
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelor Thesis Nr. 172

Efficient Solving of Linear
Equations on Mobile Devices

Utilizing a Cloud-Infrastructure

Steven Großmann

Course of Study: Softwaretechnik

Examiner: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Supervisor: Dipl.-Inf. Christoph Dibak

Commenced: October 14, 2014

Completed: April 15, 2015

CR-Classification: C.1.3, C.2.1, C.2.4

Abstract

As the usage of mobile computer devices like smartphones got popular over the last decade,
mobile applications got more important and higher sophisticated. An example of resource
demanding applications are numerical simulations. However the resources of mobile devices
are not as powerful as on stationary computers due to the mobility aspect. Proceedings
like code offloading provide solutions to bypass the limitations of mobile resources. In this
bachelor thesis a system was developed to efficiently solve linear equation systems on mobile
devices by utilizing a Cloud-Infrastructure. The system focuses on optimizing the resources
energy, computation time and result quality according to the network situation. Evaluation
tests recorded energy savings of 70% and a computation time reduction of 80% compared to
conventional proceedings. Though those values depend on the network situation.

3

Kurzfassung

In dem vergangenen Jahrzehnt sind mobile Computer Geräte, wie z.B. Smartphones populär
geworden, wodurch mobile Anwendungen wichtiger und komplexer wurden. Ein Beispiel für
Ressourcen fordernde Anwendungen sind numerische Simulationen. Jedoch sind bei mobilen
Geräten, aufgrund des Mobilitätsaspekt, weniger Ressourcen vorhanden als bei stationären
Computern. Verfahren wie Code Offloading bieten Lösungen an, um diese Beschränkungen zu
umgehen. In dieser Bachelorarbeit wurde ein System entwickelt, das unter Verwendung von
Cloud-Infrastruktur ein effizientes Lösungsverfahren bietet, um lineare Gleichungssysteme auf
Mobilgeräten zu lösen. Das System fokussiert dabei die Optimierung der Ressourcen Energie,
Berechnungszeit und Ergebnisqualität im Bezug auf die Netzwerksituation. Evaluierung-
stests ergaben Energieeinsparungen von 70% und eine Reduktion der Berechnugszeit von
80%, im Vergleich zu herkömmlichen Verfahren. Jedoch sind diese Werte abhängig von der
Netzwerksituation.

4

Acknowledgements

My special thanks goes to my supervisor Christoph Dibak for his support during research and
development for this bachelor thesis.

Further I would like to thank all people of the Institute of Parallel and Distributed Systems who
helped providing devices and infrastructure to develope the system and conduct evaluation
tests.

5

Contents

1 Preamble 11
1.1 Goals . 12
1.2 Structure . 12

2 Background 13
2.1 Efficient Solving of Linear Equation Systems . 13
2.2 Jacobi Method . 13

3 Related Work 17
3.1 Cloud Computing and Code Offload . 17
3.2 Virtual Cloud Computing Provider for Mobile Devices 17
3.3 Energy Savings with Code Offload . 18
3.4 Performance Gain with Code Offload . 20
3.5 Communication Link Handling . 21
3.6 Conclusion of the Realted Work . 22

4 Pre-Tests 23
4.1 Linear Equation Solver Measurements . 23
4.2 Device Comparison . 26

5 System Model 31
5.1 Architecture and Assumptions . 31
5.2 Requirements . 33

6 System Design 37
6.1 Middleware for the Mobile Device . 38
6.2 Cloud Server . 41

7 Implementation 43
7.1 Pre-Test Implementation Details . 43
7.2 Implementation of the Android Application . 44
7.3 Implementation of the Cloud Server . 52

8 Discussion and Evaluation 55
8.1 Transmission Protocols . 55

7

8.2 Computation Time Evaluation . 56
8.3 Computation Time Discussion for Instable Connections 58
8.4 Energy Consumption Evaluation . 59
8.5 Resource Priority Discussion . 62

9 Conclusion 65

10 Appendix 69

Bibliography 71

8

List of Figures

4.1 Matrix scale for conjugate gradient method and SYMMLQ solver on Desktop
Computer . 24

4.2 Matrix scale for Jacobi method and decomposition solver on Desktop Computer 25
4.3 Matrix scale for the Jacobi method with different residuals on Desktop Computer 27
4.4 Matrix scale for Jacobi iterations with different residuals on Desktop Computer 27
4.5 Matrix scale for Jacobi (small epsilon scale) iterations with different residuals

on Desktop Computer . 28
4.6 Matrix scale for Jacobi method with iteration and residual termination only, on

Desktop Computer . 28
4.7 Matrix scale for conjugate gradient method and SYMMLQ solver on Nexus 5 . . 29
4.8 Matrix scale for Jacobi method and decomposition solver on Nexus 5 30
4.9 Comparison on different computer devices for the conjugate gradient method . 30

5.1 System model of the mobile device and the cloud infrastructure 33

6.1 Component diagram of the mobile device and the cloud architecture 37

7.1 Class diagram of the mobile device middleware structure 45
7.2 Activity diagram of the mobile device profiler for the decision process 49
7.3 Class diagram of the Java cloud server . 53

8.1 Comparison between TCP and XMLRPC. The client device was a laptop while
the server was the Desktop computer . 57

8.2 Computation speed comparison between local and remote executions, on Nexus
5. The network environment is the Eduroam network and the used solving
algorithm is the Jacobi method . 59

8.3 Computation speed comparison between local and remote executions, on Nexus
5. The network environment is the Home network and the used solving algo-
rithm is the Jacobi method . 60

8.4 Circuit diagram for energy measurements on the Galaxy Nexus 61
8.5 Power consumption for local NSB execution without connection to the server

and matrix dimension 1200 . 62
8.6 Power consumption for NSB execution with connection to the server and matrix

dimension 1200 . 63

9

List of Tables

8.1 Resistor value table . 60

List of Listings

7.1 EBNF of request transmission protocol for mobile devices 47
7.2 Application input file for equation systems . 51
7.3 Application output file . 51
7.4 EBNF of the server response protocol . 53

List of Algorithms

2.1 Jacobi Method Algorithm . 14

10

1 Preamble

In the past years, a change in the prensence of mobile devices occured. Smartphones and
mobile computers became ubiqutious in industry nations. According to the rise of mobile
devices, mobile applications became more popular for users of the devices [Gon10]. The
applications are using all possible resources of the mobile devices, like movement sensors,
cameras, user input and output (IO) devices, etc. . As a consequence thereof, the applications
became higher sophisticated and more complex. While the CPUs and memory for mobile
devices increased in speed and capacity, they were always behind stationary computers in
the context of performance [Sok12]. Another problem that restricts the usage of complex
and resource demanding mobile applications, is the battery of the mobile device. As the
computational power increased drastically over the years, the capacity of batteries did not
improve considerable [Edu10]. That is one reason, why developers and researchers had to
reconsider the implementation of mobile applications.

Very popular mobile applications with a high resource demand are e.g., video streaming
applications like YouTube. They became popular with the rise of smart phones like the iPhone
or Android devices. Those applications can drain a battery of a mobile device within a few
hours [Edu10]. Another special scenario for resource demanding and complex applications
are simulations. Simulations need a huge amount of input data and according to this, big
calculations have to be solved. Many simulations in engineering and natural sciences are
numerical simulations. Therefore an important part are equation systems. Such equation
systems can grow proportional to the input data of a simulation, like in spline interpolation. The
resulting equations contain in most cases sparse and diagonally dominant matrices [Wol94].
As simulation programs are popular on stationary computers since the 1960 [G. 61], they also
became popular on mobile devices as they got more processing power [Chr14].

A very important feature of mobile devices, is the possibility of networking. It allows to
communicate with other computers of nearly any platform and without restriction of their
location. This progress is owed to wireless networks like WiFi or cellular networks like 3G/4G
[Edu10]. With those communication techniques, a whole new possibility of usage scenarios
appeared. Mobile applications are no longer bound to the hardware they are running on. They
can use resources that are connected to the same local area network or the Internet. With
this feature, it is possible to move the resource demanding calculations to stronger stationary
servers in a cloud infrastructure. This method is called code offloading [Edu10]. With code
offloading it is possible to reduce the energy consumption, while increasing the computation
speed of applications.

11

1 Preamble

A problem that goes with networking, is for example high latency, low throughput or temporary
connection losses. While most big cities in industry nations have a good mobile network
connection, smaller cities or rural areas have a lack of stable network connection. Also not
all public transportation systems in cities can ensure mobile network connection in tunnels.
According to the resulting communication link failures, a protocol has to handle the execution
of code in relation to the current network situation.

1.1 Goals

The focus of this thesis is to develop a procedure, to efficiently solve linear equation systems
on mobile devices, utilizing a Cloud-Infrastructure. The applied algorithms use an iterative
approximation approach and are specialized to solve diagonally dominant matrices. The
resources that define the efficiency for this approach are energy, computation time and quality
of the solution. The main factor that influences the efficiency is the network situation.

1.2 Structure

This thesis is structured into ten chapters. The first chapter provides a preamble, defines the
goals and explains the structure of this thesis. Chapter 2 explains the necessary mathematical
preconditions for the algorithms that are discussed in further chapters. The following Chapter 3
describes projects that share related approaches and address equivalent problems to this
bachelor thesis. The fourth chapter gives an overview about the results that were found
during pre-tests for different algorithms on stationary computers and mobile devices. The
system model of the developed approach is explained in Chapter 5. The architecture of the
developed approach is described in the chapter System Design. Chapter 7 explains the detailed
implementation of the system components of the developed test application and server. The
results of the final tests are depicted and evaluated in Chapter 8. Chapter 9 summarizes the
findings of this bachelor thesis and gives an outlook about future work. The Appendix is
located in the last chapter.

12

2 Background

This chapter describes the background of efficient proceedings to solve linear equation systems.
The Jacobi method serves as representative for efficient iterative algorithms and will be
explained in the following section.

2.1 Efficient Solving of Linear Equation Systems

Linear equation systems are widely spread in problems of subjects like engineering or natural
sciences. Those equation systems consist of multi-dimensional matrices, meaning several
thousand dimensions and more. Since these problems can be solved with electric computers,
the dimensions got even bigger [Ach95]. Typical proceedings like the Gaussian elimination
are not well applicable for those problems, as they are too complex and slow on big equation
systems. A better solution is provided by iterative solving methods. Iterative proceedings are
important for solving problems like the method of least squares, spline interpolation or partial
differential equations [Ach95]. Most of the matrices that are generated for partial differential
equations or spline interpolation lead to sparse matrices, often diagonally dominant [Wol94].
A sparse matrix can be defined as a matrix with very few non zero elements. Proceedings like
the Jacobi method take advantage of sparse and diagonally dominant matrices and provide a
more simple and faster solving approach than typical proceedings.

2.2 Jacobi Method

The method described by C.G. Jacobi in 1845 calculates a precise approximation result of
a linear equation system A ∗ x = b [Ach95]. In each iteration step an approximation of the
result is calculated. That means the algorithm converges against the final result in a way,
that the approximation of the iteration i + 1 has a better precision to the real result than
the approximation of the iteration i. Therefore a predefined residual has to determine the
termination criteria to stop the algorithm when the desired precision reached. Obviously, the
algorithm can speed up if the residual addresses a lower quality.

The matrix of the equation gets decomposed by the Jacobi method into three parts A =
D + E + F [Wol94]. Where D is the diagonal matrix, E the strict lower part and F the

13

2 Background

strict upper part. For the diagonal elements we assume ∀d ∈ D : d ̸= 0. The Jacobi iteration
determines the i-th component of the next approximation. ξk

i denotes the i-th component of
the iterate xk and βi the i-th component of the equation result b.

Algorithm 2.1 Jacobi Method Algorithm
procedure JACOBI(A,x0,b)

length← length of x0

k ← 0
while termination criteria not reached do

for i← 0 to length do
σ ← 0
for j← 0 to length do

if i ̸= j then
σ ← σ + aijξk

j

end if
end for
ξk+1

i = βi−σ
aii

end for
k ← k + 1

end while
end procedure

That is xk =


ξk

0
...

ξk
n

 and b =


β0
...

βn

.

This leads to the following equation for every iteration [Wol94]:

ξk+1
i = 1

aii
(βi −

∑n
j=1,j ̸=i aijξk

j) , i = 1, ..., n

And can be rewritten as:

xk+1 = D−1(E + F)xk + D−1b

The termination criteria of the Jacobi method is given by the i-th component of the residual
vector (b−A∗xk+1)i = 0. If the result only has to be an approximation, the difference can have
a tolerance. The implementations of the test applications in this thesis use ||b−A ∗ xk+1|| < ϵ,
where ϵ defines the precision of the approximation. Also there is the possibility to terminate at
a maximum of Jacobi iterations.

The Jacobi method converges for all equation systems, that have a square matrix and a spectral
radius less than 1, i.e. SpecRad(D−1 ∗ (E + F)) < 1. Out of this, if A is strictly diagonally
dominant or an irreducibly diagonally dominant matrix, the presented Jacobi method converges

14

2.2 Jacobi Method

for any vector x [Wol94]. Algorithm 2.1 shows the code to calculate a linear equation system
with the Jacobi method.

