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\Qeloveqestvo vsegda mne predstavl�los~ v vide mno�estva blu�da�wih v

tumane ogon~kov, kotorye lix~ smutno quvstvu�t si�nie, rasseivaemoe vsemi

drugimi, no sv�zany set~� �snyh ognennyh nite�, ka�dy� v odnom, dvuh, treh...

napravleni�h. I vozniknovenie takih proryvov qerez tuman k drugomu ogon~ku

vpolne razumno nazyvat~ "QUDOM".

A. N. Kolmogorov

“Restate my assumptions:

� 1. Mathematics is the language of nature.

� 2. Everything around us can be represented and understood through numbers.

� 3. If you graph these numbers, patterns emerge.

Therefore: There are patterns everywhere in nature.”

Maximillian Cohen, Pi.

“Die Ewigkeit ist bloß ein Augenblick, gerade lang genug für einen Spaß.”

Hermann Hesse, Steppenwolf.

“Arc, amplitude, and curvature sustain a similar relation to each other as time, motion,

and velocity, or as volume, mass, and density.”

Carl Friedrich Gauss
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Zussamenfassung

Die Planung und Synthese von menschenähnlichen Bewegungen ist ein offenes Prob-

lem in der Robotik-Forschung. Diese Dissertation hat das Ziel Ideen und Metho-

den aus der Topologie zu verwenden um aktuelle Bewegungsplanungsalgorithmen zu

verbessern und die Synthese von geschickten Manipulationen zu ermöglichen. Die er-

ste Hälfte der vorliegenden Arbeit beschäftigt sich mit einem Repräsentationsproblem

und wie es mit dem Verfahren von Topologie-basierten Invarianten gelöst werden kann.

Dabei leiten wir die Abbildung von abstrakten Räumen in den Konfigurationsraum

her. Repräsentationen werden auf der Grundlage ihrer Fähigkeit, mit der sie Infor-

mationen über die Interaktion zwischen Objekten extrahieren ausgewählt. Wir schla-

gen ein Regelungsverfahren basierend auf approximierter Inferenz vor, das mit einer

zusätzlichen Schicht der Inferenz erweitert wird um neuartigen Repräsentationen zu

bewältigen. Unser Ansatz nutzt eine natürliche Hierarchie von mehreren Repräsen-

tationen und verbessert die Qualität und die Rechenzeit der Bewegungsplanung. Die

Vorteile der Verwendung des Writhe Raumes und des Raumes der Winding Numbers

werden in der Simulation gezeigt. Wir entwickeln auch ein gradientenbasiertes Ver-

fahren zur optimalen zeitlichen Steuerung, dass in ein allgemeines Planungsframework

eingebettet wird.

Die zweite Hälfte der Arbeit ist der Synthese von Greifbewegungen gewidmet.

Zuerst betrachten wir das Problem der Übertragung von Griffen mit Topologie-basierten

Repräsentationen um die Dimensionalität des Problems zu reduzieren. Die Bewegung-

planungsmethoden, die in der ersten Hälfte der Arbeit hergeleitet wurden, werden dann

dazu verwendet eine optimale Trajektorie zu erzeugen, die zu der gewünschten Griff-

Konfiguration führt. Insbesondere betrachten wir welche Teile eines Zielobjekts zum

Ergreifen besser geeignet sind. Wir entwickeln eine neuartige Hand-Repräsentation,

xiv
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die wir Geodesic Ball nennen. Diese Repräsentation ist invariant zu einer bestimmten

kinematischen Struktur des Manipulators und ermöglicht eine systematische Analyse

der Struktur eines Objekts. Wir entwickeln zwei neue Caging Heuristiken auf der Ba-

sis des diskreten Gaußschen Krümmungs Integrale und von Wickelwinkel. Wir zeigen

die Wirksamkeit der neuartigen Repräsentation durch Auswertung der Stabilität der

erzeugten Hand-Konfigurationen und einen Vergleich mit anderen Heuristiken.



Summary

The planning and synthesis of human-like motions remains an open area of robotics

research. This thesis aims to employ ideas and methods from topology in order to

improve current motion planning algorithms and to enable the synthesis of dexterous

manipulations. The first half of the presented work is devoted to a representational

problem and how it can be addressed using topology-based invariants. The mapping

from abstract spaces to the configuration space is derived. Representations are selected

based on their ability to extract essential information about the interaction between

objects. We propose to extend an approximate inference control framework with an

additional layer of inference in order to cope with novel representations. Our ap-

proach exploits a natural hierarchy of several representations and improves the quality

and computation time of motion planning. The advantages of using the writhe space

and the space of winding numbers are demonstrated in simulation. We also derive a

gradient-based method for temporal optimal control within a common framework.

The second half of the thesis is dedicated to the synthesis of grasping and caging

movements. Firstly, we address the problem of grasp transfer using topology-based

representations in order to reduce the dimensionality of the demonstrated hand pos-

tures. The motion planning methods derived in the first half of the thesis will then be

used to generate an optimal trajectory leading to the desired grasp configuration. We

focus in particular on which parts of a target object are better suited for grasping. We

develop a novel hand-local representation, which we call a geodesic ball. This represen-

tation is invariant to a particular kinematic structure of a manipulator and allows for a

systematic analysis of an object’s structure. We introduce two novel caging heuristics

based on the discrete Gaussian curvature integral and winding angles respectively. We

demonstrate the effectiveness of a novel representation by evaluating the stability of

generated caging grasps and by comparing it to other heuristics.

xvi





Chapter 1

Introduction

Robots and intelligent systems are slowly coming into our everyday life. Machines for

cleaning and for controlling home facilities, surgery robots and self-navigating cars are

not in the field of science fiction anymore. Instead, there are currently many attempts

to change the dominating image of robots being massive state-machines unable to

adjust to rapidly changing environment. Those industrial robots are being in service

for decades and indeed do not provide a desired level of adaptation. Humans are still

capable of tying knots, wrapping an object in a tissue, dexterously manipulating an

object, putting a key inside a keyhole or handing over a household tool in a much

effective and seemingly effortless way.

Despite great advances in the area of robotics, these tasks are beyond current

state-of-the-art systems. Part of the problem lies in the perception of subtle changes

in the environment. Articulated and flexible objects are extremely difficult to track

with vision systems and slight fluctuations in friction are usually not captured by

haptic feedback devices. Yet another problem lies in actual planning and execution

of such motion. Well established description of robotic manipulators in terms of joint

angles and simple 3D end-effector positions as goals, is not that efficient for describing

tasks requiring close interaction of objects. Given how many degrees of freedom a, for

example, rope has, the task space would simply explode.

We state here, that part of the motion planning problem can be addressed using

an appropriate representation. Abstract, topology-based representations capture es-

sential connectivity between sub-parts of objects. They are to some degree invariant

1



CHAPTER 1. INTRODUCTION 2

to local geometric deformations of described interactions. We shall show, that such

coordinate systems are much better suited for several classes of tasks, which can not be

solved using classical approaches. We propose methods that can combine the different

representations and plan simultaneously to efficiently generate optimal, collision free

motion that satisfy constraints.

1.1 Abstract Representations for Motion Planning

Classical representations such as configuration space and end-effector space are not

suitable for describing complex interaction between robot and the environment. Cer-

tain types of such interaction problems, for example winding around an object or

wrapping an object in a tissue , can suitably be described by so-called writhe and

winding number representations, as shown in the following chapters.

Task of reaching a certain point with a finger is obviously very different from

the task of tying shoes. It is clear, that representation of such problem will affect the

performance. One could also see that there is a great demand in multiple layers of task

description. These different levels are motivated by intrinsic geometric or topological

structures of manipulators and objects involved.

Simultaneous motion planning in abstract and low-level configuration spaces re-

quires more extensive theoretical and methodological investigation. Usually, control

tasks of robotic systems are defined in world coordinates, the targets or obstacles can

be observed in camera coordinates, and the joint limits of the manipulators are typi-

cally described in joint coordinates. Therefore, the main challenge is to derive motion

synthesis methods that combine the benefits of reasoning in abstract coordinates while

accounting for constraints in the world coordinates.

In work of (Edmond and Komura, 2009), topology-based representations were used

for describing interaction of characters in context of computer animation. Embracing

an agent with arms of another one (see Figure 1.1 for illustration) is difficult to for-

mulate in configuration space. Considering instead an interaction of body segments

separately gives much better generalization to agents of different sizes and positions.

This is a good example of a successful fusion of different representations.
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Figure 1.1: Topology-based Representations for character animation. Adapted from
(Edmond and Komura, 2009)

1.2 Grasping and Caging of Complex Objects

Humans can easily grasp objects in order to perform desired manipulations. We can

create a mental picture of the whole reaching and grasping process. Similarly, robots

have to imagine, or represent, the sequence of motions leading to the interaction with

its environment. There should be an internal representation capable of describing

the most important features of possible interactions. In the following we shall briefly

review several methods proposed for grasp transfer and grasping and caging.

Grasp Transfer

The grasp transfer problem can be roughly described as mapping of demonstrated hu-

man grasps to a robotic manipulator with different kinematic structure. This problem

has been addressed in fields of teleoperation and learning from demonstration. One

could distinguish three main approaches. First suggests a mapping of angles between

phalanges of the fingers. This method is suitable for robotic hands with similar to hu-

man hand kinematics. In the work of Ciocarlie et al. (2007) dimensionality reduction

methods have been used to effectively map human grasps onto different robotic hands.

The second approach considers the positions of fingertips as a grasp transfer rep-

resentation. The relation between spaces of fingertip positions is studied in Peer et al.

(2008). This method is suitable for precision grasps transfer, although it is not clear

how well it could generalize for hands with dissimilar kinematics or objects with dif-

ferent shapes.

The third most popular approach suggests to map joint angles first to some inter-

mediate space, find a correspondence between postures in that space and then map it
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Figure 1.2: Example grasps with robotic manipulators. Schunk hand on the left and
Universal Gripper in the middle and on the right(Brown et al., 2010).

back. The technique proposed by Pao and Speeter (1989) uses algebraic transformation

from human hand pose into space of robotic manipulators.

Grasping and Caging

There are two main approaches to formalize robotic manipulations. First employs

a notion of force closure as a model-based concept coming from physical interaction

between the hand and an object. According to (Murray et al., 2006), a force closed

grasping configuration is only achieved when rotations in all directions can be compen-

sated by opposing fingers of the manipulator. In order to check this condition one has

to estimate forces applied at contact points based on their normals. Several evaluation

measures have been introduced by (Ferrari and Canny, 1992), (Suárez et al., 2006) and

others. Given a precise object model one could also consider finding a good grasping

posture as an optimization problem (El-Khoury et al., 2012).

Another approach addresses the problem by generating caging grasps. It was orig-

inally formulated for planar objects by (Kuperberg, 1990). The object is “caged” by a

set of points when it can not be moved arbitrarily far away from these points. There

was a extensive amount of work for planar objects and only few recent studies have

made an attempt to extend the approach to 3D space. In the review of (Rodriguez

et al., 2012), caging is considered to be an intermediate step towards a full solid grasp.

Caging grasps have potentially wider real world application, since they are not that

strictly constrained and could be used e.g. for manipulations of objects with holes

(Pokorny et al., 2013) and (Stork et al., 2013b).
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Figure 1.3: Thesis outline.

In this thesis, we propose a novel topology-based representation and scoring func-

tions for generation of caging grasps. We claim that these functions are less sensitive

to the local noise due to their integral nature. We describe in detail how physically

stable caging grasps can be synthesized and evaluated.

1.3 Thesis Outline and Contributions

Figure 1.3 summarizes main topics of the thesis. The key component is topology-

based representations, which were used for motion planning, grasp transfer and

caging synthesis. The figure also shows conference and journal papers which were

published during the course of doctoral studies and contributed to the manuscript.

Chapter 2: Background will provide us with a brief introduction to essential

concepts needed for better understanding the following chapters. We will introduce a

general motion planning problem formulation and discuss how the usage of alternate
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representations may affect the resulting motion. We shall give basics of stochastic

optimal control and introduce the approximate inference control framework. We will

cover notions of topological invariants such as Gauss Linking Integral, which is used

as a basis for derivation of our representations. Our caging and grasping heuristics

require a basic knowledge of point cloud segmentation, surface reconstruction and

related characteristics.

In chapter 3: Representations we will introduce four specific examples of

topology-based representations: Winding numbers, Writhe coordinates, discrete Gauss

curvature and Winding angles. We shall discuss that some robot interaction problems,

e.g. placing an end-effector ”inside” or ”outside” of a box or wrapping a manipula-

tor around an object, can be conveniently expressed using writhe or winding number

representations. We investigate properties of these representations and derive corre-

sponding Jacobians.

Contributions:

� Analytical derivation of Writhe Matrix Jacobian

� Analytical derivation of Winding Number Jacobian

� Development of a novel hand-local representation of Geodesic Ball

� Derivation of Discrete Gauss curvature scoring function over a geodesic ball

� Derivation of Winding Angle scoring function

In chapter 4: Motion Planning Using Topology-based Spaces we explain

how a target motion can be defined in alternative topology-based representations. We

state the difference from joint configuration or end-effector spaces in terms of impli-

cations on metric and Voronoi bias of the motion space. We develop novel methods,

which allow us to merge different representations for movement generation. We propose

a unified motion planning framework, based on an optimal control as an approximate

inference problem. It can be formulated as a graphical model and allows for exten-

sions for multiple representations (e.g., topology-based spaces, end-effector and joint

spaces). In section 4.2 we elaborate on how a motion generalization can be performed

within our framework. Forward and inverse projection of motions from topology-based
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to joint configuration space are discussed in detail. We demonstrate the advantages

of our framework in section 4.4 on several problems, where direct motion planning in

configuration space is extremely hard whereas local optimal control using topology-

based representations can efficiently find optimal trajectories.

Contributions:

� The introduction of topology-based representations tuned to the domain of

robot motion synthesis and manipulation, with a strong focus on the in-

teraction of manipulation and the environment.

� A method for Final state estimation.

� A method for trajectory duration estimation

� We develop an extension of stochastic optimal control framework AICO that

integrates various representations for motion planning. We also provide a graph-

ical model that couples motion priors at different layers of representations.

� We design experiments that prove the benefit of exploiting topology-based rep-

resentations in problems involving close interactions.

In chapter 5: Grasp Transfer we have engaged our efforts on particularly inter-

esting field of grasping. First, we investigated how already demonstrated or synthesized

physically stable grasps can be transferred between different hand kinematics. In sec-

tion 5.2 we propose a novel topologically inspired coordinate representation which we

call topological synergies. This approach is motivated by the fact that grasping is in

many cases similar to wrapping the hand surface around an object. Thus we decided

to adapt the representation of winding numbers, described in chapter 3. We define

the transfer problem as a stochastic optimization task using the framework developed

in chapter 4. This approach allows us to compute not only the final grasp itself, but

also a trajectory in configuration space leading to it. We designed and carried out

experiments on transfer between a simulated human hand and a 3-finger Schunk hand.

For the first time, stability evaluation has been done using the simulation framework

PhysX. The results 5.4 demonstrate that our approach makes it possible to transfer a

large percentage of grasps.
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Contributions:

� Development of a novel low-dimensional topologically inspired grasp repre-

sentation for the purpose of grasp transfer which describes how much a hand’s

surface is wrapped around an object.

� Integration of this representation into an AICO planning framework.

� Successful transfer of grasps between a simulated human hand and a 3-finger

Schunk hand.

� A novel stability evaluation method for benchmarking transferred grasps using

a realistic physics simulation carried out in the PhysX simulation software.

� Several extensions of libORS library - development of a human hand kine-

matic model, improvement of an interface to the PhysX engine, development

of specific task variables for grasping problems.

In chapter 6: Caging Synthesis we propose a novel approach for the synthesis

of grasps of objects whose geometry can be observed only in the presence of noise.

The motivation behind this idea was to increase robustness of grasp transfer method

developed in chapter 5. We shifted our focus to the problem of generating caging

grasps, which can be seen as a relaxed form of solid grasps. We introduce the idea

of using geodesic balls on the object’s surface in order to approximate the maximal

contact surface between a robotic hand and an object. We derive two types of heuristics

which extract local information from approximate geodesic balls in order to find areas

that can potentially be used to generate a caging grasp. Our heuristics are based on

two scoring functions defined in sections 6.4.1 and 6.4.2. The first one uses an extended

version of winding numbers representation - winding angles - measuring how much a

geodesic ball on the surface winds around a dominant axis. The second explores using

the total discrete Gaussian curvature, introduced in section 2.2.2, of a geodesic ball to

rank potential caging postures. We evaluate our approach with respect to variations

in hand kinematics, for a selection of complex real-world objects and with respect to

its robustness to noise. We show that our method can generate successful grasps even

on complex objects.
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Contributions:

� We introduce the idea of using geodesic balls on an object’s surface to approx-

imate the contact surface between a hand and an object.

