to the system, the question for its financial feasibility immediately arises. We estimated
the amount of data generated in three different scenarios: office building; household; and
restaurant. Using these we calculated the bandwidth and storage costs with Amazon’s EC2
service. While the costs for a single month seem very low, storage costs for successive months
will rise rapidly due to amassed recordings. This makes fully funding by the user unrealistic.
Therefore we outline other possible ways to fund the system.

60

7 Related Work

In this chapter, we provide an overview of previous research in the areas of smart environments,
memory augmentations and privacy protection.

7.1 Smart Environments

During the Stanford iRoom project, a prototype for a smart workspace, which includes large
sized displays and portable computers, has been built [FJHW00]. Similar to the middleware
built in this thesis, it aims to connect a heterogeneous set of data sinks and sources on the fly.
While this thesis focuses on sensors, the iRoom project uses mainly actuators and software
systems as data sources. Attempts to protect the iRoom’s security are described in [FJHW00].
In contrast to this thesis, however, its focus is not on privacy protection.

An outcome of the iRoom project is the Interactive Room Operating System (iROS) described
in [BRTF02]. It uses a modified tuple space to establish communication between different
devices. We did not use the Tuple space paradigm due to synchronisation problems caused by
longer disconnects of mobile devices. Modifications of the Tuple space paradigm tailored to
mobile applications [Wad99] could not accommodate this.

HP’s Cooltown project enables users to seamlessly interact with physical devices via virtual
representations [PBC+01]. Beacons are functioning as links between both and can be either of
virtual or physical nature using, for example, infrared, radio transmission or GPS. Similar to
the system designed in this thesis, CoolTown purposefully uses a beacon’s range to make only
services in the user’s vicinity available. However, this is only a convenience feature. Once the
user has accessed a service he/she can bookmark the URL and access the service elsewhere. In
contrast to that, our system implements strict access control using a similar mechanism.

The Microsoft EasyLiving project aims to enhance work and living spaces with a consistent
user experience across multiple devices [SKB+98]. Making heavy use of cameras it aims to
accomplish several tasks including: the transfer of user interfaces while the user is moving;
child and pet care; as well as home automation. The system tracks and identifies users in
order to provide convenience features like the personalisation of the environment. Suggested
solutions to privacy issues arising with that include the avoidance of video streams across
the network or a mode in which users are only identified on their request. However, this
presumably deactivates convenience features. Our system, by design, does not track or identify

61

7 Related Work

users. This is the case because it has no understanding of the recorded data and can not link
requests for data streams to certain locations or users.

7.2 Memory

The Microsoft SenseCam is a neck worn camera which captures pictures periodically or based
on changes in the environment [HWB+06]. During a clinical trial, an amnesia patient used
the SenseCam and reviewed taken pictures periodically. The final results showed a significant
improvement in her ability to recall events. We are pursuing a complementary approach to
worn sensors like the SenseCam by using fixed infrastructures sensors. This can have benefits
in terms of recording quality, maintenance and cost-efficiency as discussed in [CMD14]. For
instance, an obvious problem with worn cameras is that they easily point in misleading
directions due to the user’s body posture or are occluded by scarfs and other clothing.

Schmidt et al. suggest a system which reduces stress and confusion while encountering new
situations by enabling the user to build up a familiarity with them in advance [SLDW14].
For instance, prior to visiting a new place the system can display relevant information and
pictures of it. The suggested system could use the middleware designed in this thesis as a data
source. Firstly, for content like pictures forwarded to the user. Secondly, to learn from common
behaviour and needs in order to select most relevant information as described in the paper.

The combination of different data sources including worn and environmental sensors is also
described in [DFC+15]. Davies et. al. describe a pervasive memory architecture with several
data sources feeding data into a storage and processing component. This in turn is connected
to personal devices and the public infrastructure as data sinks. While this architecture is very
similar to our’s, it is not as detailed and more of a high level description.

A memory augmentation prototype has been developed during the iClips project [CJ10]. It
allows the user to query recorded data via context information like people nearby, weather
condition, location, date and time. Its user interface is tailored to the application domain
and therefore aims to ease the browsing of vast data sets. Furthermore, search results are
enhanced with memory cues enabling the user to more easily identify what they are looking
for. In general, the project focuses on a prototype implementation and user interaction with
recorded data as well as search algorithms for lifelogging data [KJ07].