15

3 Related Work

In this chapter projects are presented, that share related approaches utilizing Cloud-
Infrastructure to compute high sophisticated and resource demanding problems on mobile
devices. Definitions for cloud computing and code offload are also provided in this chapter.

3.1 Cloud Computing and Code Offload

Conventional applications are executed completely on the running device, with local resources.
As a contrast to that, there are techniques that enable the execution of applications remotely
on another machine [Edu10]. Using the remote technique, the application can profit from
the resources of the remote machine, which might be more powerful than the local computer
device. The term Cloud Computing thence consists of applications delivered as services over
the Internet and hardware and systems software that provide those services in a datacenter
[Mic09]. The applications that are delivered as services over the Internet are referred to as
Software as a Service (SaaS) [Mic09]. Those services run on datacenter hardware that is
provided over a network, meaning the cloud. When using Cloud Computing, an application is
executed completely remote. Another attempt is code offloading, meaning that only specific
code parts of the applications, mostly resource demanding, are migrated to the cloud [Chr14].
The cloud then cares for the best execution method and returns the results to the mobile
device.

The term mobile-cloud-computing can be defined as an extension of Cloud Computing, when
at least parts of the foundational hardware consists of mobile devices [Eug09].

3.2 Virtual Cloud Computing Provider for Mobile Devices

While mobile devices have an imersive growth in our society, mobile applications gain more
relevance in our everyday life. What goes with this, is that the mobile applications get an
increasing grade of complexity [Sok12]. This results in a high consumption of resources of
the device and thus additionally in battery energie consumption [Sok12]. As mobile devices
have to be portable, they can not be equipped with big and heavy components. Hence mobile
devices are not that powerful as their stationary relatives, like desktop computers or servers.

17

3 Related Work

Specific methods had to be developed, to satisfy the demands of complex mobile applications.
While mobile devices like laptops and smartphones are able to connect to mobile or local
networks, it is possible to distribute or completely move the computation of the mobile device
to other devices. Based on this, some attempts use parallelization to distribute the computation
of applications on multiple devices [Chr14]. Such a system was developed by Gonzalo et al.
[Gon10]. Their motivation was to develop a system that uses the fact of the pervasiveness
of mobile devices in our current society. They presented a use case, where a person wants
to execute a resource demanding application on a mobile device, that can not compete with
those resource needs. Given the pervasive presence of mobile devices, their system distributes
the execution on the fly to all mobile devices that are located in the same area or follow the
same movement patterns. An obvious problem that goes with that, is that the distribution to
mobile devices with the same or less performance seems not to be beneficial because of the
communication overhead [Gon10]. Also there is the question for providers, why they should
share their resources with others, as it costs them additional energy. The solution for that
according to Gonzalo et al., is to find mobile device users that do the same tasks on the current
area. An example is an optical character recognition (OCR) translation application that is used
in a museum, or persons downloading a P2P file at a university [Gon10]. While there is a place
where many mobile device users share the same interests, this would in fact be profitable for
all users to share their resources. The drawback of this attempt is the communication overhead,
because parallelization requires very frequent state exchanges [Chr14]. While testing the cloud
computing framework, Gonzalo et al. recorded that about 44% of the execution time is used
by offloading preparation and waiting for results [Gon10]. Also the test results show, that
the distributed approach is about 1% slower than a local execution. Though they aimed to
improve this in future work.

3.3 Energy Savings with Code Offload

A further technique that utilizes Cloud-Infrastructure is called code offload. Compared to
the parallelization attempt, code offload is more efficient in the context of communication
overhead. This advantage is used by related work, e.g. to safe energy on mobile devices.

There are many different techniques to safe energy on a mobile device. Examples are optimiza-
tions on the IO, turn off the screen when it is not needed or slow down the CPU [Zhi01]. But
all of those techniques can influence the user experience or restrict the usage of applications on
the device. Also, most of the energy saving attempts considered laptops instead of handhelds
[Zhi01]. The better attempt to prevent disadvantages of conventional techniques, is code
offload. If a mobile application uses the code offload technique, the offloaded parts will not be
executed on the mobile device. As a consequence the energy that would be consumed with that
part of code, is saved on the mobile device without restrictions for the user. The only power
that is consumed by this, is the power to send the code with its parameters and to receive the
results.

18

3.3 Energy Savings with Code Offload

3.3.1 MAUI

This advantage is for example used by the MAUI system [Edu10]. MAUI enables a fine-grained
energy aware code offload. With MAUI it is easy to adapt existing programs, because of the
simple mechanism to add annotations to code that should be offloaded. A special optimization
engine makes MAUI to decide at runtime, whether to upload the code or to execute locally.
This reduces the effort for the programmer and takes his decision whether to upload the code
or not. That is an important advantage, because the code offload is not always better than a
local execution. It should be considered that the network connection can vary over time. That
means if a method is offloaded once, there may be later a point of time, where it is better to
execute the method locally. That is why MAUI has a profiler for energy costs [Edu10]. The
profiler measures the devices’ energy consumption characteristics at initialization time. Further
factors of the profiler are the program characteristics, like running time and resource needs,
and the network characteristics. A solver then interprets the statistics of the profiler. Based
on this, MAUI decides whether to offload code or not before each method invocation that is
annotated with MAUI annotations. While MAUI can be used to offload code, it is not always
possible or beneficial to offload specific code. Parts that should not be offloaded, are e.g. user
interface code, mobile device IO or code that interacts with external components that would be
affected by re-execution [Edu10]. MAUI was tested with three applications: face recognition,
an arcade game and a voice-based language translation. The test results show, that MAUI saves
energy on applications with intensive calculations. The bests results came out when using
WiFi as network connection [Edu10]. WiFi is measured to be three to five times more energy
efficient than 3G for using code offload [Edu10].

By contrast, the ThinkAir system of Kosta et al. measured more energy savings when using 3G
instead of WiFi [Sok12]. Their explanation is, that when an application uses larger data to
transfer, 3G has advantages against WiFi. I.e., WiFi is less energy efficient per bit transmitted
than 3G [Sok12].

3.3.2 Dynamic Software Deployment

A similar system to MAUI was developed by Giurgiu et al. [Ioa12]. This system also aims
to improve the power consumption and performance on mobile devices by deploying code
of mobile applications into cloud infrastructures. However the focus of this system aims
the dynamic adaption of code offloading. Familiar to MAUI, it continuously profiles the
performance of the application and updates its deployment according to the results. While
MAUI uses a static attempt to monitor the device characteristics at initialization, the system of
Giurgiu et al. monitors the network and device characteristics, such as CPU load and available
storage space, continuously at runtime. That can be important, when the user of the mobile
device runs multiple applications at a time. Therefore the computational resources can vary
over time. Another point is the user input for an application. A mobile application may not

19

3 Related Work

always be used in the same way, hence the benefit of offloading code can vary, too. With the
system of Giurgiu et al., energy savings of about 45% could be reached against traditional
approaches [Ioa12].

Both systems, MAUI and the system of Giurgiu et al., had similar findings in monitoring the
network status. As there are tools to monitor this status, both systems rejected to use them,
because the tools are unnecessary complex. Instead they send ping messages to the servers
and wait for the results [Edu10][Ioa12]. This finding explains, that too much monitoring of
the system and its environment can reduce the energy savings. Hence it has to be balanced
between a high sophisticated profiler and the energy and resources that are consumed by
logging the statistics to the profiler.

3.4 Performance Gain with Code Offload

A beneficial part of code offloading is the possibility to move resource demanding code into
the cloud. The computers in the cloud, often servers, are in most cases more powerful than the
mobile device from which the computation starts. According to this, when using code offload
to safe energy, one of the side effects is that the performance increases [Sok12]. This effect
was also discovered when using the MAUI system. The application test results show, that MAUI
allows to more than double the screen refresh rate of latency sensitive applications [Edu10].
This advantage was also seen in the system of Giurgiu et al., where the system could register
75% of performance gain against traditional approaches without code offload [Ioa12]. That
means that the code offload approach enables the development of applications, that need more
resources than the mobile device can provide [Edu10].

3.4.1 ThinkAir

Another system called ThinkAir by Kosta et al. [Sok12], aims to improve the execution speed
of mobile applications and safe energy at the same time. Their approach not only uses code
offload to reach these goals, furthermore they provide on demand resource allocation with
virtual machines. That means there is not only one server to compute the offloaded tasks, but
any desired amount of machines to execute the code parallelized. The allocation of virtual
machines happens dynamically. One machine, the primary default server, is always on. The
secondary dynamically scaled power server gets cut in if the primary server detects that the
application needs more resources. The obvious drawback of this approach is, that the starting
of a virtual machine takes time. But some tasks take much longer time, sometimes hours, so
that this time difference gets compensated. This leads to the conclusion, that this approach
only makes sense if the application is very complex and resource demanding. These findings
are stated by the test results of ThinkAir on different applications like face detection programs,
the n-queens problem, a virus scanner and a picture merger [Sok12].

20

3.5 Communication Link Handling

3.4.2 CloneCloud

Familiar to ThinkAir is the CloneCloud [Byu11] system which provides application virtual
machines for mobile applications in a cloud. The difference to ThinkAir is, that CloneCloud
aims to migrate whole execution threads instead of single functions. Also there is no need
to modify the source code of the application with annotations like in MAUI. CloneCloud
automatically checks with its static and dynamic analyzing whether to migrate and later
re-integrate a thread or not. The test results of CloneCloud show a meaningful improvement
of up to 20 times faster application execution against traditional approaches without cloud
computing proceedings [Byu11].

3.5 Communication Link Handling

While the previous presented methods address the lack of battery capacity and resources on a
mobile device, one important limiting factor is often handled only rudimentary. The limitations
of the network can turn out as the bottleneck of the code offload and cloud computing methods.
Temporary communication link failures are not an exception, but furthermore the rule [Flo14].
According to Ding et al. [N. 13], over 80% of Android smart phones have only poor signal
strength for over 15% of their active usage time [Flo14]. That is due to the frequent movements
of smart phone users between areas with different signal strengths [Flo14]. An example would
be a person, using the subway or go shopping in different buildings. Always online would be
the best condition for code offloading systems. But as described, there are situations where
the network is temporary not available or the signal strength is very low, which causes high
latency. If those connection failures are not handled in a proper way, the cloud attempt can be
slower and use more energy than a local execution. The MAUI system for example, detects
failures with simple timeout mechanisms. The reaction to a failure, is to find another MAUI
server in the network or to re-execute the code locally [Edu10]. Both reactions are not the
best way to handle disconnects, as the attempt to search for an alternative MAUI server in the
network costs energy and time. If no server is found, the local re-execution occurs. But this is
also not the best solution, because all the progress that is made till the disconnect, is lost.

3.5.1 Preemptable Code Offloading

A better way presents the attempt of Berg et al. [Flo14], which has the goal to minimize
energy consumption and increase the application robustness on temporary disconnects. They
focus on communication link failures by using preemptable code offloading. That means, their
system partitions the application in a way, such that it runs with partial results [Flo14]. They
implement this by creating safe points and transmit intermediate results form the server to the
mobile device. If a link failure occurs, the mobile device can continue from the state of the

21

3 Related Work

last transmitted safe-point. An important question that the developers had to discuss, is the
amount of safe points. Too many safe points can generate too much communication overhead,
while too few safe points can cause to much progress loss on a disconnect [Flo14]. Berg et al.
implemented the handling of this decision with an offload compiler, that inserts break points
before methods that are offload candidates. An offload controller decides whether to offload
a method with a break point or not. The safe-point generator is responsible for efficient safe
point creation, based on the offloaded code [Flo14].

They evaluated their preemptive code offloading (PreOff) approach against two basic non-
preemptable code offloading approaches. The other approaches are BasicOff-ReExec, which
means that a local re-execution is initiated as soon as a disconnect occurs, and BasicOff-Wait,
which waits for a re-connect to fetch the result of the server. The AllLocal approach, meaning a
local execution on the device, is also considered for comparison. The results show, that the
efficiency of the different approaches depend on the current communication. In a situation
where no link failures occur, both basic non-preemptable approaches are slightly more efficient.
But as soon as only one disconnect occurs, the PreOff approach is faster and consumes only
3.5% more energy than the BasicOff approaches [Flo14]. Also the AllLocal approach only
consumes less energy than PreOff, when the execution time is very short (a few seconds).
Therefore the most efficient approach is PreOff [Flo14].

3.6 Conclusion of the Realted Work

The systems and proceedings presented in this chapter are only an insight into the wide
range of available attempts or past projects. All introduced approaches and methods in this
chapter conclude, that code offloading proceedings improve an application execution on a
mobile device with regards to less energy consumption and faster computation. But there
are situations, e.g. on communication link failures or for very short calculations, where a
completely local execution is more efficient. Thus the efficiency of a code offload approach
depends on the usage scenario of the mobile device user. But with respect to the various
situations in which the mobile devices are used, code offload techniques or cloud computing
systems are in most cases more efficient than a local execution.