� We develop a novel heuristic based on winding angles designed for generation

of circle cages (S1).

� We develop a novel heuristic based on discrete curvature integrals, capable

of selecting suitable grasp centre points for sphere caging (S2).

� We evaluate our approach in simulation with respect to noise, for various ob-

jects and for several hand kinematics: a deformable hand simulation by a net

of points, a simulated multi-joint 6-finger hand and a 2-finger hand, a 3-finger

Schunk hand and a 5-finger anthropomorphic hand.

1.3.1 Previously Published Work

This thesis enhances our previously published work with extended benchmarking ex-

periments and more detailed methods description. Parts of the work presented in the

thesis have been used within EU project “TOMSY”. Writhe representation with a mo-

tion planning framework was introduced in (Zarubin et al., 2012), the representation

of winding numbers was appended in (Ivan et al., 2013). Initial grasp transfer work

has been shown in (Zarubin et al., 2013a), caging grasps heuristics were presented in

(Zarubin et al., 2013b). Two journal papers are currently in submission and include

work on temporal optimization (Rawlik et al., 2014) and on a combination of grasping

heuristics and motion planning (Sandilands et al., 2014). The content of this thesis is

partially adapted from these papers and only represents work conducted by the author.

Publications

� Zarubin, D., Ivan, V., Toussaint, M., Komura, T., and Vijayakumar, S. (2012).

Hierarchical motion planning in topological representations. In Robotics: Science

and Systems (RSS), Sydney, Australia
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� Ivan, V., Zarubin, D., Toussaint, M., Komura, T., and Vijayakumar, S. (2013).

Topology-based representations for motion planning and generalization in dy-

namic environments with interactions. I. J. Robotic Res., 32(9-10):1151–1163

� Zarubin, D., Pokorny, F. T., Song, D., Toussaint, M., and Kragic, D. (2013a).

Topological synergies for grasp transfer. In Hand Synergies - how to tame the

complexity of grapsing, Workshop, IEEE International Conference on Robotics

and Automation (ICRA), Karlsruhe, Germany

� Zarubin, D., Pokorny, F. T., Toussaint, M., and Kragic, D. (2013b). Caging

complex objects with geodesic balls. In IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Tokyo, Japan

Submissions

� Rawlik, K., Zarubin, D., Toussaint, M., and Vijayakumar, S. (2014). An approx-

imate inference approach to temporal optimization for robotics

In preparation

� Sandilands, P., Zarubin, D., Pokorny, F. T., Toussaint, M., Komura, T., Kragic,

D., and Vijayakumar, S. (2014). Taming variability in robotic manipulation with

electrostatics and geodesic balls



11



Chapter 2

Background

In this chapter we shall review definitions and technical terms needed for understand-

ing the following chapters. Firstly, we discuss a role of representation in robotics

problems and how this choice determines the system behaviour. We will introduce

notions of topological invariants such as Gauss Linking Integral, Writhe Matrix and

Winding Number. After that, we shall formulate basics of stochastic optimal control

and introduce the approximate inference control framework. This method treats mo-

tion planning as a trajectory optimization problem. Such approach allows us to use

Bayesian inference for motion generation under constraints of different nature. Our

work on synthesis of caging grasps require also a basic knowledge of surface recon-

struction from point clouds and related characteristics.

2.1 Open Robot Simulator - libORS

In simulations robots usually modelled as a set of rigid bodies with connecting joints.

Such kinematic trees together with the angles between joints determine the current

robot configuration. In order to perform e.g. a grasping motion, given positions of

finger tips in world coordinates, one has to compute a sequence of transformations for

a given robot kinematics.

We have decided to conduct all our simulations using openly available library li-

bORS developed by (Toussaint, 2012). The simulator offers tools for modelling kine-

matic structures, includes collision detection libraries and allows for generating tra-

12
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α

β

Figure 2.1: A simple actuator with 2 degrees of freedom is shown on the left. A
simulation of a Schunk robot penetrating a target area (in red), is shown on the right.

jectories for robots. Figure 2.1 (right) shows an example of a simulated Schunk hand

and Schunk arm. Kinematic mapping and Jacobians are computed using chaining of

translations and rotations.

The main features of the Open Robot Simulator can be summarized as follows:

� Implementation of manipulators of arbitrary kinematic structure

� Pre-defined “task variables” (motion objectives) (e.g. position, alignment,

q itself, collision potentials, orientations)

� Simulation of robot trajectories and estimation of their efficiency

� Straight-forward execution of planned trajectories on real hardware

2.2 Introduction to Topology-based Representations

Robots should be aware of geometric world around and should not, for example, col-

lide with obstacles while executing a sequence of motions required for achievement

an abstract goal, e.g. putting a key into a keyhole. Coupling abstract and geometric

constraints is a difficult task. Topology-based representations could provide exactly a

“missing link” - they describe the core interface between low-level geometric represen-

tations and high level, almost symbolic ones. The idea of using such representations

comes from the analogy to human behaviour. We do not calculate distance between
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all possible points on object’s surface (as it is often done in classical motion planning)

and do not plan how this distance should be changed in order to e.g. touch the object.

We rather extract the essential structure of the interaction.

Suppose we have a planar manipulator with 2 degrees of freedom (as depicted on

Figure 2.5a). Let us define a configuration space (C-space) as a space of all compo-

nents necessary for the description of the current robot configuration - q ∈ RN , where

q = (q1, q2...., qN). In our toy example q is a set of joint angles (α, β) Varying these

components will change configuration and the position of the end-effector - end of the

second bar in our case. The actual task for this robot would be to reach a certain

position XY with the end-effector. The XY coordinates form the task space. One

has to define a correspondence between C-space and task space in order to allow a

meaningful motion control.

We define a motion problem as an optimization problem with a cost function re-

flecting task constraints. A successful performance requires computing a sequence of

intermediate states αi, βi - or trajectory. In a basic case shown above, a classical in-

verse kinematics (IK) method could give us a solution (Paul, 1982). Before applying

this method we need to know several properties:

� Kinematic Mapping φ : q 7→ y from configuration to the task space

� Jacobian J computed for every part of the robot

� Current and desired position in the task space

� Optimality criteria ( in terms of metric in the task space).

In our example, Kinematic mapping determines the transformation of the end-

effector according to changes in joint angles. Jacobian is a matrix of partial derivatives

of a kinematic map φ. It tells how much a change in configuration space will affect

the position XY of the end-effector in the task space. The metric of the task space

could be a simple Euclidean distance. For more detailed introduction to kinematics in

robotics context we shall refer to (Toussaint, 2013).

Essentially the problem of mapping leads to the question of representation. The

literature (Edmond and Komura, 2009; Tamei et al., 2011) discusses how alternate

formulation of a problem using a different representations allows to significantly benefit
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in computational costs. The main advantages of using alternate representations can

be summarized as follows:

� They can provide a better generalization,

� Naturally describe deformations of flexible and articulated objects,

� Avoid global search and allows of using local optimization,

� Reduce dimensionality of the problem.

In the context of randomized search, such representations alter the Voronoi bias and

therefore, the efficiency of RRT or randomized road maps. (Lindemann and LaValle,

2004) demonstrate this effect in the case of RRTs. An alternate representation changes

a metric, such that a trajectory that is a complex path in one space becomes a simple

geodesic in another. Different representations may allow us to express different motion

priors, for instance, a prior preferring “wrapping-type motions” can be expressed as

a simple Brownian motion or Gaussian process prior in one space, whereas the same

Brownian motion prior in configuration space renders wrapping motions extremely

unlikely.

2.2.1 Linking Numbers And Writhe

We shall introduce several types of topology based spaces which have been investigated

in context of animation and robotics. All of them exploit either Euler characteristic

or Linking Integrals.

Writhe of two closed curves describes how one curve winds around another (see

Figure 2.2 for illustration). The average amount of twists can be computed using

Gauss Linking Integral (GLI):

GLI(γ1, γ2) =
1

4π

∫
γ1

∫
γ2

dγ1 × dγ2 · (γ1 − γ2)
||γ1 − γ2||3

, (2.1)

where γ1 and γ2 are interacting curves. The discrete version of GLI is derived in work

of Klenin and Langowski (2000). The curves are approximated by discrete segments

and writhe is computed for all pairs of segments of these two curves. The writhe matrix
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Figure 2.2: Examples of close interaction of two curves (upper row) and corresponding
writhe matrices (lower row). Adapted from (Edmond and Komura, 2009)

is composed of all pair-wise values and gives very intuitive yet mathematically correct

representation of the interaction. The total writhe is then can be computed by sum of

all matrix elements.

The writhe matrix W can be seen as a detailed description of the relative con-

figuration of two chains. Figure 2.2 illustrates several configurations together with

corresponding writhe matrices. The amplitude of the writhe (shading) along the diago-

nal illustrates which segments are wrapped around each other. Due to discrete nature,

the writhe matrix has very attractive properties from robotics point of view. Most of

robotic structures can be described as kinematic chains and thus can be directly used

for computation of linking integrals.

2.2.2 Total Gaussian Curvature

There are many robotics problems which could be solved using algorithms from compu-

tational geometry. Most of the research in this field is focused on perception problems,

e.g. finding two closest points in a point cloud or mesh reconstruction. Nevertheless,

concepts and methods of computational geometry can also be applied to control prob-

lems. In simple case these abstractions provide an additional source of information for

motion planners. In this section , we shall give several informal definitions of concepts

from computational geometry, which are used in the following chapters.

A point cloud is a set of data points, which can come from laser scanners, stereo

or RGBD cameras. It is typical information about environment which is available for

robot perception module. The main properties of point cloud data include a set of



CHAPTER 2. BACKGROUND 17

a) b) c)

Figure 2.3: Noisy point cloud (a), reconstructed mesh (b), and Gaussian curvature (c)

data points {P} in world coordinates and (optionally) point normals {N}. Given a

set of data points in 3D one could estimate many interesting geometric and topological

properties. The center of mass of a set is used for estimation of weight distribution.

Point normals are usually computed using plane fitting algorithms. Another important

operation is surface reconstruction - the process of connecting points in order to make

triangles (triangulation). For collision detections it is sometimes necessary to cover

the whole cloud with a convex hull.

The surface obtained after triangulation consist of polygons and vertices. It is

called watershed when there are no holes in it.

Curvature at a certain point measures how much the surface twists in different

directions.

Gaussian curvature tells how salient particular part of the surface is. It is 0 for flat

surface, positive for spherical and negative for hyperbolic parts.

Total Gaussian curvature is a sum of Gauss curvatures at all points which belong

to a certain part of the surface. Some examples of introduced operations are illustrated

on Figure 2.3.

The Euler characteristic χ(S) is a topological quantity, which describes shape’s

structure no matter how much it is bended.

Probably most known and important topological invariant is genus. For orientable

surface S, its genus can be computed via Euler characteristic as g = χ(S)−2
2

. In simple

words genus tells how many holes the object has.

The total Gaussian curvature is connected with Euler characteristic via Gauss-

Bonnet theorem (Polthier and Schmies, 2006).
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2.3 Approximate Inference Control (AICO)

Unlike their models, real robotic systems have to deal with all kind of noise. Thus the

exact solutions can not be implemented directly. Typical approach to this problem is

to assume variation in controls and develop motion planning algorithms in probabilistic

framework. Stochastic optimal control (SOC) aims to find a control law, which leads

to a desired motion under given constraints and accounting for uncertainty in some

part of the robotic system. If a cost function is defined then one could formulate an

optimal control problem w.r.t to this functional.

This alternative problem formulation leads to derivation of approximation methods

which would be non-obvious in the classical formulation. In the following we will adopt

the approximate inference perspective to propose a specific approximation method to

solve the SOC problem.

2.3.1 Discrete Formulation of SOC Problem

Let xt be the state of the system at certain time point t and let ut be the control

signal. The discrete time stochastic controlled process can then be defined as:

xt+1 = ft(xt, ut) + ξt , 〈ξt, ξtT 〉 = Qt(xt, ut) (2.2)

Where dynamics ft is non-linear and ξt is Gaussian noise with covariance Qt. For a

sequence of controls and states u0:T , x0:T we define a cost function:

C(x0:T , u0:T ) =
T∑
t=0

ct(xt, ut). (2.3)

The closed loop SOC problem is to find the policy πt
∗ : xt → ut, that has minimal

expected costs:

π∗ = argmin
u
〈C(x0:T , u0:T )〉. (2.4)
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Figure 2.4: The graphical model for standard inference control using dynamic Bayesian
network. Adapted from (Rawlik et al., 2010)

2.3.2 LQG case

In case in of linear dynamic system with quadratic costs and Gaussian noise (the LQG

case) we can integrate controls out according to (Toussaint, 2009):

P (qt+1 | qt) =

∫
u

N (qt+1 | Aqt + a+But, Q)N [ut | 0, H] =

N (qt+1 | Aqt + a,Q+BH−1B′),

(2.5)

2.3.3 Method Formulation

Approximate Inference Control (AICO) addresses the problem of optimal control as

a problem of probabilistic inference in a dynamic Bayesian network (see Figure 2.4

for illustration and (Toussaint, 2009) for extended definition). Let us consider the

dynamic case of the SOC problem, where the state xt = (qt, q̇t). We define the problem

of minimizing (the expectation of) the cost

C(x0:T , u0:T ) =
T∑
t=0

[cx(xt) + cu(ut)] (2.6)

where cu describes costs for the control and cx describes state dependent task costs.

The dynamics of the robot is described by the transition probabilities P (xt+1|ut, xt).
The AICO framework translates the corresponding problem into the graphical model
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(depicted on Figure 2.4)

p(x0:T , u0:T ) ∝ P (x0)
T∏
t=0

P (ut)
T∏
t=1

P (xt|ut−1, xt−1) ·
T∏
t=0

exp{−cx(xt)} .

The control prior P (ut) = exp{−cu(ut)} reflects the control costs. The last term

exp{−cx(xt)} reflects the task costs. The interpretation of this term is that if we had

introduced an auxiliary random variable zt (representing task fulfilment) with

P (zt = 1|xt) ∝ exp{−cx(xt)}, (2.7)

then z = 1 if the task costs cx(xt) are low in time slice t. The above defined distribution

is then the posterior

p(x0:T , u0:T ) = P (x0:T , u0:T |z0:T = 1). (2.8)

Generally speaking, AICO tries to estimate p, in particular the posterior trajectory

and controls. In original work (Toussaint, 2009), this is done using Gaussian message

passing (similar to Kalman smoothing) based on local Gaussian approximations around

the current belief model.

In work (Rawlik et al., 2012) it has been demonstrated that the general SOC

problem can be reformulated in the framework of approximate inference, or more

precisely, as a problem of minimizing a Kullback-Leibler divergence.

The AICO approach is very similar to differential dynamic programming (Murray

and Yakowitz, 1984) or iLQG (Li and Todorov, 2006) methods with the difference that

not only backward messages or cost-to-go functions are propagated but also forward

messages. This modification allows AICO to compute a local Gaussian belief estimate

b(xt) ∝ α(xt)β(xt) as the product of forward and backward message and exploit it to

iterate message optimization within each time slice.

2.4 Robotic Caging and Grasping

One of the most challenging and interesting problem in robotics is grasping and manip-

ulation of objects. It is a crucial component of many state-of-the-art robotic systems,
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a) b)

Figure 2.5: Toy examples for concepts introduced in the chapter. a) Grasping and b)
caging of planar objects

where interacting with the environment is being addressed.

We have already mentioned in Chapter 1, there exist two main concepts in formal

description of robotic manipulation. According to (Murray et al., 2006) force-closure

grasp can resist any external wrench in arbitrary direction. The idea behind is that

forces applied at contact points induce internal forces which compensate each other.

The most common approach for checking whether a grasp is in force closure is to

analyze a convex hull made of all contact points with the object. Popular simulators,

such as GraspIT (Miller and Allen, 2004) or OpenGRASP (León et al., 2010), test the

force-closure property by random sampling and applying some quality measure to the

synthesized posture. This procedure is obviously prone to the reconstruction errors

and perception noise.

Unlike solid grasps, caging is somewhat relaxed form of an interaction with an

object. Contacts and consequently forces are not required to be established in such

case. As defined by (Kuperberg, 1990) an object is caged when it can not be moved

arbitrary far away from the manipulator. There is not necessarily a contact with the

object, but rather a restriction of some degrees of freedom. Caging grasps have mainly

been studied in connection with simple 2-dimensional polygonal objects where analytic

methods provide a solution. An example of grasping and caging of planar objects is

given on Figure 2.5.