Memories occur in third as well as first person [NN83]. The findings of Nigro et al. indicate
that third person view memories occur more often if people try to remember facts. Emotional
events in contrast tend to lead to first person view memories. The likelihood with which one
or another occur could also depend on how far the original event is in the past. Memory
augmentations therefore need to provide both views to best mimic human memory. Our
system can accomplish that. It provides third person views via cameras worn by other users

62

7.3 Privacy Protection

and installed in the environment, as well as first person views via cameras worn by the user
himself/herself.

7.3 Privacy Protection

Rather than guaranteeing privacy, the privacy awareness system (PawS) discussed in [Lan02]
enables the user to protect his/her privacy in ubiquitous computing environments. Service
providers collecting data about the user can ask for his/her privacy preferences and react
correspondingly. Those agreements are recorded and in case of a violation used to hold the
culprit accountable. Langheinrich suggests that interest groups could offer downloadable
privacy preferences in order to remove the burden of creating and maintaining them from the
user. This is also the case for our system. For certain situations a third party can easily choose a
reasonable privacy preference. For instance, the deactivation of video recordings in restrooms.
Furthermore, PawS uses a similar technique to announce services via beacons. As discussed in
chapter 4.6 we complement that with a map based user interface allowing the user to look up
services before he/she enters an area.

Using protocols described in [KZS02] a service can implement access control based on the
user’s context. The protocol exploits constraints like transmission range certain channels
have. Kindberg et al. describe a basic protocol involving a client, server and a proxy, which
communicates with the client via a constrained channel. On top of that, two extensions
protecting the user’s privacy and covering a special case in which the server can’t communicate
with the proxy are described as well. The access control mechanism based on presence tokens
described in this thesis is heavily influenced by the basic protocol. However, we authenticate
the user’s previous context rather than his/her current context. Besides that, a token received
via a constrained channel is not directly sent back to the broadcasting service. In order to
protect a user’s privacy, we introduced a third party to do that for many users and therefore
mask the individual user.

A middleware protecting sensible data about users is described in [MFD03]. The system
receives queries for users’ data and decides whether to disclose them. This decision can depend
on various factors ranging from the requesting institution, purpose and retention to whether the
requester has a commercial or non profit character. The requesters privacy policies sent along
with requests are than compared to the user’s privacy preferences. This is done by validator
components, which eventually determine if a request is accepted or declined. An inconclusive
validator can require other validators possessing further sets of privacy preferences or data
sources on which the decision has to be based. In our system recordings might be spread
across several sensor management components from where third parties can request them.
The fact that those are deliberately not linked to recorded persons in order to protect their
privacy would exacerbate the decision which validator to choose. Furthermore, in contrast to

63

7 Related Work

the location data tailored system described in [MFD03], our system is required to protect an
arbitrary set of sensible data including video and audio recordings.

How location based services can be offered in ubiquitous computing without making the
user traceable is addressed in [BS03]. To achieve that, Beresford et al. argue that updates
on the user’s location should be bound to changing short-term pseudonyms instead of the
user’s identity or long-term pseudonyms. However, if the location system’s resolution is high
enough, a malicious service can link changing pseudonyms and therefore deanonymize the user.
Beresford et al. introduce the concepts of application and mix zones to tackle this, whereby
location updates are sent in the first but not in the latter one. This aims to make users in
the mix zone indistinguishable and therefore pseudonyms used before and after entering the
mix zone unlinkable. Their further investigation showed that the anonymity provided by mix
zones depends on their context, size and how populated they are. Our system however needs
to ensure the user’s privacy in arbitrary settings and can therefore not be based on mix and
application zones. Furthermore, as discussed in 4.8 we require the user to collect presence
tokens rather than disclosing his actual position to any part of the system.

7.4 Summary

This thesis focuses on the privacy aware collection of data from fixed infrastructure and mobile
sensors for memory augmentations. This chapter described previous work in the area of
smart environments, which faces similar challenges in terms of device heterogeneity and
location based services as we do. Subsequently, we gave an overview on current and previous
work focusing on human memory. This includes work encouraging the use of wearable and
fixed infrastructure sensors in order to provide recordings from different perspectives. Finally,
we discussed previous research on privacy protection in ubiquitous computing ranging from
Langheinrich’s PawS and a context authentication protocol developed during the HP Cool Town
project to mix and application zones.