22

4 Pre-Tests

This chapter describes the pre-tests and presents the according results. It is expected, that
solving linear equation systems on stationary computer devices is faster than solving them
on mobile devices. It is additionally anticipated, that iterative approximation algorithms can
be adapted in various ways to adjust the result quality and execution time. Therefore, two
different classifications of computer devices were taken as a base for the measurements. The
stationary computer devices like desktop computers or servers, and mobile computer devices
like smartphones or laptops. The detailed specifications of the test devices are described
in Chapter 10 and the implementation of the tests are described in Chapter 7. The tested
algorithms are: Jacobi method, conjugate gradient method, SYMMLQ and decomposition
solver.

To evaluate multiple different linear equation systems, random generated equations are
provided as input for the algorithms. The algorithm created a random n ∗ n matrix A with
property: ∀a ∈ A : |ai,i| >

∑
|ai,j | for i ̸= j ⇒ SpecRad(A) < 1. Further, a random vector x,

with length n, was created and a result vector b was computed, with b = A ∗ x. The input
parameters for the presented algorithms are a matrix A and an equation vector b.

4.1 Linear Equation Solver Measurements

The first measurement shows the speed differences between the solving approaches for different
matrix sizes on the same computer device. The exact solver always computes until the exact
result is retrieved, whereas the iterative approximation algorithms use termination criteria.
The termination can either be caused by a maximum of iterations or by a residual, as it is
described in Section 2.2. The test device is a stationary computer (desktop computer) with a
four core CPU and a clock frequency of 3 GHz. The random-access memory (RAM) amounts
8 GB. During the test runs, all applications apart of the test program were closed to prevent
interruptions or result variances.

4.1.1 Conjugate Gradient and SYMMLQ Scales

The tests in this subsection measure the computation time (y-axis) of the conjugate gradient
method and the SYMMLQ solver for equations with a matrix dimension between 100 and 1500

23

4 Pre-Tests

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600

C
a
lc

u
la

ti
o
n
 t
im

e
 [
m

s
]

Matrix dimension

Comparison between conjugate gradient method and SYMMLQ solver on Desktop Computer

conjugate gradient
SYMMLQ

Figure 4.1: Matrix scale for conjugate gradient method and SYMMLQ solver on Desktop
Computer

(x-axis). It is expected, that both iterative methods are similar fast and are overall faster than
the exact solver. The termination criteria in this test was set to a maximum of 100 iterations
and a residual of 10−9 for both algorithms.

The test results can be seen in figure Fig. 4.1. Both proceedings, the conjugate gradient
method and the SYMMLQ solver compute an equation with a matrix dimension of 1500 in
under 30 milliseconds. The speed difference between both methods increases while the matrix
dimension scales up. For matrix dimensions less than 800, the SYMMLQ solver is less than one
millisecond faster than the conjugate gradient method. At a matrix dimension of 1500, the
speed difference amounts four milliseconds.

4.1.2 Jacobi Method and Decomposition Solver

As the self implemented Jacobi method and the decomposition solver are expected to be slower
in computation speed compared to the conjugate gradient method and the SYMMLQ solver,
they were tested separately. Additionally, it is anticipated that the decomposition solver is the
slowest method under the tested algorithms, as it is the only exact and non iterative solver. The
test results in figure Fig. 4.2 compare the computation speed in relation to the matrix dimension
for the Jacobi method and the decomposition solver. The termination criteria for the Jacobi
method are set to a maximum of 100 iterations and a residual of 10−9. The decomposition
solver has an exponential growth of computation time while the matrix dimension scales up.
Equations with a matrix dimension of 500 are solved in 101.32 milliseconds. For a three
times bigger equation with dimension 1500, the computation takes 6290.82 milliseconds. In

24

4.1 Linear Equation Solver Measurements

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000 1200 1400 1600

C
a
lc

u
la

ti
o
n
 t
im

e
 [
m

s
]

Matrix dimension

Jacobi method and Apache decomposition solver on Desktop Computer

Jacobi method
Decomposition solver

Figure 4.2: Matrix scale for Jacobi method and decomposition solver on Desktop Computer

comparison to the decomposition solver, the Jacobi method has a smaller growth rate. For an
equation with dimension 500, the Jacobi method terminates in 29.0 milliseconds, while an
equation with dimension 1500 terminates in 2400.1 milliseconds. Both methods, the Jacobi
method and the decomposition solver are considerable slower in computation speed than
the conjugate gradient method and the SYMMLQ solver. Although as expected, all iterative
algorithms are faster than the exact solver.

4.1.3 Jacobi Method Studies

The Jacobi method in figure Fig. 4.2 has an inconsistent growth rate. Though, the spike of
computation time between the matrix sizes 500 and 600, is not a single phenomenon. Every
test run for the Jacobi method with a termination setup of 100 iterations and a residual of 10−9

records the same spike between the dimensions 500 and 600. Hence the next tests consider
different termination criteria, as it is expected, that the termination setup influences the spike
occurrence. The test runs use four different residuals: 10−10, 10−9, 10−8, 10−1. Figure Fig. 4.3
depicts the results of this test. For an accuracy of 10−9 the spike occurs between the matrix
dimensions 500 and 600, whereas for an accuracy of 10−10 the spike already occurs between
the dimensions 100 and 200. The same spike occurs for an accuracy of 10−8 at a matrix
dimension between 2000 and 2100.

Figure Fig. 4.4 depicts the number of Jacobi iterations for the test runs with different residuals.
This provides a more detailed analysis of the test iterations. As can bee seen in the diagram at
matrix dimension 500, the number of iterations rises from 13 to 100, for a residual of 10−9.
The explanation for this is, when checking the residual termination ||A ∗ xi − b|| < ϵ, the

25

4 Pre-Tests

norm does not change at a given point. This is due to rounding errors, which means for a
specific ϵ and a specific matrix dimension, no difference can be calculated between the norms
||A ∗ xi− b|| and ||A ∗ xi+1− b||. Therefore, the reason for the spikes in calculation time is, that
the residual does not terminate the algorithm. Instead the second termination criterion occurs,
meaning the maximum of 100 Jacobi iterations.

Figure Fig. 4.5 shows the Jacobi iteration growth rate for the residual termination criteria
10−8, 10−7, 10−5, 10−1. The iteration termination is disabled for this test. With the information
of this diagram, two options are available to prevent the spikes. As can been seen in the
diagram, the bigger the matrix and the smaller the residual, the more Jacobi iterations are
needed to calculate the result. Hence, to prevent the spikes, it should be considered to either
reduce the maximum of Jacobi iterations, or to add a third termination criterion. The third
termination criterion saves each result of the norm normi = ||A ∗ xi − b|| and compares it to
the previous norm. If normi = normi−1 the algorithm has to terminate, as the result will not
get a higher accuracy.

The difference between the iteration and the residual termination can be seen in figure Fig. 4.6.
The iteration termination has a maximum of 100 iterations while the residual termination is
set to 10−9. This time, for the residual termination the third termination criterion is added to
prevent infinite Jacobi iterations. There is a significant difference between the computation
times of both methods, as the residual termination has a much slower growth rate.

The findings of the pre-tests state, that iterative algorithms can be adapted in various ways
which has different effects. One effect is, that the termination criteria adjust the accuracy of the
result. E.g., for a residual of 10−9, the error is about 10−13. The error value means the norm of
the difference between the real x vector and the approximated vector x′. The second effect
is, that the termination criteria additionally control the execution speed of the algorithms.
The less accurate the result has to be, the faster the computation terminates. Additionally, if
algorithms like the Jacobi method starts with an estimation of the x vector, the number of
iterations can be reduced, as the residual will be reached earlier. If an error value is acceptable
for the result, the iterative approximation algorithms are more efficient than exact solving
methods.

4.2 Device Comparison

Now that we have analyzed the algorithms on a stationary computer, the next tests con-
sider measurements on mobile devices and comparisons between stationary computers. The
algorithms on the mobile devices are expected to terminate slower than on the stationary
computers. The mobile device for this tests is a Nexus 5 smartphone with Android version
5.0.1. It has a four core CPU with a clock frequency of 2.26 GHz and 2 GB RAM. A further
mobile device is a laptop with a four core 1.6 GHz CPU and 8 GB RAM. The stationary devices
are the previously tested desktop computer (4 core CPU with 8 GB RAM), the Curium Server

26

4.2 Device Comparison

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200 1400 1600

s
o

lv
e

 t
im

e
 [

m
s
]

matrix size

Matrix scale for the Jacobi method with different residuals

10^-10
10^-9
10^-8
10^-1

Figure 4.3: Matrix scale for the Jacobi method with different residuals on Desktop Computer

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

J
a

c
o

b
i
it
e

ra
ti
o

n
s

matrix size

Matrix scale for Jacobi iterations with different residuals

10^-10

10^-9

10^-8

10^-1

Figure 4.4: Matrix scale for Jacobi iterations with different residuals on Desktop Computer

(8 core CPU with 32 GB RAM) and the Kepler server (32 core CPU with 128 GB RAM). First we
test if the different algorithms have equal speed differences on the mobile device and on the
Desktop computer. The algorithms are implemented in Java and are therefore equal on every
test device. The computer device for the first tests is the Nexus 5 smartphone. All applications
except of the test program were closed and the flightmode was turned on during the tests.
Figure Fig. 4.7 shows the conjugate gradient method and the SYMMLQ solver, while figure
Fig. 4.8 shows the decomposition solver along with the Jacobi method. The results state, that
the conjugate gradient method and the SYMMLQ solver are again the fastest solving methods,
compared to all tested algorithms. The non convergence of the Jacobi method, e.g. for a
matrix size greater than 600 and a residual of 10−9, occurs on the mobile device, too. Hence as
assumed, this phenomenon is not device dependent. Thence the Jacobi method is again viewed
with either iteration termination, or residual termination along with the third termination

27

4 Pre-Tests

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200 1400 1600

J
a

c
o

b
i
it
e

ra
ti
o

n
s

matrix size

Matrix scale for Jacobi Iterations with different residuals

10^-8

10^-7

10^-5

10^-1

Figure 4.5: Matrix scale for Jacobi (small epsilon scale) iterations with different residuals on
Desktop Computer

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000 1200 1400 1600

s
o

lv
e

 t
im

e
 [

m
s
]

matrix size

Comparison between iteration termination and residual termination on Desktop Computer

100 Jacobi iterations termination only
Residual only termination

Figure 4.6: Matrix scale for Jacobi method with iteration and residual termination only, on
Desktop Computer

criterion as mentioned before. When looking at the Jacobi method, both termination criteria
are faster than the exact solver when the matrix dimension scales up. Although for a matrix
dimension x ∈ [2, 800] and using 100 iterations as termination criterion for the Jacobi method,
the decomposition solver is faster. The residual termination was set to an accuracy of 10−9,
which is always faster than the decomposition solver. This shows that on the mobile device,
nearly the same proportions occur between the algorithms.

When comparing the computation times between the stationary desktop computer (Fig. 4.1,
Fig. 4.2) and mobile phone Nexus 5(Fig. 4.7, Fig. 4.8) for the test algorithms, it can be seen
that the stationary computer is significant faster compared to the mobile device. E.g. the
computation time for the Jacobi method with 100 Jacobi iterations amounts about 2.5 seconds

28

4.2 Device Comparison

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600

s
o

lv
e

 t
im

e
 [

m
s
]

matrix size

Comparison between conjugate gradient method and SYMMLQ on Nexus 5

conjugate gradient method
SYMMLQ

Figure 4.7: Matrix scale for conjugate gradient method and SYMMLQ solver on Nexus 5

on the desktop computer. In contrast, the computation time on the mobile device amounts
over 5 seconds. Also the conjugate gradient method on the mobile device is about four times
as slow as on the desktop computer. This states the hypothesis, that migrating the computation
procedures of solving linear equation systems to stronger computers is profitable in the context
of computation time.

Figure Fig. 4.9 shows the difference between the computation times of the conjugate gradient
method on the test devices: Nexus 5, Curium, Desktop, Laptop and Kepler. This test scaled
the equation dimension from 100 to 4500 with a step size of 100. The diagram shows a drop
of calculation time at a matrix size of 3100 on all devices. The reason is, that the conjugate
gradient iterations decrease when the matrix dimension increases. At a matrix size of 3100, the
algorithm reduced the iterations from seven to six which causes a faster execution. This is due
to the update residual implementation of the algorithm and is necessary to prevent rounding
errors for the conjugate gradient method [Str02].

Against the hypothesis that executions are always faster on stationary devices compared to
mobile devices, the conjugate gradient method executed second fastest when running on the
laptop. The speed difference compared to the execution on the Kepler server amounts only
three milliseconds. Although the laptop is a mobile device, it has beneficial specifications
to solve linear equations. This concludes, that a mobile device has not necessary to be less
powerful than a stationary device. Thus, a migration of the equation computation only makes
sense, if the mobile device has weaker resources than the stationary device.