In 3D space, caging has not been studied that extensive. In work (Diankov et al.,

2008), the authors used caging grasps for the manipulation of articulated objects with
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handles. The method achieved greater success rate compared to a local contact based

approach. Recent work of (Rodriguez et al., 2012) considered cages as an intermediate

state towards synthesis of solid grasps.
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Chapter 3

Representations

In this chapter we will introduce the topology-based spaces, which can significantly

alter the metric and topology of the search space. As we already discussed in chapter 2,

points that are near in the topological space can be separated by a significant distance

in a configuration space. This insight gives a key to understanding the motivation of

selecting particular types of spaces for the robotics needs. A simple linear interpolation

in a topological space could lead to complex non-linear movement in configuration

space.

Our main objective for exploiting topology-based representations was to find in-

variants that enable us to represent interactions between robot and its environment

more effectively.

Here we will introduce four specific examples of topology-based representations:

Winding numbers, Writhe coordinates, discrete Gauss curvature and Winding angles.

They are used later in our experiments. Writhe representation has previously been

used in the context of computer animation (Edmond and Komura, 2009), attempting

to capture the “windedness” of one object around another. Basic introduction to

winding numbers and Gauss curvature is given in sections 2.2.1 and 2.2.2. We have

extended the previous work and developed methods for forward and backward mapping

between the configuration space and the topology-based space.

Writhe, Winding number and Winding angle representations can be formalized by

a mapping φ : q 7→ y from configuration space to the topology-based space, where

q ∈ Rn is the configuration state with n degrees of freedom. Our motion synthesis

24
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framework, described in chapter 4 require computation of φ and its Jacobian J for any

q. We call a space with Jacobian J and mapping φ, in which goals and constraints can

be defined, a Task Variable.

The representation of a geodesic ball, although is not topology-based per se, serves

as an important link connecting object and hand geometries. It allows us to define

Winding angle and Discrete curvature scoring functions, which are in turn become

topological invariants in the continuous limit. Each representation has its own strength

and weaknesses and coupling them can help solve a wider range of problems.

Contributions of this chapter can summarized as follows:

� Analytical derivation of Writhe Matrix Jacobian

� Analytical derivation of Winding Number Jacobian

� Development of a novel hand-local representation of Geodesic Ball

� Derivation of Discrete Gauss curvature scoring function over geodesic ball

� Derivation of Winding Angle scoring function

3.1 Derivation of Writhe Task Variable

According to (Klenin and Langowski, 2000) and (Edmond and Komura, 2009), the

writhe is a property of the interaction of two kinematic chains. Intuitively, the writhe

tells to what degree the two chains are wrapped around each other. Let us describe

two kinematic chains by positions p1,21:K of their joints, where pik ∈ R3 is the kth point

of the ith chain. Using standard kinematics, we know how these points depend on the

configuration q ∈ Rn, that is, we have the Jacobian J ik :=
∂pik
∂q

for each point. The

writhe matrix is a function of the link positions p1,21:K .

More precisely, the writhe matrix Wij describes the relative configuration of two

points (p1i , p
1
i+1) on the first chain and two points (p2j , p

2
j+1) on the second where i, j

are indexes of points along the first and the second chain respectively. For brevity, let

us denote these points by (a, b) = (p1i , p
1
i+1) and (c, d) = (p2j , p

2
j+1), respectively (see

Figure 3.1 for illustration).



CHAPTER 3. REPRESENTATIONS 26

Figure 3.1: An illustration of analytical writhe calculation for two segments. One - rab
- belongs to the manipulator and another - rcd - is a fixed part of the rope object. We
assume that only points a and b change their positions according to control signals - in
other words, jacobians of these two points are known and we would need to calculate
Jacobian of the whole writhe matrix w.r.t these points. Reproduced from (Zarubin
et al., 2012).

According to (Klenin and Langowski, 2000) an analytical solution for Gauss link-

ing integral between two segments rab and rcd can be expressed as a sum of inverse

trigonometric functions of normalized cross products of vectors connecting points of

two segments. So that:

Wi,j = [arcsin(nanb) + arcsin(nbnc) + arcsin(ncnd) + arcsin(ndna)] sign
[
ab

T
(ac× cd)

]
(3.1)

Where i, j are indices of segments of the respective chains:

na =
rac × rad
‖rac × rad‖

, nb =
rad × rbd
‖rad × rbd‖

, nc =
rbd × rbc
‖rbd × rbc‖

, nd =
rbc × rac
‖rbc × rac‖

, (3.2)

where na, nb, nc, nd are normalized normals at the points a, b, c, d with respect to the

opposing segment (see Figure 3.1). The solution of this integral is based on an analogy

with the solid angle formed by all view directions in which segments (a, b) and (c, d)

intersect (Klenin and Langowski, 2000) multiplied by an appropriate sign.
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3.1.1 Writhe Jacobian

We are going to use writhe matrix representation for our motion synthesis experiments,

which require the computation of Jacobian w.r.t to all segments in a chain. Given the

analytical expression of the interaction of link positions p1,21:K above, we can compute

the Jacobian using the chain rule.

Consider the example described on Figure 3.1, we assume that change of joint

angle at point a is proportional to the change of position of point b. Thus we will

calculate the Jacobian of the writhe matrix with respect to the Jacobian of these

points - coordinates of the tip of a body. Let us calculate explicitly the derivative of,

e.g. arcsin(nanb).

arcsin(
rac × rad
‖rac × rad‖

rad × rbd
‖rad × rbd‖

) = arcsin(
A

B

C

D
) (3.3)

where A,C are vectors and B,D are scalars.

(
arcsin(

A

B

C

D
)

)′
=

1√
1− (A

B
C
D

)2

(
A

B

C

D

)′
= (3.4)

1√
1− (A

B
C
D

)2

((
A

B

)′
C

D
+
A

B

(
C

D

)′)
= (3.5)

=
1√

1− (A
B
C
D

)2

((
A′B − AB′

B2

)
C

D
+
A

B

(
C ′D − CD′

D2

))
(3.6)

So now it is required to have only derivatives of cross products for calculation A′

and C ′. Thus:

(rac × rad)′ = (rac)
′ × rad + rac × (rad)

′ (3.7)

(rad × rbd)′ = (rad)
′ × rbd + rad × (rbd)

′ (3.8)

(rbd × rbc)′ = (rbd)
′ × rbc + rbd × (rbc)

′ (3.9)

(rbc × rac)′ = (rbc)
′ × rac + rbc × (rac)

′ (3.10)
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derivative of the Euclidean norm

δ‖f(x)‖
δx

=
f(x)T

‖f(x)‖
f(x)′ (3.11)

Consequently all B′, D′ values can be replaced by respective B′ =
A

B
A′ and D′ =

C

D
C ′

Once we have an analytical Jacobian expression, we can derive simpler metrics

from the full writhe matrix. For example, the Gauss linking integral, which counts the

mean number of intersections of two chains when projecting from all directions, can

be computed as a sum of all elements of the writhe matrix. In our experiments, we

have also used the vector wj =
∑

iWij as a representation of the current configuration.

In general, writhe, however, does not provide a unique mapping to joint angles which

is why we require additional constraints and cost terms especially in scenarios where

wrapping motion is not dominant.

3.2 Derivation of Winding Number Task Variable

In case when a problem can be described as a wrapping motion in 2D, we can use

a special case of the writhe representation. Recall that the winding number of a

closed curve γ : [0, 1] → R2 not containing the origin in R2 is an integer determining

how many times γ ‘wraps around the origin’ with the sign being determined by the

orientation of γ (see Figure 3.2).

Definition 3.2.1 Let γ : [0, 1]→ R2 be closed, smooth and suppose γ does not traverse

the origin. Then the winding number w(γ) ∈ Z around the origin is given by

w(γ) =
1

2π
(θ(1)− θ(0)). (3.12)

where γ(t) = (r(t), θ(t)) in polar coordinates, and where r denotes the radial and θ the

angular coordinate.

The quantity w(γ) for a closed curve is a topological invariant and does not change

under continuous deformations of γ not intersecting the origin. This formula allows to

compute how γ wraps around the origin, also in the case of piece-wise linear curves.

In latter case, the quantity is not a topological invariant anymore.
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pc

Figure 3.2: Winding number of a point pc surrounded by the doubly wound curve:
ŵ = 2.

We compute the Winding number using the approximate algorithm derived in

(O’Rourke, 1998) which is based on calculating inverse trigonometric functions of the

scalar product of two normalized vectors, formed by consequent points pi and pi+1 on

a curve and a central point pc:

ŵ =
1

2π

n−1∑
i=1

arccos

(
(pi − pc)>(pi+1 − pc)
|pi − pc||pi+1 − pc|

)
(3.13)

where n is the number of points along the curve. This scalar continuous function can

be thus viewed as a simplification of a writhe representation defined in 3.1. In our

experiments, outlined in section 4.3, we assume that all joints and points lie within

one plane. We use the standard kinematics to define the points pi depending on the

configuration q ∈ Rn. We can therefore use the chain rule to compute the Jacobian of

the winding number. For convenience let us denote A = (pi− pc), C = (pi+1− pc) and

B = |pi − pc|, D = |pi+1 − pc|, then the derivative

ŵ′ =
1

2π

n−1∑
i=1

(
arccos(

A

B

C

D
)

)′
= (3.14)
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=
1

2π

n−1∑
i=1

−1√
1− (A

B
C
D

)2

((
A′B − AB′

B2

)
C

D
+
A

B

(
C ′D − CD′

D2

))
. (3.15)

The latter equation is very similar to the one we derived for the writhe matrix Jacobian.

3.3 Geodesic Balls

The notion of a geodesic ball is a key concept of our approach to caging and grasping.

The motivation behind is to find a representation which would describe both – an

object and a hand. Standard approaches towards the synthesis of both caging grasps

and force-closed grasps simplify the geometry of the robot’s hand by working only with

a discrete number of contact points or caging points respectively (Asfour et al., 2006;

Vahedi and van der Stappen, 2009).

In this thesis, we propose to instead think about an approximation of the 2D

contact surface that a robot hand can make with an object. A geodesic ball can be

seen as a rough approximation of a hand surface projected on an object. Technically,

we do not project a hand, but rather approximate it by a patch of surface of a certain

radius, which usually equals to a finger length. The geodesic attribute comes from the

analogy to a shortest path between two points on a curved surface. In our case we

include all vertices along all shortest edge-paths, going from center to the border. One

could imagine a geodesic ball representation as if the hand surface was projected for

all possible rotations of the wrist.

More formally, we model the maximal contact surface between the robot’s hand

and a given closed surface S as a geodesic ball Br(p) of radius r and centred at a point

p ∈ S. Such a geodesic ball then represents the ‘hand-local’ geometry of M for a robot

hand whose fingers are approximately of length r. We think of Br(p) as a first order

approximation of the projection of the robot’s hand onto the object as visualized in

Figure 3.3.

Since the calculation of an exact geodesic ball Br(p) is computationally expensive,

we use the mesh M with vertex set V and consider a rough approximation of Br(p) by

a sub-mesh Gr(p) ⊆M instead. Since all triangles in M are approximately equilateral,

according to section 6.2, we use Dijkstra-like algorithm to determine Gr(p) as follows:

we approximate the distance between two vertices p, q ∈ V by calculating the number
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r

Figure 3.3: We approximate the projection of the robot hand’s surface onto the turtle
model by a geodesic ball whose radius r is proportional to the robot hand’s finger
length. Adapted from (Zarubin et al., 2013b).

of vertices in the shortest edge-path between them and scaling the result by the mean

edge length. Gr(p) then denotes the sub-mesh containing all triangles whose vertices

are of distance at most r from p. Figure 3.4 displays Gr(p) for a fixed vertex p and for

four different radii of increasing size. Since r varies with the size of the robotic hand,

different geometric information is captured by Gr(p) for differing hand size.

3.4 Discrete Gauss Curvature

We have already introduced a topological invariant of total Gauss curvature in section

2.2.2. Here we shall formulate a novel representation based on discrete Gauss curvature.

Let us consider a mesh M with vertex set V (M) and where F (v) defines the set

of faces containing vertex v ∈ V (M). In this case, the total Gauss curvature K(v) for

a vertex v ∈ V (M) can be calculated by K(v) = 2π −
∑

f∈F (v) θ(v, f) (Polthier and

Schmies, 2006), where θ(v, f) denotes the angle of the face f at vertex v. Recall that

point v is called Euclidean, spherical or hyperbolic if K(v) = 0, K(v) > 0 or K(v) < 0

respectively (Polthier and Schmies, 2006).

According to the Gauss-Bonnet theorem for a smooth closed oriented surface S ⊂
R3 the integral of the standard Gaussian curvature should satisfy

∫
S
K dVol = 2πχ(S),

where χ(S) denotes the Euler characteristic of S, introduced in 2.2.2. It is invariant

under certain continuous deformations of S, so that we have χ(S) = 2 − 2g, where g

is the genus of the surface.
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Figure 3.4: Geodesic ball approximations Gr(p) (coloured white) for a fixed vertex p
and for radii r of increasing size on an isotropically remeshed bunny object. The size
of the radius r corresponds to the finger-length of different robotic hands. Adapted
from (Zarubin et al., 2013b).

As discussed in (Polthier and Schmies, 2006; Reshetnyak, 1993), the Gauss-Bonnet

theorem has a discrete analogue for a closed polyhedral surface M ⊂ R3:

∑
v∈V (M)

K(v) = 2πχ(M), (3.16)

where the sum is over vertices in M and K now denotes the discrete total Gauss

curvature.

While K(v) shares some properties with the standard Gaussian curvature, another

more closely related version of K which we shall not use in this work can be provided

by normalizing K(v) by the ‘mixed area’ around the vertex v (see (Meyer et al., 2002)
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Zr(p)

a b

Figure 3.5: Illustration of winding angle representation: The blue line highlights ver-
tices close to the plane Πr(p) for a fixed vertex p and orthogonal to the main axis
Ar(p) of the vertices lying on the depicted geodesic ball Gr(p) with red border. The
wrapping of Gr(p) around the horse is approximated using the angles between the
end-points of the blue curve around the central axis of Gr(p). The upper right sketch
illustrates the solid angle AngleZr(p)(a, b) (in green) between the centre of mass Zr(p)
and the projections of the end-points of Pr(p) onto Πr(p). Reproduced from (Zarubin
et al., 2013b)

for details).

3.5 Winding Angles

Writhe and Winding number representations have shown an outstanding improvement

of the motion planning algorithms within our experiments (as described in the section

4.4). Yet for the problem of synthesis of caging grasps they were not suitable to apply

directly. We developed another version of winding numbers for non-closed curves in

order to describe the wrapping of a hand around an object or its sub-part.

Recall that the winding number of a closed curve γ : [0, 1] → R2 not containing

the origin in R2 is an integer determining how many times γ ‘wraps around the origin’

with the sign being determined by the orientation of γ.



CHAPTER 3. REPRESENTATIONS 34

According to section 3.2, the winding number defines how many times a curve is

wound around a point on a 2D plane (3.2). We extend this notion to a 3D euclidean

space and make use of a geodesic balls representation, introduced in section 3.3.

We suggest to measure the winding of a closed curve γ : [0, 1] → R3 around the

object as follows: for each vertex p of our model mesh M , we consider a set of vertices

of Gr(p) as a set of 3D points. We can thus compute a major axis Ar(p), centre

of mass Zr(p) and a plane Πr(p) going through Zr(p) which is orthogonal to Ar(p).

This plane should separate the geodesic ball into two approximately equal sub-parts

along some “cutting curve”. We shall compute an edge-path Pr(p) in the model mesh

approximating Πr(p)∩Gr(p). On Figure 3.5 the approximation of such “cutting curve”

is shown in blue.

To measure the amount of winding of Pr(p) around the object we finally project

the path Pr(p) onto the plane Πr(p) and compute the winding angle

Wr(p) = 2π − AngleZr(p)(a, b), (3.17)

where AngleZr(p)(a, b) denotes the solid angle between the centre of mass Zr(p) and

the projections of the end-points of Pr(p) onto Πr(p) (as illustrated on Figure 3.5).

Winding angle Wr(p) takes values in [π, 2π]. This quantity can be computed with-

out having to represent the projection γ : [0, 1] → Πr(p) of the curve Pr(p) in polar

coordinates centred at Zr(p) as γ(t) = (r(t), θ(t)). Furthermore, since for our pur-

poses γ satisfies π 6 |θ(1)− θ(0)| ≤ 2π in all but degenerate cases, we opted to use

the winding angle Wr(p) to measure the amount of wrapping of γ around Zr(p).
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Chapter 4

Motion Planning Using

Topology-based Spaces

Many robotic problems concern close interactions of the robot and its environment,

consisting of complex objects. While standard motion planning methods describe

motion in configuration space, such tasks can often more appropriately be described

in spaces that reflect the interaction more directly.

In chapter 1 we have discussed a problem of wrapping of arms around an object,

e.g. embracing a human. Defined in joint space, such a motion is complex and varies

greatly depending on the target object. When describing the motion more directly

in terms of the interaction of arm segments with object parts (e.g. using the writhe

matrix representation that we introduced in chapter 3) we gain better generalization

to other objects.