64

8 Conclusion

8.1 Overview

This Bachelor thesis has been conducted in cooperation with the Lancaster University in the
context of the EU-project RECALL [Rec14]. The RECALL project investigates how research
results in data capture and retrieval can be used to augment human memory. Besides that, the
project’s targets are applications for the wider population rather than only clinical ones.

In the course of this bachelor thesis, we designed a middleware, which collects data from
various sources including fixed infrastructure sensors and provides them to memory augmenta-
tions. A consistent interface allows the development of memory augmentations to be more
independent from implementation details of underlaying sensors. Furthermore, it implements
several techniques, which strengthen and protect the privacy of users as well as bystanders.

After an intensive literature research, we conducted the development via the waterfall process.
Therefore, we stated an initial set of requirements based on scenarios in order to provide a
foundation for the following phases. Based on an architecture meeting those requirements, we
implemented a prototype comprising three Django web servers and an Android application.
Finally, we demonstrated that the prototype meets the requirement for scalability by showing
that critical processing times increase at maximum linearly with the scale at which the system
operates. Besides this, we investigated the system’s financial feasibility by estimating critical
parts of its operational costs. In parallel, we designed an Android library, which can be used in
the context of this thesis as well as with Tacita. This display appropriation system has been
designed at the Lancaster University and uses a concept similar to our presence tokens. Besides
processing presence tokens from various sources, our library provides means to easily specify
their further handling tailored to the remaining system.

The system’s design, the Android library as well as the prototype will be used for further
development at the Lancaster University and the RECALL project.

8.2 Future Work

The system designed in this thesis stands in stark contrast to previous work on memory centric
applications, which focus on worn sensors and are mostly of proprietary nature. Therefore, this

65

8 Conclusion

thesis provides opportunities for future research as well as a valuable component for upcoming
memory augmentations.

Firstly, already existing memory augmentations like Keepsake [Nic14] could be connected to
the system. Partially founded by the RECALL project, Keepsake has been developed at the
University of Stuttgart and aims to provide the foundation for a future ecosystem of memory
centric applications. It therefore features a rich plugin interface, which could be used to
connect it to our middleware.

Secondly, a map based user interface providing information like installed sensors and recording
guidelines has been discussed in this thesis’ design section. Future work could address the
appropriate visualisation of this information as well as corresponding work flows, e.g. users
stating their privacy preferences on daily routes.

Thirdly, the evaluation of appropriate presence sources in different contexts is a further
opportunity. For instance, wireless technologies, which don’t cover a confined area, might
be appropriate in public spaces where a person’s field of vision or ability to hear is also not
restricted to a confined area. However, these technologies are certainly not appropriate in
meeting rooms where confidential meetings take place.

Fourthly, future research could address a machine readable privacy preference languages.
Although there is already a significant amount of works in this field it needs to be clarified how
appropriate existing privacy preference languages are for our system [CLM02a] [CLM+02b]
[EFH+97] [KKH+05] [MFD03].

Finally, we suggest the evaluation of business models beyond our discussion in the evaluation
section.

8.3 Closing Remarks

In the last decades we have seen an increasing amount of work in the area of lifelogging and
memory augmentations. Besides their restriction to wearable sensors and lack of interoperabil-
ity, they are raising sever privacy issues for bystanders as well as users.

In the course of this thesis, we developed a middleware enabling memory augmentations to
utilise a diverse set of worn and fixed infrastructure sensors. Besides that, it features several
privacy protection mechanisms. This includes the ability to restrict access to recordings to
people potentially featured by them. Thanks to an optimisation reducing bandwidth and
storage requirements dramatically in certain cases, our estimates for the system’s operational
costs were surprisingly low. Furthermore, we could show the system’s scalability by evaluating
critical processing times.

The thesis’ author hopes that this will contribute to the work on future memory augmentations
and allows their design in a privacy preserving way.

66

Appendices

67

A Android Library

69

A
A

ndroid
Library

Figure A.1: This figure shows the Android library targeting the display appropriation framework Tacita and the system designed
in this thesis.

70

Figure A.2: This figure shows the presence token management component’s classes.

Figure A.3: This figure shows the location component’s classes.

71

A
A

ndroid
Library

Figure A.4: This figure shows the service directory cache component’s classes.

72

Figure A.5: This figure shows the payload management component’s classes.