29

4 Pre-Tests

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 200 400 600 800 1000 1200 1400 1600

s
o

lv
e

 t
im

e
 [

m
s
]

matrix size

Comparison between Jacobi method and decomposition solver on Nexus 5

Jacobi method with iteration termination
Jacobi method with residual termination

Decomposition solver

Figure 4.8: Matrix scale for Jacobi method and decomposition solver on Nexus 5

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

c
a
lc

u
la

ti
o
n
 t
im

e
 [
m

s
]

matrix dimension

Comparison of the conjugate gradient method on different devices

Nexus 5
Curium

Desktop
Laptop
Kepler

Figure 4.9: Comparison on different computer devices for the conjugate gradient method

30

5 System Model

This chapter presents the system model to efficiently solve linear equations utilizing a Cloud-
Infrastructure. Section 5.1 presents an abstract view about the components of the system. This
provides a better understanding about how the components interact with each other and how
they work. The requirements for an efficient solving are addressed at the end of this chapter in
Section 5.2.

5.1 Architecture and Assumptions

This section describes the system model and according assumptions about it, as it can be seen in
figure Fig. 5.1. The two main components are the mobile device and the Cloud-Infrastructure.
Those components communicate via wireless network techniques with each other and provide
an efficient proceeding to solve linear equations with square and diagonally dominant matrices.
There are two execution methods to solve linear equation systems. On the one hand is the
local execution, which defines an approach to calculate the equations on the mobile device by
using its local resources. On the other hand, the remote approach uses the communication to
the Cloud-Infrastructure to distribute the calculation.

5.1.1 Mobile Device

The mobile device in this system is seen as a battery powered device with interfaces to connect
to wireless networks. It runs an application that solves linear equation systems. Therefor
the mobile device requires a middleware, to initialize the computation of equation systems.
Depending on the current situation, the middleware decides whether to solve the equation on
the mobile device or to distribute the computation in the cloud. To help making this decision,
the middleware has to provide a component that monitors the executions and creates statistics.
For local executions, the middleware has to provide algorithms that solve linear equations
locally. Note that the decision process does only consider the network situation and not the
situation of the mobile device. Utilization of the CPU or varying memory capacity can impact
the local execution. For this system model it is assumed, that the CPU utilization and the
memory capacity are constant. The resources on the mobile device are the CPU performance,
memory capacity and the battery power. It also is assumed, that those resources are not as
powerful as the resources on the servers in the Cloud-Infrastructure.

31

5 System Model

5.1.2 Cloud-Infrastructure

In the cloud, multiple servers can provide their resources to solve resource demanding linear
equation systems. A server needs to handle incoming requests and initiate the solving of the
received equations. The server also has to provide a backup of every computed result, in case
the connection to a client device is lost. The backup is also important if the mobile client wants
to pull interim results of running computations. After a specific time range, the results may be
deleted to prevent unnecessary memory occupation. The equation solver on the server can be
equal to the counterpart on the mobile device. Although it is not necessary to use the same
algorithms as on the mobile device, as long as the interface is equal.

On stationary computers, the considered resources are only the CPU performance and the
memory capacity. There is no need to consider battery power, as the cloud computers are
connected to a power grid. Also the resources should be more powerful as the resources on the
mobile devices in this system model.

5.1.3 Connection

The connection of the architecture is based on wireless network techniques. The reason is, that
the mobile devices are considered to be moved around between areas with different networks.
The connection is initiated and monitored completely by the mobile device. The server just
has to be available and handle incoming requests. The network quality situation is defined
as good, if the network provides a high throughput and low latency. A bad network quality
means, that there is high latency or a low throughput. A network is unstable, if the connection
is only temporary available or not available at all, whereas a stable network connection is
permanently available. Test messages can be used to monitor the network status. They are
defined as messages to test the round trip time (RTT) in the network. Therefor it measures
how long it takes for a message to be sent from the mobile device to the server and back again.
For connection oriented transmission protocols like the transmission control protocol (TCP),
the connection establishment time, like of the three way handshake, can be measured instead
of sending a test message. The size of the test messages should only amount a few bytes. Even
though bigger messages would provide a more precise network state, small messages do not
cause a high communication overhead and save time. This is more important than a precise
network state, as the network state can vary quickly.

5.1.4 Linear Equation Systems and Algorithms

The linear equation systems that have to be solved are of the type A ∗ x = b. The given values
are the diagonally dominant and square n ∗ n matrix A and the equation result vector b with
length n. The searched value that has to be computed is the x vector. Therefore the algorithms

32

5.2 Requirements

 Server

Application

Middleware

Mobile Device

Cloud

Figure 5.1: System model of the mobile device and the cloud infrastructure

that solve those equations need at least a matrix A and a vector b as input. The output is the x

vector with length n. As the algorithms are iterative and do not have to be computed straight,
an estimation of the x vector can be provided as input parameter, too.

5.1.5 Energy Model

Executions of tasks on the CPU consume energy. The more sophisticated the task, the more
energy is consumed. Hence the calculation of a linear equation system utilizes the CPU capacity
highly, which leads to high energy consumption. The network communication between the
mobile device and the cloud is also a high utilizing CPU task, but compared to the solving of
an equation it lasts shorter. Hence the hypothesis is, that a remote execution is saving energy
against a local execution.

5.2 Requirements

The requirement to this system model against a typical local approach is, to optimize the three
resources energy, computation speed and result quality. If the network connection has a good
quality and is stable, the system model aims to optimize all resources. If the network quality is
decreasing or the connection is unstable, the priority switches for the benefit of computation
speed. The efficiency of the system model is defined by the balance between those resources
according to the current network situation.

33

5 System Model

Some resources harmonize with each other, while others exclude each other. It depends on
the current network situation. If the network situation allows a remote execution, such that
it is faster than a conventional local execution, the resource computation speed would be
satisfied. Additionally, the energy that would be consumed by a local execution is saved on the
mobile device, because the calculation is performed in the cloud. In this situation, the resource
energy is optimized, too. Unfortunately not every situation allows the optimization of multiple
resources. In specific situations, in context of the network, resources can exclude each other.
There are two types of exclusions, the situation dependent and the situation independent. The
following argumentations show that it is not possible to optimize all resources equally in every
situation, as they can get in conflict with each other.

5.2.1 Situation Dependent Exclusion

The best situation for a fast remote equation calculation with a specific matrix dimension
occurs, when the network has a high throughput, low latency and is stable. Let us assume that
a remote equation calculation under the best network situation is faster than a local calculation
on a mobile device. Also assume that the network connection quality between the mobile
device and the cloud infrastructure is varying, which means there is no guarantee that the
remote calculation is faster than a local calculation. Therefore the fastest approach to solve the
equation system on a mobile device with cloud infrastructure is provided, if the calculation is
computed locally while trying to solve it remotely at the same time. The faster execution of
both then returns the result and terminates the other attempt. This prevents the remote attempt
from delaying the calculation due to high latency in the network or connection losses, because
the local computation does not depend on the current network statistics. The drawback of
the approach with focus on the fastest calculation is, that it is not energy efficient. Due to the
parallel execution of the calculation on both, the mobile device and the cloud infrastructure,
no energy is saved on the mobile device compared to a completely local execution. On the
contrary, this consumes even more energy than a completely local execution, because the
communication overhead between the mobile device and the cloud infrastructure does also
consume energy. The most efficient execution of the calculation to safe energy is, when at
most everything is calculated in the cloud. This means, that it is not possible to optimize
the resources of fast computation speed and energy saving on the mobile device for every
situation.

5.2.2 Situation Independent Exclusion

An example for situation independent resource exclusions is, optimizing the resources for result
quality and execution speed. The iterations of iterative approaches like the Jacobi method
increase if the residual value decreases. I.e., a calculation with a residual of 10−9 takes longer
than a calculation with a residual of 10−1, as it can be seen in Chapter 4. When trying to reach

34

5.2 Requirements

a high result quality, a small residual would be chosen. Let us assume high result quality is
defined for a residual of 10−9. When trying to reach a fast computation, a residual of less
than 10−9 is more profitable, because less Jacobi iterations are performed. This leads to a
contradiction where the consequence is, that the resources for fast computation and high result
quality can not both be optimized as effectively as possible.

35

6 System Design

This chapter presents the design of the system model in Chapter 5, to efficiently solve linear
equation systems utilizing a Cloud-Infrastructure. The design consists of the description of
the mobile device components and the cloud server components. The component diagram in
figure Fig. 6.1 shows the abstract architecture of the draft. Its components will be described in
the following sections.

Mobile Middleware

Cloud Server

Equation
Solver

Session
Manager

Client
Manager

Equation
Solver

ProfilerExecution
Manager

Figure 6.1: Component diagram of the mobile device and the cloud architecture

37

6 System Design

6.1 Middleware for the Mobile Device

The middleware initializes the solving on the mobile device. It uses a profiler, to decide if a
remote or a local computation is more efficient for the current network situation and equation
system. Based on the suggestion of the profiler, the execution manager is responsible to initiate
either the remote execution or to start a local calculation. As the network situation can vary,
the execution manager has to adapt to changes. For local calculations of equation systems,
the equation solver provides iterative algorithms to solve the equation system on the mobile
device.

6.1.1 Execution Manager

As shown in the requirements analysis, not every resource can be optimized equally in every
situation. Although the middleware can distribute the best priorities according to the current
situation, which can be defined as situation based resource priority handling. The focus lies
on the situation dependent resource exclusions, as the independent have to be defined by the
calculation initiator at initialization time.

The best results can be reached, if the network provides a fast and stable connection, as the two
resources execution speed and energy saving are both optimized as effectively as possible. Thus,
in the beginning the system aims to optimizie all resources, meaning to increase computation
speed and safe energy while computing a high result quality. If the network quality is reducing
or temporary connection losses occur, the protocol adapts the resource priorities in a way,
such that the computation time does not increase considerable. The priority for computation
speed is the most important to contain, as the middleware is intended to be used in real time
applications on mobile devices. The computation speed can be contained, when reducing the
result quality or reducing the attempts to safe energy on the mobile device. The result quality
is reduced when the maximum of iterations or the accuracy of the residual is decreased for an
algorithm. This can either be done at initialization time or by fetching interim results from
running computations. Energy saving attempts can be stopped by concurrently starting a local
and a remote execution.

Shared State

If the execution manager has to run a local execution concurrent to a remote execution, it is
important that no progress on both methods is lost. That means, if one method has calculated
an interim result of the equation, it should be passed to a shared state. In the case that the
second execution method starts, it can use the current interim result as an estimation for the
final result. This can reduce the computation time of, e.g. the Jacobi method as less Jacobi
iterations have to be performed. Although it has to be considered, that the sharing of interim

38

6.1 Middleware for the Mobile Device

results can cause regression, as results may be overwritten with less exact results. To prevent
this, the current accuracy of the interim result has to be calculated before updating the shared
state. It must only overwrite the shared state if ||b−A ∗ xk|| < ||b−A ∗ xk−1||, for an equation
A ∗ x = b.

Triggers

The execution manager has to react to specific triggers. On a trigger activation, the execution
manager should change the computation method in a way, such that the result is available
as fast as possible for this situation. There are two different trigger types which depend on
the network connection: timeouts and connection losses. The timeout trigger is used for
test messages that measure the network RTT. If the execution manager records that a test
message is not returned within the time the last test message was measured, the network
quality decreased. In this case, it has to be considered to start a local execution besides the
remote execution or to fetch an interim result.

On connection losses between the mobile device and the server, the execution manager has to
start a local execution, as it is not predictable when the network will be available again and
no interim results can be fetched. The mobile device can try to re-connect to the server in
periodic time intervals. If the connection loss is due to a single network failure, the remote
execution can still be faster than a local execution on reconnect. Then also interim results can
be retrieved, but only if the equation system was already sent in the first remote execution
attempt.

6.1.2 Profiler

As the efficiency for solving linear equation systems depends on the network situation, a
component has to be responsible for deciding which execution method is the best at the
moment. In cases, where the matrix dimension is too small or the network connection is very
slow, it is not efficient to initiate a remote computation. E.g., for small matrix dimensions, the
communication between the mobile device and the cloud infrastructure would consume more
time and energy than a local execution of the calculation. The same applies if the network
connection has a high latency or low throughput. The profiler has the responsibility to filter, in
which situation it would be efficient to calculate on a remote machine. Although, the network
can vary from time to time, hence it is not possible to provide an exact prediction for the
most efficient execution. Therefore the profiler can only suggest estimations. To get better
estimations, the profiler should monitor the process of past solving attempts. Meaning, it logs
the times of remote and local calculation executions. Together with trivial network RTT tests,
the profiler estimates how fast the calculation can be executed either remote or local. This is
clearly not the most accurate analyzing method, as more factors, like the current bandwith,

39

6 System Design

wireless signal strength etc. could be considered, too. But a very accurate network analyzing
method costs too much time and consumes additional energy such that the benefit is lost.

Monitoring Executions

The profiler measures the time from the initiation of a local or remote calculation, until the
result is returned; if the calculation was successful. Additionally the network is monitored as
well, to have an overview about the network situation. However in proceedings of related
projects, the authors came to the conclusion, that it is not profitable to use high sophisticated
network analyzing tools [Edu10][Ioa12]. Instead they used to send ping messages to measure
the network quality. According to those findings, the profiler of the middleware in this system
model uses time measurements of test messages. Those time values are connected to absolute
remote execution times. This gives a more precise estimation and bounds the remote execution
times to the network situation in which this time was achieved.