Topology-based spaces described in previous chapter may provide better metrics or

topology for motion generation. In ideal case, they should enable local optimization

methods, operating in such spaces, to solve problems that would otherwise require more

expensive global search in configuration space. Target scenarios can be, e.g. multi-link

articulated robots reaching through small openings and complex structures, surfaces

wrapping around objects and fingers grasping and manipulating objects. In such cases,

the abstract representations greatly simplify the problem of motion generalization as

well as planning.

In this chapter we introduce our method for exploiting topology-based representa-

36
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tions for motion synthesis in an optimal control context. We decided to formulate the

approach within the framework of Approximate Inference Control (Rawlik et al., 2012),

which is closely related to differential dynamic programming (Murray and Yakowitz,

1984) or iLQG (Li and Todorov, 2006) (more details are given in the section 2.3). The

framework allows us to use a graphical model to describe the coupling of geometric

and topology-based representations.

The main contributions of this chapter are:

� The introduction of topology-based representations tuned to the domain

of robot motion synthesis and manipulation, with a strong focus on the

interaction with the environment.

� Final state estimation algorithm.

� Trajectory duration estimation algorithm.

� We develop an extension of stochastic optimal control framework AICO that

integrates various representations for motion planning. We also provide a graph-

ical model that couples motion priors at different layers of representations.

� We design experiments that prove the benefit of exploiting topology-based

representations in problems involving close interactions.

These extensions contributed to several publications :

� Zarubin, D., Ivan, V., Toussaint, M., Komura, T., and Vijayakumar, S. (2012).

Hierarchical motion planning in topological representations. In Robotics: Science

and Systems (RSS), Sydney, Australia

� Ivan, V., Zarubin, D., Toussaint, M., Komura, T., and Vijayakumar, S. (2013).

Topology-based representations for motion planning and generalization in dy-

namic environments with interactions. I. J. Robotic Res., 32(9-10):1151–1163

� Rawlik, K., Zarubin, D., Toussaint, M., and Vijayakumar, S. (2014). An approx-

imate inference approach to temporal optimization for robotics
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This chapter is structured as follows, we will first review related work on the use

of topology-based representations for character animation and motion planning in sec-

tion 4.1. Section 4.2 presents our approach to coupling topological and configuration

space representations in an optimal control setting through the Approximate Inference

Control (AICO) (Toussaint, 2009; Rawlik et al., 2012, 2014)) framework. This mod-

ification naturally leads to an extension that includes random variables for both the

topological and configuration space representations, with their specific motion priors

coupled via the graphical model. In Section 4.3 we describe experiments on using the

proposed methods to solve motion synthesis problems like folding a box, unwrapping

and reaching through a loop. These problems are extremely difficult or even infeasible

without exploiting abstract representations.

4.1 Related Work

Dimensionality reduction of the state space of robots has been of interest of robotics

research for decades. From the machine learning perspective, dimensionality reduction

techniques are presented by feature extraction and projections to lower dimensions.

For instance, in (Bitzer and Vijayakumar, 2009), a latent manifold in joint space was

computed using Gaussian process from sample configurations produced by an expert.

This manifold was, however, defined by samples from a valid trajectory in joint space

and it did not capture state of the environment directly.

In order to deal with problems involving close interactions, it is necessary to intro-

duce an abstract space based on the spatial relations between the interacting robots

and objects. Several researchers have developed knotting robots that generalize the

status of the strands and plan the motions using probabilistic road maps (Takamatsu

and et.al., 2006; Wakamatsu et al., 2006). These works represent the rope state based

on how it is overlapping with itself when viewing it from a certain direction (Dowker

and Morwen, 1983). The transition between states was achieved by moving the end

points toward a specific direction. Such a representation is not very useful in practice

due to the view-dependence and the difficulty of moving the rope.



CHAPTER 4. MOTION PLANNING USING TOPOLOGY-BASED SPACES 39

Abstract topology-based representations that describe the interactions between 1D

curves using their original configurations were proposed for motion synthesis (Ed-

mond and Komura, 2009; Tamei et al., 2011) and for classifying paths into homotopy

groups (Bhattacharya et al., 2011). In (Edmond and Komura, 2009), a representation

based on the Gauss Linking Integral was suggested to generate winding movements.

Positions of characters were mapped from new representation to the joint angles using

the least squares method.

In (Tamei et al., 2011), the same representation was applied for synthesis of motion

of a robot that puts a shirt on a human. The coupling between the new representation

to the low level representation was learned through demonstrations by humans. The

approach required the corresponding sample points to be fixed and defined a priori.

Another interesting idea, described in (Bhattacharya et al., 2011), was to abstract

the paths connecting a start point and the end point. The paths were only classified

into homotopy classes and there was no discussion about the mapping from the topo-

logical representation to the low level control coordinates. Besides, this representation

was only applicable for simple one dimensional curves and was not useful for describing

the relationship between 2D surfaces, which is often the case in robotics applications.

4.2 Extended AICO With Tasks in Abstract Spaces

4.2.1 Expressing Motion Priors in Topology-based Spaces and

Coupling Spaces

In this section we shall extend the Approximate Inference Control framework (intro-

duced in 2.3) in order to cope with abstract representations. We start with a discussion

on motion priors and how they can be used in conjunction with topological spaces.

In order to estimate the posterior, the controls ut can be integrated out, implying the

following motion prior:

P (xt+1|xt) =

∫
u

P (xt|ut−1, xt−1) P (ut) du . (4.1)

This motion prior emerges as the combination of the system dynamics and our choice

of control costs cu(ut) in configuration space. For Linear-Quadratic systems discussed
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configuration space

control

topology−based space

tasks

y0 y1 y2 yT

u2u1 uTu0

z0 z1 z2 zT

x0 x1 x2 xT

b̂(xT )

Figure 4.1: AICO in configuration and topology-based space. The blue arcs represent
the approximation used in the final-state posterior estimation. Adapted from (Zarubin
et al., 2012).

in section 2.3.2 it is a linear Gaussian prior.

As we have already mentioned in chapter 2 the choice of the representation affects

the Voronoi bias, the metric, or the topology. In some sense, successful trajectories are

likely to be“simpler”(easier to find, shorter) in an appropriate space. More formally, in

Machine Learning terms, this is expressed as a prior. From this perspective topology-

based spaces are essentially a means to express priors about potentially successful

trajectories. In our case we employ the linear Gaussian prior in a topology-based space

to express the belief that trajectories may appear“simpler” in a suitable abstract space.

One has to be aware that using Gaussian motion prior only in abstract topology-

based space is not sufficient to solve general motion synthesis problems. AICO algo-

rithm will return a posterior, which does not directly specify an actual state trajectory

or control law on the joint level. Besides, we would ignore tasks originally defined

on the joint level. In order to address these issues, we need mechanisms to merge

inference in topology-based and state space. We do so by coupling topology-based and

joint state representations in AICO’s graphical model framework as depicted on Figure

4.1. The bottom layer corresponds to the classical AICO setup, with the motion prior

P (xt+1|xt) =

∫
u

P (xt|ut−1, xt−1) P (ut) du (4.2)

implied by the system dynamics and control costs. In addition, it includes the task

costs represented by

P (zt = 1|xt) = exp{−cx(xt)}. (4.3)
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The top layer represents tasks in topology-based space with a given linear Gaussian

motion prior P (yt+1|yt). Two types of tasks are coupled by introducing additional

factors

f(xt, yt) = exp{−1

2
ρ||φ(qt)− yt||2}, (4.4)

which essentially aim to minimize the squared distance between the topology-based

state yt and the one computed from the joint configuration φ(qt), weighted by a pre-

cision constant ρ.

Note that a local linearization of φ and Jacobians of the topology-based spaces,

derived in chapter 3, are enough for efficient Gaussian message passing between layers

of our model. According to the definition of the factors 4.4, the topology-based state

yt can be seen as an additional task variable for the lower level inference, similar to

other potential task variables like end-effector position or orientation.

4.2.2 Probabilistic Model for Final Posture Estimation

Instead of message passing over configuration and topology-based variables in the full

factor graph given in 4.1, which could lead to loops, we approximate probabilistic

inference in several stages.

1. We first approximate directly a final-state posterior b̂(xT ) for the end-state xT

which fulfils the task defined in configuration space. The details are given below

and in the Appendix A.

2. We compute a trajectory posterior in topology-based space, accounting for the

coupling of this final-state posterior to the topology-based representation.

3. We then project this posterior down to the configuration space, using AICO

coupled to the topology-based space via factors introduced above.

As you might have noticed from the inference model 4.1, the initial inference in

topology-based space only accounts for the task at the final time step. In order to over-

come this limitation, we decided to iterate inference between levels. For the problems

investigated in our experiments, the approximation scheme above is sufficient.
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Final state posterior estimation computes an approximate belief

b̂(xT ) ≈ P (xT | x0, z0:T = 1) (4.5)

about the end-state given the initial state and conditioned on the task. This ap-

proximation neglects all intermediate task costs and assumes linear Gaussian system

dynamics of the form

P (xt | xt−1) = N (xt | Atxt−1 + at,Wt) . (4.6)

We can integrate the system dynamics,

P (xT | x0) =
∑
x1:T−1

T∏
t=1

P (xt | xt−1) , (4.7)

which corresponds to the blue arc in 4.1. For stationary linear Gaussian dynamics, we

have

P (xT | x0) = N (xT | ATx0+
T−1∑
i=0

Aia,
T−1∑
i=0

AiWA
′i
) , (4.8)

where superscript on A stands for a power of matrix, defined iteratively Ai = A∗Ai−1.
To estimate b̂(xT ), we condition on the task,

P (xT | x0, z = 1) =
P (zT = 1 | xT ) P (xT | x0)

P (zT = 1 | x0)
. (4.9)

Since we assume the distribution P (xT | x0) to be Gaussian, using a local Gaussian

approximation of the task P (zT = 1 | xT ) around the current mode of b̂(xT ), P (xT |
x0, z = 1) can be approximated with a Gaussian as well. We iterate this by alternating

between updating the final state estimate b̂(xT ) and re-computing the local Gaussian

approximation of the task variable. The exact derivation of the final state estimators

for different cases of system dynamics is given in the Appendix A.
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Figure 4.2: Initial (left) and final (right) state of simulation of box folding motion
using winding numbers representation. Two skeletons that are being wound around
the centre of the box are overlaid over the sides of the box. Reproduced from (Ivan
et al., 2013).

4.2.3 Estimation of the Trajectory Duration

The temporal optimization is based on the idea of one-step inference described in the

previous section. We estimate the final state of the robot configuration under simple

kinematic constraints and try to apply the likelihood maximization with respect to

the duration of the trajectory. It is somewhat similar to the notion of Macro-states in

(He et al., 2010), but differs in terms of splitting trajectory into keyframes. Presented

algorithm is much simpler than EM used for temporal optimization in (Rawlik et al.,

2010), since we first estimate the exact final configuration and have an intuition about

the possible time consumption. More details are given in the Appendix A.

4.3 Experiments

Having a motion planning framework, accounting for constraints in topology-based

spaces, we agreed to conduct first experiments on a toy example. Being the most

intuitive, we chose the representation of winding numbers and designed a simulated

chain of joints suitable for wind-like motions. We decided to demonstrate the elegance

and simplicity of this abstraction on a folding a box from layout experiment (See Figure

4.2).



CHAPTER 4. MOTION PLANNING USING TOPOLOGY-BASED SPACES 44

The goal was to generate a folding motion, but instead of controlling all joint angles

directly (although trivial in this case), we set only two scalar goals for our optimization

problem - degrees of twist for the two chains or winding numbers as described in

section 3.2. Close up or folding motion is then generated by the approximate inference

in dynamic Bayesian network. Winding number, despite of its simplicity, has good

generalization properties (e.g. it is invariant w.r.t. number of elements in chain) and

can be used in arbitrary combination with other topological or geometrical goals.

4.3.1 Experiments with Writhe Representation

Writhe representation, introduced in section 3.1, is particularly interesting to use for

describing an interaction of two chains of joints. As an example of a possible applica-

tion of the this abstraction, we simulated a manipulator, consisting of 20 cylindrical

segments and a hand with three fingers, making in total 29 degrees of freedom. Initial

configuration of this rope-like manipulator was set to be twisted two and a half times

around a striped pole, giving us approximately 900◦ of writhe density (See 4.3(a)).

The task was to generate a trajectory which should lead to grasping of the black

cylinder without colliding with the striped stick (Figures 4.3(a),4.3(b)). Obviously, a

local feedback approach using Inverse Kinematics will experience failure in this task.

Naive AICO, with only end-effector task variable and collision avoidance task variable

activated, is unable to converge to a solution due to a deep local minima in this

space. Solution of this planning problem in configuration space would require to use

exploratory motion planning methods such as Rapidly-exploring Random Trees (RRT).

On the other hand, a successful trajectory can be well captured as a linear interpo-

lation in writhe space and projected back to the configuration space using the coupling

method described in 3.1. Figure 4.3(e) illustrates an example of a unwrapping trajec-

tory in topology-based space when all rows of writhe matrix are summed up into one

column, representing the current state.

4.3.2 Reaching Through a Loop Using Writhe Representation

As described above, Writhe space is a suitable representation for tasks that involve

interactions with chains—or loops—of obstacles. In order to demonstrate that, we
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(a) initial configuration (b) final configuration

(c) initial writhe matrix (d) final writhe matrix
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Figure 4.3: The experimental task is to grasp the object without collisions. Corre-
sponding writhe matrices (c, d) are depicted below the configurations (a, b) - the
darkness represents the amplitude of the writhe value. Each row in writhe space
evolves over time as shown in (e). Reproduced from (Ivan et al., 2013).

have designed another task - reaching through a loop. The rim of an object forms the

first chain (a loop of segments) and several joints of a robotic Schunk form another

chain as shown on Figure 4.4. The interaction between these two chains can thus be

described by the writhe representation.

Classically this problem would be addressed by conditioning on the end-effector

position and collision avoidance. The advantage of using Writhe as a description of

the interaction is in defining the task as a relative configuration of the robot and the

loop—this relative description remains useful also when the box is moved dynamically.

Writhe matrices corresponding to the initial (left) and the final (right) configura-
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Figure 4.4: Result of successful reaching motion. The task was defined in topology-
based space. Two lower plots show the writhe matrix for chains defined on the Schunk
hand and on the circle. The final Writhe matrix contains a peak around the link which
passes through the loop, indicating it is fully wrapped by the circle segments.

tions are shown on Figure 4.4. The target in the Writhe space does not strictly define

the task for all arbitrary positions of the circle, unlike the unwrapping task in the

previous section 4.3.1. It allows us to define sub-goals such as precisely controlling

the end-effector position via another task variable (“remain inside of the box”). This

became possible due to the extension of AICO and appending an additional type of

tasks to the graphical model. We can therefore achieve accurate manipulation within

a spatially constrained dynamic environment.

4.4 Results

Extended AICO was conditioned on the end-state in writhe space yT , estimated using

our method from section 4.2.2. It was able to generate locally optimal trajectories,

consisting of 50 time steps, in only few iterations, requiring a relatively small number

of usually expensive collision checks (less than 1000). Initial comparison with RRTs

planning for this reaching task revealed a dependence of the performance on distance

between end-effector and object position. Moreover, full costs of obtained trajectories

were on average 100 times higher than those generated with the local optimizer. Here,

the end-state in configuration space qT was given as a target for RRTs.
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Figure 4.5: Performance of planning algorithms for unwrapping task. Computational
time is proportional to the number of collision detection calls. Reproduced from (Zaru-
bin et al., 2012).

For more systematic benchmarking of our planning platform, we have designed a set

of final configurations qT , gradually increasing the relative angle to be unwrapped. This

sequence of final states was given as goals to uni- and bi-directional RRT planners.

The results show that for simple trajectories (e.g. in case of nearby lying objects)

all methods have no difficulties, whereas starting with one and a half of full twist,

unidirectional search fails and bi-directional significantly slows down (See figure 4.5).

In this comparison, the RRTs solved a somewhat simpler problem than our system:

For the RRTs we assumed to know the final state qT in configuration space – estimated

final pose using method from section 4.2.2 as the target qT for RRTs. This is in contrast

to our planning framework, where we use the end pose estimate only to approximate a

final topology-based state yT and then use the extended AICO to compute an optimal

trajectory (including an optimal qT ) conditioned on this final topology-based state.

Therefore, the RRT’s problem is reduced to growing to a specific end state. We

applied the standard method of biasing RRT search towards qT by growing the tree

10% of the time towards qT instead of a random sample of the configuration space.
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Knowing qT also allowed us to test bi-directional RRTs, each with 10% bias to grow

towards a random node of the other tree. Even under such simplified constraints,

the RRT-based planners used significantly more computations for interpolating the

states when complex winding is required. Furthermore, RRTs output non-smooth

paths whereas AICO produces (locally) optimal dynamic trajectories since it minimizes

dynamic control costs.