73

B Zusammenfassung

Im Laufe der letzten Jahre konnten wir eine steigende Anzahl Lifelogging Produkte und
Forschungsprojekte beobachten. Diese reichen von frühen Arbeiten von Steve Mann und
Microsofts MyLifeBits Projekt bis zu an Kleidung befestigten Kameras wie dem Autographer
and Narrative Clip.
Diese und andere Arbeiten konzentrieren sich hauptsächlich auf vom Nutzer getragenen
Sensoren und weniger auf Sensoren in dessen Umgebung. Wie vom Autor in [CMD14]
diskutiert hat dies einige Nachteile, wie zum Beispiel unscharfe Bilder, verursacht durch die
Bewegungen des Nutzers oder von Kleidungsstücken verdeckten Kameras und versagende
Batterien.
Im Laufe dieser Bachelorarbeit haben wir einen ergänzenden Ansatz verfolgt. Wir haben eine
Middleware für Gedächtnis orientierte Anwendungen entwickelt, die Daten durch ein breites
Spektrum aus Sensoren bereitstellt. Der Fokus lag dabei auf Skalierbarkeit und dem Schutz
der Privatsphäre von Nutzern, da das System flächendeckend Kameras und andere Sensoren
einsetzt. Durch verteiltes Speichern von Sensordaten und die Vermeidung von Duplikaten
konnten wir die durch das System übertragene Menge von Daten reduzieren.
Parallel dazu haben wir eine Android Bibliothek zur Verarbeitung von standortbezogenen
Daten entworfen. The Android Bibliothek kann mit unserem System und dem auf Displays
konzentrierten Framework Tacita das an der Lancaster University entwickelt wurde eingesetzt
werden. Unsere Evaluation hat die Skalierbarkeit des Systems gezeigt, da Verarbeitungszeiten
höchstens linear mit der Anzahl Eingabedaten wachsen. Dabei schlossen unsere Messungen
die Simulation von bis zu 10000 Datensätzen und 2000 Sensoren auf einem Netzwerkknoten
des Systems ein. Darüber hinaus haben wir die finanzielle Machbarkeit des Systems untersucht
und dessen Betriebskosten geschätzt.

75

Bibliography

[Ama] Amazon.com Inc. AWS | Amazon EC2 | Pricing. URL http://aws.amazon.com/

ec2/pricing/. (Cited on page 59)

[App] Apple Inc. iBeacon for Developers - Apple Developer. URL https://developer.

apple.com/ibeacon/. (Cited on page 35)

[App14] Apple Inc. OS X Mavericks: About FileVault disk encryption, 2014. URL http:

//support.apple.com/kb/PH13728. (Cited on page 45)

[Atl] Atlassian. Customers. URL https://www.atlassian.com/company/customers.
(Cited on page 24)

[Aut] Autographer. Home - Autographer - The World’s First Wearable camera. URL
http://www.autographer.com/. (Cited on page 11)

[B+45] V. Bush, et al. As we may think. The atlantic monthly, 176(1):101–108, 1945.
(Cited on page 11)

[Blu] Bluetooth SIG Inc. Bluetooth Smart. URL http://www.bluetooth.com/Pages/

Bluetooth-Smart.aspx. (Cited on page 25)

[BRTF02] J. Borchers, M. Ringel, J. Tyler, A. Fox. Stanford interactive workspaces: a
framework for physical and graphical user interface prototyping. Wireless Com-
munications, IEEE, 9(6):64–69, 2002. (Cited on pages 11 and 61)

[BS03] A. R. Beresford, F. Stajano. Location privacy in pervasive computing. Pervasive
Computing, IEEE, 2(1):46–55, 2003. (Cited on page 64)

[Cas14] S. Cass. Top 10 Programming Languages - IEEE Spectrum, 2014. URL http:

//spectrum.ieee.org/computing/software/top-10-programming-languages.
(Cited on page 20)

[CJ10] Y. Chen, G. J. Jones. Augmenting human memory using personal lifelogs. In
Proceedings of the 1st Augmented Human International Conference, p. 24. ACM,
2010. (Cited on page 62)

77

http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
https://developer.apple.com/ibeacon/
https://developer.apple.com/ibeacon/
http://support.apple.com/kb/PH13728
http://support.apple.com/kb/PH13728
https://www.atlassian.com/company/customers
http://www.autographer.com/
http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx
http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx
http://spectrum.ieee.org/computing/software/top-10-programming-languages
http://spectrum.ieee.org/computing/software/top-10-programming-languages

