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Abstract

Software-defined Networking (SDN) is a recent approach in computer networks to ease the
network administration by separating the control-plane and the data-plane. The data-plane
only forwards packets according to certain rules specified by the control-plane. The control-
plane, implemented by a software called controller, determines the forwarding rules based on
a global view of the network.

In order to increase fault tolerance and to eliminate a possible performance bottleneck, the
controller can be distributed. The synchronization of the data that holds the global view is
conventionally realized using distributed key-value stores offering a fixed consistency semantic,
not respecting the heterogeneous consistency requirements of the data items in controller state.
The virtual synchrony model, an alternative approach to the commonly used state machine
replication method, offers a more flexible solution that can result in higher performance when
certain assumptions on the data kept in controller state can be made.

In this thesis a distributed controller based on OpenDaylight, a state-of-the-art SDN controller
and the ISIS2 library, that implements the virtual synchrony model, is proposed. The modular
architecture of the proposed controller and the usage of a platform independent data model
allows to extend or replace parts of the system. The implementation of the distributed controller
is described and the macro and micro performance is evaluated with benchmarks.
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Kurzfassung

Software-defined Networking (SDN) ist ein aktueller Ansatz zu Computernetzwerken, der die
Netzwerkadministration vereinfacht, in dem die Kontrollschicht von der Weiterleitungsschicht
getrennt wird. Die Weiterleitungsschicht ist nur für das Weiterleiten von Paketen nach Regeln
zuständig, die von der Kontrollschicht festgelegt werden. Die Kontrollschicht, die von einer
Controller genannten Software implementiert wird, legt die Weiterleitungsregeln, basierend
auf einer globalen Sicht auf das Netzwerk, fest.

Um die Ausfallsicherheit zu erhöhen und um einen möglichen Leitungsengpass zu eliminieren
kann der Controller verteilt werden. Die Synchronisation zwischen den Controllern wird
herkömmlicherweise mithilfe von verteilten Key-Value Stores realisiert, die nur eine feste
Konsistenzeigenschaft anbieten, was die heterogenen Konsistenzansprüche der Daten im
Controllerzustand nicht berücksichtigt. Das Virtual Synchrony Modell, ein alternativer Ansatz
zu der üblichen State-Machine Replication Methode, bietet eine flexiblere Lösung die zu höherer
Leistung führen kann, wenn bestimmte Annahmen über die Daten im Controllerzustand
gemacht werden können.

Diese Arbeit stellt einen verteilten Controller basierend auf OpenDaylight, einem aktuellen
SDN Controller und ISIS2, einer Bibliothek die das Virtual Synchrony Modell umsetzt, vor. Die
modulare Architektur des vorgestellten Controllers und die Verwendung eines plattformunab-
hänigen Datenmodells erlauben es, das System zu erweitern oder Komponenten zu ersetzen.
Die Implementierung des verteilten Controllers wird beschrieben und die Komponenten und
Gesamtleistung wird durch Benchmark-Tests ausgewertet.
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1 Introduction

Today’s computer networks struggle with the ever-increasing demand for dynamic and flexible
use-cases. This is caused by the fact that networks historically were seen in a more static context.
Today data-centers with thousands of virtual hosts need to reconfigure constantly and modern
backbone networks must adapt to ever-changing package flows. Software-defined networking
(SDN) is a popular approach to overcome the limitations of conventional networks.

SDN allows network administrators to change the behavior of the network more easily and
with greater flexibility. It achieves this by separating the actual packet forwarding, which is
based on a set of rules, from the creation of these rules. These tasks are closely coupled in
traditional networks and the possibility to change how those rules are determined is limited.
The forwarding is done in the so called data-plane, while the rules are decided upon in
the control-plane. The job of the data-plane can still be performed by the highly optimized
hardware used today, so the performance of SDN networks is in principle not worse than in
traditional networks. The control-plane however is realized by a program called controller,
running on a conventional server. The controller has a complete view of the network in contrast
to the limited local view of conventional network elements. It offers applications, that realize
network functions (e.g. routing) and that are build on top of the controller, an abstraction of
the network. By working with a global view and a higher-level abstraction the development of
applications generating forwarding rule sets for the data-plane is greatly simplified.

But concentrating the control of a whole network in a single instance leads to high risks
of failure and in consequence the controller is distributed. Several distributed controllers
have been proposed (see chapter 4), using different distribution patterns and synchronization
techniques. However all of those solutions rely on a single consistency model, that is often
very conservative. The data, controller instances need to keep synchronized, however is
heterogeneous regarding its consistency requirements.

The virtual synchrony (VS) model offers a set of different consistency levels, allowing to respect
strict consistency when needed, while also allowing to use faster methods for data items that
have lower consistency requirements. ISIS2 is a library that implements VS.

In this thesis a distributed SDN controller based on a state-of-the-art controller and the ISIS2

library is proposed, implemented and evaluated.
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1 Introduction

1.1 Thesis Organisation

The remaining parts of the thesis are organized as follows:

Chapter 2 provides background information about SDN, Key-Value stores, their scientific
background, virtual synchrony, ISIS2 and their relation respectively.

Chapter 3 outlines the motivation behind this thesis.

Chapter 4 gives an overview of related work on controller distribution.

Chapter 5 describes the proposed architecture of the distributed controller as well as the system
and data models used.

Chapter 6 presents the implementation, used software and gives rationales about design
decisions.

Chapter 7 contains the evaluation of the proposed system. Micro benchmarks of system
components and the datastore are presented, as well as an evaluation of the whole system
using different realistic scenarios.

Chapter 8 gives a conclusion about the presented work and lists possible starting points for
future work.
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2 Background

In this chapter a brief description of Software-defined Networking and a overview over key-
value stores, their inner workings and scientific background is given.

2.1 Software-defined Networking (SDN)

Software-defined Networking [1] is a recent approach to ease network administration and
accelerate network research. Originally started as research project at Stanford University,
that eventually resulted in OpenFlow (see 2.1.1), SDN has gained momentum since and is
considered a key enabler for advancements in data center networking, driven by the need for a
data center network that is able to adopt to the ever changing requirements that are inherent
in the rise of cloud computing.

Today’s network nodes are highly specialized systems. The packet forwarding is performed by
highly optimized hardware, minimizing the delay and maximizing the throughput of switches
and routers. Beside the forwarding, these systems also run multiple protocols to determine the
forwarding rules while respecting routing constraints, react to topology changes and to support
additional functionality, all closely coupled with the forwarding. While this solution has worked
well so far, the increasing demand to support features like quality of service guarantees, host
mobility or isolation of traffic was answered by packing more and more ad hoc protocols into
the network elements, increasing the complexity of those systems. Often those additional
features are implemented in a vendor specific and proprietary way, leading to vendor lock in.

SDN promises to overcome this by providing a clean way to add new functionality to networks,
while being vendor neutral and preserving the benefits of optimized forwarding hardware.
The key principle behind SDN is the separation of the data-plane and the control-plane.
The data-plane is responsible for forwarding packets according to a set of forwarding rules,
while the control-plane is responsible to determine these rules. The data-plane consists of the
network nodes performing their core task of packet-forwarding according to a set of rules they
received from the control-plane. The control-plane and thus the decision making is moved
from the networking nodes to a separate entity, called controller. The controller is a software
system, hence the name software-defined networking, connected to all data-plane elements
in the network. It communicates with the data-plane over the southbound interface of the
controller, using a dedicated SDN protocol (OpenFlow, see 2.1.1, being the most prominent).
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Controller
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Controller
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Controller
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Figure 2.1: SDN architecture. The data-plane contains the network elements performing the
packet-forwarding. In the control-plane the controller(s) communicate with the
data-plane elements using a SDN-protocol and offer applications realizing network
functionality an API.

The controller has a global view of the network, receives network events from the data-plane
and offers an unified abstraction of the network to applications build on top of the controller
API, called the northbound interface. These applications will implement network functions
like routing or load balancing. The implementation of such functionality is eased by using the
high-level abstraction the controller API offers and by the global view.

The typical architecture of a SDN environment is shown in figure 2.1. In the figure it is
suggested that there are multiple controllers. This is often the case as moving the control of
the whole network into a single instance is a great risk as it employs a single point of failure.
To overcome this, multiple controllers are used, acting as a single logical controller while being
physically distributed.
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2.2 Key-Value Stores, Synchronization Mechanisms and ISIS2

2.1.1 OpenFlow

OpenFlow [2] is the most prominent protocol that enables SDN and is maintained by the
OpenNetworkFoundation. OpenFlow specifies the communication between the data-plane
elements and the controller southbound interface. Network nodes that support OpenFlow
typically connect to the controller over a separate control network. The switches or routers in
the data-plane offer an abstraction called flow table. This table contains a pair of filters and
actions. Incoming packets are checked against the filters and if they match a filter the actions
defined for that table entry are performed. The filters can, among others, contain switch ports,
MAC and IP addresses or TCP/UDP ports. The actions range from dropping the packet over
sending it over multiple ports to modifying the packet header. If a packet does not match any
filters, it is forwarded to the controller, that can then check if new rules must the installed and
can inject the (modified) packet at any node in the data-plane network. The controller further
can request statistics from the network elements to obtain load information.