In summary , a combination of approximate inference methods and task-specific

alternate representation gives an outstanding improvement of both quality and com-

putational costs of the resulting motion. Particular types of interactions are much

more natural to describe in Writhe or Winding coordinates. “Brute force” approach

using randomized search in the C-space is not optimal and fails for such interactions.
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Chapter 5

Grasp Transfer

In this chapter we show how grasp transfer problem can be addressed using our motion

planning framework developed in chapter 4. We start with a discussion on how invari-

ants defined in chapter 3 can be employed for this task. Then we move to combination

of the motion planning in topology-based spaces, described in chapter 4, and grasp-

ing representations. We claim such a fusion to be advantageous for generating hand

postures, similar to the demonstrated by a human. We conclude with experiments

involving motion planning and winding numbers representation implemented in one

system. This chapter is an extension of previous author’s work (Zarubin et al., 2013a).

Contributions of this chapter according to Zarubin, D., Pokorny, F. T., Song, D.,

Toussaint, M., and Kragic, D. (2013a). Topological synergies for grasp transfer. In

Hand Synergies - how to tame the complexity of grapsing, Workshop, IEEE Interna-

tional Conference on Robotics and Automation (ICRA), Karlsruhe, Germany:

� Development of a novel low-dimensional topologically inspired grasp repre-

sentation for the purpose of grasp transfer which describes how much a hand’s

surface is wrapped around an object.

� Integration of the above mentioned representation into an AICO planning

framework.

� Successful transfer of grasps between a simulated human hand and a 3-finger

Schunk hand.
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Figure 5.1: Illustration of grasp transfer problem. The initial recording of a human
grasp posture (left) is done using the Polhemus magnetic tracking sensors. The recon-
structed grasp with a simulated human hand is in the middle and a result of motion
planning for a robotic arm and a Schunk hand is on the right.

� A novel stability evaluation method for benchmarking transferred grasps using

a realistic physics simulation carried out in the PhysX simulation software.

� Several extensions of libORS library - development of a human hand kine-

matic model, improvement of an interface to the PhysX engine, development

of specific task variables for grasping problems.

Despite of huge progress in grasping research, human demonstrations still remain

the “ground-truth” data for motion synthesis algorithms. People do not only perform

significantly better in manipulation tasks but also capable of doing so even if one or two

fingers are damaged. Some fields of robotics research focus explicitly on transferring

such demonstrations to robotic manipulators. It might be much cheaper to ”copy” or

transfer the grasp, instead of generating a desired posture“from scratch”. The question

of representation of a stable grasp and how to transfer such grasps between different

hand kinematics remains an open area of research (Bicchi and Kumar, 2000).

Currently, the most popular approach towards describing good grasps is to analyse

contact points and normals between the hand’s surface and the object. This approach

is known as force closure analysis and estimates how forces applied, e.g. on tips of

opposite fingers, would correlate and increase the stability of the resulting grasp. In

practice though, it might be difficult to achieve theoretically predicted positions of
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finger tips due to noise in robotic sensors.

Even if a perfect model is provided there is no unique solution, which could generate

a stable grasp. Popular simulators, e.g. such as GraspIT (Miller and Allen, 2004), offer

a computationally expensive brute force search. The algorithm samples hand postures

all over the object and computes the force closure values until a good candidate is

found. The number of samples is usually of order of thousands, which makes it difficult

to carry out on a real robot. Besides, the resulting grasp is only “optimal” w.r.t a

particular hand kinematics and particular mesh.

In this chapter, we claim that the choice of representation of the state space can

significantly simplify the transfer problem and overcome the disadvantages of the force

closure analysis. We have already discussed before in chapters 3 and 4, that operating

in the joint space coordinates directly is not always the best idea. In grasping context,

there exists no obvious way of transferring a grasp to a new kinematic hand structure

with different geometry and number of joints.

We suggest to exploit topology-based representations for describing hand postures.

These spaces have shown good generalization properties (see section 4.4) and improve-

ment of the motion synthesis involving close interactions. We show here how winding

number representation can be employed for transferring grasps between different hand

kinematics.

Grasping motion can be divided in several phases such as forming a pre-shape

posture, approaching the object, closing of the fingers. When described directly in

configuration space, such a motion can vary greatly depending on the target object.

When describing the motion more directly in terms of the interaction of hand segments

with object parts, we gain, as shown below, better generalization to manipulators of

different kinematic structures.

5.1 Related Work

There are many robotic manipulators available on the market today. A human hand

has a state space with more than 20 degrees of freedom (Buchholz and Armstrong,

1992; Dragulescu et al., 2007; Santello et al., 1998), while, for example, a Schunk robot

hand has only 7 degrees of freedom. This inequality in degrees of freedom makes the
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question of transferring a human hand posture to a robot hand highly non-trivial.

The problem of course is not about making a full copy of a human hand, but rather a

general problem of correspondence between different hand kinematics.

Evidence from neuroscience and electrophysiological experiments on human sub-

jects (Arbib et al., 1985; Santello et al., 1998) suggested that humans use some sort of

low-dimensional representation, to which authors refer as postural synergies, in order

to perform a grasping motion. In later work (Santello and Soechting, 2000), researchers

introduced force synergies in attempt to define a linear subspace, which could repre-

sent a subset of grasping forces. A similar concept of postural synergies is derived in

(Romero et al., 2012).

In the context of programming by demonstration, the exact transfer of a demon-

stration from a human subject to the robot is required for teaching new skills by the

robot (Friedrich et al., 1998; Kang et al., 1997). Similarly, in the context of teleopera-

tion (Rohling and Hollerbach, 1993) it is highly desirable to be able to transfer grasps

from a human to a robotic hand (e.g. in case of manipulating household objects (Hu

et al., 2005)).

Several approaches to the transfer problem have been investigated. The early work

(Rohling et al., 1993) discussed three broad methods for transfer given by a) linear

joint mapping - which is applicable if the robot’s hand kinematics are very similar to

those of the human hand, b) pose mapping - using least squares fitting and c) fingertip

mapping. In more recent work of (Ekvall and Kragic, 2004) and (Kang et al., 1997),

approaches related to the notion of virtual fingers have been explored. In this case, a

subset of the fingers of the human hand was manually mapped to one or more fingers

of a robot hand.

Dimensionality reduction is the key feature that the virtual finger, fingertip and

synergy approaches share. They all attempt first to reduce the number of dimensions

needed to describe a hand pose. Similarly, in the case of postural synergies (Santello

and Soechting, 2000; Bicchi et al., 2011), a lower dimensional linear subspace of the

full joint space is extracted using principal component analysis.

Another work of (Sandilands et al., 2013) exploits electrostatic coordinates for

grasp transfer. Although, this approach is rather computationally expensive, it leads

to good results for certain types of objects. The experimental setup is very similar to
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Figure 5.2: Grasping objects using electric flux. Adapted from (Sandilands et al.,
2013).

the one used in our approach ( see Figure 5.2 for illustration).

Recent work (Romero et al., 2012) investigates cases where a linear dimensionality

reduction might be suboptimal and explores the use of the nonlinear GP-LVM dimen-

sionality reduction framework. The representation which we develop here falls into this

non-linear class of state space representations, but while (Romero et al., 2012) attempt

to find such a representation by data-analysis, in this work, we consider designing such

a representation by finding analogies to methods and representations in topology.

5.2 Topological Synergies

In this section we propose a novel approach to transfer grasps between different hand

kinematics. We develop a low dimensional topologically inspired coordinate represen-

tation of winding numbers. We call a set of such numbers topological synergies. In

section 4.3 we have shown the efficiency of writhe matrix and winding number repre-

sentations in robotics context. The multi-layered extension allowed to speed up the

motion planning and to simplify definition of related tasks. Proposed here topological

synergies were developed as an application of winding number representation to more

specific field of motion planning - grasp transfer. The recent work of (Pokorny et al.,

2013) suggested to use winding numbers to generate caging grasps on objects with

holes. Here we extend a standard definition of winding numbers to a R3 and propose

a novel grasp descriptor for synthesis of grasping motions.
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Figure 5.3: We define curves going through the thumb and other fingers, resulting in
4 curves in total for the human hand. The winding of these curves around the centre
of the object is then considered to be a low-dimensional representation of a grasp.
Adapted from (Zarubin et al., 2013a).

5.2.1 Invariant Representation

We assume that for any robotic or human hand with n ≥ 2 fingers f1, . . . , fn, one of

the fingers can be labelled as a thumb. In practice, the thumb for a robotic hand such

as the Barrett, Schunk and Shadow hand, can be easily identified.

We can consequently define piecewise linear curves γ1, . . . γn−1, such that γi(0)

starts at the tip of the thumb fn and ends at the tip of fi by traversing the joints of

fn, then going through the center of the base of the hand and continuing through the

joints of fi. On Figure 5.3 such curves γ1(0) are depicted in white. A similar definition

of winding curve is also used in (Pokorny et al., 2013).

Given that the classical winding number w(γ) ∈ Z, for a closed curve γ in R2

computes the winding around a point p ∈ R2 by calculating the total change in angular

coordinates, we now define a similar quantity for piecewise linear curves in R3.

Let us define γ : [0, 1]→ R3 to be the piecewise linear curve connecting the points

X0, . . . , Xn ∈ R3 by linear line segments from Xi to Xi+1, for i = 0, . . . , n − 1 such

that a fixed central point p ∈ R3 is not contained in the image of γ (see Figure 5.4 for
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p

γ

Xi

Xi+1

αi

Figure 5.4: An illustration of winding number topological invariant in three dimensions.
The actual winding value (sum of αi = anglep(Xi, Xi+1)) for the non-closed curve (solid
line) is computed with respect to a reference point p, which is not necessary lying on
the same plane with γ.

illustration). For such a curve we can define

ŵ(γ) =
1

2π

n∑
i=0

anglep(Xi, Xi+1), (5.1)

where anglep(Xi, Xi+1) denotes the angle between the vectors Xi − p and Xi+1 − p.
In case when γ is a closed curve that lies completely in a plane containing p, the

above defined quantity is just the usual winding number. We will show in this chapter

that ŵ(γ) can be reliably used in grasping applications to quantify how much a curve,

representing a robotic manipulator, is ‘wrapped’ around an object.

5.2.2 Motion Planning

In line with our previous research, we also incorporate motion planning using the ex-

tended AICO framework (see chapter 4 for details). The method allows us to combine

our topological tasks with traditional constraints such as collision avoidance. One

of the motivations for the use of alternate representations is that these spaces can

better describe “wrapping-type motions”, which are typical for grasping. Given the
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framework developed above, it is straight forward to incorporate winding numbers as

a simple Gaussian process prior.

In the context of grasp transfer, we shall use quantities ŵ(γi), as a compact re-

duced representation of the “wrappedness” of the hand surface. As we already de-

fined above, the posture of a human hand grasp p can be described by four num-

bers ŵ(γ1), . . . , ŵ(γ4). We reduce it further and shall consider the quantity y =

(ŵ(γa), ŵ(γb)) ∈ R2, where γa, γb are the two curves with the highest winding ŵ around

the centre of mass of the target object. The value of y represents a description of a

grasp in a topology-based space. We shall compute y for a human demonstration grasp

and shall use this quantity as a topological task. We setup goals for the Schunk robotic

hand to attain the same winding quantity with respect to the two curves γ′1, γ
′
2 running

through the Schunk robotic hand.

Recall that in the extended AICO framework (see section 4.2), a motion prior in the

topology-based space is coupled with the configuration space by introducing additional

factors

f(xt, yt) = exp{−1

2
ρ||φ(qt)− yt||2}. (5.2)

This factor essentially tries to minimize the squared distance between the state in

topological space, in our case - space of winding numbers y = (ŵ(γa), ŵ(γb)) ∈ R2,

and the one computed using forward mapping from the configuration space φ(qt). This

extension allows us to treat the winding representation of a grasp as an additional task

variable.

5.3 Experiments

All experiments have been carried out in libORS, described in the section 2.1. In

addition to extended AICO motion planning, we have implemented an interface to

NVidia PhysX engine. We have also created a kinematic model of a human hand

based on a 3d scan with 20 degrees of freedom (DOF) (see Figure 5.3, left) , which

served as a “demonstrator”. As a target manipulator we chose a model of the Schunk

robot hand (Figure 5.3, right). The robotic hand was attached to the Schunk arm and

motions were generated for the full 14 DOF robot (arm + hand).
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5.3.1 The Generation of the Benchmarking Data

Instead of recording training data set from human subjects, we decided to automat-

ically generate a large set of grasps in simulation. This way we avoided solving a

problem of fitting the data from the magnetic sensors from different subjects to one

kinematic model of the hand, but still obtained a statistically significant amount of

test data.

We have opted to use grasps generated with a part-based grasp planning system

– BADGr (Huebner, 2012). The benchmarking set consisted of stable grasps with a

human hand model for two objects. These models - a bottle and a hammer - are shown

on Figure 5.5.

Models were first approximated through a set of oriented bounding boxes and then

decomposed according to a convexity index. For each reachable side of the boxes, 4

grasp hypotheses were generated by aligning the approach vector to its normal and

the 4 orientations to its 4 edge vectors. The best grasp was then chosen according to

quality function. More details of the grasp planning process can be found in (Huebner,

2012).

We tested the initial set of 251 grasps for physical stability using the simulation

engine PhysX. We copied the whole configuration - the hand and the object into

the physical environment with gravity and friction forces. After that, we performed

a sequence of random rotational motions of the hand with the object for a 1000 of

simulation steps. A grasp was considered to be stable if an object did not fall on the

”floor” during this procedure.

After testing stability in PhysX, we selected 67 stable grasps for the hammer and

32 stable grasps for the bottle model. We have used this set as our benchmarking data

set in order to evaluate the transfer to the Schunk robot hand.

5.3.2 Grasp Transfer Using Motion Planning

We addressed the transfer problem in two phases:

� 1) motion planning using AICO framework and

� 2) an automatic closing of the fingers.
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Figure 5.5: Left half: examples of bottle grasps generated with human hand and
transferred Schunk hand grasps. Right half: examples for the hammer model. Adapted
from (Zarubin et al., 2013a).

This is one of the main differences of our approach from other similar methods. They

focus mainly on the second phase or try to find the contact points. We instead let

the motion planning algorithm decide what an optimal configuration (position and

orientation) of the hand should be.

For the first phase we used the winding numbers extracted from human hand

example grasps from the benchmarking data set. We measured winding around the

centre of mass of the object with respect to all four curves γ1, . . . , γ4, running along the

human hand. After that, we selected the winding values with with the largest winding

values (e.g. γ1, γ2) and defined these values as goals for winding task variables, derived

in section 3.2.

In addition, we have also included a collision task variable, which had very high

costs for states penetrating an object. Since the robot platform we had was not mobile

and not all orientations can be reached by the robot arm, we imitate the approach

direction of the simulated human grasp by rotating the object. This heuristic ensures

that the grasp approach direction is feasible for the robot arm. For the second phase, we
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Table 5.1: Stability evaluation of transferred grasps

Objects Hammer Bottle

Total number of grasps 101 151

Stable grasps 67 32

Autoclose based on initial human hand configuration 13% 25%

Grasp transfer using topological synergies 53% 63%

performed an automatic finger closing - we moved each segment of the finger gradually

until a contact or a certain small distance was achieved.

5.4 Results

The benchmarking of the transferred grasps has been done using a realistic physical

simulation using PhysX engine as described in the section 5.3.1. In this case we

again copied the hand (without an arm) to the physical environment and performed a

sequence of rotational motions. This procedure determined a successful classification

of the grasp.

Recall, that our approach to transfer problem consists of two phases. Firstly, the

trajectory is generated with AICO conditioned on winding number and collision task

variables. The efficiency of the planner is discussed in the chapter 4. In this work,

we focused on benchmarking the second phase - the actual grasp posture after an

automatic finger closing.

In order to show that the motion planning is advantageous compare to direct“trans-

plantation” of the hand, we tested this hypothesis on our dataset. We placed the

Schunk hand into the same position and set the same orientation as it was for the

human hand. After that, we closed the fingers and checked the stability as described

above.

Results of the experiments can be seen in the table 5.1. The direct ”transplanta-

tion” method has a very low success rate with respect to the total number of stable

grasps. Whereas our approach, exploiting topological synergies, produces much higher
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Figure 5.6: Trajectories in topology-based space consisting of yt = (ŵ(γ1(t)), ŵ(γ2(t))).
The graph displays steps t in the simulation (horizontal axis) against the winding values
of ŵ(γ1(t)) and ŵ(γ2(t)). These curves were defined as going through thumb-index and
thumb-middle fingers respectively. Adapted from (Zarubin et al., 2013a)

percentage of successful grasps. At least half of the transferred grasps were stable un-

der realistic physical conditions. These results prove that a novel grasp representation

based on the notion of winding numbers is capable of transferring from 20 DOF human

hand to a 7 DOF Schunk hand.