Bibliography

[CKDL12] S. Clinch, T. Kubitza, N. Davies, M. Langheinrich. Demo: using mobile devices to
personalize pervasive displays. In Proceedings of the 10th international conference
on Mobile systems, applications, and services, pp. 491–492. ACM, 2012. (Cited on
page 12)

[CLM02a] L. Cranor, M. Langheinrich, M. Marchiori. A P3P Preference Exchange Language
1.0 (APPEL1.0), 2002. URL http://www.w3.org/TR/P3P-preferences/. (Cited
on pages 31 and 66)

[CLM+02b] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, J. Reagle. The
Platform for Privacy Preferences 1.0 (P3P1.0) Specification, 2002. URL http:

//www.w3.org/TR/P3P/. (Cited on pages 31 and 66)

[CMD14] S. Clinch, P. Metzger, N. Davies. Lifelogging for ’observer’ view memories: an
infrastructure approach. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, pp. 1397–
1404. ACM, 2014. (Cited on pages 4, 12, 62 and 75)

[Cou] G. Couturler. Welcome to Flickr - Photo Sharing. URL https://www.flickr.com/.
(Cited on page 20)

[Cro] T. Crosley. isort 3.9.0 : Python Package Index. URL https://pypi.python.org/

pypi/isort. (Cited on page 43)

[Dan] Daniel Greenfeld, Audrey Roy and Two Scoops Press. Django Packages :
Django Packages reusable apps, sites and tools directory. URL https://www.

djangopackages.com/. (Cited on page 23)

[DFC+15] N. Davies, A. Friday, S. Clinch, C. Sas, M. Langheinrich, G. Ward, A. Schmidt.
Security and Privacy Implications of Pervasive Memory Augmentation. Pervasive
Computing, IEEE, 14(1), 2015. (Cited on page 62)

[Dis11] Disqus. The Numbers of Disqus, 2011. URL http://blog.disqus.com/post/

5192492910/the-numbers-of-disqus. (Cited on page 24)

[Dis13] Disqus. Scaling Django to 8 Billion Page Views, 2013. URL http://blog.disqus.

com/post/62187806135/scaling-django-to-8-billion-page-views. (Cited on
page 24)

[Djaa] Django REST framework - Web APIs for Django. URL http://www.

django-rest-framework.org/. (Cited on page 43)

[Djab] Django Software Foundation. DjangoSuccessStoryBitbucket. URL https://code.

djangoproject.com/wiki/DjangoSuccessStoryBitbucket. (Cited on page 24)

[Djac] Django Software Foundation. The Web framework for perfectionists with dead-
lines. URL https://www.djangoproject.com/. (Cited on pages 20 and 23)

78

http://www.w3.org/TR/P3P-preferences/
http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/
https://www.flickr.com/
https://pypi.python.org/pypi/isort
https://pypi.python.org/pypi/isort
https://www.djangopackages.com/
https://www.djangopackages.com/
http://blog.disqus.com/post/5192492910/the-numbers-of-disqus
http://blog.disqus.com/post/5192492910/the-numbers-of-disqus
http://blog.disqus.com/post/62187806135/scaling-django-to-8-billion-page-views
http://blog.disqus.com/post/62187806135/scaling-django-to-8-billion-page-views
http://www.django-rest-framework.org/
http://www.django-rest-framework.org/
https://code.djangoproject.com/wiki/DjangoSuccessStoryBitbucket
https://code.djangoproject.com/wiki/DjangoSuccessStoryBitbucket
https://www.djangoproject.com/

Bibliography

[Dja05] Django Software Foundation. Writing and running tests, 2005. URL https://docs.

djangoproject.com/en/dev/topics/testing/overview/. (Cited on page 43)

[DLC+14] N. Davies, M. Langheinrich, S. Clinch, I. Elhart, A. Friday, T. Kubitza, B. Surajbali.
Personalisation and privacy in future pervasive display networks. In Proceedings
of the 32nd annual ACM conference on Human factors in computing systems, pp.
2357–2366. ACM, 2014. (Cited on pages 26, 30, 31 and 35)