2.2 Key-Value Stores, Synchronization Mechanisms and ISIS2

As mentioned SDN controllers are distributed in order to increase fault tolerance by eliminating
a single point of failure. To ensure the distributed controllers are in a consistent state,
synchronization between the controllers is needed. A popular way to achieve this is to keep
the state information of the controllers in a data-structure that ensures all controllers have
the same state and state-transitions are performed in a consistent way. A Key-value store is
such a distributed data-structure and will be used by in the proposed system. To understand
how the key-value store of the proposed system differs from conventional ones, the different
mechanisms used to keep the state consistent between the peers are discussed and ISIS2 is
presented, the library used to implement the key-value store of the proposed system.

2.2.1 Key-Value Stores

Traditionally RDBMS are the tool to use when storing data, as they provide a consistent,
flexible way to store or query data and to aggregate information from the data, all backed
by a mathematically well defined model. In order to make applications relying on such
databases fault-tolerant, databases are replicated. By this distribution, they became subject to
the CAP-theorem [3] which states that out of consistency (the replicas have the same data),
availability (requests to the database are answered) and partition tolerance (the database can
continue to operate if messages are lost or processes can’t communicate) only two can be
fulfilled simultaneously. RDBMS have strong consistency guarantees and as availability for
most database applications, partition tolerance is neglected. The growing trend to scale-out
systems and the recent cloud computing development raised the risk for partitions and such

15



2 Background

an event may render the whole system inoperable. As a result so called no-SQL databases
experienced growing popularity. They relax the consistency guarantees in order to be more
partition tolerant and to increase the availability. These databases also drop the verbose
relational model to provide more flexible or specialized data models.

One kind of no-SQL databases are so called key-value stores. Key-value stores have an interface
similar to the map data-structure (also called dictionary). Operations performed against a key-
value store also behave like the map data-structre, the synchronization between the replicas is
performed transparently1. By simplifying the complexity of the data model compared to SQL
databases, it is also easier to distribute the data and keep it consistent. Examples of popular
key-value stores are memcached [4], etcd [5], redis [6], hazelcast [7] or infinispan [8].

2.2.2 Sate Machine Replication

Distributed fault tolerant systems like key-value stores can be realized/described in an abstract
way as state machine replication [9]. The instances are viewed as (identical) deterministic
state machines, all initially in the same start state (e.g. empty). Client requests (e.g. put or
get) are viewed as inputs to the state machines that cause state transitions and an output to
be generated by every instance. Since all (non-faulty) instances will arrive at the same state
and produce the same output if given the same sequence of inputs, the ordering of inputs
is the critical step in order to successfully build a consistent distributed system. One way to
solve the ordering problem is to derive a causal ordering of the inputs, as described in [10].
Another way is to have the instances to agree on the order using consensus protocols which
are described in 2.2.3.

In order to achieve fault tolerance, the outputs produced by the instances, after an input is
processed, will be checked to see if the majority of instances returned the same value. Instances
that did return a output different to the one returned by the majority, or did not respond in
time, must be considered faulty. In order to tolerate f failures, at least 2f + 1 instances are
required [11]. This ensures that at least one of the non-faulty processes will have to participate
in the next request handling and will ensure no inconsistent value will be agreed upon.

This simple model is extended by implementations to support changes in the set of processes.

2.2.3 Consensus Protocols

Reaching consensus, which means having the instances of a distributed system, typically called
processes, to agree on a value, is a fundamental problem of distributed computing. There

1Some key-value stores are not transparent as conflicts are exposed when performing either writes or reads
and the user has to resolve them
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2.2 Key-Value Stores, Synchronization Mechanisms and ISIS2

are several ways to solve this problem. The solutions differ in their assumptions about the
environment and resistance to different failure models. Generally a consensus protocol is
considered correct if and only if the following properties hold true [11][12]:

Agreement All processes that participate in a consensus protocol agree on the same value
(may be weakened to majority of instances)

Validity The value that is agreed upon must have been proposed by one of the processes

Termination Every (non failed) process will eventually decide on a value

The protocols distinguish between different roles a participant can take. However a process
might act as multiple roles simultaneously.

The protocols described will, if at all, tolerate the fail-stop fault semantic. This means a process
that fails will simply stop operating and not send any messages after it crashed. Another model
is the byzantine fault model, where failed processes can still send messages with arbitrary
values. Tolerating byzantine faults is way harder and requires further actions not discussed
here.

Two-phase Commit

The simplest protocol that allows instances of a distributed system to achieve consensus is
called two-phase commit (2PC) [13, Chapter 7]. As the name suggests it consists of two phases:
In the first phase a coordinator, the process that starts the protocol, proposes a value to all
other processes and waits for their responses. If all responses are positive, the coordinator
contacts everyone again and informs them that consensus was reached. The processes will
then consider the proposed value final (and commit it or pass it to a state machine) and the
protocol terminates. If no consensus has been reached, the coordinator also contacts everyone
but tells them that no consensus was reached and the participating processes will take no
further action.

The obvious problem with this solution is that even if only a single node fails, the protocol
will either lead to inconsistencies or will not make progress and thus violating the correctness
properties discussed for consensus protocols.

Three-phase Commit

The three-phase commit protocol [14] solves some of the shortcomings of the 2PC protocol. An
additional phase is placed between the two phases of the 2PC protocol, the so called prepare
phase. So after the first phase is completed successfully, the coordinator will first send prepare
messages to the participating processes and then waits for confirmation that everyone received
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2 Background

a prepare message before starting phase three, which is just like the second phase of the 2PC
protocol.

By adding the prepare message, every instance will know the outcome of the first phase before
actually committing. This allows to successfully terminate the protocol if the coordinator or
any participant crashes. Another instance might take over the role after a timeout and ask the
other instances what state they are in. If a node responds that it has committed, the backup
coordinator can assume that all processes have confirmed to be at least in the prepared state,
as the old coordinator would not have send a commit message to one of the processes and can
therefore tell the other processes to commit as well. With the same argumentation a crash of a
process after it committed can be tolerated.

However this protocol can still fail in presence of network partitions or faults other than the
fail-stop model.

Paxos

Paxos, originally described in [15] is the most prominent solution for the consensus problem.
It is however generally considered hard to understand and to implement. An attempt to make
it more understandable can be found in [16]. Paxos remains correct even if network partitions
occur and is resilient to the characteristics of asynchronous networks (e.g. packet loss or delay),
contrary to the 2PC and 3PC protocols. Paxos can make progress as long as less or equal than
f instances out of 2f + 1 instances fail.

Paxos distinguishes the roles of proposers, acceptors and learners. A proposer can create a
proposal with a number N . N is a sequence number, a pair of (n, id), where n is a natural
number the proposing instance monotonically increases for each proposal and id is a unique
identifier of the instance. This sequence number allows for a total ordering of the proposals.
The proposal is send to the acceptors.

Acceptors respond to proposals either with a promise or with a reject message. It decides
which action to take by comparing the proposal number of the received proposal with the
highest proposal number it has received Npmax. If the proposal number of the received proposal
(N) is higher than Npmax, the acceptor will set Npmax to N and send a promise back to the
proposer to never accept any proposal with a number lower than N . The promise will also
include the proposal with the highest number that was accepted (if present). If N is less than
Npmax, a reject message is sent back including Npmax.

If the proposer receives a promise from any majority, it will choose the value to propose. To do
so it will choose either any value if none of the promises included a proposal, or the value of
the proposal with the highest number from the received promises. An accept message is send
to the acceptors with the proposal Na and value Va. If no majority of promises was received,
the proposal failed and the proposer may start again.

18



2.2 Key-Value Stores, Synchronization Mechanisms and ISIS2

If an acceptor receives an accept message A, it will accept the proposed value VA if NA is
greater than Npmax. If a proposal was accepted by an acceptor, it will store it and send an
accepted message including the proposal number and value to all learners and the proposer.

If a learner or proposer receives accepted messages for the same proposal from a majority of
acceptors, it can consider the value final and terminate.

Usually there is only one proposer, but a situation with more than one might arise when a
proposer crashes, a new one steps in and the first proposer recovers later. Multiple proposers
can lead to a situation where they outbid each other with higher proposal numbers before
a proposal is accepted by a majority. In this situation the protocol will not terminate until
one of the proposers is finally successful or one of the proposers steps down. The acceptors
have to keep Npmax and the accepted proposal on disk so that after a crash they can recover
without causing paxos to yield incorrect results. The writing to disk has a significant impact on
performance.

The text above describes the basic single-paxos variant of the protocol. In typical use-cases
more than one value must be agreed upon which leads to the multi-paxos protocol that supports
multiple values to be agreed upon consecutively. In [17] the challenges of implementing paxos
for production use are described.