Adapting Time Measurements

The profiler tries to always adapt to the latest collected statistics. I.e. previous results should
be overwritten by later results. Thus, single measured time values can influence the decision
process of the profiler. E.g. if a remote execution time value for matrix dimension x is less
than the time value for a matrix dimension y with x > y, the time value of dimension y is no
more appropriate. In this case, both values have to be equalized because a computation with
a bigger matrix dimension takes longer than with a smaller dimension. This is stated by the
measurements of the pre-tests in Chapter 4. The reason for such time value variances is the
varying network situation. I.e. the transmission of the equation can affect inappropriate time
values for remote executions.

Decision Handling

Based on the collected statistics, the profiler provides a function to suggest whether to solve an
equation remote or local. If a new computation is initiated, the profiler takes the dimension
of the equation system and compares the times, that were achieved in past remote and local
computations. The attempt that was faster in the past, will probably be faster in the future. But
it should also be considered, that the network situation can vary and time results can get better
or worse. Hence the profiler should test the current network situation and involve this into the
decision process. Let us assume, that for a matrix with dimension n∗n the remote computation
terminated slower in past executions than a local computation. So for the next calculation with
a matrix dimension of n ∗ n, the profiler would suggest a local execution. Although, to involve
the current network situation, the profiler sends a test message to the server and measures the

40

6.2 Cloud Server

round trip time (RTT). If the current RTT is faster than the RTT in the previous attempt, the
profiler realizes that the network connection has improved. According to the better network
quality, the profiler will suggest a remote execution. This prevents that single bad results in the
profiler statistics block future remote executions. In a situation, were the past remote execution
was faster than a local execution, the profiler will also suggest a remote execution. This is due
to advantages against a local computation attempt. If the network situation is now worse than
in the previous execution, the execution manager has to handle the situation change. Note that
little variations in the RTTs can occur, therefore an offset should be provided to compensate
those variations. It should be considered that the offset prefers a remote execution before
a local execution, as the remote attempt can also safe energy against the local attempt. To
prevent unnecessary complex constructs, in a situation where a local execution is faster than
the RTT of past remote executions, the profiler suggests a local calculation. This only filters
out very small equation systems.

6.1.3 Equation Solver

The equation solver provides algorithms to solve linear equation systems with an iterative
approach. The advantage of the iterative algorithms is, that the result quality of the equation
system can be adapted. The residual termination criteria or the maximum of iterations can be
reduced or increased, if the network quality changes.

6.2 Cloud Server

Multiple servers can provider their resources in the cloud. In contrast to the mobile device,
the server has just to be available and solve linear equation systems that are sent from mobile
devices. The server does not adapt to changes in the network quality nor to disconnects from
the clients. If a client loses the connection to the server, the server continues to calculate the
equation system and safes the results; as long as the equation system was received successfully.
The mobile device then can ask for the results of running or finished equation computations.

6.2.1 Client Manager

The client manager handles incoming connection requests. It has to provide at least two
different request managements: a handling for solving a new linear equation system and
another for fetching interim results or results of finished computations. If a request for solving
a new equation system was received, the server distributes the job to the equation solver. When
the result was computed by the solver, the client manager sends a response with the result
of the equation system to the mobile device, if still possible. On the other hand, if a request

41

6 System Design

for an interim result was received, the result has to be retrieved from the session manager, if
available, and sent to the mobile device.

6.2.2 Session Manager

The session manager has the responsibility to safe the results from initiated calculations on the
server. Every calculation should be bound to a special identifier, so that requests from clients
for interim results or finished calculations can properly be handled. Possible identifiers are e.g.
mobile device numbers combined with session numbers for equation systems etc. .

6.2.3 Equation Solver

The equation solver on the server can be the same as the solver on the mobile device. However
one difference is, that the server has no need to adapt to changes in the network. Hence it
always solves until the most accurate result quality is reached, because the mobile device cares
for timeouts. After every iteration of an iterative algorithm, the result has to be passed to the
session manager, so that the server can respond to interim result requests from the mobile
device.

42

7 Implementation

This chapter discusses the implementation details of the created applications and tests for this
bachelor thesis.

7.1 Pre-Test Implementation Details

All measurement tests were implemented in Java. The reason is, that the mobile devices run
Android as operating system (OS) and the main language for Android applications is Java.
Thence all devices can use the same implementation to have the same conditions. There are
no specific libraries for solving linear equation systems in the Java programming language. To
solve this problem, the tests use the Apache Commons Mathematics Library 1. The package
org.apache.commons.math3.linear.* provides different solvers for linear equation systems, that
were used for the tests. All algorithms of the Apache library do not have special dependencies
on different third party libraries. As there are many different algorithms to solve linear equation
systems, the tests only use a few algorithms as representative for two main techniques. That is
either to solve the equation system exactly or compute iteratively until an approximation of
the result is found. For the tests, one exact solver and three iterative approximation algorithms
were used. The exact solver is the Apache implementation of a decomposition algorithm. The
two other Apache implementations that were used in the tests are the conjugate gradient
method and the SYMMLQ solver. A further iterative solver is based on the Jacobi Method and
was implemented as described in Chapter 2. The tests use multiple runs for every test iteration.
For the matrix scaling tests, every test iteration generated a new equation to prevent single
spikes in the computation time.

7.1.1 Apache Commons Math Linear Equations Solver

The three used solvers of the Apache Commons Math library are described in the following.
They solve an equation of the form A ∗ x = b for the x vector.

1http://commons.apache.org/proper/commons-math/

43

7 Implementation

Decomposition Solver

In the tests the Apache LUDecomposition 2 solver is used to represent an exact linear equation
solver. The algorithm uses the LUP-decomposition, which means that the matrix is decomposed
into L (lower triangular), U (upper triangular) and P (permutation matrix) that satisfy:
P ∗ A = L ∗ U . This implementation can only find an exact solution if the matrix is square
and there is an exact linear solution of the equation system, i.e. one has ||A ∗ x− b|| = 0.

Conjugate Gradient Method

The Apache implementation of the conjugate gradient method 3 follows the template of Barrett
et al. [R. 94] and provides an approximated solution of the linear equation system, where
r = b−A∗x. The default stopping criterion is ||r|| ≤ δ||b||, where δ is a user-specified tolerance.
The variable r is called the update residual, as it might differ from the true residual due to
rounding-off errors. A further termination criterion can occur by reaching the maximum of
iterations, which can be seen as an evaluation of the matrix-vector product A ∗ x.

Symm LQ Method

A further iterative solver of Apache is the SYMMLQ 4 solver proposed by Paige and Saunders
[C. 75]. The difference between the SYMMLQ solver and the conjugate gradient method is,
that it does not need a positive definite matrix. Although it does a bit more work if the matrix
is positive definite.

7.2 Implementation of the Android Application

To test the efficiency of the developed approach of solving linear equation systems, a sample
application was implemented. The application was implemented for the Android platform and
is thence written in the programming language Java. The sample application is called Linear
Equation Cloud Calculator (LECC) and provides functions to solve equation systems of the type
A∗x = b for the x vector. Figure Fig. 7.1 depicts the structure for the middleware on the mobile
Android device. The main classes in this system are the ConnectionManager, the Profiler and
the MatrixExecutionManager. The ConnectionManager provides all functions to handle the data
transmission between the mobile device and the cloud server. The Profiler class is the according

2http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/linear/LUDecomposition.html
3https://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/linear/ConjugateGradient.html
4https://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math3/linear/SymmLQ.html

44

7.2 Implementation of the Android Application

LocalMatrixSolver

RemoteProgress
-statusMessage : String
-matrix : double[][]
-equationResult : double[]
-result : double[]
-resultNorm : double
-finalResult : boolean
-sentConfig : boolean
-gotInterrupted : boolean
-startedLocalComputation : boolean
+RemoteProgress(matrix : double[][], equationResult
 : double[])
+updateResult(result : double[], norm : double)
+updateResult(result : RealVector, norm : double)
 //According field getter and setter methods

<<Enumera t ion>>
SolvingAlgorithm

<<Enumera t ion>>
SolvingMethod

MatrixActivity

<<Ca l lab le>>
RemoteFileExecutor

<<Ca l lab le>>
RemotePeriodicMatrixExecutor

<<Ca l lab le>>
NetworkSituationMonitor

<<Ca l lab le>>
RemoteMatrixExecutor

<<Ca l lab le>>
LocalMatrixExecutor

Configuration
-serverUrl : String
-serverPort : int
-timeout : int
-solvingMethod : SolvingMethod
-solvingAlgorithm : SolvingAlgorithm
-maxLocalSize : int
-createOutput : boolean
+Configuration()
 //According field getter and setter methods

ConnectionManager
-server : Socket
-sessionId : long
+ConnectionManager(sessionId : long, host : String,
 port : int, timeout : int)
+createOutputStream() : DataOutputStream
+sendConfigHead(option : int, length : int,
 dos : DataOutputStream)
+sendRow(row : double[], dos : DataOutputStream)
+sendConfiguration(matrix : double[][], equationResult : double[])
+sendConfiguration(matrix : double[][], equationResult : double[],
 xVectorApproximation : double[])
+sendApproxResultRequest()
+sendSplineConfig(xValues : double[], yValues : double[])
+receiveResult(length : int) : ResultObject
+close()
-checkForInterrupt()

MatrixExecutionManager

+MatrixExecutionManager()
+solve(matrix : double[][], equationResult : double[],
 handler : Handler)
 : double[]
+solveFromFile(filename : String) : double[]
-networkSituationBasedRemoteSolving(matrix : double[][],
 equationResult : double[],
 handler : Handler, result : double[], sessionId : long,
 progress : RemoteProgress, executor : ExecutorService)
 : double[]
-createSessionId() : long
-updateFinalResultHandler(handler : Handler, result : double[])

Profiler
-remoteSizeTimePairs : HashMap<Integer, Long>
-localSizeTimePairs : HashMap<Integer, Long>
-remoteConnectionEstablishmentPairs
 : HashMap<Integer, Long>
+Profiler()
+addRemoteCalculationTime(matrixSize : int,
 time : long,
 connectionEstablishmentTime : long)
+addLocalCalculationTime(matrixSize : int,
 time : long)
+getConnectionTimeoutFor(matrixSize : int) : long
+checkForRemoteCalculation(matrixSize : int) : boolean
+fetchOrEstimateRemotelTime(matrixSize : int) : long
+fetchOrEstimateLocalTime(matrixSize : int) : long
-connectionNowFasterThanBefore(matrixSize : int) : boolean
-straightenPreviousValues()
-getValueOnLineBetweenExistingPoints(
 searchedPosition : int,
 xBefore : int, yBefore : int,
 xAfter : int, yAfter : int)
 : long

 1*

1*

1*

1*

1*

 *1

 1 *

 *

 1

1..n

1..n

1..n

1..n

 1

1..n

 1
 *

 *

 1

Figure 7.1: Class diagram of the mobile device middleware structure

implementation of the Profiler component and the MatrixExecutionManager the according
implementation of the Execution Manager in the system design. A detailed explanation of the
classes and the middleware structure is provided in the following subsections.

7.2.1 Middleware Structure

A new equation computation is initiated by the MatrixActivity component. The MatrixExe-
cutionManager then executes the solving process according to the feedback of the Profiler
and the current settings in the Configuration. The MatrixExecutionManager uses different

45

7 Implementation

executors to start the calculation of equations. This is necessary due to the resource demanding
process to solve an equation system. When computing the equations on the main thread, the
application freezes until the result is available. Furthermore network connections have to be
realized in background processes in the Android system, otherwise the application crashes.
In first tests of the application, the AsyncTask class was used to implement the executors. It
is a common way to implement concurrent tasks in the Android system. Also it provides an
easy way to handle the communication between background processes and UI threads. The
problem that goes along when using AsyncTask classes is, that according to its documentation
it should only be used for short processes, at most for a few seconds. E.g. when rotating
the screen of the application, the AsyncTask is no more bound to the latest UI. So the task
is still computing but no updates on the UI will be received. This can cause memory leaks
as unused tasks will not be garbage collected by the runtime, but contain running in the
background. In the final implementation of the application, an ExecutorService of the package
"java.util.concurrent" was used to implement the processes. To communicate updates to the UI
from the background processes, a Handler of the "android.os" package was used. The Handler
object can communicate two different messages, either to notify the UI that a new update of the
approximated result is available, or that a final result is computed. As the application should
process equations with big matrix dimensions like 1000 and more, it has to deal with memory
limitations of the Android OS. Every application gets only a specific part of the memory. To
bypass this limitation, the application uses the large heap option, which allows to yield the
memory of the smartphone.

7.2.2 ConnectionManager

The ConnectionManager class provides the necessary functions to communicate with the server.
Two methods are provided to send an equation to the server, meaning the "configuration". One
sends the matrix A and the equation result vector b of the equation A ∗ x = b, while the other
additionally sends an approximation of the x vector. Results of initiated remote executions
can be fetched with the "receiveResult" method. This method blocks until the result is received
from the server and can only be used if the equation system was sent via the same connection.
If the mobile device wants to retrieve interim results, it is not necessary to send the equation
system again or to use the same connection. Instead an approximation request can be sent with
the according session identification number (sessionId) of the calculation. Further methods
provide the sending of separate parts, like the header of a request or single rows of a matrix.
On disconnects during any send operation, an IOException is thrown. Those exceptions have to
be handled by the calling operation, like e.g. the MatrixExecutionManager. The two methods
for sending configurations can be interrupted. This is important if another execution (e.g. a
local execution) has already finished, as the send methods block until they completed. If the
receive method is interrupted due to a disconnect or malformed responses from the server, it
throws an exception, too. In this case, the returning object is null and has therefore be handled
by the calling operation.