[EFH+97] C. Evans, C. D. Feather, A. Hopmann, M. Presler-Marshall, P. Resnick. PICSRules
Specification, 1997. URL http://www.w3.org/TR/REC-PICSRules/. (Cited on
pages 31 and 66)

[Fac] Facebook Inc. Instagram. URL http://instagram.com. (Cited on page 20)

[Fit] Fitbit Inc. Fitbit. URL http://www.fitbit.com/uk. (Cited on page 11)

[FJHW00] A. Fox, B. Johanson, P. Hanrahan, T. Winograd. Integrating information appliances
into an interactive workspace. Computer graphics and Applications, IEEE, 20(3):54–
65, 2000. (Cited on page 61)

[GBL+02] J. Gemmell, G. Bell, R. Lueder, S. Drucker, C. Wong. MyLifeBits: fulfilling
the Memex vision. In Proceedings of the tenth ACM international conference on
Multimedia, pp. 235–238. ACM, 2002. (Cited on page 11)

[Gooa] Google. Advanced encoding settings. URL https://support.google.com/

youtube/answer/1722171?hl=en-GB. (Cited on page 59)

[Goob] Google. Android Studio. URL https://developer.android.com/sdk/

installing/studio.html. (Cited on page 42)

[Gre13] G. Greenwald. XKeyscore: NSA tool collects ’nearly everything a user does
on the internet’, 2013. URL http://www.theguardian.com/world/2013/jul/31/

nsa-top-secret-program-online-data. (Cited on page 12)

[Hat] H. Hattori. autopep8 1.0.4 : Python Package Index. URL https://pypi.python.

org/pypi/autopep8/. (Cited on page 43)

[HWB+06] S. Hodges, L. Williams, E. Berry, S. Izadi, J. Srinivasan, A. Butler, G. Smyth,
N. Kapur, K. Wood. SenseCam: A retrospective memory aid. In UbiComp 2006:
Ubiquitous Computing, pp. 177–193. Springer, 2006. (Cited on pages 11 and 62)

[Jet] JetBrains s.r.o. Python IDE Django IDE for Web developers : JetBrains PyCharm.
URL https://www.jetbrains.com/pycharm/. (Cited on page 42)

[KJ07] L. Kelly, G. J. Jones. Venturing into the labyrinth: the information retrieval
challenge of human digital memories. 2007. (Cited on page 62)

79

https://docs.djangoproject.com/en/dev/topics/testing/overview/
https://docs.djangoproject.com/en/dev/topics/testing/overview/
http://www.w3.org/TR/REC-PICSRules/
http://instagram.com
http://www.fitbit.com/uk
https://support.google.com/youtube/answer/1722171?hl=en-GB
https://support.google.com/youtube/answer/1722171?hl=en-GB
https://developer.android.com/sdk/installing/studio.html
https://developer.android.com/sdk/installing/studio.html
http://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
http://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
https://pypi.python.org/pypi/autopep8/
https://pypi.python.org/pypi/autopep8/
https://www.jetbrains.com/pycharm/

Bibliography

[KKH+05] V. Kolovski, Y. Katz, J. Hendler, D. Weitzner, T. Berners-Lee. Towards a policy-
aware web. In Semantic Web and Policy Workshop at the 4th International Semantic
Web Conference. 2005. (Cited on pages 31 and 66)

[KZS02] T. Kindberg, K. Zhang, N. Shankar. Context authentication using constrained
channels. In Mobile Computing Systems and Applications, 2002. Proceedings Fourth
IEEE Workshop on, pp. 14–21. IEEE, 2002. (Cited on pages 11, 28 and 63)

[Lan02] M. Langheinrich. A privacy awareness system for ubiquitous computing environ-
ments. In UbiComp 2002: Ubiquitous Computing, pp. 237–245. Springer, 2002.
(Cited on pages 33 and 63)

[Lan05] M. Langheinrich. Personal privacy in ubiquitous computing. Ph.D. thesis, Citeseer,
2005. (Cited on page 11)

[Man97] S. Mann. Wearable computing: A first step toward personal imaging. Computer,
30(2):25–32, 1997. (Cited on page 11)

[Mas] Massachusetts Institute of Technology. MIT Project Oxygen: Overview. URL
http://oxygen.lcs.mit.edu/Overview.html. (Cited on page 11)

[McK13] A. McKay. The restful Marketplace, 2013. URL http://blog.mozilla.org/

webdev/2013/02/22/the-restful-marketplace/. (Cited on page 24)