Viewstamped Replication

Viewstamped replication (VR), originally described in [18] and later revised and extended in
[19] was developed approximately in the same time as paxos, with both inventors having no
knowledge of each other. While solving the same problem and having the same constraints,
the protocols differ in the way they reach consensus. [20] provides a detailed comparison of
Paxos and Viewstamped replication. VR realizes log-replication rather than simply agreeing
on a single value. It uses three protocols to solve request processing, primary selection and
recovery of replicas after they failed.

VR defines three roles: a client, a replica and the primary. Clients only send requests to
the primary which is also a replica. Replicas have state that includes information about the
other replicas, its own identity, the view-number, the status it is currently in (either normal,
view-change or recovering), the last operation number received, a log containing all operations,
the commit-number which is the request number of the operation most recently committed
and a client table keeping the request number, and result of the request if present for each
client. The identity of the primary can be derived from the view-number.

The normal protocol is triggered by a client sending a request to the primary. The request
contains the id of the client, a request number and the operation to perform. The primary
checks if the request number is higher than the one stored in its client-table. If the request
number matches the number stored in the client table, the result is sent again. If the request
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number is higher, the primary increases the operation number, updates the client table and
sends a prepare message to the other replicas containing the original client request, the
operation number, the view number and the commit number. When a replica receives a prepare
message, it will only process it if its log contains entries for all prepare messages with a lower
operation number and if its current state is normal. A replica might request missing entries
from other replicas using state transfer. If the log is up to date it will perform the same steps
the primary did except sending out prepare messages, but will send a prepareOK message back
to the primary. When the primary received a majority of prepareOK messages, the operation is
considered final (committed), the primary will increase the commit number to the operation
number, will send a response to the client and add the response to the client table. Replicas
will commit operations when they receive new prepare messages with a commit number higher
than their own or with a separate commit message if no new client request is received in time.
The replicas will only commit if their log is complete up to the operation they learned to be
committed by the primary and all previous operations have been committed. After committing,
the replica will perform the same actions the primary performed, except sending a response to
the client.

If the primary fails, the replicas will notice this by using timeouts and trigger a view change.
Once a replica detects the failure of the primary, it will advance its view number, change
its status and send startViewChange messages to the other replicas containing the new view
number and the id of the sending replica. When a replica receives a startViewChange message
it will send a doViewChange message to the replica that should be the primary based on the
view number received. This message includes the new view number, its own log, the last
view number where the replica had a normal state, its operation number and the commit
number. When the replica that is determined to be the new primary received a majority of
doViewChange messages, it will update its view-number, replace its log, commit number and
operation number with the most up-to-date received, change its state back to normal and send
startView messages containing the new log, operation number, view number and commit
number to the other replicas. They will then update their local information to the received
state and commit outstanding operations, which the primary will as well. The replicas will
send prepareOK messages to the primary for the not committed operations in the log.

A crashed or replaced replica can participate in the normal operation after it went through
a recovery phase. To perform the recovery, the replica will set its state to recovering, send
recovery messages to all replicas including its id and a unique identifier. Other replicas will
only answer if their state is normal. The answer is a recoveryResponse message including the
view number and the identifier from the recovery message. If the primary receives a recovery
message, it will further include its log and the commit and operation number in the recov-
eryResponse message. The recovering node waits to receive a majority of recoveryResponse
messages. Only if the primary of the newest view it learned from has send a response it will
update its local values to the data from the primary and change its state to normal. Otherwise
the recovery attempt failed and the recovering node can try again with a different unique
identifier.
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A drawback of VR is that messages can become fairly large as the whole log is transmitted
in a number of message types. This can be overcome by either using techniques to shorten
the log or by keeping the committed log on disk. The protocol can be further optimized to
support local reads at the primary or, if staleness of data doesn’t violate client constraints, at
the replicas. In [19] a way to support dynamic changes of the cluster is given.

Raft

Raft [21] is a consensus protocol that was developed as an alternative to Paxos that is easier
to understand (according to a survey carried out by the authors) and use, while having
comparable performance and proven correctness. Raft shares many concepts with VR, but
concentrates more functionality in the leader, one of the three roles along follower and
candidate. Normal request handling is similar to VR: Only the leader receives requests and
tells the followers which updates they should append to their replicated log. Once the majority
of the followers have confirmed that they have received the update, the leader considers the
value committed and tells the followers to commit the update as well. The difference mostly
lies in the way the protocols handle leadership change in case of leader/primary failure: Raft
specifies that a follower will become a candidate if it does not receive a message (heartbeat or
update message) within a certain timeout. The candidate will send vote requests to the other
nodes and, if it has the majority of votes, will become the new leader. However not every node
can become leader, nodes will only vote for a candidate if the candidates log is at least as up to
date as the voters. This is done by comparing the id and term, a concept similar to view in VR,
of the last entry of the log, both numbers are included in the vote requests. If no candidate
received the majority of the votes, the election process is repeated until a leader is found. The
voter restriction ensures that no information is lost during leader change, in VR this is done by
transferring the logs to the designated primary, which will then choose the most recent.

Raft supports membership changes and, like paxos and VR, is resilient to network partitions.
However Raft assumes that the nodes statically know each other node in the cluster and
membership changes require manual intervention.

2.2.4 Virtual Synchrony

Virtual synchrony (VS) [22] is an alternative model to state machine replication. The key
observation behind virtual synchrony is that applications often don’t require the strict semantics
of state machine replication. In this case, messages can be delivered in less restrictive orders,
allowing higher performance, and yet the replicated process sees the same synchronous series
of events, therefore the name virtual synchrony. VS defines an abstraction called process group.
A process group consists of processes that have mutual state which can be modified by every
member by sending messages to the group members. Processes may join or leave a process
group at any time. Joining processes will receive the current state via state transfer. The process
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group provides its members with consistent information about group membership. Events in
VS, be it messages or membership changes (joins, leaves, crashes or recoveries) are delivered in
the same order to processes, respecting the observation described above. VS does not require to
run a consensus protocol to perform an operation, the sender will retry to deliver the message
until a timeout is triggered, which will then trigger a membership change. If the failed note did
not crash but was unable to communicate with the group because of a network partition and
tries to rejoin the group, it will be forced to restart first. This allows to perform read operations
against the local copy which is a huge performance gain. The difficulty, that comes with the
advantages VS offers, is that the developer building an application employing the VS model
must choose a messaging primitive that satisfies the requirements of the application, as failure
to do so can lead to inconsistencies in the mutual state.

2.2.5 ISIS2

ISIS2 [23] is a C# library written by Ken Birman, the main contributor to virtual synchrony.
It offers a broad feature set aimed to ease the development of distributed applications for
cloud computing. It implements the concepts of virtual synchrony: Process groups can
exchange messages using primitives with different semantics. ISIS2 includes the following send
methods:

SafeSend equates Paxos, with optional disk logging

OrderedSend offers a total ordering of the messages but no durability guarantees

CausalSend corresponds to causal ordering as defined by [10]

Send reliable messages, FIFO ordered per sender

RawSend unreliable datagram messages

As mentioned in the description of VS it is in the developers responsibility to choose the right
send primitive for the particular use-case. In the use-case of a key-value store for a distributed
SDN controller, it is important to consider the implications of the SDN model. For example a
SDN switch is only connected to a single controller at a time. Therefore this controller will be
the only one to receive updates from this switch and can thus be considered the owner of data
items concerning this switch. When an owner can be defined for an item, meaning updates
will only come from this process, the send send primitive can be used, as FIFO-ordering per
sender is sufficient to achieve consistent update ordering as there will only be one sender. This
observation holds true for normal operation, but since switches will change the controller they
are connected to in case of controller failure, a more strict send-primitive has to be used to
keep the mutual state consistent if a controller fails. For data items like links that concern
multiple switches that might be connected to different controllers, total ordering is needed
since updates can come from multiple controllers. Apart from the data properties, performance
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should also be considered when choosing the send primitive. In [24] as well as in chapter 7, a
performance comparison of the send primitives is given.

In addition the these communication primitives, ISIS2 supports state transfer between nodes
by employing snapshotting. This allows for dynamic group membership changes, as joining
nodes will be requesting a snapshot of the state from the group members, which will take a
snapshot and transfer it to the joining node. ISIS2 also offers a Distributed Hash Table (DTH)
which supports sharding. Sharding means that only a part of the complete state is kept on
every replica, reducing the size of the state every replica has to keep but requires remote reads.
Further a distributed locking API is included.
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One of the main advantages of software-defined networking is the global view provided to
the control applications by the controller. Many networking problems are easier to solve
when the complete network situation is provided, compared to operating on the limited local
view of a node. For example, the routing can be based on Dijkstra’s shortest path algorithm
instead of using link-state or distance-vector techniques as in a fully distributed approach. Also
being able to program against a high level abstraction and in a higher level programming
language compared to writing low level firmware further eases the development of applications
implementing network functionality and allows for more sophisticated control logic.