It is interesting that the amount of information necessary for our method is sig-

nificantly less than required by other approaches - only two winding values and the

orientation of the object is sufficient for transferring grasps of simple objects. The

trajectory in topology-based space is also comparatively simple (see Figure 5.6). How-

ever, due to non-linear properties of the mapping from the topology-based space used

in our planner, we obtain a complex grasping behaviour in the configuration space.
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5.4.1 Conclusions

In this chapter we have continued to explore topology-based representations in context

of motion planning. We applied our framework to the problem of grasp transfer. We

have used winding numbers, which measured how much a hand is wrapped around a

target object. The results demonstrated that “topological synergies” can be used to

successfully transfer grasps between a human hand and a Schunk hand. This is partly

due to the fact that we were able to use topology-based task goals in conjunction with

more traditional task variables, e.g. collision potentials, in order to synthesize complex

motions.

Note that we chose the centre of mass as a reference point for the winding measure.

This is a strong assumption and reduces the applicability of this particular approach.

The shape of object is being completely ignored. The question of how the structure

of the shape can affect grasping is addressed in the next chapter 6. The results and

methodology developed here have served as a good basis for our further research and

led to the development of other interesting topology-based representations.
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Chapter 6

Caging Synthesis

A popular approach for grasp synthesis in robotics is based on local contact-level tech-

niques. Given an accurate mesh-representation of the object and friction coefficients,

these methods use a certain grasp quality scoring function Q to generate hand config-

uration. The function Q can be defined in terms of contact points and surface normals

on the object (e.g. as in (Ferrari and Canny, 1992)).

The most popular scoring function is based on computation of concatenation of

possible forces applied at finger tips in normal directions - thus assuring force-closure

grasps (Murray et al., 2006). The main drawback of these methods is that one needs

to know friction coefficients and normals. They typically are not particularly robust

in the presence of noise since even a small variation in the vertex positions on a mesh

can result in large deviations of the estimated normal vectors. Besides, the actual

calculation of Q function requires exhaustive collision checks within some simulator

(e.g. GraspIT (Miller and Allen, 2004)) and have to be done for every hand separately.

Caging grasps are deprived of these drawbacks. They do not necessarily form

contact with the object, but rather restrict its mobility. So that the object remains

within a small distance from the hand surface. Caging grasps have mainly been studied

in connection with simple 2-dimensional polygonal objects where analytic methods

provide a solution.

Encouraged by success of using topology-based representation for general motion

planning and grasp transfer, described in previous chapters, we have developed a novel

heuristic synthesis algorithm, which exploits topology of the object. For the first time,
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Figure 6.1: An illustration of our curvature based sphere caging heuristic. The red
area in the left picture highlights an approximate geodesic ball on the surface with
a large value of our discrete curvature integral. The two other plots demonstrate an
application this heuristic - generated grasps with a net of points (middle) and a 3-finger
Schunk hand (right). Adapted from (Zarubin et al., 2013b).

our method is capable of caging complex 3D objects. This chapter enhances previous

author’s work (Zarubin et al., 2013b).

The contributions of this chapter can be summarized as follows:

� We introduce the idea of using geodesic balls on an object’s surface to approx-

imate the contact surface between a hand and an object.

� We develop a novel heuristic based on winding angles designed for generation

of circle cages (S1).

� We develop a novel heuristic based on discrete curvature integrals, capable

of selecting suitable grasp centre points for sphere caging (S2).

� We evaluate our approach in simulation with respect to noise, for various ob-

jects and for several hand kinematics: a deformable hand simulation by a net

of points, a simulated multi-joint 6-finger hand and a 2-finger hand, a 3-finger

Schunk hand and a 5-finger anthropomorphic hand.

Most research on caging consider mainly planar scenarios with fingers represented

by points or discs such as in (Vahedi and van der Stappen, 2009). Unlike this approach,

we are interested in the synthesis of caging grasps in 3D, for a complex object and using

a real robotic manipulator. To our best knowledge, there exist no analytic solution
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to the general caging grasp synthesis problem. That is why we decided to explore a

heuristic approach which enables us to:

a) synthesize likely caging grasp configurations using information about the ‘hand-

local’ geometry of an object

b) evaluate different robot hand kinematics for the purpose of generating caging

grasps.

Our approach consists of three main parts: a suitable object mesh representation

described in section 6.2, a representation of the object/robot hand interaction intro-

duced in section 3.3 and a quality scoring function for two types of caging heuristics

which we call circle and sphere caging (defined in section 6.4).

For circle caging, which is motivated by caging an object by a curve which is almost

closed, we develop a method for choosing appropriate grasping points using winding

angles. For sphere caging, which is motivated by the idea of enclosing an object as much

as possible by a geodesic ball, our approach is based on integrated discrete Gaussian

curvature.

6.1 Related Work

We have already discussed two main concepts in grasping research in chapter 2.

One approach uses force-closure measure, which tells if the object can resist exter-

nal wrenches in arbitrary directions. This measure provides a ranking of potential

grasp hypothesis. This concept is embedded in popular simulators such as GraspIT

(Miller and Allen, 2004) and OpenGRASP (León et al., 2010). They use random sam-

pling or heuristics in order to determine stable grasp configurations. An example of

a sampling based approach is described in the work of (Borst et al., 2003). The more

recent work (Saut and Sidobre, 2012) integrates grasp ranking procedure and sampling

with a suitable object representation. The force closure measure can be computed once

the local contact geometry of the object is known.

The second concept of a caging grasp relies on analysis of the global geometry of

the object. The early work of (Rimon and Burdick, 1994) considered only plannar

objects. Caging was defined there as a situation when the object could not be moved
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arbitrarily far away from a fixed set of points in the plane. An interesting work on

the relation between grasping and caging is presented in (Rodriguez et al., 2012).

There, a caging grasp is considered to provide a useful waypoint towards a stable

force-closure grasp. In work (Diankov et al., 2008), the authors investigated caging

grasps for the manipulation of articulated objects with handles such as doors and

windows. They generated a set of caging grasps on such handles and achieved greater

success rate compared to a local contact based approach. In (Stork et al., 2013a), a

caging approach based on topological features of objects with holes was investigated.

A few papers have studied curvature of object’s model in order to identify grasping

configurations. In work (Calli et al., 2011), it is assumed that concave points of a 2D

elliptic Fourier descriptor of an object are most suitable for grasping. Good candidates

are preselected by means of curvature extrema and then evaluated further using the

concept of force-closure.

Another related work (El-Khoury and Sahbani, 2010) proposes a grasping algo-

rithm for unknown 3D objects. There, Gaussian curvature is employed during the

segmentation of the object. The labelling of sub-parts of the object is then done with

respect to neighbourhoods of extrema of Gaussian curvature. This method depends

on the use of point-wise approximations of Gaussian curvature and is hence rather

unstable under noise. While the robustness with respect to noise can be increased by

an additional smoothing step, we shall take a different approach in our work since we

will work with a discrete version of Gaussian curvature defined for any mesh.

6.2 Pre-processing of Geometric Structures

We assume that we have a potentially noisy mesh representation M of an object of

interest available. Such object meshes are used e.g. in the work of (Asfour et al., 2006)

and can be obtained using laser range or Kinect sensor data. Since we will be interested

in efficiently computing approximate geodesic balls, defined in the following section, on

M , and in order for our discrete curvature K to be distributed evenly across the mesh,

we would like to work with a mesh with approximately equal triangle size. For this

purpose, we chose isotropic remeshing as a pre-processing step. Isotropic remeshing

preserves the shape of the surface and provides an almost equilateral triangulation.
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a) b)

Figure 6.2: Example of the preprocessing output. a) Original pony model b) Remeshed
model.

We start with an input mesh M and perform modifications using the tool (Fuhrmann

et al., 2010) in three steps:

� oversampling and a sub-division is applied to M ,

� vertices are uniformly resampled,

� the positions of the vertices are optimized using area equalization and Lloyd’s

relaxation method.

The resulting triangle mesh then has almost equal edge lengths (e.g. the one shown on

Figure 6.2). We chose parameters so that the maximal deviation between edge-lengths

was about 15% of the mean edge length, but this deviation can be significantly reduced

further by increasing the number of triangles per mesh.

Another important part of the preprocessing is a convex decomposition of the ob-

ject. The PhysX Engine (NVIDIA, 2012) which we are using for realistic physical

simulations requires all shapes to be convex in order to efficiently compute collisions.

For this purpose, we used the convex decomposition library (Ratcliff, 2009) and gen-

erated a decomposition of each object into approximately 100 convex meshes.
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6.3 Manipulators

We shall now relate the representation of geodesic balls and winding angles (defined

in sections 3.3 and 3.5) to the kinematics of a robot hand. We shall compute caging

scoring functions, introduced in 6.4, on an object mesh using geodesic balls. The exact

radius of a ball depends exclusively on kinematics of a particular manipulator and

usually equals to a single finger length.

In our experiments, which we shall describe later in section 6.7, we would like to

show that our heuristics are also robust with respect to different hand kinematics. For

this purpose, we need to be able to define a correspondence between a pose of a robotic

hand and an approximate geodesic ball Gr(p) for S2 case or a correspondence between

a pose and the projection of the path Pr(p) onto the plane Πr(p) for S1 case.

In this section we describe several types of manipulators: an artificial net of small

spheres distributed over an approximate geodesic ball, a simulated multi-joint 6 finger

hand (for sphere caging), a multi-joint 2 finger hand (for circle caging), a realistic

simulation of a 3 finger Schunk hand and a 5 finger anthropomorphic hand (see Figure

6.4 for illustration).

6.3.1 Caging with a Net of Points

This is the closest approximation of a geodesic ball. A net of points is a net of

small disconnected meshes enveloping an object. As we already mentioned in previous

sections, the key element of our method is a projection and approximation of a hand’s

contact surface by a geodesic ball. It is logical then to study the robustness of our

approach if we had a robotic manipulator whose contact surface was very similar

to such a ball. The recently proposed Universal Gripper (Brown et al., 2010) is an

example of such deformable manipulator coming close to this idealization.

In our simulation environment (see section 2.1 for details), we produced a artificial

structure designed to imitate a soft robotic manipulator wrapping around a geodesic

ball on the object. For every vertex inside Gr(p), we created a small sphere and moved

it along the normal direction by a fixed offset away from the object. After that, we

gradually shifted all spheres back towards the object along the normal direction until

a small threshold distance was achieved (see Figure 6.3 for illustration).
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a) b) c)

Figure 6.3: Illustration of caging with a net of points. a) Gr(p) ball on a dumbbell
object, b) an artificial net, created for every vertex c) a “contracted” net, used in our
experiments.

For circle caging, we chose only those vertices on the mesh close to the edge-path

Pr(p) and applied the same procedure to obtain spheres lying near Pr(p) but outside the

object. This procedure then simulates a contact surface obtained using a deformable

robot hand and which is approximated by a net of points. Examples for both S1 and

S2 cases are given in the section 6.6 (second column).

6.3.2 Articulated Manipulators

The ‘Hexapus’ and The 2-finger Hand

The next approximation of a geodesic ball we thought about was a 6-finger, ‘hexapus’,

gripper with multiple joints within each finger (Figure 6.4b). It was also created

within the libORS simulator (see section 2.1). The structure is aimed to be similar to

biologically inspired soft robotic actuators described in (Deimel and Brock, 2013) and

(Ilievski et al., 2011). Every finger consists of 6 square segments coupled via revolute

joints between each other and with the hand base. We have also defined a 2-finger

hand ( displayed in Figure 6.4e) by using only 2 opposing fingers of this ‘hexapus’

hand. The latter manipulator is designed for winding around circular subparts of the

object and is better suited for testing the winding angle representation. The ‘hexapus’

hand is used only for S2 caging and the 2-finger hand only for S1 caging.
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a) b) c)

d) e) f)

Figure 6.4: Examples of manipulators used in our experiments. a, d) A Schunk hand
b, e) a multi-joint artificial hand c) a KCL metamorphic hand f) a human hand model.

The Schunk Hand

We have implemented a simulation of the 7 degrees of freedom 3-finger Schunk hand

commonly used in grasping applications (depicted in Figure 6.4a,d).

The KCL Anthropomorphic Hand

We have further tested a ‘human-like’ hand in our experiments. Every finger of this

metamorphic anthropomorphic hand developed in the laboratory of Prof. Jian S. Dai

at KCL (Wei et al., 2011) consists of 3 segments. The reconfigurable palm allows for

additional freedom of the thumb (as shown in Figure 6.4c). We decided to have the

same preshape for both S1 and S2 caging before applying an automatic finger closing

procedure, described in the next section.

6.3.3 Positioning and Automatic Closing of the Hands

Our experiments are devoted to verification of the usefulness of our caging heuristics

and not of the motion planning system itself. It has been already evaluated in chapter
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4. That is why we decided to skip the trajectory planning phase. Instead, we place

our manipulators directly on the object’s surface and then perform an automatic finger

closing operation. The caging areas were selected according to the S1 and S2 heuristics.

Recall that the radius of the approximate geodesic ball Gr(p) is chosen to match

the finger length of our robotic manipulators, so as to provide a possibility for the

hand to fully cover such balls with an open palm posture (see Figures 3.3 and 6.4).

Our grasp synthesis approach consists of three phases and is implemented as follows:

for a geodesic ball Gr(p) that has highest value with respect to our scoring functions

Wr(p) or Sr(p) (defined in section 6.4), the hand base is first placed at a certain

distance from the center of Gr(p) along the surface normal direction. A suitable

preshape, depending on current heuristic, as in the Figure 6.4 is then adopted and the

hand base orientation is set to be parallel to the surface. Additionally, for the circle

caging case the main axis along the stretched fingers is aligned orthogonal to the main

axis of Gr(p). After that, we gradually moved the hand towards the surface until the

distance to the surface reached a small threshold, varying with the object size.

In the final phase, we performed a standard autoclose operation: we moved the

finger segments (starting from those closest to the palm) towards the object until the

distance between each segment and the object was smaller than a predefined threshold

value. This is done preserving the opposing finger configuration for the circle (6.4d,e),

and the equal angular spread between the fingers for the sphere caging case (6.4a,b).

For the “net of points” manipulator, we simply place the net over the geodesic ball

Gr(p) as described in the section 6.3.1.

6.4 Caging Heuristics

We develop two types of caging grasp heuristics which we call circle (S1) and sphere (S2)

caging respectively. They are based on approximate geodesic ballsGr(p) representation

(see Section 3.3 for details). Using these heuristics we are capable of ranking the

likelihood of finding a caging grasp for every object.
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Figure 6.5: Illustration of circle caging on a dumbbell object (left) and a geodesic ball
and winding path in blue (right).

6.4.1 Circle Caging, S1

Inspired by our grasp transfer experiments, we decided to exploit winding for synthesis

of caging grasp. We have already introduced the representation of winding angles in

section 3.5. The hypothesis here is that geodesic balls with higher winding values are

better suited for the circle caging.

In other words, we define a heuristic for caging an object with a curve γ : [0, 1]→ R3

which wraps around an elongated part of an object such as the red curve in Figure

6.5 left. We call this type of grasp an S1, or circle cage, since the curve γ is a closed

circle in cases when full winding is possible. Of course, this measure is also applicable

to other cases (not necessarily fully winding) as shown on the right part of the Figure

6.5.

We now propose to rank all vertices of our object model by the resulting winding

angles Wr(p), with large winding angles indicating a higher likelihood that the curve

Pr(p) yields an S1 caging grasp for the object. Let us now discuss a related concept

of S2 caging before connecting the above with the geometry of a robot hand and the

actual synthesis of such cages.

6.4.2 Sphere Caging, S2

Consider the case when an object or some part of it is fully enveloped, covered by a

geodesic ball. For example, the upper part of the dumbbell object in Figure 6.6 is
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Figure 6.6: A geodesic ball (in red) and generated sphere cages

almost completely enclosed by the red contact surface resembling a part of a sphere.

This part is clearly caged - it has lost some degrees of freedom - although it is still

possible to imagine a rotational motion around the main axis.

Recall, that Gaussian curvature indicates how salient a particular vertex is (see

section 2.2.2). There is also a discrete formulation of the the Gauss-Bonnet theorem

(explained in section 3.4). We can now define a heuristic for measuring how Gr(p) ⊆M

wraps around the M using the integrated discrete total Gaussian curvature on Gr(p).

If a geodesic ball Gr(p) covers the model M completely then this quantity equals

2πχ(M). Therefore our hypothesis is that geodesic balls with a large total curvature

are good candidates for applying a caging grasp.

More formally, we consider the scoring function Sr defined by

Sr(p) =
∑

v∈V (Gr(p))

K(v), (6.1)

where K denotes the total Gaussian curvature introduced in Section 3.4 and where

V (Gr(p)) denotes the vertex set of an approximate geodesic ball Gr(p) on M .
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Note that, the total Gaussian curvature does not distinguish convex and concave

parts of the model. Since we would prefer to grasp locally convex parts of the object,

we furthermore exclude geodesic balls with centre vertices v which have a concave 1-

ring neighbourhood in the mesh from further analysis. This procedure ensures caging

of locally convex parts of the object.