[Mem] Memoto AB. Narrative Clip a wearable, automatic lifelogging camera. URL
http://getnarrative.com/. (Cited on page 11)

[Mer] Mercurial community. Mercurial SCM. URL http://mercurial.selenic.com/.
(Cited on page 42)

[MFD03] G. Myles, A. Friday, N. Davies. Preserving privacy in environments with location-
based applications. IEEE Pervasive Computing, 2(1):56–64, 2003. (Cited on
pages 31, 63, 64 and 66)

[Mic] Microsoft. MyLifeBits - Microsoft Research. URL http://research.microsoft.

com/en-us/projects/mylifebits/. (Cited on page 11)

[Moz] Mozilla Developer Network and individual contributors. Python. URL https:

//developer.mozilla.org/en-US/docs/Python. (Cited on page 24)

[Nic14] Nicholas Rush and the Keepsake team. Keepsake, 2014. URL http://projects.

hcilab.org/ahem2013/. (Cited on pages 12, 21 and 66)

[Nik] Nike Inc. Nike+ FuelBand SE. Activity Tracker & Fitness Monitor. URL http:

//www.nike.com/us/en_us/c/nikeplus-fuelband. (Cited on page 11)

[NN83] G. Nigro, U. Neisser. Point of view in personal memories. Cognitive Psychology,
15(4):467–482, 1983. (Cited on page 62)

80

http://oxygen.lcs.mit.edu/Overview.html
http://blog.mozilla.org/webdev/2013/02/22/the-restful-marketplace/
http://blog.mozilla.org/webdev/2013/02/22/the-restful-marketplace/
http://getnarrative.com/
http://mercurial.selenic.com/
http://research.microsoft.com/en-us/projects/mylifebits/
http://research.microsoft.com/en-us/projects/mylifebits/
https://developer.mozilla.org/en-US/docs/Python
https://developer.mozilla.org/en-US/docs/Python
http://projects.hcilab.org/ahem2013/
http://projects.hcilab.org/ahem2013/
http://www.nike.com/us/en_us/c/nikeplus-fuelband
http://www.nike.com/us/en_us/c/nikeplus-fuelband

Bibliography

[Ope] OpenSSL: The Open Source toolkit for SSL/TLS. URL https://www.openssl.org/.
(Cited on page 45)

[Ope14] OpenCV, 2014. URL http://opencv.org/. (Cited on page 46)

[Pad13] G. Padovan. The big changes of BlueZ 5, 2013. URL http://padovan.org/blog/

2013/02/the-big-changes-of-bluez-5/. (Cited on page 25)

[PBC+01] S. Pradhan, C. Brignone, J.-H. Cui, A. McReynolds, M. T. Smith. Websigns:
Hyperlinking physical locations to the web. Computer, 34(8):42–48, 2001. (Cited
on page 61)

[Rec14] Recall, 2014. URL http://recall-fet.eu/. (Cited on pages 11, 20 and 65)

[RHR+01] M. Roman, C. K. Hess, A. Ranganathan, P. Madhavarapu, B. Borthakur,
P. Viswanathan, R. Cerqueira, R. H. Campbell, M. D. Mickunas. GaiaOS: An
infrastructure for active spaces. 2001. (Cited on page 11)

[RWC01] G. van Rossum, B. Warsaw, N. Coghlan. PEP 8 – Style Guide for Python Code,
2001. URL http://legacy.python.org/dev/peps/pep-0008/. (Cited on page 43)

[Shi06] J. Shiell. jshiell/checkstyle-idea GitHub, 2006. URL https://github.com/

jshiell/checkstyle-idea. (Cited on page 43)

[SKB+98] S. Shafer, J. Krumm, B. Brumitt, B. Meyers, M. Czerwinski, D. Robbins. The new
easyliving project at microsoft research. In Proceedings of the 1998 DARPA/NIST
Smart Spaces Workshop, pp. 127–130. 1998. (Cited on pages 11 and 61)

[SLDW14] A. Schmidt, M. Langheinrich, N. Davies, G. Ward. Déjà vu–technologies that make
new situations look familiar: position paper. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct
Publication, pp. 1389–1396. ACM, 2014. (Cited on page 62)

[UML] UML Tool for Fast UML Diagrams. URL http://www.umlet.com/. (Cited on
page 42)