46

7.2 Implementation of the Android Application

Listing 7.1 EBNF of request transmission protocol for mobile devices

Request = Option, SessionId, [Length, Data];

Option = ’0’ | ’1’ | ’2’; (* Java int type *)

SessionId = (* Java long type *);

Length = (* Java int type *);

Data = MatrixData | MatrixDataWithEstimation;

Row = (* Java float array *);

MatrixData = Matrix, Row (* equation result vector*);

Matrix = Length * Row;

MatrixDataWithEstimation = Matrix, Row (* equation result *), Row (* estimation vector *);

Options:

0 : new calculation;

1 : new calculation with estimation of x vector;

2 : request existing result;

Data Transmission

Listing 7.1 presents the request transmission protocol for the mobile device in Extended
Backus-Naur Form (EBNF).

The Socket class of the "java.net" package was used for the network connection, while the
sending of the data was implemented with the "java.io.DataStream" classes. To improve the
data transmission speed, the DataStream object wrapped a BufferedStream object instead of
directly writing to the server output stream. Additionally, the values of the arrays were written
into a ByteBuffer object, such that every matrix row is transmitted straight. Although the data
transmission speed could further be improved by a data compression. As seen in Section 4.1.3,
the error value of the iterative equation solvers amounts about 10−13 for a residual of 10−9.
All the algorithms use Java double types, which have a size of eight byte. But for an accuracy
of 10−13 it is enough to use a Java float type, which has a size of only 4 byte. As the smallest
positive value of float is 2−149 ≈ 1.4 ∗ 10−45, no important decimals are lost if the value is
compressed from a double type to a float type. But only as long as all values of the equation
are less than the maximum of the greatest float value (2− 2−23) ∗ 2127 and greater than the
smallest float value −(2− 2−23) ∗ 2127, which is assumed in this test application. Therefore the
ConnectionManager class uses a lossy data compression before sending equations.

47

7 Implementation

7.2.3 Profiler

The profiler is including responsible for monitoring executions of equation calculations. Hence
the profiler provides methods to add local and remote execution times. Those times are bound
to their matrix dimensions of the equation. Previous results are overwritten to always have the
statistics up to date. Although this approach can cause anomalies in the statistics. An anomaly
occurs, if e.g. a time value for an equation with dimension x is smaller than the time value for
an equation with a dimension less than x. The equalization process uses the following function
and sets both compared values to the newV alue, for which
newV alue = rightRemoteV alue + leftRemoteV alue−rightRemoteV alue

2 , with leftRemoteV alue >

rightRemoteV alue. Hence, after adding a time value, the "straightenPreviousValues" function
is invoked to prevent anomalies in the statistics.

For remote executions it is important to involve the network situation, because the limiting
factor of a remote execution depends on the time period to send the equation data to the server.
According to that, all remote execution time values are bound to a connection establishment
time, meaning the "three way handshake" of TCP. At initialization time, three default time
values are added to the profiler to create an initial statistic. These values are based on the
execution times that were measured in the pre-tests in Chapter 4.

The "checkForRemoteCalculation" function checks whether a remote execution is beneficial
or not. The decision process is explained in figure Fig. 7.2. The profiler is based on previous
executions, but it is possible that not every specific equation dimension has already been
calculated in the past. Thus the profiler provides the two "fetchOrEstimate" functions. If the
profiler gets a request for an estimation of a matrix dimension that is not available, it has to
linear interpolate the value between two existing values.

7.2.4 MatrixExecutionManager

The MatrixExecutionManager class provides two different methods, "solve" and "solveFromFile",
to initiate the solving of an equation system.

The "solveFromFile" method should be used if the equation dimension of the input file is too
big to be processed on the device. Instead of processing the matrices of the equations in two
dimensional arrays on the device, this method reads every row of the input file and directly
sends it to the server. To process big equations locally on the mobile device, it would be
necessary to modify the solving algorithms. This is a sample of how the memory resources
on a mobile device can be enhanced by using cloud techniques, without the need to modify
existing algorithms.

The "solve" method takes a matrix and an equation vector as input. Additionally a handler has
to be passed to communicate updates to the UI. First it is checked, which execution method
should be started. This decision is made by checking the settings in the configuration and the

48

7.2 Implementation of the Android Application

Profiler decision process for remote or local execution

ping server

suggest remote
execution

suggest local
execution

[pingTimeNow >
pingTimeBefore][pingTimeNow <=

pingTimeBefore]

[localTime <
remoteTime]

localTime >=
remoteTime

[localTime >
pingTime]

[localTime <=
pingTime]

Figure 7.2: Activity diagram of the mobile device profiler for the decision process

profiler. On a local only execution, a LocalMatrixExecutor (LME) object is submitted to the
ExecutorService, whereas on a remote only execution a RemotePeriodicMatrixExecutor (RPME)
object is submitted. If the profiler of the configuration suggests remote solving, multiple
executors will be started concurrently. With the "invokeAny" method of the ExecutorService,
a RemoteMatrixExecutor (RME) and a NetworkSituationMonitor (NSM) will be started con-
currently. On exceptional interruption of one of those processes, the LME and the RPME are
submitted with the "invokeAny" method.

RemoteMatrixExecutor

The RME tries to establish a connection between the mobile device and the cloud server, sends
the equation system and waits for the result. No interim results are retrieved and no adaption
to changing network situations is made. If any exception is raised during this process, the RME
stops. All progress by this executor is saved into a shared state object. The computation time is
added to the profiler if the remote execution was successful.

NetworkSituationMonitor

The process of a remote execution is monitored by the NSM. After timeout t, t = 1000ms,
the NSM checks the current network situation by establishing a connection to the server. If
the time to establish the connection takes longer than in the previous attempt, the network

49

7 Implementation

quality decreased. In this case the NSM decides whether to decrease the result quality of the
calculation or to stop containing the energy resource. As long as the RME already sent the
equation system, the NSM can retreive interim results (reducing priority for result quality).
Otherwise a local execution has to be started (reducing priority for energy). If the network
quality is still good, the NSM waits for the next timeout to occur and checks the situation
again.

RemotePeriodicMatrixExecutor

The RPME has a similar task as the RME. The only difference is, that the RPME does not
stop upon exceptions. Instead it tries the same task periodically again, until the final result is
returned from the server. If the equation was already sent in earlier connections, the RPME
does only make requests for the current result on the server instead of sending the equation
again. If the received result is an interim result the RPME will send a new request after one
second, otherwise it is a final result and the process can terminate.

LocalMatrixExecutor

The LME starts a new local equation computation. All progress, i.e. after every iteration
of an approximation algorithm, is updated in the shared state object. If the residual or the
maximum of iterations for the algorithm is reached, the result is returned and the LME process
terminates.

7.2.5 RemoteProgress

The middleware uses different executors, which might execute concurrently. Thus to keep
all concurrent tasks up to date, it is necessary to provide a shared state object that stores
the progress of all running tasks. The matrix, the equation result and the current x vector
of the equation can be stored in the RemoteProgress class. Besides that, the norm of the
current x vector and a status message can be synchronized. Flag fields can additional be set or
checked, to get an overview about the progress for the remote execution. The flag fields, the
status message and the current x vector use the Java volatile keyword to be up to date in all
threads.

7.2.6 Equation Solver

Local executions can use the LocalMatrixSolver class to solve equation systems. The provided
algorithms are the Apache implementations of the conjugate gradient method, the SYMMLQ

50

7.2 Implementation of the Android Application

Listing 7.2 Application input file for equation systems

MatrixDimension

MatrixRow1Column1;...;MatrixRow1ColumnN

.

.

.

MatrixRowNColumn1;...;MatrixRowNColumnN

VectorValue1;...;VectorValueN

Listing 7.3 Application output file

VectorValue1;...;VectorValueN

solver and the decomposition solver. They are provided in the Apache Commons Math library.
Additionally the self implemented Jacobi algorithm can be used. When using the Jacobi
algorithm, a RemoteProgress object can be passed to the LocalMatrixSolver constructor, which
causes the updating of the x vector in the progress object.

7.2.7 Application Input and Output

There are two types of input for the equation solver. The user can either provide a file
containing the matrix A and the according vector b, or generate a random equation system as
for the pre-tests. The format for an equation input file is presented in listing 7.2.

In the application, the user has to provide the path to the input file, relative to the external
storage directory of the Android system. The application can optionally create an output file
that contains the result vector of the calculation. The format of the output file is a semicolon
separated line with all values of the vector, as presented in listing 7.3. The output file is created
in the external storage directory of the Android device.

7.2.8 Configuration

The application provides different solving methods and algorithms. Hence the Configuration
class is responible for storing those settings. There are three different solving methods: local,
remote, and network situation based (NSB). The local solving method initiates a local execution
if a new calculation is started. On the other side, the remote solving method tries to solve
the equation in the cloud, without considering the network situation. If no connection can

51

7 Implementation

be established, the remote solving method cannot return a result. Both methods make the
execution manager ignore the suggestions of the profiler. As a contrast to that, the NSB solving
method makes the profiler to suggest the best solving method for the current situation. If
the profiler suggests a remote execution, the network is monitored and the system reacts to
changing network conditions. Another setting that is managed by the configuration is the
solving algorithm that should be used for the equation calculation. The different algorithms
are the self implemented Jacobi method and the Apache implementations of the conjugate
gradient method, the SYMMLQ solver, and the decomposition solver. This setting does only
affect the local execution and not the execution on the cloud server. Further settings provide
connection information like the url to the cloud server, the according port on the server and
the default RTT timeout. There is also the option to create an output file with the containing
result vector at the end of a successful calculation.

7.3 Implementation of the Cloud Server

Figure Fig. 7.3 shows the structure of the server in a class diagram. The server is implemented
in Java. It can manage multiple requests from multiple clients, as every request gets handled
in an extra thread. The ClientConnector class listens for new requests from clients and creates
a new ClientWorker thread, if a client was accepted. The ClientWorker then filters out the
request classification. The option field in the request header defines if the ClientWorker object
has to handle a new equation calculation request with or without an estimation of the result.
Further options are a result request for running or finished calculations, a spline calculation
request or an unknown request. Every request implies that the server sends a response to the
client. The EBNF structure in listing 7.4 presents the transmission protocol for a response of
the cloud server.

The connection techniques on the cloud server are similar to the techniques on the mobile
device. I.e. for the connections, the "java.net.Socket" and for the transmission the "java.io"
DataStream classes are used. The compression technique is also the same as on the mobile
device, which means that the double values get compressed to float values.

52

7.3 Implementation of the Cloud Server

Listing 7.4 EBNF of the server response protocol

Response = Type, SessionId, [FinalResult, Data];

Type = ’0’ | ’1’; (* Java int type *)

SessionId = (* Java long type *);

FinalResult = ’0’ | ’1’; (* Java int type *)

Data = (* Java float array *);

Type:

0 : no data in response

1 : result exists; implies that data is sent in response

FinalResult:

0 : result is only an interim result, not finished calculation yet

1 : result is final result

LocalCubicSplineSolver

LocalMatrixSolver

SessionObject

SessionManager
-sessionResults : HashMap<Long, SessionObject>
+updateSession(sessionId : long, sessionObject : SessionObject)
+getResultForSession(sessionId : long) : SessionObject
+exists(sessionId : long) : boolean

<<Runnab le>>
ClientWorker

-client : Socket
-matrixSolver : LocalMatrixSolver
-splineSolver : LocalSplineSolver
+ClinetWorker(client : Socket)
+run()
-handleNewCalculationRequest(dis : DataInputStream,
 sessionId : long)
-handleNewCalculationRequestWithEstimation(
 dis : DataInputStream, sessionId : long)
-handleResultRequest(sessionId : long)
-handleSplineRequest(dis : DataInputStream,
 sessionId : long)
-handleUnknownRequest(sessionId : long)
-sendEmptyResponse(sessionId : long)
-fetchVectorFromStream(dis : DataInputStream,
 length : int) : double[]
-fetchMatrixFromStream(dis : DataInputStream,
 length : int) : double[][]
-solveEquationSystem(sessionId : long,
 length : int, matrix : double[][],
 equationResult : double[]) : double[]
-solveEquationSystemWithEstimation(sessionId : long,
 length : int, matrix : double[][],
 equationResult : double[], estimation : double[])
 : double[]
-sendResultWithDataStream(sessionId : long,
 result : double, finalResult : boolean)

ClientConnector
-port : int
-solvingAlgorithm : String
+ClientConnector(port : int, solvingAlgorithm : String)
+startMatrixSolverServer()

ServerStarter

 1 *

1 *

Figure 7.3: Class diagram of the Java cloud server

53

8 Discussion and Evaluation

In this chapter we evaluate the developed approach to efficiently solve linear equation systems.
The presented application in Chapter 7 serves as a sample application. The results of the tests
will be presented and discussed.