While the advantages of the global view and the centralized model are clear, concentrating
all critical network control logic in a central instance leads to high risks of failure. Scalability
issues might arise, considering the growing size of today’s networks. So by making it easier to
solve a series of problems, SDN leads to another problem: It employs a single point of failure
for the whole network. It further depicts a possible performance bottleneck considering the
growing scale of networks. However, both, scalability and fault tolerance, are problems that
can be solved by distributing the controller. This distribution contradicts the centralized aspect
imposed by SDN, but by having the controller instances operate on the same state, the control
plane remains logically centralized but is physically distributed.

Sharing state between instances in a distributed system is far from trivial and an active research
area. The famous CAP-Theorem forces systems trying to share state between instances to make
trade-offs between properties (data consistency, availability and partition tolerance). Most
available tools for state synchronization only offer a single type of synchronization. Distributed
controllers that have been built (see chapter 4) on top of these tools have inherited the fixed
semantics for state synchronization offered by those solutions. However, the data items a
controller instance holds differ in their requirement for consistency, constituting a degree of
freedom and leaving room for optimization. For example, it is important to keep the topology
information consistent, but typically the load statistics of switches are considered less important
and thus can be kept less consistent.

The ISIS2 library is an exception from the tools providing synchronization functionality, as it
doesn’t only offer a single semantic. It offers a wide range of consistency levels to systems built
on top of it by employing the virtual synchrony model with multiple send primitives discussed
in 2.2.4. Virtual synchrony allows to exploit the fact that switches are only connected to one
’master’ controller, so updates to the data concerning this switch will only be done by a single

25



3 Motivation

controller. This allows to use a less strict ordering of update messages for this data, As only
FIFO ordering for a single sender is needed, and not a global ordering.

The contribution of this thesis is the implementation of a distributed controller built on top of
ISIS2 and OpenDaylight, a widely used, state-of-the-art SDN controller. The proposed controller
provides the possibility to use different consistency levels for the different kinds of data kept in
controller state. Further a unified middleware layer is provided, supporting the extensibility of
the system. The proposed system is evaluated in both, micro and macro benchmarks.
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The need to distribute the control-plane has been recognized in literature and several proposes
were made:

Hyperflow [25] was among the first proposals for a distributed controller. A Hyperflow instance
has a global view on the network, but only directly controls a local subset of network nodes.
The instances communicate over a publish/subscribe system build on top of WheelFS [26], a
distributed file system.

Kandoo [27] proposes a hierarchical distribution pattern that provides scaleability rather than
fault-tolerance or consistency. Kandoo seperates controllers into two tiers: The bottom tier and
the root tier. The bottom tier controllers have a limited number of switches connected to them
and are not interconnected, but report their view to the root controller. The main assumption
the authors of Kandoo make, is that most of the events generated by the network can be
handled by the bottom controllers with their limited local view, shielding the root controller,
that has a global view, from the majority of events as bottom controllers only forward events
they can’t handle to the root controller.

Onix [28] offers applications built on top of it a view on the network they call Network
information base (NIB). Applications can add data to the NIB and choose between two
datastores: a transactional, persistent database with a SQL-frontend that is consistent but has
low performance and an eventual consistent Distributed-Hash-Map with higher performance
but no consistency guarantees.

The authors of [29] argue that consistency is a desirable property of controller state, as shown
in [30] and that the low performance of the onix datastore is not a general property of such
systems, but rather implementation specific for the onix datastore. A prototype based on
BFT-SMaRt [31], a byzantine fault-tolerant state machine replication library, is presented and
evaluated.

In [32] ElastiCon is proposed, a system to dynamically distribute the load between controllers.
Controller instances report load measurements and based on the reported load, new instances
are started, switches moved between controllers or controllers are stopped. To preserve a
consistent view between the instances, a distributed data store is used, implemented on top of
Hazelcast.

All of these Systems provide a single consistency semantic, except Onix. Onix however only
offers a choice between two extremes, forcing the use of the slow transactional datastore if the
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DHT is no feasible choice. As shown in [29], it it possible to build a consistent datastore for
SDN controllers with sufficient performance. A controller using the ISIS2 library and exploiting
the range of consistency semantics offered should be able to provide the same performance, if
not better.
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In this chapter the architecture and system model of the proposed distributed controller
datastore are described.

5.1 System Model

The System consists of two modules: The controller and its datastore. Together they form
one controller instance. Multiple controller instances form a controller cluster. The controller
cluster controls multiple data-plane switches. Each switch can be connected to multiple
controller instances, but only one of those connections is active (the master connection) at
any given time. The other connections act as fallback if the master controller fails. Controller
instances store their state in their local datastore and use the information in the datastore to
react on network events. The datastores of the instances in the cluster will be synchronized
using the ISIS2 library. As discussed earlier, the controllers can perform read operations against
their local datastore, ISIS2 is only used to distribute the write operations between the instances.
The architecture is illustrated in Figure 5.1.

The controller instances operate with arbitrary processing speeds and communicate over a
(separate, non data-plane) network that possibly duplicates, reorders or drops messages. The
message delay has no upper bound and the network might experience partitions. The cluster
membership is not static and controllers can join or leave at any time. Controller instances are
assumed to fail by crashing. A controller instance has failed if any of the modules (controller
or datastore) failed.

5.1.1 Scope Limitations

The controller, used as basis of the system, OpenDaylight, is a large (above 300,000 lines of
code1) and complex system. This thesis is practically a feasibility study and as it was hard to
predict what problems might arise, the scope was limited on selected parts of the controller,
namely (with datastores of the module):

1measured with cloc [33]
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OpenDaylight
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OpenDaylight

Datastore

OpenDaylight

Datastore
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ISIS²

Figure 5.1: System model. The Data-plane nodes are connected to a controller instance.
The controllers operate on the same state, using a local copy, synchronized by
ISIS2. Fallback connections from network nodes to their backup controllers are
not shown.
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TopologyManager edgesDB, nodeConnectorsDB, hostsDB

SwitchManager nodeProps, nodeConnectorProps, nodeConnectorNames

HostTracker activeHosts, inactiveHosts

These modules together provide a complete view of the dataplane network and are used heavily
by the simpleforwaring module of OpenDaylight, which provides reactive routing functionality
by listening to ARP messages and when a new host is discovered, installing forwarding rules
pointing to the host on all network nodes. As these functions are essential to a controller,
evaluation of these parts should provide enough information to decide whether ISIS2 is a
feasible building block for a distributed controller datastore. Since other modules could easily
be integrated into the existing system, complete coverage of all controller modules would be
doable with reasonable effort (see 6.4).

5.2 Abstractions

The datastore provides access to multiple predefined statically typed key-value stores with a
simple Java map compatible interface. Every controller instance can issue operations on the
key-value stores. The read operations are, as already mentioned, performed against the local
copy. The write operations are synchronized by ISIS2. Operations may have parameters and a
return value. They are invoked in a synchronous manner, so the calling thread will block until
the operation is completed. The datastore can handle concurrent calls but will process them
serially.

Another feature of the datastore is that instances will be notified of remote changes. This
functionality is required by OpenDaylight and called update aware. In order to make an entity
of the controller update aware for a certain key-value store, the entity must implement an
interface and register themselves with the datastore.

Each store ensures that "write-before-read" semantics are respected which means that a read
operation following a write operation by the same controller will respect the write operation.

The supported operations are listed below, as well as the update aware functionality.

5.2.1 Operations

The datastore supports the following operations on the key-value stores. Keytype and valuetype
are placeholders for the actual types used in the individual key-value store. Table 5.1 contains
the key-value stores and their data types.

LIST (void) → list<pair<keytype,valuetype>>

The list operation returns a list of all key-value pairs stored in the datastore.
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SIZE (void) → int

Returns the number of entries(key-value pairs) in the datastore.

GET (keytype KEY) → valuetype

Returns the value stored under the given key. If no key was found, null is returned.

PUT (keytype KEY, valuetype VALUE) → valuetype

Stores the given value under the given key. If there was already a value stored for this
key, it is returned, otherwise null is returned.

REMOVE (keytype KEY) → valuetype

Removes the given key and the value stored for it from the datastore. If the key was in
the datastore, the value is returned.

CONTAINS (keytype KEY) → boolean

Returns a boolean indicating if the given key is in the datastore.

CLEAR (void) → void

removes all entries from the datastore.

LIST, SIZE, GET and CONTAINS are read operations, PUT, REMOVE and CLEAR are write opera-
tions.

5.2.2 Update Aware

Entities that use a datastore can request to be notified if the contents of a datastore change.
The interested entities must provide the following interface:

ENTRY_CREATED (keytype KEY, boolean LOCAL)

ENTRY_UPDATED (keytype KEY, valuetype VALUE, boolean LOCAL)

ENTRY_REMOVED (keytype KEY, boolean LOCAL)

the LOCAL flag is true if the change to the datastore was triggered by the local replica, false
otherwise. When an ADD/UPDATE/REMOVE to a store occurs, the entity interested in changes
will be notified over the corresponding method. The method will be called after the update
was applied to the local datastore copy. If the update was triggered locally, the update aware
method may be invoked before the call to the operation will return.

32



5.3 Data Model

Listing 5.1 Excerpt from the data type definitions of the datastore using Protobuf. The Edge
data type uses the NodeConnector data type which uses the node data type

1 ...