[Unt13] M. Untersinger. Inside the NSA’s web of surveillance, 2013.
URL http://www.lemonde.fr/technologies/article/2013/10/21/

inside-the-nsa-s-web-of-surveillance_3499742_651865.html. (Cited
on page 12)

[Vin] Vine. URL https://vine.co/. (Cited on page 20)

[Wad99] S. P. Wade. An investigation into the use of the tuple space paradigm in mobile
computing environments. Ph.D. thesis, Citeseer, 1999. (Cited on page 61)

[Xvi14] Xvid Solutions GmbH. Xvid, 2014. URL https://www.xvid.org/. (Cited on
page 46)

81

https://www.openssl.org/
http://opencv.org/
http://padovan.org/blog/2013/02/the-big-changes-of-bluez-5/
http://padovan.org/blog/2013/02/the-big-changes-of-bluez-5/
http://recall-fet.eu/
http://legacy.python.org/dev/peps/pep-0008/
https://github.com/jshiell/checkstyle-idea
https://github.com/jshiell/checkstyle-idea
http://www.umlet.com/
http://www.lemonde.fr/technologies/article/2013/10/21/inside-the-nsa-s-web-of-surveillance_3499742_651865.html
http://www.lemonde.fr/technologies/article/2013/10/21/inside-the-nsa-s-web-of-surveillance_3499742_651865.html
https://vine.co/
https://www.xvid.org/

Bibliography

[You] D. G. Young. Releases RadiusNetworks/android-ibeacon-service GitHub. URL
https://github.com/RadiusNetworks/android-ibeacon-service/releases.
(Cited on page 25)

All links were last followed on November 21, 2014.

82

https://github.com/RadiusNetworks/android-ibeacon-service/releases

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Overview
	1.2 Contribution
	1.3 Structure of this Thesis

	2 Requirements
	2.1 Overview
	2.2 Scenarios
	2.2.1 Perfect Recall
	2.2.2 Privacy Awareness
	2.2.3 Scores
	2.2.4 Password
	2.2.5 Feedback
	2.2.6 Practicing

	2.3 Requirements
	2.4 Operational Environment
	2.5 Summary

	3 Technologies
	3.1 Overview
	3.2 Django
	3.2.1 The Django Admin Site
	3.2.2 The Django REST Framework
	3.2.3 GeoDjango

	3.3 Wireless Short Range Communication
	3.3.1 Bluetooth Low Energy
	3.3.2 iBeacon
	3.3.3 BlueZ
	3.3.4 Radius Networks iBeacon Library
	3.3.5 Raspberry Pi

	3.4 Tacita
	3.5 Summary

	4 Design
	4.1 Overview
	4.2 Architecture and System Overview
	4.3 Presence Tokens
	4.4 Privacy Preference
	4.5 Central Storage
	4.6 Maps
	4.7 Privacy Preference Storage
	4.8 Personal Device
	4.9 Sensor Management
	4.9.1 Overview
	4.9.2 Presence Source
	4.9.3 Sensors
	4.9.4 Encryption
	4.9.5 Filters
	4.9.6 Data Management

	4.10 Trust Relationship
	4.11 Android Library
	4.11.1 Overview
	4.11.2 Presence Token Management
	4.11.3 Service Directory Cache
	4.11.4 Location
	4.11.5 Payload Management

	4.12 Summary

	5 Implementation
	5.1 Overview
	5.2 Development Process
	5.3 Development Tools
	5.4 Quality Assurance
	5.5 Implemented Functionality
	5.5.1 Sensor Management
	Presence Token
	iBeacon Server

	5.5.2 Central Storage
	5.5.3 Personal Device
	5.5.4 Rest-API
	Sensor Management
	iBeacon Server
	Central Storage

	5.6 Summary

	6 Evaluation
	6.1 Overview
	6.2 Performance Analysis
	6.2.1 Overview and Testbed Configuration
	6.2.2 Measured Response Times

	6.3 Cost Assessment
	6.4 Summary

	7 Related Work
	7.1 Smart Environments
	7.2 Memory
	7.3 Privacy Protection
	7.4 Summary

	8 Conclusion
	8.1 Overview
	8.2 Future Work
	8.3 Closing Remarks

	Appendices
	A Android Library
	B Zusammenfassung
	Bibliography