6.5 Evaluation Methodology

6.5.1 Robustness With Respect to Noise

In practical robotic applications, the perception is usually presented by visual and

depth information. This raw data is obtained from noisy sensors, affected by artifacts

and distortions. A triangulated 3D model of an object can then be reconstructed out

of point clouds. We claim here that our heuristics are to some degree invariant to the

additional noise. To prove that, we designed a sequence of experiments with deformed

meshes.

In order to simulate perceptual noise on a synthetic object mesh, we shifted every

vertex of the original mesh by a uniformly distributed offset in [−σ, σ]. After that,

we reconstructed a new mesh from the “deformed point cloud” using the Poisson tool

from the Meshlab package (Cignoni et al., 2008). The value of the maximal offset

σ used in our simulations was chosen empirically to be equal to 1% of the bounding

sphere radius. The preprocessing was then done as described in section 6.2. As a

result of this operation, the original mesh differed significantly from the resulting noisy

reconstructed mesh as shown in Figure 6.7.

6.5.2 Physical Simulation

We have continued to exploit a realistic physics simulation using the PhysX software

package to test if an object was successfully caged (see chapter 5 for reference). After

placing the hand and closing the fingers, the object and the manipulator were, as

before, copied to the physical environment with gravity and standard friction forces

(the friction coefficient was set to 1). We simulated 10 consecutive random rotational

motions of the manipulator ‘in air’ for 100 simulation steps each and deemed a grasp
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c) d)

a) b)

Figure 6.7: The effect of additional noise on the original meshes (left column) is shown.
For illustration purposes, we display five probable caging areas (in dark) with highest
scoring function values, Wr for upper row and Sr for lower row. Noisy meshes (right
column) are generated from the original meshes (left column) by adding Gaussian
noise. Adapted from (Zarubin et al., 2013b).

stable if the object was still within a small distance of the hand and had not fallen

onto a simulated floor under the influence of gravity.

6.5.3 Computational Complexity

All experiments were done on a computer with an Intel i5, 4 Core, 2.40GHz processor

with 4 GB memory. The computation time of our scoring functions scales in the worst

case (small object size compared to r in Gr(p)) quadratically in the number of vertices.

For small objects, the average computation time was about 20 seconds (1000 vertices

per object), while the computation for medium and large objects took less than a

second.
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6.6 Examples of Caging Grasps

Figure 6.8 displays geodesic balls of highest scoring function value together with corre-

sponding grasps for several examples. The first cup object has smallest scale and can

thus be fully covered by all manipulators. Since all Gr(p) in this case have the same

integrated curvature (e.g. zero for the original cup mesh), the first vertex in the list

of vertices for this mesh is chosen to be the central vertex p of Gr(p). The synthesized

grasps for the medium size dumbbells object (integrated value of 3π ± 0.16π) also

appeared to be stable. The last two examples demonstrate generated cages for large

and medium size objects in the case of S1 caging. They were robust according to our

evaluation procedure.

6.7 Experiments

In this section we describe a series of experiments which have been designed to test

several aspects of our circle and sphere caging heuristics:

� the general success rates of our approach and its robustness to noise,

� dependence on object’s shape and size,

� applicability for various hand kinematics,

� stability threshold values.

The methodological details of the experimental setup are outlined in Algorithm 1.

In total, we generated 10 synthetic noisy meshes of 4 types and of 3 different sizes.

Success evaluation of our caging heuristics for these meshes is given in section 6.7.1.

We discuss results for several example cages and suggest a threshold value for which the

successful caging is most probable in section 6.7.2. We also conducted a comparative

study of a curvature-based grasping heuristic versus a charge-based heuristic in section

6.8.
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Figure 6.8: We display examples of grasps generated by our method. The three top
rows represent attempted S2 caging grasps and the lower two attempted S1 cages
respectively. All displayed grasps apart from the grasps on the leg of the pony in the
case of the net of points, the Schunk hand and the anthropomorphic hand (second,
fourth and fifth column in the third row) pass our PhysX caging test. The first column
shows reconstructed noisy meshes with the selected approximate geodesic ball Gr(p)
in red and centred at the vertex with highest Sr(p) (first three objects) and highest
Wr(p) (lower two meshes). The edge-path Pr(p) is highlighted in blue for circle cages.
The other four columns demonstrate generated grasps for four types of manipulators.
The topmost cup object has smallest size (scale factor of 1). The dumbbells are of
medium size and the pony in the middle and the second cup are large. Finally, the
last row shows generated S1 grasps for a medium sized pony object.
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Algorithm 1 Evaluation algorithm
Require: original 3D model M , scale s, noise level σ

Ensure: stability analysis of cages for K noisy meshes

for 1 to K do

Remove all faces.

Add uniform noise from [−σ, σ] to every vertex.

Reconstruct a new mesh using MeshLab package (Cignoni et al., 2008).

Perform isotropic remeshing.

Compute scoring functions according to section 6.4.

Select best grasp centre point on the noisy mesh.

Position and autoclose the hand on the original mesh.

Test if the grasp is a caging grasp using PhysX.

end for
return % of successful caging grasps (robustness)

6.7.1 Results

For our first set of experiments we produced 10 synthetic noisy meshes with 1000

vertices according to the method described in section 6.2 for the pony, cup, bunny and

dumbbells models. Some of them are depicted in Figures 6.7 and 6.6.

We have tested three different object sizes with a scaling factor between 1 and 8.

The scaling factor was computed as a ratio π(Rb/Fl), where Rb is a bounding sphere

radius and Fl the Schunk hand’s finger length. So that a value of 1 for the scale of an

object represents an object size such that a full caging inside the robot hand is likely to

be possible. Other scales were chosen empirically in order to represent medium (3-4)

and large (8) scale objects.

We have followed Algorithm 1 in order to evaluate our approach. The stability rates

were computed as percentage of stable out of total number of previously generated

K = 10 noisy meshes. Results are presented in the Table 6.1 for sphere caging and in

Table 6.2 for circle caging respectively. The maximal integrated curvature and winding

angles are given as multiples of π.
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Table 6.1: Robustness of sphere caging heuristics w.r.t size of an object

Objects Scale Curvature
integral
value, π

Net of
points

Hexapus
hand

Schunk
hand

Anthropo-
morphic
hand

Dumbbells 1 4± 0 100% 100% 50% 60%
Dumbbells 4 3± 0.16 100% 100% 100% 80%
Dumbbells 8 0.89± 0.02 0% 0% 0% 0%
Pony 1 −7.2± 1.6 100% 100% 80% 80%
Pony 4 1.56± 0.12 90% 80% 20% 30%
Pony 8 1.77± 0.04 0% 40% 0% 0%
Cup 1 −2.36± 2.65 100% 100% 80% 60%
Cup 4 1.27± 0.53 50% 10% 10% 40%
Cup 8 0.70± 0.15 20% 60% 40% 70%
Bunny 1 4± 0 100% 100% 80% 60%
Bunny 3 2.58± 0.11 100% 100% 60% 40%
Bunny 8 1.97± 0.04 20% 20% 30% 30%

Table 6.2: Robustness of circle caging w.r.t size of an object

Objects scale Winding
value, π

Net of
points

2-finger
hand

Schunk
hand

Anthropo-
morphic
hand

Dumbbells 1 2± 0 100% 40% 90% 80%
Dumbbells 4 2± 0 100% 90% 80% 100%
Dumbbells 8 1.92± 0.04 90% 90% 40% 90%
Pony 1 2± 0 90% 20% 80% 70%
Pony 4 2± 0 100% 90% 20% 70%
Pony 8 1.98± 0.03 70% 40% 0% 30%
Cup 1 1.99± 0.01 90% 30% 30% 40%
Cup 4 2± 0 90% 30% 10% 30%
Cup 8 1.97± 0.04 60% 50% 10% 30%
Bunny 1 2± 0 100% 80% 90% 80%
Bunny 3 2± 0 100% 40% 0% 10%
Bunny 8 1.90± 0.05 20% 20% 0% 10%
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6.7.2 Discussion

In this section we review the results in terms of manipulators, scales and two types of

heuristics.

The net of points demonstrated the best average success rate over all experiments

and was the best on average for S1 caging (followed by the anthropomorphic hand)

and second best (after the ‘hexapus’ hand) for S2 caging. The 3-finger Schunk hand

showed a high amount of variations in stability rates depending on the size and type of

an object. For this hand, the object might simply slip out between fingers when small

enough, whereas additional fingers and flexibility prevent this in case of the ‘hexapus’

and anthropomorphic hand which performed slightly better.

The smallest scale was selected, as stated above, to enable a full caging by a robot

hand. Thus, the stability rate for the net of points or the ‘hexapus’ hand in this case

is close to 100% with a few exceptions in the S1 case. For the medium size objects,

the results are also good and demonstrate the ability of our method to select the most

suitable subparts of an object. Large scale objects are generally unstable and success

in this case depends fully on the object’s structure.

The success of S2 caging heuristic can be explained using the relation to the genus

of the object. The total Gaussian curvature integral for a closed polyhedral surface

M ⊂ R3 equals 2πχ(M) (see section 2.2.2). Furthermore, recall that χ(M) = 2 − 2g

where g denotes the genus of M which is non-zero for the cup and pony objects. In the

case of genus zero objects such as the bunny and the dumbbells, a good caging success

rate seemed to occur if the integrated curvature over Gr(p) was larger than 50% of

the total - i.e. larger than 2π (we call it a 2π hypothesis). There was a substantial

amount of variation between the robot hands.

In case of S1 caging, the winding value was always close to 2π (full circle). Interest-

ingly, this does not always guarantee a good performance since a cylindrical subpart

might be too small or not reachable at all, preventing a good caging grasp. Nev-

ertheless, the net of points, the anthropomorphic and the 2-finger hand have shown

promising stability rates. The third finger in the case of the Schunk hand might be

both beneficial (e.g. when the object is very small) and disadvantageous (e.g. due to

collisions).

In summary, the high percentage of stable grasps for the ‘net of points’ indicates
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Figure 6.9: Models used for the experiments. Areas of potentially stable cages are
highlighted in red.

that our heuristics are capable of successful generation of caging grasps. However,

different robotic hands are not equally well suited for S1 and S2 cages as can be seen

from Table 6.1.

6.8 Comparison of Curvature Integral and Charge

Integral Heuristics

In this section we shall evaluate our S2 caging heuristic in a more systematic way. For

this purpose we compare our approach to an adapted charge-based heuristic. This

method is described in details in work of (Sandilands et al., 2014). Briefly, it uses

electrostatics based parametrization which is obtained by computing the electric field

after electrically charging the object in simulation. Note, that charge density values

also could be used for determining areas of interest in grasping context. Salient sub-

parts receive higher charge density than others. They can also be integrated over all

faces within a geodesic ball and then be used exactly the same way as in the case of

curvature-based heuristic. As before, we chose the highest value (of charge density in-
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tegral) and tested it in physical enviroment. The charge density values were generously

provided by Peter Sandilands from the group of Sethu Vijayakumar.

In order to compare two methods, we decided to use object models from the

database of (Chen et al., 2009). We selected 10 different models (see Figure 6.9), rep-

resenting all kinds of shapes. The meshes were resampled and isotropically remeshed

according to our methodology described above. Also, the convex decompositions were

made for a physical evaluation. The actual experiments were done as follows: we

computed discrete curvature integrals for every vertex of a mesh, we chose the high-

est value, we evaluated the cage using a “net-of-points” manipulator in PhysX. This

procedure returns stability value (1 for stable, 0 otherwise), a curvature integral and

a force closure value (an approximation if pushed to the contact).

We changed the radius of a geodesic ball from 2 to 16 for every model, imitating

varying object sizes. Thus, the resulting set consists of 150 datapoints, which we

analyzed using histogram approach. We split the whole range of curvature integrals

[0.5 ; 3.5]π, into 10 bins and computed the ratio of stable cages over total number

of datapoints within each bin. The resulting histogram is shown in Figure 6.10. We

have also evaluated force closure data, although there was no direct contact of the

manipulator to the model. The artificial net manipulator (see section 6.3.1) was placed

in sub-millimeter distance to the object and then used for grasp quality evaluation.

We performed similar histogram analysis and calculated average force closure for every

bin. The distribution can be seen on Figure 6.11.

The resulting cages were stable in 54 cases for charge-based heuristic and in 80 cases

for curvature-based heuristic. One possible explanation for the worse performance of

the charge-based heuristic can be that, unlike Gaussian curvature approach, hyperbolic

parts were not penalized. That potentially could lead to selection of unstable areas

between e.g. two salient parts.

The stability histogram 6.10 confirms our 2π hypothesis. There is a rapid increase

of caging success ratio after the value of curvature integral crosses the 6.26 or 2π

threshold. Force closure also supports this conclusion, although the average value

grows more gradually in this case. The charge-based heuristic, on average, behaves

worse both in terms of force closure analysis and physical stability.
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Figure 6.10: Stability histograms for curvature- and charge-based heuristics.
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Figure 6.11: Force closure histograms for curvature- and charge-based heuristics.
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Chapter 7

Conclusions

The key idea and novelty of the thesis lies in using abstract topological representa-

tions for motion planning. This modification is advantageous with respect to classical

planning algorithms in several points. First of all, topological abstraction is invariant

to particular geometric constraints of the object and preserves only essential struc-

ture (via notions of connectivity and neighborhood). This gives rise to a significant

generalization of controllable object classes. For example, one of the challenging task

in modern Robotics is manipulation with articulated and deformable objects. We

have addressed this problem by combining planning in a configuration space and by

exchanging information within the alternate space. Second advantage is a natural

hierarchy, which emerges from a particular topological mapping. Being a relatively

simple deterministic transformations of a configuration space, topological representa-

tions may be combined in any arbitrary order as well as incorporated into stochastic

control models. Third difference is based on the fact, that alternate representations

are not restricted to a certain predefined situation – they have a potential to adapt to

novel scenarios and thus improve planning in dynamic environments.

The choice of representations for motion planning is highly dependent on the par-

ticular problem. Spaces developed in this thesis have certain advantages and disad-

vantages, providing us with a set of instruments, but not with a universal solution.

For some interaction problems there exist a suitable topology-based representation in

which an interaction can be described in a way that local optimization methods can

find solutions that would otherwise require expensive global search (as with the writhe
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Figure 7.1: KUKA LWR 4 robotic arm reaching through a hollow box with. The main
task was defined in topological representation. Adapted from (Zarubin et al., 2012)

representations). Other representations can generalize better to novel or dynamic situ-

ations (as with the grasp transfer using winding number representation). These tools,

however, should always be used in conjunction with classical tasks such as collision

potentials in order to be compatible with real world applications (see Figure 7.1 for

illustration).

Unlike previous work with such representations (e.g. described in (Dowker and

Morwen, 1983; Edmond and Komura, 2009; Tamei et al., 2011)), where only basic

approaches for inverse mapping from topological to configuration spaces were tested,

we presented a framework that combines the different representations at the abstract

and lower level for motion synthesis.

Consider for example, the reaching task (for an artificial “snake” manipulator from

section 4.3.1) only in an end-effector space. Local optimization method would be

trapped in a “deep local minima”. We have demonstrated in section 4.4 that the

solution of this problem is practically infeasible with global search approaches, e.g

using RRTs. On the other hand, considering such a problem only in writhe space

would not address the actual reaching task. The coupling of two spaces, however,

allows a local optimization method to generate an unwrapping-and-reaching motion.

We decided to formulate our approach in the framework of optimal control as an

approximate inference problem. This framework allows for a direct extension of the

graphical model to incorporate multiple representations.
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Alternative formulations are possible, for instance as a structured constraint opti-

mization problem. What we coined as a motion prior in topological spaces would here

correspond to pseudo control costs for transitions in topological space. Which formu-

lation will eventually lead to computationally most efficient algorithms is a matter of

future research.

7.1 Benefits for Motion Planning

To our best knowledge, for the first time topology-based representations have been

actually used for motion planning. We have shown that such spaces are particularly

beneficial for describing close interaction of objects. One could imagine many appli-

cations where articulated and flexible objects are involved. Alternate representations

could provide a semi-symbolic description of a task and can thus be used in combina-

tion with high level planners.

� We have proposed and evaluated a general framework for combination of tasks

in configuration and alternate spaces.

� We addressed a temporal optimization problem and provided a solution for dif-

ferent kinds of linearization of the system dynamics.

� Task spaces developed in our work can simplify motion synthesis and can be

efficiently used for motion planning in dynamic environments.

� We have shown the efficiency of our framework in comparison to randomized

search algorithms.

7.2 Benefits for Grasping and Caging

In relation to grasping and caging synthesis our work has contributed in terms of

theoretical framework and implemented software.