8.1 Transmission Protocols

The transmission protocol of the developed system is a key component for the efficiency, as
the data transfer of the equation system is the only factor that can make a remote execution
slower than a local execution. It was first considered to transmit the equations with the User
Datagram Protocol (UDP), because it is faster compared to TCP. But although the quality of
the result must not be 100% accurate, it is not acceptable to lose whole rows or columns of
the equation matrix or vector, as it can influence the calculation considerable. Therefore an
approach needed to be developed to control the successful transmission and the correct order
of the arrived packages with UDP. Although, the overhead that would be produced by securing
the data transmission would compensate the benefits of UDP. When considering this, it is more
efficient to use a reliable data transmission protocol instead of UDP.

A further attempt that was tested is the Extensible Markup Language (XML) - Remote Procedure
Call (RPC) technique. It is based on the Hypertext Transfer Protocol (HTTP) and provides a
reliable data transmission. A data transmission speed comparison between TCP and XMLRPC
can be seen in figure Fig. 8.1. This test serves to filter out which transmission protocol is faster.
The test sends a matrix with dimension n ∗ n and a vector of length n with TCP, respectively
it passes an array with length n ∗ n and n for XMLRPC. The Java float type was used for the
values, which has a size of four bytes. Hence the data load for one transmission with matrix
dimension n∗n is 4∗n2 +4∗n bytes. The wireless network (Home network) for the test is a 2,4
GHz 802.11n network with a data rate of 300 Mbit/s. The real throughput of 11.2 Mbit/s and
an average latency of 4.023 ms for 20 packages in 20 seconds was measured before the tests.
The test devices are the desktop computer as server (four core 3 GHz CPU, 8GB RAM) and the
laptop as client (four core 1.6 GHz CPU, 8 GB RAM). The diagram depicts that XMLRPC is
considerable slower for data transmission compared to TCP. For smaller matrix dimensions
of 600, the difference between both techniques amounts about 300 ms. This is already a
considerable time difference, but when comparing the time difference for a matrix dimension
of 1500 and more, it amounts over two seconds. E.g. TCP reaches a transmission time of 7013

55

8 Discussion and Evaluation

ms for a matrix dimension and vector length of 2000, while XMLRPC has a transmission time
of 9503 ms. Thus the XMLRPC technique is not an efficient candidate for this system.

Another transmission technique that was considered is the Google Cloud Messaging 1 (GCM)
service for Android. It is a service to send and receive messages from an Android device to
a cloud server. The server then can distribute the message to other Android devices, too.
The message queuing and delivery is completely handled by the GCM service. The system is
implemented with three components, the GCM Android application (client App), the GCM
Cloud Connection Servers (CCS) and a third party application server (3PS). The CCS are
provided by Google and take messages from the 3PS server to send them to the client App and
vice versa. The supported connection protocols between the CCS and the 3PS are HTTP and
Extensible Messaging and Presence Protocol (XMPP). When using the GCM service, network
disconnects must not be handled by the Mobile device middleware, as this is already handled by
the GCM protocol. An Android application (on Nexus 5) and an application server (on desktop
computer) were implemented, to test the GCM service. The application server uses the HTTP
protocol to communicate with the CCS. The application server and the Android application
are located in the same wireless network as in the previous comparison test between TCP and
XMLRPC. Although the GCM service requires an Internet connection to connect to the CCS.
The Internet connection provides 7.9 Mbit/s download data rate and 1 Mbit/s upload data rate.
In this test, messages with 22 bytes took more than two seconds to be sent to the application
server. This is significant slower than a transmission with TCP, where the transmission of 22
bytes takes one millisecond.

8.2 Computation Time Evaluation

The computation time of the developed remote approach is evaluated against the computation
time of a conventional local execution. The remote computation time consists of the data
transmission time ttransmission and the time to wait for the result response of the server tresponse.
The local computation time consists of the time to solve the equation on the mobile device
tlocal. If ttransmission + tresponse < tlocal ⇒ the remote execution terminates faster than the
local execution. Both execution methods, meaning local and remote, were tested on the
Nexus 5 mobile phone (four core 2.26 GHz CPU, 2 GB RAM). According to the pre-tests, it is
expected that the remote execution method is faster than the local execution method. The
wireless network environment is the Eduroam network of the University of Stuttgart. The
throughput of 80.2 Mbit/s was measured before the test runs, along with the average latency
of 1.618 ms for 20 packages within 20 seconds. The test server application is running on
the Nimbus server (eigth core 3 GHz CPU, 32 GB RAM) and is permanently available. The
wireless network connection was turned on during remote and local executions on the mobile

1https://developer.android.com/google/gcm/index.html

56

8.2 Computation Time Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 200 400 600 800 1000 1200 1400 1600 1800 2000

tr
a
n
s
m

is
s
io

n
 t
im

e
 [
m

s
]

matrix dimension and vector length

Comparison between TCP and XMLRPC

TCP
XMLRPC

Figure 8.1: Comparison between TCP and XMLRPC. The client device was a laptop while the
server was the Desktop computer

phone. The used algorithm is the Jacobi method on the mobile device and on the server. A
maximum of 15 iterations and a residual of 10−9, were taken as termination criteria on both
devices. The equation dimension was scaled from 100 to 1500. Figure Fig. 8.2 depicts the
results of the comparison between the execution methods local and remote in the Eduroam
network. The local execution takes 922 ms for an equation with dimension 500, while the
remote execution takes 150 ms. For a dimension of 1500, the local execution takes 9048 ms
compared to 1894 ms for the remote execution. Although the remote execution time consists of
ttransmission + tresponse, it is about 80% faster for every equation dimension in this test against
the local solving method. This test states the expectation, that the remote solving method is
faster than the local method under the given network situation for the Jacobi method.

To state that the network environment influences the efficiency of the remote execution method,
a further test was made in another network environment. The test devices in this test are
the Nexus 5 mobile phone with the client application and the desktop computer (four core
3 GHz CPU, 8GB RAM) running the server application, which is permanently available. The
wireless network (Home network) measured a throughput of 10.4 Mbit/s and an average
latency of 4.843 ms for 20 packages in 20 seconds. According to the network quality definition
in Section 5.1.3, the Home network has a worser network quality than the Eduroam network.
The used solving algorithm on both devices is again the Jacobi method with a residual of
10−9 and a maximum of 15 iterations. Figure Fig. 8.3 depicts the results of the comparison
between the execution methods local and remote in the Home network. The local execution is
faster than the remote execution for equation dimensions 100, 200 and 300. From dimension

57

8 Discussion and Evaluation

400 and greater, the remote execution terminates faster than the local execution. Also, the
time difference between both execution methods increases after equation dimension 400. The
execution in the Eduroam network is significant faster than the execution in the Home network
for all tested equation dimensions. Note that both tests do not only have different network
environments, but also different servers. However, for a remote execution without disconnects
to the server, the remote execution time tremote = ttransmission + tresponse. Therefore, the
greater the value of ttransmission, the greater the value of tremote. Even in the case, that both
tests had the same value for tresponse, the remote execution in the Home network would be
slower than in the Eduroam network. Hence the efficiency of the remote execution depends on
the network quality, meaning the throughput and latency.

Both tests used the Jacobi method as solving algorithm on the server and the mobile phone. In
contrast, the conjugate gradient method computes equations faster than the Jacobi method.
Thence we analyzed if the remote execution method is still faster than the local execution when
the applications uses the conjugate gradient method. The tests in the Eduroam network and in
the Home network indicated, that the local computation time of the conjugate gradient method
was significant faster compared to the data transmission time in both network environments. So,
if the local computation time tlocal of a task is less than the data transmission time ttransmission,
it is not beneficial to use the remote execution.

8.3 Computation Time Discussion for Instable Connections

Further tests involved disconnects between mobile phone and server. The network situation
based (NSB) execution method was used in this test and the profiler suggested a remote
execution. This test shows the reaction of the protocol on disconnects. According to the
protocol, the mobile application started a local execution as soon as the disconnect occured.
The mobile middleware tried to reconnect every second. The equation system could not be
sent before the disconnect occured in this test cases. Hence the whole equation system had to
be sent again on reconnect. The remote computation time is influenced due to the disconnect
and has to be increased by the connection absense time ta. Additionally it consists of the
time difference tx between the start timepoint of the send operation and the timepoint of the
disconnect. On multiple disconnects, the values tx + ta have to be summed up. Therefore the

remote computation time tremote = ttransmission +tresponse +
n∑

i=0
txi +tai , having i = 0, 1, ..., n.

In test cases where the equation system could be sent before the disconnect occured, the
mobile middleware sent an approximation request, with time value tapprox, instead of the
whole equation system. If the response of the server to the approximation request of the
mobile phone does not contain a final result, a new approximation request is sent after
one second. This repeats until the server response contains the final result. A further time
factor that has to be considered in this case is the time difference ty between the end of

58

8.4 Energy Consumption Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400 1600

ti
m

e
 [
m

s
]

equation dimension

Comparison between local and remote computation in Eduroam network

local execution time
remote execution time

equation sending time from mobile device

Figure 8.2: Computation speed comparison between local and remote executions, on Nexus 5.
The network environment is the Eduroam network and the used solving algorithm
is the Jacobi method

the send operation and the disconnect. The formula for tremote in this case is: tremote =
ttransmission + ty + ta + k ∗ (tapprox + tresponse), having k as the number of approximation
requests until the final result is received as response from the server.

8.4 Energy Consumption Evaluation

The evaluation of the energy consumption requires external components, as the Android system
has no exact energy monitor. Also applications like Powertutor 2 are not completely accurate
on the available test devices, as this application is developed for older devices. Hence we
needed to set up a circuit to measure the energy consumption.

8.4.1 Setup of the Energy Measurements

The circuit diagram is depicted in figure Fig. 8.4 and the resistor values are defined in table
8.1.

2http://ziyang.eecs.umich.edu/projects/powertutor/

59

8 Discussion and Evaluation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400 1600

ti
m

e
 [
m

s
]

equation dimension

Comparison between local and remote computation in home network

local execution time
remote execution time

equation sending time from mobile device

Figure 8.3: Computation speed comparison between local and remote executions, on Nexus 5.
The network environment is the Home network and the used solving algorithm is
the Jacobi method

Resistor Identifier Resistor Value

RM 0.1 Ω
R1 4.7 Ω
R2 1.0 kΩ
R6 330.0 kΩ
R7 12.0 kΩ

Table 8.1: Resistor value table

As amplifier we used the LM324-N, a low power quad operational amplifier. The test device
is the Galaxy Nexus mobile phone (dual core 1.2 GHz CPU, 1 GB RAM). The battery of the
mobile phone is detached from the device and inserted separately into the circuit. In place of
the battery, an adapter that connects the mobile phone with the circuit is attached (resistor
RH). This guarantees that the mobile phone does not need to be connected to a power source.
A voltmeter measures the non inverted amplified voltage Ua, while a computer program logs

the values every millisecond. The energy consumption is calculated with
t1∫
t0

uh(t) ∗ ih(t)dt.

The network in this tests is the Eduroam wireless network of the University of Stuttgart.
The server application is running on the Nimbus server (8 core 3 GHz CPU, 32 GB RAM).
An execution start delay was implemented into the android application. This is necessary

60

8.4 Energy Consumption Evaluation

R_7 R_6

R_2

R_1R_M

R_H

 U_a

GND

VCC = 11V

 -

+

 +

Figure 8.4: Circuit diagram for energy measurements on the Galaxy Nexus

to filter out the effects of touch events on the mobile phone, e.g. when touching the start
button for the calculation initiation. The display was turned on during the tests, but with the
lowest brightness value. The wireless network connection was turned on during all energy
measurements, i.e. during both, remote and local executions. No other applications, except of
the test application were running during the tests.

8.4.2 Energy Consumption Comparison between Local and Remote Executions

The test measures the consumed energy when computing an equation with the network
situation based (NSB) method. One test has a stable connection to the server, which results in
a remote execution, while the other test run does not have a connection to the server, which
results in a local execution. The used solving algorithm is the Jacobi method with a termination
criteria of 15 iterations. The residual is not considered as termination criteria in this test to
have equal algorithm iteration rounds for all tests on the mobile phone and on the server. The
equation dimensions for the tests are set to 1200. Ten seconds were taken as delay, before the
execution starts. According to the longer execution time of the local execution, the time scale
(x-axis) depicts the values between millisecond 10000 and 24000 for the local execution, while
the graph of the remote execution has a range from millisecond 10000 to 14000. The power
scale ranges from 0 to 8.5 Watt for both execution methods. Figure Fig. 8.5 depicts the energy
consumption of the local execution, while figure Fig. 8.6 depicts the energy consumption results
of the remote execution. There is a significant difference between both power plots. The local

61

8 Discussion and Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10000 12000 14000 16000 18000 20000 22000 24000

p
o
w

e
r

[W
a
tt
]

time [ms]

NSB execution without connection to the cloud server

NSB local

Figure 8.5: Power consumption for local NSB execution without connection to the server and
matrix dimension 1200

execution (11699 ms) runs longer than the remote execution (2461 ms), but the highest power
values appear in the remote execution. The maximum power value of the remote execution
amounts 7.8387 Watt, while the local execution has a maximum power value of 5.5948 Watt.
Nevertheless, the local execution consumes overall more energy with a value of 36.3994 Joule
compared to the remote execution with 10.3814 Joule. A further test measured the energy for
an equation dimension of 1800. In this test case, the local execution consumes 83.6387 Joule
over 27368 ms, compared to the remote execution energy consumption of 22.0870 Joule over
4845 ms. Therefore, the saved energy of the remote execution compared to the local execution
amounts 26.0180 Joule for a dimension of 1200 and 61.5517 Joule for a dimension of 1800.
This means the remote execution saves over 70% of energy against a local computation.