2 message Node {

3 required string type = 1;

4 required string id = 2;

5 }

6 ...

7 message NodeConnector {

8 required string type = 1;

9 required string id = 2;

10 required Node node = 3;

11 }

12 ...

13 message Edge {

14 required NodeConnector head = 1;

15 required NodeConnector tail = 2;

16 }

17 ...

5.3 Data Model

Both main building blocks of the system require a strongly typed data model. Since Java and
C# types are not compatible, a language neutral definition of the data is needed. Protocol
Buffers (Protobuf) [34], a serialization mechanism developed by Google was used to define
the data model. Protobuf data types are defined in an own language from which a compiler
produces language specific code. More rationale behind the decision to use Protobuf is given
in 6. Listing 5.1 shows how the edge data type is defined using previously defined data types.
The data types are close representations of the data types used by OpenDaylight, which eases
conversion between the two representations. Most key-value stores have lists as their valuetype
(see table 5.1). Lists can be elegantly modeled using protobuf by using different field rules.
The fields of data types can either be required, optional or repeated. Required fields must
be set and cannot be null, optional fields may be null and repeated fields can contain zero to
n values.
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Component Datastore Key-Type Value-Type

TopologyManager edges Edge Property*
TopologyManager nodeConnectors NodeConnector Property*
TopologyManager hosts NodeConnector HostWithProperties*
SwitchManager nodeProperties Node Property*
SwitchManager nodeConnectorProperties NodeConnector Property*
SwitchManager nodeConnectorNames Node NamedNodeConnector*
HostTracker activeHosts HostID HostNodeConnector
HostTracker inactiveHosts NodeConnector HostNodeConnector

Table 5.1: Data types used by the key-value stores. Types annotated with * are lists.
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The system is based on OpenDaylight [35], a state of the art SDN-controller and the ISIS2

library. An overview over OpenDaylight is given in 6.1.1 and more information about ISIS2 is
provided in 2.2.5 and 6.1.4. The overall architecture of the system is pictured in Figure 6.1. A
client-server model is used for the communication between the controller and its datastore.
The datastore server is written in C# and uses ISIS2 for synchronization with other instances.
The client is integrated into the OpenDaylight platform, providing access to the datastore to
controller modules.

Since OpenDaylight is a Java application and ISIS2 is written in C#, there are some points to
consider implementing a system based on both applications:

• Separation of concerns.
As there are two distinct processes, one major design decision is about what functionality
will live in what part of the system. Different features (e.g. sharding based on data
locality) have been considered and as a result the communication protocol between the
two subsystems is quite verbose and the local state copy is kept in the C# subsystem.
This certainly isn’t beneficial to performance but eases integration into ISIS2.

• The target environment of the system is a linux server.
To be able to run the C# module of the system, Mono [36] is used. Mono provides an
open source implementation of the .NET runtime and a C# compiler. However using
Mono comes with performance drawbacks compared to native execution on a Windows
platform (see 7 and below).

• The communication between the Java runtime and the C# .net platform.
In almost every deployment scenario both processes would run on the same machine, so
an inter process communication (IPC) based communication channel would be preferable.
In order to have a simple abstraction of IPC, ZMQ REQ/REP Sockets over the ZMQ-ICP
transport was chosen. During evaluation stability issues arised on the C# side when
using the IPC transport1. As ZMQ does not offer another communication channel for
IPC and changing the system to use another IPC mechanism wasn’t possible in a timely
manner, the TCP transport of ZMQ was used as fallback. While there is a performance

1ZMQ internally uses UNIX domain sockets for IPC[37], technically not supported by Mono/C#. However C#
implementations based on the C++ library still offer the IPC transport.
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Figure 6.1: System overview

penalty, there are still enough capacities so this poses no bottleneck (see 7.2.1). ZMQ is
discussed in more detail in 6.1.2.

• An efficient way to serialize data between Java and C# is needed.
Google Protocol Buffers (protobuf)[34] was chosen as serialization solution as it is simple
to use, offers good performance and has bindings available for almost all programming
languages. Also ISIS2 can be configured to use the protobuf-net library (a C# protobuf
language binding)[38] for its internal serialization.

The rest of this chapter will give an overview of the software used to build the system, a more
detailed description of the functioning of the modules and will discuss the model driven aspects
and the extensibility of the system.
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6.1 Used Software

6.1.1 OpenDaylight

OpenDaylight is written in Java and uses the OSGi-framework, which is a platform to write
modular software systems. OpenDaylight consists of multiple bundles (modules), each offering
specific services to other bundles and requiring others to function. The OSGi platform takes
care of bundle dependencies during start up and allows to start, stop, restart or update
bundles at runtime. OpenDaylight consists of different layers, each offering a different level
of abstraction of the underlying network. The "lowest" layer, the southbound interfaces, are
bundles that provide connectivity with certain network elements, with the most prominent
being the OpenFlow bundle. The next layer is the service abstraction layer (SAL), which
unifies the interfaces from/to the southbound plugins and provides a common data model for
the upper modules. On top of the SAL there are the bundles that implement the "controller
business logic" and provide basic functionality like a topology abstraction, switch statistics,
host tracking and flow management. In the stock release of OpenDaylight 1.0, a bundle
called simpleforwarding is included which uses these functions to provide rudimentary reactive
routing functionality for the connected network. In addition to the possibility to write own
bundles directly against the services of the "business logic" bundles, there is another layer called
northbound, which offers a RESTful API to applications implementing additional network
functionality. In Figure 6.2 an overview of the OpenDaylight controller is given. Version 1.0,
called Hydrogen of OpenDaylight was used.

To use OpenDaylight as basis for the proposed system, a new bundle is added to the OSGi
platform, containing a service that provides access to the distributed key-value stores. This
bundle is discussed in detail in 6.2.1. In addition, some of the bundles were altered to use this
service.

6.1.2 ZMQ

ZeroMQ (also called ØMQ or ZMQ) [40] is a high performance messaging library. It provides
an abstraction based on classic sockets. These sockets can use one of the supported messag-
ing patterns request-reply, publish/subscribe or pipelines and support different underlying
transportation mechanisms. While the core library is written in C++, ZMQ is available for
a wide range of languages, either by a library written completely in the targeted language
or by providing a wrapper for the native library. For the Java side of the system the JZMQ
implementation v3.1.0 was used, which is a wrapper around libzmq. On the C# side, sev-
eral implementations were tested (Castle.ZMQ, NetMQ and clrzmq4). The only library that
supported the IPC transport is Castle.ZMQ however, as mentioned earlier, turned out to be
unstable and the NetMQ library version 3.3.0.11 is now used over the TCP transport.
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Figure 6.2: OpenDaylight 1.0 Hydrogen architectural overview [39]

As already mentioned, the system uses the ZMQ request-reply pattern. This pattern uses
two socket types, the ZMQ-REQ socket and its counterpart, the ZMQ-REP socket. Together,
they provide a synchronous, message based communication abstraction. A REQ-socket is
only allowed to send a message if no previous messages have been sent or after it received
a message. The REP-Socket may only send a message after it received one. So both sockets
have two non-error states: send and receive. In the receive state a socket may only receive a
message, but not send one. In the send state a socket may send a message, but not receive one.
The difference between a a REQ and a REP socket is that the REQ socket initially is in the send
state and the REP socket in the receive state. Messages are byte-arrays, that are converted into
the language specific representation by the respective library.
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6.1.3 Protocol Buffers (Protobuf)

As discussed earlier, Google’s Protocol Buffers, or short Protobuf, is used for defining the data
model. Protobuf is further used to define the communication messages the two subsystems
exchange and RPCs are defined on top of those messages, also using Protobuf.

From the RPC definitions the Protobuf compiler generates a service class, containing the defined
RPCs. This service class uses a RPCChannel that must be implemented seperatly, to send and
receive the messages. The RPCChannel implementation is built on top of ZMQ. This RPC
abstraction is only used on the Java side, as the C# side will simply wait for a request, handle
it and send the answer back. On the Java side however, this abstraction greatly simplified the
implementation of the datastore abstractions build on top of it.

On the Java side the default binding generation included in the stock-compiler version 2.6.1
was used and on the C# side the protobuf-net library version 2.0.0.668 was used. This
library differs from the other implementations available for C#, as it provides a serialization
functionality based on attributes, a functionality similar to annotations in Java. A class can
be prepared for serialization by using attributes that protobuf-net uses for serialization of the
class. Protobuf-net also includes a compiler that generates annotated classes from a .proto
file. Alternative libraries are available, providing a model more similar to the Java library, but
since ISIS2 can be configured to use protobuf-net as serialization mechanism, protobuf-net was
chosen.

6.1.4 ISIS2

As the general characteristics of ISIS2 are discussed in 2.2.5, the technical details will be shown
here. Version 2.2.1962 of ISIS2 was used. ISIS2 is distributed in source code as a single .cs-file,
with around 36,000 lines of code2. ISIS2 offers an abstraction on group communication with
different consistency semantics. The API of ISIS2 is similar to a RPC system: On a group handle
operations and their parameters are defined as methods (callbacks), that ISIS2 will invoke
when an instance issues a call to such an operation. Triggering these operations can be done
with one of the different ordering/consistency semantics offered by ISIS2.