� We have proposed and evaluated two novel caging synthesis methods which we

call circle and sphere caging.
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� We have developed heuristic scoring functions for both caging types which allow

us to find areas for robust caging grasps on complex 3D objects.

� Our approach is based on a novel representation of a geodesic ball, aimed to

reflect the hand-object interaction.

� We evaluated the caging synthesis methods using a realistic physics simulation.

We tested the robustness of the method under a simulated sensor noise for various

object sizes and types of manipulators.

7.3 Future Work

Motion Planning and Abstract Representations

We plan to apply the proposed methods for dexterous robot manipulation of more

complex, articulated or flexible objects. We would like to merge grasp synthesis and

motion planning. We believe that multiple parallel representations will enable more

robust and generalizing motion synthesis strategies.

We have applied our motion planning framework in context of grasp transfer, but

not for generating grasps of complex objects. It is logical to ask, whether one could

use motion planning for synthesis of physically stable grasps and whether usage of

abstract representations is advantageous in such case. Initial work and preliminary

results show that we can merge topology-based representations, caging heuristics and

inference-based planning in one single system. Moreover such combination allows to

generate an optimal trajectory leading to a stable grasp. Preliminary experiments in

simulation and on real hardware with the KUKA arm and Schunk hand have proved

the usefulness of our framework (Sandilands et al., 2014).

Caging and Grasping

The representation of a geodesic ball was developed in order to exploit the ‘hand-

local’ geometry. It is, to some degree, independent of the exact kinematic structure

of the robotic hand. One possible direction of the future research is to consider more

elaborate approximations of either manipulator or object. We also hope that our

caging synthesis methods will be tested and implemented in combination with soft
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Figure 7.2: Invariance with respect to slight changes in morphology of the objects. 4
most probable S2 caging areas on different teddy bear models.

robotic actuators. There are several existing robot hands suitable for applying such

caging grasps (e.g. created in laboratories (Deimel and Brock, 2013), (Ilievski et al.,

2011), and (Brown et al., 2010)).

Another potential direction could be to study curvature of point clouds. This ex-

tension could decrease the computation time of our scoring functions. It can be further

utilized in research on exploration with mobile platforms and service robotics. One

could think of using curvature based methods in order to identify potentially manip-

ulable and movable objects. Such features, based on a geodesic ball representation,

could be advantageous at least in terms of robustness due to the integration property.

Segmenting objects using geodesic balls representation can lead to extracting fea-

tures for mapping between objects. This is of particular interest in the context of grasp

transfer - such segmentation could simplify remapping of hand postures between simi-

lar objects. Possible applications range from precise surgery robotics and teleoperation

to manipulating household objects (Hu et al., 2005).

Classification of objects is another field which could benefit from our heuristics.

Integral of curvature values makes our scoring functions invariant to small deformations

of object surface. Moreover, the combination of areas with highest scoring values may

be a unique feature for a class of objects. For example, all teddy bears from our dataset

had highest values on tips of their legs (see Figure 7.2 for illustration). Including

such information as an additional feature for classification problem could improve the

success ratio.
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In recent years, many academic and industrial institutions started to develop service

robots for everyday usage. Such robots are especially trained to operate in typical home

environments. Many tasks include interaction with objects and thus require a suitable

internal representation. As we have shown here, alternate spaces can be very efficient

in describing complex interactions. We hope that our work can become one of the

steps towards really dexterous robotic manipulations.
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Appendix A

Derivation of the Final State

Estimators

A.1 Probabilistic Model for 1-step Posture Estima-

tion

Part of our motion planning framework includes an estimation of the final configuration

of the robot given a certain set of constraints. In this appendix we derive estimators

for different cases of system dynamics and also obtain an optimal trajectory duration.

We address two problems of robot trajectory optimization:

1) Backward messages for the last state of the trajectory usually defined a priori

by constant values. Thus the estimation of the final configuration could help to tune

backward message in a direction of faster convergence.

2) Amount of time needed for performing task is also used to be fixed and coupled

with the number of time steps in the Markov chain. Optimizing likelihood of perform-

ing task with respect to the duration could decrease total trajectory costs. Related to

the ideas presented in (Rawlik et al., 2010).

Derivations below use the same notations and terminology as in sections 2.3 and

4.2

Note, that joint distribution of graphical model on Figure A.1b can be written as:

P (q0, qT , z = 1) = P (q0)P (qT | q0)P (z = 1 | qT ) (A.1.1)
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Figure A.1: An illustration of the 1-step inference approach. The red arrow shows a
possible information flow.

1-step inference allows to estimate the final configuration of the system given an

initial state q0 and transition probabilities P (qt+1 | qt). We shall use equation 2.5 from

section 2.3.2.

P (qt+1 | qt) = N (qt+1 | Aqt + a,Q+BH−1B′), (A.1.2)

In the following sections we will derive equations for the final state estimation

separately for three cases of system linearization: kinematic, pseudo-dynamic and

dynamic case.

A.1.1 Kinematic Case

In the kinematic case we have A = B = I, a = 0 , thus

P (qt+1 | qt) = N (qt+1 | qt,W ),

with W = Q+H−1. Using properties of conditional distributions we obtain:

P (qT | q0) =
P (q0, qT )

P (q0)
=

∑
q1,..qT−1

P (q0)P (q1 | q0)..., P (qT | qT−1)
P (q0)
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Now let us take the first two elements of the product and apply Gaussian multiplication

rule:

P (q1 | q0)P (q2 | q1) = N (q1 | q0,W )N (q1 | q2,W ) = (A.1.3)

N [q1 | W−1(q0 + q2), 2W
−1]N (q0 | q2, 2W )

Taking into account the marginalization over all variables q1, ..qT−1,

P (q1 | q0)P (q2 | q1) ∝ N (q0 | q2, 2W ) = N (q2 | q0, 2W ).

Iterating this procedure T − 1 times will give us probability of being in state qT after

T time steps

P (qT | q0) ∝ N (qT | q0, TW ). (A.1.4)

A.1.2 Pseudo-dynamic Case

In the pseudo-dynamic case we have a = 0 and thus

P (qt+1 | qt) = N (qt+1 | Aqt, Q+BH−1B′),

It is important that A,B and Q,H−1 have a very specific form:

A =

(
I τI

0 I

)
, B =

(
τ 2I

τI

)
, Q =

(
τQ1 0

0 τQ2

)
, H−1 =

(
(τH1)

−1 0

0 (τH2)
−1

)

Where τ is an integration step defined by the ratio τ = T ime
Steps

and W = Q+ BH−1B′.

Similarly to the kinematic case we shall use properties of conditional distributions:

P (qT | q0) =
P (q0, qT )

P (q0)
=

∑
q1,..qT−1

P (q0)P (q1 | q0)..., P (qT | qT−1)
P (q0)



APPENDIX A. DERIVATION OF THE FINAL STATE ESTIMATORS 97

Now let us again take the first two elements of the product and apply Gaussian mul-

tiplication rule:

P (q1 | q0)P (q2 | q1) =
1

detA
N (q1 | Aq0,W )N (q1 | A−1q2, A−1WA−T ) = (A.1.5)

N [q1 | W−1Aq0 + (A−1WA−T )−1A−1q2),W
−1 + (A−1WA−T )−1]∗

N (Aq0 | A−1q2,W + A−1WA−T )

Taking into account the marginalization over all variables q1, ..qT−1,

P (q2 | q0) =
1

detA

1

detA−1
N (q2 | A2q0, A(W+A−1WA−T )A′) = N (q2 | A2q0, AWA′+W ).

Iterating this procedure T − 1 times will give us probability of being in state qT after

T time steps in pseudo-dynamic case.

P (qT | q0) = N (qT | AT q0,
T−1∑
i=0

AiWA
′i
). (A.1.6)

A.1.3 Dynamic Case

In the full dynamic case we again start we the transition probability equation 2.5

P (qt+1 | qt) = N (qt+1 | Aqt + a,Q+BH−1B′). (A.1.7)

We define W = Q+BH−1B′ and integrate the system dynamics,

P (qT | q0) =
∑
q1:T−1

T∏
t=1

P (qt | qt+1). (A.1.8)

For stationary linear Gaussian dynamics, we obtain the following:

P (qT | q0) = N (qT | AT q0 +
T−1∑
i=0

Aia,
T−1∑
i=0

AiWA
′i
) , (A.1.9)

where a power of matrix, A with a superscript on it, is defined iteratively as Ai =

A ∗ Ai−1.
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A.2 Posterior Posture & Temporal Optimization

The temporal optimization is based on the idea of one-step inference, where we estimate

the final state of the robot configuration under simple kinematic constraints and try

to apply the likelihood maximization with respect to the duration of the trajectory. It

is somewhat similar to the notion of Macro-states in (He et al., 2010), but differs in

terms of splitting trajectory into keyframes. Presented algorithm is much simpler than

EM used for temporal optimization in (Rawlik et al., 2010), since we first estimate the

exact final configuration and have an intuition about the possible time consumption.

The aim of including a task variable is to make sure that we not only have reached

the final state but also performed a given task. In other words we estimate

P (qT | q0, z = 1).

Since we are interested only in the final configuration, we assume that all intermediate

costs are equal to zero. We approximate locally the cost as exp-squared:

P (qT | z = 1) = N [qT | rT , RT ].

Note that this local approximation depends on the point qT of localization. In prac-

tice, computation of the posterior P (qT | z = 1, q0) is therefore an iterative Gauss-

Newton-like process, that alternates between estimating qT and re-computing the local

approximate costs rT , RT .

Coupling this equation with (A.1.9) results in:

P (qT | q0, z = 1) = N [qT | (
T−1∑
i=0

AiWA
′i
)−1AT q0 + rT , (

T−1∑
i=0

AiWA
′i
)−1 +RT ] ∗ (A.2.1)

N (AT q0 | RT
−1rT ,

T−1∑
i=0

AiWA
′i

+RT
−1)

The first Gaussian represents the distribution over the final states. The second one

is simply a likelihood of the success for a given number of time steps T. Equation

(A.2.1) is an important result and is used in the algorithms, described in the following

sections.
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Figure A.2: An illustration of iterative temporal optimization algorithm

A.2.1 Two Approaches to Estimate the Trajectory Duration

We shall distinguish 2 approaches to optimize the duration (free parameter T ) of the

motion based on the 1-step model:

1. We can use Expectation Maximization approach, where the E-step computes

P (qT | q0, z = 1;T ) given T . This is in itself an iterative process, since the cost

rT , RT depends on the point of linearization, which we typically take as the mode

of the posterior P (qT | q0, z = 1;T ).

In the M-step we then maximize the expected complete data log-likelihood

Tnew = argmax
T

∫
P (qT | q0, z = 1;Told) logP (qT , z = 1 | q0;T ) dqT

This approach is most similar to (Rawlik et al., 2010).

2. In the 1-step model the form of the likelihood is simple enough to be able to

derive an analytic gradient for the likelihood. However, as for the E-step above,

this gradient relies on choosing a specific cost approximation rT , RT – that is, on

iteratively estimating the posterior P (qT | q0, z = 1;T ) to decide on the point of

cost approximation (the posterior’s mode).

Given a specific rT , RT the gradient of the likelihood is analytic and allows for

gradient ascent to maximize it. This is derived in the following.
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A.2.2 Estimation of the Final State qT (E-step)

Input: initial duration D = T and a posterior probability of being in the state qT and

fulfill all tasks z = 1.

P (qT | q0, z = 1) ∝ N [qT | (
T−1∑
i=0

AiWA
′i
)−1AT q0 + rT , (

T−1∑
i=0

AiWA
′i
)−1 +RT ]

Output: Belief about the final state: b, B; Mean and variance of related costs: r, R

Consequently calculate variance and mean of the belief about the final state using:

B−1 = (
T−1∑
i=0

AiWA
′i
)−1 +RT ; b = B(((

T−1∑
i=0

AiWA
′i
)−1 +RT )q0 + r)

substitute the current state q̂ by

q̂new = q̂old + α(b− q̂old)

with convergence rate α.

A.2.3 Gradient Optimization of the Trajectory Duration D

Input: r, R and second part of the equation:

L(z = 1;D) = N (AT q0 | RT
−1rT ,

T−1∑
i=0

AiWA
′i

+RT
−1) (A.2.2)

Output: Duration of the movement: Dopt

Equation (A.2.2) represents the likelihood of the success. It is a Gaussian with the

mean µ = RT
−1rT and the variance σ2 =

∑T−1
i=0 A

iWA
′i

+RT
−1

dL(z = 1;D)

dD
= N (AT q0 | µ, σ2)[−h′(δDAT q0) +

1

2
hT (δDσ

2)h− 1

2
tr(σ−2(δDσ

2)σ2)]

where h = σ−2(AT q0 − µ).

Equation (A.2.3) can now be used in any gradient-ascent method in order to max-
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imize the likelihood with respect to the duration of the trajectory.

A.3 Trajectory Duration Estimation in the Dynamic

Case

Similarly to the kinematic case, “1-step-dynamic” inference allows to estimate the

final configuration of the system given an initial state q0 and transition probabilities

P (qt+1 | qt). We will again use related equations from (Toussaint, 2009).

P (qt+1 | qt) = N (qt+1 | Aqt + a,Q+BH−1B′).

In the pseudo-dynamic case we assume that a = 0 and thus

P (qt+1 | qt) = N (qt+1 | Aqt, Q+BH−1B′).

It is important that A,B,Q and H−1 have a very specific form:

A =

(
I τI

0 I

)
, B =

(
τ 2I

τI

)
, Q =

(
τQ1 0

0 τQ2

)
, H−1 =

(
(τH1)

−1 0

0 (τH2)
−1

)

Where τ is an integration step defined by the ratio τ = T ime
Steps

.

A.3.1 Estimation of the Final State qT

Following the similar steps as for the kinematic case, we first obtain a posterior :

P (qT | q0) = N (qT | AT q0,
T−1∑
i=0

AiWA
′i
).
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where W = Q + BH−1B′. After that step, we couple the posterior with task related

terms:

P (qT | q0, z = 1) = N [qT | (
T−1∑
i=0

AiWA
′i
)−1q0 + rT , (

T−1∑
i=0

AiWA
′i
)−1 +RT ] ∗

N (q0 | RT
−1rT ,

T−1∑
i=0

AiWA
′i

+RT
−1)

The main difference from the kinematic case is appearance of a sum in the posterior

variance. Taking into account the specific form of A we can show that

Ai =

(
I iτI

0 I

)
.

Consequently,

AiWA
′i

=

(
I iτI

0 I

)(
W1 W2

W3 W4

)(
I 0

iτI I

)
=

(
W1 + iτW2 + iτW3 + (iτ)2W4 W2 + iτW4

W3 + iτW4 W4

)
.

So now the summation of matrices has transformed into the summation of coefficients

of the respective matrix blocks.

S0 =
T−1∑
i=0

1 = T, S1 =
T−1∑
i=1

i =
T (T − 1)

2
, S2 =

T−1∑
i=1

i2 =
T (T − 1)(2T − 1)

6

Using these coefficients and the fact that W is a symmetric matrix (W2 = W3) we get:

Σ =
T−1∑
i=0

AiWA
′i

=

(
S0W1 + 2τS1W2 + τ 2S2W4 S0W2 + τS1W4

S0W2 + τS1W4 S0W4

)
Which is further utilized for the posterior belief estimation algorithm.



APPENDIX A. DERIVATION OF THE FINAL STATE ESTIMATORS 103

A.3.2 Gradient Optimization

For solving the temporal optimization problem it is important to notice that time

is included implicitly in τ = T ime
Steps

. Thus, for the beginning we have to rewrite all

likelihood terms as functions of τ . Particularly,

W =

(
τQ1 0

0 τQ2

)
+

(
τ 2I

τI

)(
(τH1)

−1 0

0 (τH2)
−1

)(
τ 2I τI

)
=

(
τ 3H−11 + τQ1 τ 2H−11

τ 2H−11 τH−11 + τQ2

)

Combining it with the result from the previous section:
∑T−1

i=0 A
iWA

′i
=(

τ 3H−11 (S0 + 2S1 + S2) + τS0Q1 + τ 3S2Q2 τ 2H−11 (S0 + S1) + τ 2S1Q2

τ 2H−11 (S0 + S1) + τ 2S1Q2 S0τ(H−11 +Q2)

)

Now we substitute τ = D
T

and take a derivative of the sum w.r.t D :
dΣ

dD
=

 3D2H−11 (S0 + 2S1 + S2)

T 3
+
S0Q1

T
+

3D2S2Q2

T 3

2DH−11 (S0 + S1)

T 2
+

2DS1Q2

T 2

2DH−11 (S0 + S1)

T 2
+

2DS1Q2

T 2

S0(H
−1
1 +Q2)

T



The latter equation is then used in gradient ascent algorithm in order to find the

optimal time = D value.
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