8.5 Resource Priority Discussion

During the tests of the developed approach, different priority distributions were considered. In
the system model, the highest priority is set to the execution speed, in case that the network
quality decreases. The reason is that the developed approach is intended to be used in real
time applications. Thus the next paragraphs argue, why it is not efficient to focus on containing
the resource energy or result quality if the network quality decreases.

62

8.5 Resource Priority Discussion

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10000 10500 11000 11500 12000 12500 13000 13500 14000

p
o
w

e
r

[W
a
tt
]

time [ms]

NSB execution with connection to the cloud server

NSB remote

Figure 8.6: Power consumption for NSB execution with connection to the server and matrix
dimension 1200

8.5.1 Containing the resource energy

In the case of a decreasing network connection quality, the middleware would realize that
it is not energy efficient to send the equation system at this moment, as the sending costs
the most energy in this process. Hence the system would wait until the network connection
improves. Also to safe energy, no local computation would be initiated concurrently. In a worst
case scenario, if the network connection is not improving in quality or not available at all, the
system would wait infinite long. Thus it is not profitable to contain the resource energy saving
when the network connection quality decreases.

8.5.2 Containing the resource result quality

If the middleware relies on a very accurate result quality, the computation would take con-
siderable time longer. I.e., the highest result quality for solving linear equation systems can
be reached when using an exact solver. However, as shown in Chapter 4, exact solvers are
considerable slower than iterative solvers. A disadvantage of exact and non-iterative solvers is,
that no interim results are available. In the case that no connection to the server is available, a
local execution is initiated. If the connection is available at a later point of time, the middleware
cannot take the interim result of the local execution and send it to the server along with the
equation. So the time period with no network connection is not used efficiently with exact
solvers.

63

9 Conclusion

This bachelor thesis addresses the development of a procedure to efficiently solve linear
equation systems on mobile devices. The system therefor utilizes a Cloud-Infrastructure and
optimizes the resources energy, computation time and result quality under the given network
situation. The solving algorithms are specialized to solve diagonally dominant matrices.

Mobile devices, especially mobile phones, have restricted resource capacities due to its mobility.
Related projects present different approaches to solve this problem. The most efficient results
are recorded with code offload proceedings. Those proceedings aim to improve the computation
time or to safe energy for abstract tasks. By contrast, the developed system in this thesis focuses
on linear equation computation tasks and involves the varying network situation. The system
takes advantage of diagonally dominant matrices, which occur in numerical simulations. It was
assumed, that iterative solvers provide control of computation time and result quality of those
equation systems. This assumption is confirmed by conducted pre-tests that analyze different
iterative algorithms and non-iterative solvers.

The system model in this thesis consists of two hardware components, a mobile device and
a Cloud-Infrastructure. The connection between those components is based on wireless
network techniques. The processed input data are diagonally dominant and square equation
systems of the type A ∗ x = b. The difficulty of this setup is, to deal with variations in
the network connection, like disconnects. The system takes advantage of the control of
computation time and result quality with iterative algorithms, to adapt to changes in the
network connection. If the network provides a good connection quality, the system optimizes
the resources computation time, energy and result quality. On the other hand, if the network
quality decreases, the system reduces the priority for the resources energy and result quality
and focuses on computation time.

The developed system design considers a middleware for the mobile device, that takes care for
the execution of equation calculations and adapts to changes in the network connection. The
middleware consists of an execution manager, a profiler and an equation solver component.
The profiler has the responsibility to monitor executions and provide functions to suggest
local or remote executions. The execution manager distributes the equation calculation to
the Cloud-Infrastructure or to the local equation solver, based on the network situation. The
equation solver component provides iterative algorithms to solve the linear equation systems
on the mobile device.

65

9 Conclusion

The counterpart of this system, meaning the cloud servers, also consist of three components:
a client manager, a session manager and an equation solver. The client manager component
handles incoming request of mobile clients and either uses the session manager or the equation
solver to handle the request. The session manager maps all equation results to a specific
client session id. This is enables the response to interim requests of running calculations. The
equation solver on the cloud server has the same job as the counterpart on the mobile device.

An Android application and a server were implemented to evaluate the developed system. The
evaluation considered different transmission protocols for the data transmission of the system.
The considered protocols were UDP, TCP, XMLRPC and Google Cloud Messaging. Evaluation
tests filtered out TCP as the best transmission protocol for the purpose of this system. The
computation time evaluations revealed that the developed system can execute calculations
80% faster with a remote execution compared to conventional local executions. Although, the
computation time depends on the given network situation. If the network connection has low
quality, it is not beneficial to use a remote execution, because the local execution is faster in
this case. The same findings are recorded for the energy measurements. With a stable and
high quality network connection, energy savings of 70% were measured. A further important
finding is that remote executions are only beneficial for long running and resource demanding
tasks.

The developed system proved in evaluation tests that it successfully adapts to changes in
the network connection and optimizes the resources according to the protocol in the system
design.

Future Work

It was not possible to research every aspect in this field of study, due to the restricted scope of
this bachelor thesis.

Open points are e.g., how cellular network techniques like 3G/4G influence the energy con-
sumption of remote executions. Related work argued about the efficiency, e.g. the MAUI
[Edu10] system measured more energy savings when using WiFi as network connection com-
pared to 3G, whereas the ThinkAir [Sok12] system was more energy efficient with 3G instead
of WiFi.

A further point is the use of higher sophisticated monitors or profilers. The system in this
bachelor thesis uses a simple monitor for executions and the network connection. This decision
is based on findings of the related projects MAUI [Edu10] and the system of Giurgiu et
al. [Ioa12]. However, a higher sophisticated monitor could provide detailed predictions
about the network situation which could be used to decrease the computation time or energy
consumption. A detailed evaluation between a system with simple monitor against a system
with a high sophisticated monitor could bring clarity.

66

The transmission of the equation parameters is the bottleneck of a remote execution. Therefore,
if the data to transmit could be reduced, the system would be more efficient. Mathematical
problems like partial differential equations do only have few input parameters, but produce
huge matrices. This property can be used to provide efficient usage scenarios for solving linear
equation systems.

67

10 Appendix

Measurement Computer Device Specifications

The first device is stationary, non mobile computer device and will be called as "Desktop
computer" in the following. It has an AMD Phenom II X4 945 processor (four CPU cores) with
a clock frequency of 3 GHz, 8 GB of random-access memory (RAM) and a 500 GB hard disk
drive (HDD). The operating system (OS) is a Ubuntu 14.04 LTS Linux distribution. The OS
architecture uses 64-bit.

The second device is also stationary and non mobile. It is the server that is provided in the
network of the University of Stuttgart, hosted by the Institute of Parallel and Distributed
Systems. It has four Intel Xeon CPU X5472 on two sockets (eight CPU cores) with a clock
frequency of 3 GHz, 32 GB of RAM and a 270 GB HDD. The OS is GNU/Linux with a 64-bit
architecture. In the following it will be called as the "Nimbus" server.

The third device is a mobile device. It is a Nexus 5 smart phone. The processor is a Qualcomm
Snapdragon 800 with a clock frequency of 2.26 GHz (four CPU cores). It has 2 GB RAM and a
flash memory capacity of 32 GB. The battery of the Nexus 5 has 2.300 mAh. The operating
system is a 5.0.1 Android build.

The next mobile device is a Galaxy Nexus smart phone. It has an ARMv7 Processor CPU (dual
core) with a clock frequency of 1.2 GHz. The RAM has 1 GB and the flash memory has a
capacity of 16 GB. The battery capacity is 1750 mAh. As OS it uses the Cyanogenmod 10.21 +
Google Apps (Android 4.3.1) and is unlocked.

A further mobile device is a laptop. It has a Intel i5-4200U processor (quad core CPU) with
a clock frequency of 1.6 GHz. The DDR3 RAM amounts 8 GB, while the SSD has 256 GB
capacity.

Curium is a stationary server. It has eight cores and 32 GB RAM. The operating system is Linux
with a 64-bit architecture.

Kepler is a stationary server. It has 32 cores and 128 GB RAM. The operating system is Linux
with a 64-bit architecture.

69

Bibliography

[Ach95] Achim Basermann. Iterative Verfahren für dünnbesetzte Matrizen zur Lösung technischer
Probleme auf massiv-parallelen Systemen. 1995. (Cited on page 13)

[Byu11] Byung-Gon Chun, Sunghwam Ihm, Petros Maniatis, Mayur Naik, Ashwin Patti.
CloneCloud: Elastic Execution between Mobile Device and Cloud. 2011. (Cited on
page 21)

[C. 75] C. C. Paige, M. A. Saunders. Solutions of Sparse Indefinite Systems of Linear Eqautions.
1975. (Cited on page 44)

[Chr14] Christoph Dibak, Boris Koldehofe. Towards Quality-aware Simulations on Mobile
Devices. 2014. (Cited on pages 11, 17 and 18)

[Edu10] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,
Ranveer Chandra, Paramvir Bahl. MAUI: Making Smartphones Last Longer with Code
Offload. June 18, 2010. (Cited on pages 11, 17, 19, 20, 21, 40 and 66)

[Eug09] Eugene E. Marinelli. Hyrax: Cloud Computing on Mobile Devices using MapReduce.
2009. (Cited on page 17)

[Flo14] Florian Berg, Frank Duerr , Kurt Rothermel. Increasing the Efficiency and Responsive-
ness of Mobile Applications with Preemptable Code Offloading. June 2014. (Cited on
pages 21 and 22)

[G. 61] G. Gordon. A General Purpose Systems Simulation Program. 1961. (Cited on page 11)

[Gon10] Gonzalo Huerta-Canepa, Dongman Lee. A Virtual Cloud Computing Provider for
Mobile Devices. 2010. (Cited on pages 11 and 18)

[Ioa12] Ioana Giurgiu, Oriana Riva, Gustavo Alonso. Dynamic Software Deployment from
Clouds to Mobile Devices. 2012. (Cited on pages 19, 20, 40 and 66)

[Mic09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. Above the Clouds: A Berkeley View of Cloud Computing. 2009. (Cited on
page 17)

71

Bibliography

[N. 13] N. Ding, D. Wagner, X. Chen, A. Pathak, Y. C. Hu, A. Rice. Characterizing and Modeling
the Impact of Wireless Signal Strength on Smartphone Battery Drain. 2013. (Cited on
page 21)

[R. 94] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R.
Pozo, C. Romine, H. Van der Vorst . Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods, 2nd Edition. 1994. (Cited on page 44)

[Sok12] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, Xinwen Zhang. ThinkAir: Dy-
namic resource allocation and parallel execution in the cloud for mobile code offloading.
2012. (Cited on pages 11, 17, 19, 20 and 66)

[Str02] Strakoš Zdenek, Petr Tichý. On error estimation in the conjugate gradient method and
why it works in finite precision computations. 2002. (Cited on page 29)

[Wol94] Wolfgang Hackbusch. Iterative solution of large sparse systems of equations. 1994.
(Cited on pages 11, 13, 14 and 15)

[Zhi01] Zhiyuan Li, Cheng Wang, Rong Xu. Computation Offloading to Save Energy on
Handheld Devices: A Partition Scheme. 2001. (Cited on page 18)

All links were last followed on April 12, 2015.

72

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Preamble
	1.1 Goals
	1.2 Structure

	2 Background
	2.1 Efficient Solving of Linear Equation Systems
	2.2 Jacobi Method

	3 Related Work
	3.1 Cloud Computing and Code Offload
	3.2 Virtual Cloud Computing Provider for Mobile Devices
	3.3 Energy Savings with Code Offload
	3.4 Performance Gain with Code Offload
	3.5 Communication Link Handling
	3.6 Conclusion of the Realted Work

	4 Pre-Tests
	4.1 Linear Equation Solver Measurements
	4.2 Device Comparison

	5 System Model
	5.1 Architecture and Assumptions
	5.2 Requirements

	6 System Design
	6.1 Middleware for the Mobile Device
	6.2 Cloud Server

	7 Implementation
	7.1 Pre-Test Implementation Details
	7.2 Implementation of the Android Application
	7.3 Implementation of the Cloud Server

	8 Discussion and Evaluation
	8.1 Transmission Protocols
	8.2 Computation Time Evaluation
	8.3 Computation Time Discussion for Instable Connections
	8.4 Energy Consumption Evaluation
	8.5 Resource Priority Discussion

	9 Conclusion
	10 Appendix
	Bibliography