ISIS2 itself is highly asynchronous and uses multiple threads internally. When building a system
against the ISIS2 library, one must be aware that ISIS2 will call the callback methods from its
own threads, so any data structure that is accessed in these callbacks must be thread-safe or
locking must be used.

2measured with cloc [33]
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ISIS2 has its own serialization functionality built-in, but this functionality is quite limited
(e.g. empty lists can’t be serialized). It is, as mentioned earlier, however possible to use the
protobuf-net library to do the serialization.

The selected serialization method is used for the group communication as well as the state
transfer functionality of ISIS2. This allows instances to join already running clusters and to
receive the current state from another instance and to apply it to its local data structures. The
state transfer is done via snapshotting, and methods similar to the callbacks must be provided
for taking and applying snapshots of the local state.

On top of this basic group communication ISIS2 offers a distributed hash table (DHT), that
supports sharding. It was checked if the DHT would be a valid choice for the implementation
of the datastore, but the lack of a LIST operation and the fact that ISIS2 only offers a single
DHT per group would force the use of aggregate keys to distinct between the datastores and
type conversions as the DHT is not typed. So the datastore was implemented on top of the
group communication feature as it is more flexible and better fits the use-case.

ISIS2 offers other advanced features such as out-of-band state transfer to speed up state transfer
involving large state, a querying API similar to the send primitives that can be used to query
state from other instances using C#s LINQ and Map-Reduce like processes can be realized with
ISIS2 as has aggregation mechanics built in.

6.2 Modules

6.2.1 DCDS OSGi Bundle

OpenDaylight already has a clustering feature built in that is based on infinispan. The clustering
feature is wrapped in a bundle called clustering.services. This bundle exposes an interface that
allows to create Key-Value stores, called Caches by infinispan. These caches implement the
ConcurrentHashMap interface of the Java standard library. Every bundle that contains state
that should be replicated over the cluster uses these caches, so replacing the clustering.service
bundle with a implementation that would redirect calls to the ISIS2 datastore would be an
elegant solution. However the interface of the clustering.service is voluminous and interacts
heavily with the OpenDaylight container functionality, which won’t be used by the proposed
system. Therefore, instead of replacing the clustering.service bundle, a new bundle called
DistributedControllerDataStore (DCDS) is added to the OSGi platform and the bundles using
the new service are modified to use this bundle instead of the built in cluster service. The
modifications are minimal and boil down to importing the service and replacing the call to
retrieve the map from the DCDS instead of retrieving it from the built in service. Listing 6.1
shows an example on how a bundle was modified.
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DatastoreRPCChannel

DistributedDatastoreService
DatastoreX

TopologyMana
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Encodes/Decodes

UpdateAwareHandlerDecodes
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ZMQ (DatastoreRequests)

ZMQ (UpdateAware)

Figure 6.3: Inner structure of the DCDS bundle. The service exposes access to the datastores
via interfaces that will perform operations by forwarding them to the C# server
using the DatastoreRPCChannel. The update aware handler will do up calls to
interested listeners when the contents of a datastore have changed.

Listing 6.1 Modifications to the TopologyManger class in order to use the distributed datastore
1 // original code:

2 this.edgesDB = (ConcurrentMap<Edge, Set<Property>>)

this.clusterContainerService.createCache(TOPOEDGESDB,

EnumSet.of(IClusterServices.cacheMode.TRANSACTIONAL));

3 // modified code:

4 this.edgesDB = this.datastoreService.getTopologyManagerEdgesDatastore();
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Listing 6.2 Implementation of the containsKey-Method in the TopologyManagerEdgesDatastore
1 @Override

2 public synchronized boolean containsKey(Object key) {

3 if (key instanceof Edge) {

4 Edge edge = (Edge) key;

5
6 try {

7 TopologyManagerEdgeDatastoreRequest request = [...]

8 TopologyManagerEdgeDatastoreReply reply =

service.topologyManagerEdgeDatastore(request);

9 return reply.getResult();

10 } catch (ServiceException e) {

11 throw new IllegalStateException(e);

12 }

13 } else {

14 return false;

15 }

16 }

Datastores

The Key-Value stores returned by the DCDS implement the ConcurrentHashMap interface,
but all invocations are forwarded to the C# server. To do this, the method parameters are
converted into their protobuf representation, a request object is created, serialized and sent to
the C# server using the DatastoreRpcService which internally uses the DatastoreRPCChannel.
The methods of the service will block until the response arrives. When the response arrives it
is first parsed as a Protobuf-message. Then the value returned by the operation, if present, is
converted back into the format OpenDaylight internally uses and the call will return. Listing 6.2
shows how a ConcurrentHashMap method is implemented and uses the DatastoreRpcService.

DatastoreRpcChannel

The DatastoreRpcChannel class implements the BlockingRpcChannel interface from the proto-
buf library. It is used by the DatastoreRpcService that is generated from the .proto file by the
protobuf compiler as abstract communication gateway. It provides a communication channel
built on top of the ZMQ request-reply pattern.

UpdateAwareDatastores

Two of the bundles that are modified to use the DCDS bundle, implement the IUpdateAware
interface from the clustering-service bundle. These classes want to be notified if another
instance added, changed or removed data from one of the Key-Value stores they use. As this
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functionality is heavily incorporated into how the bundles internally work, the DCDS bundle
also needs to provide this functionality. In order to do so, a second ZMQ-Socket is created,
but instead of a REQ-Socket a REP-Socket is used. A new thread is started to listen on this
socket and when a remote change occurs, this thread will call the relevant method of the
IUpdateAware interface. The C# server will connect to this socket and forward all relevant
events over this communication channel.

6.2.2 C# server

The C# server holds the local copy of the datastore, will handle client requests from the local
controller and integrates with the ISIS2 library. The structure of the C# server is shown in
Figure 6.4. It is connected to the local controller over two ZMQ sockets. One socket is a
REP-Socket used to receive and respond to controller requests. The other Socket is a REQ-
Socket used to "push" UpdateAware notifications to the controller. The REP-Socket will forward
incoming requests to the RequestHander after they have been parsed. The RequestHandler
will then decide to either answer the response from the local datastore copy if the request is a
read operation, or if it is a write operation, to update all instances, including itself, via ISIS2 by
calling one of the send primitives on the group handle, for example
group.OrderedSend(TOPO_EDGE + REMOVE, key);

This call will return instantly and not wait for the operation to be confirmed by the other
instances. A call to group.flush() should, according to the ISIS2 manual, do exactly this.
However, it will not wait for the callbacks to actually be completed and this leads to problems
when an instance adds a new entry and then reads are performed on the local copy, not yet
containing the added value. To prevent this from happening, the thread handling the request
will wait until the local callback has returned, ensuring the reads will see the write. The
callbacks will update the local copy according to the operation/received data and will trigger
the UpdateAwareSender to inform the local controller of the update. In a similar fashion to the
callback methods, methods used for state transfer are needed. One method is used to take a
snapshot of the local copy and another must be provided to apply the snapshotted data. Listing
6.3 shows how these callbacks are implemented for one of the key-value stores.

6.3 Model Driven Aspects

In order to make the system more extensible and to support multiple programming languages,
model driven methods should be integrated in the development process of the system. While
most of the system is not model driven, the specification of the data model and communication
protocol using Protobuf and the automated generation of the language specific bindings is
a model driven aspect of the system. This could have been taken further by automating the
generation of the code needed in order to get a functional key-value store, however the work
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Figure 6.4: Inner structure of the C# server. Operations from the local controller will be
handled by the requestHandler. Read operations are performed on the local data,
writes will be performed over ISIS2. ISIS2 will use the provided callbacks to
modify the local copy, which will also trigger the UpdateAwareSender to inform
the controller of modifications. The state transfer methods are used by ISIS2 to
initialize a new member in the cluster.
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Listing 6.3 Simplified representation of the initialization of ISIS2. The System is started, then
the data types are registered and a group handle is created. The supported operations and
checkpoint handling code must be registered before joining the group

1 IsisSystem.Start();

2 registerTypes();

3 var group = new Group("dcds");

4 group.Handlers[TOPO_EDGE + REMOVE] += (Action<Edge>)delegate(Edge key)

5 {

6 TopologyManagerEdgeDatastore.Remove(key);

7 };

8 group.Handlers[TOPO_EDGE + PUT] += (Action<Edge, PropertyList>)delegate(Edge key, PropertyList

value)

9 {

10 if(TopologyManagerEdgeDatastore.ContainsKey(key))

11 {

12 TopologyManagerEdgeDatastore[key] = value;

13 } else

14 {

15 TopologyManagerEdgeDatastore.Add(key, value);

16 }

17
18 };

19 group.LoadChkpt +=

(Action<List<TopologyManagerHostDatastoreEntry>>)delegate(List<TopologyManagerHostDatastoreEntry>

state) {

20 foreach(var entry in state){

21 TopologyManagerHostDatastore.Add(entry.key, entry.value);

22 }

23 };

24 group.MakeChkpt += (Isis.ChkptMaker)delegate(View view) {

25 group.SendChkpt(TopologyManagerHostDatastore.Select(e => new

TopologyManagerHostDatastoreEntry(e.Key, e.Value)).ToList());

26 };

27 group.Join();

needed to get such a model driven process running would most likely exceed the advantages
of automated code generation.

6.4 Extensibility

As discussed in 5.1.1, The implemented system is currently not distributing the whole data
held by a controller. Other bundles could be integrated with reasonable expense. The data
model defined should cover most of the data types OpenDaylight internally uses, so extensions
to the data model shouldn’t be needed. The communication messages and RPC definitions
on the other hand must be extended for the new key-value stores. Once this is done and the
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language bindings have been recompiled, on the C# side a new dictionary acting as the local
copy must be added and some boilerplate code is needed to instruct ISIS2 to synchronize the
dictionary. On the Java side the service provided by the DCDS bundle must be extended to
expose the new key-value store and the bundle meant to be modified must import and use the
store provided by the DCDS service.

One of the requirements for the implementation was the possibility to integrate other datastore
systems apart from ISIS2 into the system. This is possible and can, depending on the imple-
mentation of the datastore, be done directly in the DCDS bundle by providing an alternative
RPCChannel implementation, or by implementing the protocol used between the Java and C#
components. As a proof of concept, an alternative RPCChannel backed by the etcd key-value
store and its Java API could easily be integrated into the existing system.

Another requirement was the possibility to replace OpenDaylight with another controller
implementation. While this is possible, it isn’t as easy as replacing the datastore. The data
model used is strongly adapted to the internal OpenDaylight data classes. Since controllers
operate on the same abstractions, another controllers data model might fit the used data model,
but even if this is the case, it would require quite some work to integrate.
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Adding a datastore to an existing system like OpenDaylight might have noticable performance
impact, especially considering that the datastore resides in a different process and all read and
write operations include (de)serialization and transport.

To better understand the implications of the modifications introduced, the individual parts of
the system as well as the complete system are analyzed in their behavior. The components are
evaluated in tests similar to their use-case and the complete system is tested under two different
scenarios using the different send primitives of ISIS2 and by using the cbench benchmark.

Three individual components are evaluated: ZMQ transports are compared using messages
per second as well as Protobuf message parsing. ISIS2 is evaluated regarding the perfor-
mance of the different send primitives and how they scale with process count. The complete
system is evaluated through two scenarios that show the impact of the data-plane topology
on system load and how the datastore behaves in these situations. Also cbench, a bench-
mark for controllers, is used to compare the performance of the proposed system with other
controllers.

7.1 Test Environment

The evaluation tests, if not stated otherwise, were run on a xubuntu 14.04 x64 VM with 8GB
RAM and 4 CPU cores allocated, using Vmware player 6.0.5. The VM hard-drive is stored on a
SSD. The host system runs Windows 7 x64, has 16GB RAM and a 8 core Xeon e3-1230v3 CPU
with 3.3GHz. Java x64 version 1.7u76 was used, and for the C# parts Mono 3.12.1.

To simulate the data-plane network, Mininet 2.1.0 [41] was used. Mininet is a network
emulator that creates hosts, switches and links according to a topology defined by the user. The
switches in the virtual network are emulated using open vSwitch, which support the OpenFlow
protocol. The hosts are processes that only have access to their virtualized network interface.
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7.2 System Components

The system component evaluations include a comparison of the TCP and IPC transports of
ZMQ, the throughput of the Protobuf implementations used and how the different ISIS2 send
primitives scale with process count.

7.2.1 ZMQ-Transport

In order to decide (and to legitimate the use of TCP after the IPC transport appeared to be
unstable) on a transport method for the ZMQ based communication between the DCDS bundle
and the C# server, the throughput between the TCP and IPC transports were compared in a
setup similar to the planned use-case. Over a timespan of 60 seconds it was measured how
often the following task was performed: A pseudo-random (each iteration used the same seed)
byte array of size 64 + rnd(0, 256) was created on a Java process, sent to a C# process that
sent the same byte array back. The Java process then compared the results and started the
next task. The measurement was repeated 50 times.

Figure 7.1 shows the result of the test. While the IPC transport has slightly better performance,
its standard deviation was higher compared to the TCP transport (9033±1211 for IPC compared
to 8316 ± 688 when using TCP). During these tests both transports performed stable and no
problems appeared. But, as mentioned earlier, during the tests of the complete system ZMQ
leaded to crashes on the C# part of the system. Debugging this showed that the IPC transport
seemed to cause this and after using the TCP transport, the system showed no such behavior.
This resulted in TCP being used over IPC.

7.2.2 Protobuf Serialization

The serialization and deserialization of the data and message types defined using protobuf are
critical to system performance as they are used frequently and on all communication channels
(both ZMQ socket pairs and internally by ISIS2) of the system.

In Figure 7.2 a performance comparison parsing a recorded message between used protobuf
libraries is given. The C# protobuf-net libary was tested twice, once running on Mono and
once native on the Windows host described in 7.1 to illustrate the performance impact of Mono.
The test was repeated 50 times, each test run took 10 seconds. The message used was a LIST
operation response for the TopologyManager-Edge datastore when containing 12 entries. The
message has a size of 574 bytes which renders it one of the larger messages. The requests are
normally around 100 bytes, as are most responses except the LIST responses that are naturally
larger as they scale with the number of entries stored in the datastore the LIST operation is
called on.
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Figure 7.1: ZMQ messages mirrored per second. Comparison of the IPC and TCP transports
of ZMQ using a Java client which sends messages to a C# server, mirroring the
received messages back.

While the performance of the message parsing is higher than the performance of the ZMQ
sockets and the parsing therefore doesn’t depict a performance bottleneck, the difference
between the Java and C# implementation are extreme, with the Java version performing 14
times faster than the C# code running on Mono. Attempts to increase the performance of the
C# message parsing according to the available documentation didn’t lead to improvements.
Also the impact of Mono is drastic, as the same binary performed 4 to 5 times better running
native on Windows.

7.2.3 ISIS2

As ISIS2 is one of the main building blocks of the system, the performance of the communication
primitives offered by ISIS2 are critical to system performance. In figure 7.3 the throughput in
write operations to one of the key-value stores is shown using one active process and 0, 2, 4, 9
or 24 passive "receiver" processes. 7.3a shows the throughput when the local synchronization
mechanism used to guarantee read-after-own-write consistency as described in 6.2.2 are
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Figure 7.2: Comparison of throughput when parsing a message using the default Java Protobuf
library and protobuf-net, running on Windows and Mono.

enabled and in 7.3b when they are disabled. An explanation for the high performance of the
OrderedSend primitive when only one process is present can be found in this quote from page
40 of the ISIS2 documentation(available at [42]):

OrderedSend is slower than Send except in one special case: the protocol optimizes
itself in situations where the sender is the rank-zero member of the group and
no other member has sent any ordered multicasts during the current view. It
will run faster while this condition holds. As soon as some other member does
use OrderedSend, the optimization shuts itself off, and the rank-zero member’s
multicasts then have the same cost as multicasts from any other member, until the
next membership view change event.

Each test run lasted one minute and was repeated ten times. The processes were restarted
after the first five runs. The data used to test the write performance was extracted from the
message described in the Protobuf evaluation.

The difference in performance between the send primitives is as expected, with the Send
primitive performing the best followed by CausalSend, OrderedSend and with SafeSend being
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(a) Local synchronization enabled

(b) Local synchronization disabled

Figure 7.3: Performance of ISIS2 send primitives for 1, 3, 5, 10 and 25 processes with and
without the local synchronization mechanisms required by the C# server build on
top of ISIS2
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the slowest. The impact of the local synchronization mechanism is not as severe as expected
and vanishes with growing process count.

7.3 Complete System

In order to see if the proposed controller has enough performance to support realistic use-
cases, three scenarios with different topologies and events were run. Since currently the
datastore is limited to only contain topology information, The events are mostly limited on
topology changes like link up/down or host add/remove. The Mininet functionality to issue a
bidirectional ping between all host pairs is used frequently as this causes the routing bundle of
OpenDaylight to generate new flow rules. To calculate the flow rules needed, it heavily queries
the topology data stored in the datastore.

Additionally the proposed controller was compared to freely available controller implementa-
tions using the cbench benchmark.

7.3.1 Methodology

Each scenario was repeated three times for each send-primitive, topology and static ARP
entries turned on/off which results in 86 total runs, each taking between 5 and 10 minutes.
For each run, the following information was recorded: A UNIX-Timestamp indicating the start
of the operation, The name of the datastore, the operation performed and the duration of the
operation in nanoseconds. The measurements were performed in the RPC-Channel component
of the DCDS bundle. The diagrams showing the results of the scenario runs are based on the
recorded values.

7.3.2 Used Topologies

In both scenarios two different network topologies were used. The first topology, called fattree,
represents a data center network with its hierarchical structure. The topology consists of 16
switches and 32 hosts arranged in a tree structure. Figure 7.4 shows the fattree topology used.
The other Topology used is based on the X-WiN backbone of the DFN, the German Research
Network (a Mininet topology script available at [43] was used). The Topology is available It
consists of 58 switches and each having a host connected to it. This topology resembles a large
WAN and the topology includes delay information for the links. The topology can be seen in
Figure 7.5.
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Figure 7.4: First test topology, called fattree. It consists of 16 switches and 32 hosts connected
in a tree structure with growing link bandwidth towards the root.
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Figure 7.5: Second test topology, this topology is based on the DFN X-WiN, the backbone of
the German Research Network. Extracted from [44]
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Figure 7.6: The sequence of events in scenario 1.

7.3.3 Scenario 1

The sequence of events specified for scenario 1 are visible in Figure 7.6.

In Figure 7.7 the operations each datastore performs are shown. It is clearly visible that the
dominating factors are CONTAINS operations on the NodeConnectorDatastore as well as LIST
operations on the NodeConnectorPropsDatastore. A investigation showed that both recquests
are triggered by the same class in the simpleforwarding bundle. This class (SimpleBroad-
castHandlerImpl) registers a listener on incoming packets from switches. If the received packet
is a broadcast packet, it will iterate over the list of switch ports known (using the information
from the NodeConnectorPropsDatastore) and, if the port is external (facing a host), send the
packet out over this port. The check if the port is external causes the CONTAINS operation
on the NodeConnectorDatastore, that only contains internal switch ports. If the broadcast
functionality would be realized in a different way, most of the load the datastore experiences
could be removed.

Figure 7.8 shows that enabling or disabling static ARP entries doesn’t have an effect on the
load the datastore experiences. The two data series are slightly offset, a effect that all test runs
show. This is caused mostly by single pings failing, which leads to high timeouts to occur.

Figure 7.9 and 7.10 show the operations per second for all the send primitives and both
topologies. It is visible that the send primitive doesn’t have a major effect on the load the
system experiences, a behavior that would begin to show when multiple controller instances
are up. The topology on the other hand has a huge impact on the load. Another thing to notice
is that during the wait steps of the scenario, the system load does not drop instantly but falls
off slowly. If a larger wait interval would be used, the load would almost drop to zero, as the
cause of the load during the wait periods, broadcast packets as discussed earlier, are slowly
falling off in frequency.
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In Figures 7.11 and 7.12 The duration distribution of all operations are shown. As expected
the send primitive also does not have a major impact on operation duration when only one
instance is present. A effect that is visible however is that the topology has an impact on
operation duration. In the fattree topology, the second peak which mainly consists of LIST
operations is around 0.2 ms while the X-WiN topology showed these operations around 0.5
ms.

7.3.4 Scenario 2

The sequence of events specified for scenario 2 are visible in Figure 7.13.

As the send primitive as well as the enabling/disabling of static ARP entries have no influence
on the observed system behavior, for the second scenario only runs with the ordered send
primitive and enabled static ARP entries are presented. In order to see that the load caused by
broadcast packets falls off with time, the wait interval between test events is increased to 120
seconds. In this scenario the controller is started, then Mininet. A wait interval follows after
which a ping all is issued. After the ping all and another wait interval, random switch-switch
links are brought up and down for one minute. After this and another wait interval all switch-
switch links are brought back up and after another wait interval, ping all is run again and then
the scenario terminates.

Figures 7.14 and 7.15 show the operations per second observed for the second scenario on the
fattree and X-WiN topologies. While in both runs the scenario events are clearly visible, the
load the topologies produce differ, especially during and after the startup and ping all events.
While the load during the random link state changes did not differ too much from the first
to events in the X-WiN topology run, in the fattree run the load was significantly larger. This
observation can again be explained with the impact of the broadcast packet handling and its
scaling with topology size.

In Figures 7.16 and 7.17 the duration distribution observed for ordered send in the second
scenario are shown. Again the impact of topology size on the speed of LIST operations can
be observed. In the fattree duration histogram a small peak around 0.2 ms can be seen, most
likely introduced by the increased number of PUT and REMOVE operations caused by the link
state changes.

7.3.5 Cbench

The implementation was compared with current, freely available SDN controllers using the
Cbench controller benchmark [45]. On the Cbench website it is described as follows:
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Cbench (controller benchmarker) is a program for testing OpenFlow controllers by
generating packet-in events for new flows. Cbench emulates a bunch of switches
which connect to a controller, send packet-in messages, and watch for flow-mods
to get pushed down.

Except the DCDS win test run, where the controller was running on the windows host and
Cbench on the guest VM, all tests were run on the test environment described in 7.1. The
results are presented in Figure 7.18. Compared to OpenDaylight, the performance impact of
the modifications are huge. However when compared with other controllers the performance
of the proposed controller are within the range of most other controllers.

A comparison of the influence of instance count for distributed controllers, namely the proposed
solution and OpenDaylight is given in Figure 7.19. At first sight the significant drop in
performance OpenDaylight shows is surprising. While certain influences from side effects
(every controller ran in a dedicated VM) can’t be excluded, infinispan shows similar behavior
for writes, documented in a benchmark on the official blog [46]. The proposed controller has
way lower results, but they remain constant. It would be interesting to see how both controllers
behave when tested with higher instance numbers. However, that remains a task for future
work.

56
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Figure 7.7: Operations per store. This diagram shows the distribution of operations per
datastore and the type of the request for a run of scenario 1 with ordered send
and static ARP entries. It is clearly visible that most of the requests were contains
request on the NodeConnector datastore used by the Topology manager.
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7 Evaluation

Figure 7.8: Comparison of a test run with static ARP entries enabled and a run with static
ARP disabled. The observed differences show no significant influence of static ARP
entries on the datastore load. The horizontal offset is caused by some of the pings
(mininet has high timeouts for pings) failing.
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7.3 Complete System

Figure 7.9: Timeline of scenario one running on the fattree topology.

Figure 7.10: Timeline of scenario one running on the DFN X-WiN topology.
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7 Evaluation

Figure 7.11: Histogram showing the duration of operations for the first scenario on the fattree
topology.

Figure 7.12: Histogram showing the duration of operations for the first scenario on the DFN
X-WiN topology.
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Figure 7.13: The sequence of events in scenario 2.

Figure 7.14: Timeline of scenario two running on the fattree topology.
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7 Evaluation

Figure 7.15: Timeline of scenario two running on the DFN X-WiN topology.

Figure 7.16: Histogram showing the duration of operations for the second scenario on the
fattree topology.
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7.3 Complete System

Figure 7.17: Histogram showing the duration of operations for the second scenario on the
DFN X-WiN topology.

63



7 Evaluation

0

20000

40000

60000

80000

100000

120000

140000

ODL hydrogen

DCDS win

DCDS mono

ryu 3.20

floodlight 1.0

pox
nox

Fl
ow

M
od

s/
s

48205.18

3420.112041.6
7372.92

1585.59
10358.96

122026.55

Figure 7.18: Comparison of the proposed solution with existing SDN controllers using the
cbench benchmark.
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Figure 7.19: Comparison of the proposed solution with the OpenDaylight controller using the
cbench benchmark and different numbers of instances.
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8 Conclusion and Future Work

This thesis presented a distributed SDN controller design and implementation based on
OpenDaylight and the ISIS2 library. Using ISIS2 to realize the synchronization mechanism
of the datastore holding controller state, the benefits of the virtual synchrony model can be
exploited, which enables higher synchronization performance when certain assumptions about
the data and system can be made. This was shown to be true in the case of a SDN controller.
The proposed system supports dynamic cluster changes at runtime.

Evaluation of the building blocks of the system showed acceptable performance and the
evaluation of the whole system indicated that in real world use-cases the proposed imple-
mentation functions correctly and has adequate performance compared to other available
(non-distributed) controllers. Since the evaluations were done on a virtual machine and with
a virtual network, repeating the measurements in a more realistic, non virtual environment
might yield different results.

One of the aspects that should be evaluated in more detail are the performance implications
of Mono. While certain performance loss was excepted as a result of running on mono, the
dimension observed exceeded the expectations. With Microsoft recently beginning to open
sourcing the .net platform [47], this effect might mitigate in the near future.

A huge possibility for further optimization lies in the fact that currently the read operations are
not fully exploiting the benefit of local-only reads introduced by the virtual synchrony model.
If the local copy would be kept directly in the DCDS bundle and not on the C# side, this could
significantly increase performance. However, this change would require substantial changes
to the system architecture and the possibility to incorporate features like sharding would be
aggravated. Also, by eliminating this handicap of the current system, the overhead introduced
by the serialization and communication between two processes would be minimized as only
the write operations would require those mechanisms.

Eliminating the general need for serialization between the datastore and controller altogether
would further increase the system performance. However this would either require a controller
to be build from scratch in the C# eco system, or to migrate the ISIS2 library to Java. Both
possibilities are complex and would require a significant amount of work and pose a possibility
for future work.
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