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Abstract

In recent years, quasi-Newton schemes have proven to be a robust and efficient way for the
coupling of partitioned multi-physics simulations in particular for fluid-structure interaction.
The focus of this work is put on the coupling of partitioned fluid-structure interaction, where
minimal interface requirements are assumed for the respective field solvers, thus treated as
black box solvers. The coupling is done through communication of boundary values between
the solvers. In this thesis a new quasi-Newton variant (IQN-IMVJ) based on a multi-vector
update is investigated in combination with serial and parallel coupling systems. Due to
implicit incorporation of passed information within the Jacobian update it renders the problem
dependent parameter of retained previous time steps unnecessary. Besides, a whole range of
coupling schemes are categorized and compared comprehensively with respect to robustness,
convergence behaviour and complexity. Those coupling algorithms differ in the structure of
the coupling, i. e., serial or parallel execution of the field solvers and the used quasi-Newton
methods. A more in-depth analysis for a choice of coupling schemes is conducted for a set
of strongly coupled FSI benchmark problems, using the in-house coupling library preCICE.
The superior convergence behaviour and robust nature of the IQN-IMVJ method compared
to well known state of the art methods such as the IQN-ILS method, is demonstrated here.
It is confirmed that the multi-vector method works optimal without the need of tuning
problem dependent parameters in advance. Furthermore, it appears to be especially suitable in
conjunction with the parallel coupling system, in that it yields fairly similar results for parallel
and serial coupling. Although we focus on FSI simulation, the considered coupling schemes
are supposed to be equally applicable to various kinds of different volume- or surface-coupled
problems.





Kurzfassung

In den letzten Jahren haben sich quasi-Newton Verfahren als robuste und effiziente Methode für
die Kopplung partitionierter Multiphysik-Simulationen herausgestellt, insbesondere im Bereich
der Kopplung von Fluid-Struktur Interaktion. Der Fokus dieser Arbeit liegt auf der Kopplung
partitionierten Fluid-Struktur Interaktion mit minimalen Schnittstellenanforderungen an
die betreffenden Fluid- oder Struktur-Löser, die daher als black-box Löser angesehen werden
können. Die Kopplung an sich wird durch Kommunikation von Randwerten zwischen den Lösern
realisiert. Im Rahmen dieser Arbeit wird eine neue quasi-Newton Methode in Kombination mit
einem seriellen und parallelen Kopplungssystem untersucht. Diese Variante ist im Gegensatz
zu bisherigen Methoden weitestgehend frei von problemabhängigen Parametern wie z. B. der
optimalen Menge an wiederverwendeter Information aus vergangenen Zeitschritten, indem
alle bisher bekannte Information in einer norm-minimalen und impliziten Art und Weise für
die Aufdatierung der Jacobi Matrix verwendet wird. Darüberhinaus betrachten wir in dieser
Arbeit ein ganzes Spektrum an Kopplungs-Schemata, die verschiedene quasi-Newton Varianten
mit seriellen und parallellen Kopplungsansätzen kombinieren. Eine sorgfältige Klassifizierung
sowie ein umfassender Vergleich der Verfahren bezüglich Robustheit, Komplexität und des
Konvergenzverhaltens, verschaffen einen guten Überblick. Für eine Auswahl der besten
Schemata wird eine eigehendere Analyse anhand einer Reihe anspruchsvoller FSI Anwendungen
mit Hilfe der Kopplungs-Bibliothek preCICE durchgeführt. In diesem Zusammenhang gehen
wir auf die robuste sowie effiziente Implementierung der Kopplungs-Algorithmen ein. Im
Zuge der Experimente zeigt die IQN-IMVJ quasi-Newton Methode ein überlegenes und
weitaus robusteres Konvergenzverhalten im Vergleich zu bisherigen Varianten wie beispielsweise
die IQN-ILS Methode und arbeitet optimal ohne vorherige Justierung problemabhängiger
Parameter. Darüber hinaus ist sie hervorragend für einen parallelen Kopplungsansatz geeeignet
und ermöglicht eine effiziente und massiv-parallele Simulation. Die betrachteten Kopplungs-
Schemata sind nicht auf die Kopplung von Fluid-Struktur Interaktion Simulation beschränkt,
sondern sind vielmehr für alle Arten von oberflächen- oder volumengekoppelten Problemen
geeignet.
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Chapter 1

Introduction

With increasing computational power and intensified research for more sophisticated numerical
methods a large class of applications involving several physical effects and different physical
models, so-called multi-physics applications, have become feasible for numerical simulation.
Fluid-structure interaction (FSI) simulation is part of this class of applications, where the
simulation comprises the physical model for the fluid as well as for the solid. Naturally,
real world scenarios are way better reflected by multi-physics models than single-physics
models which allows for a higher accuracy of the respective numerical simulation. A lot of
applications require very high precision and accuracy and thus render multi-physics simulations
indispensable.

A very prominent example for FSI is the blood flow in the human cardiovascular system
[40, 50, 12, 59], where the risk for aneurysms and calcification can only be predicted when fluid
and solid dynamics are simulated in combination at a very high accuracy. A further example
is the simulation of blood flow in artificial heart valves [20, 58, 21]. In aeronautics, FSI is used
to assess flutter [27, 13] in connection with weight minimization of airplanes as flow induced
vibrations of structure have a significant impact on the stability and durability of an aircraft
[24, 25]. Another challenging problem is the simulation of opening and descending parachutes
[6, 43, 40] due to the thin, highly flexible structure and its interaction with free surface flow.

An FSI problem consists of a fluid domain and a structure domain with the fluid-structure
interface in between. The resulting multi-physics problem with adjacent, non-overlapping
domains can be simulated in a so-called monolithic or in a partitioned way. For the monolithic
approach the flow equations and the structure equations as well as their coupling equations are
solved simultaneously, which requires dedicated simulation codes for certain FSI scenarios. On
the other hand, the partitioned approach solves the fluid and solid equations separately and
preserves software modularity and high flexibility. This raises the possibility to use existing,
highly sophisticated software codes for the involved single-physics phenomena in a modular way
and allows for the easy exchange of solvers depending on the specific needs of the considered
scenario. Thus, the partitioned approach is especially attractive if it is either uncertain which
effects should be considered within the physical model or if it is unknown which solvers have
to be chosen for the single-physics phenomena. Moreover, this approach is advisable if a new
multi-physics simulation is to be established within a short development time.
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1 Introduction

In order to make the most of the modularity and flexibility that comes with the partitioned
approach we are restricted to use limited information, i. e., solely boundary information at
the interface for the coupling and cannot assume information about solver internals such as
discretization details, which is quite realistic if commercial solvers are used. The single-physics
solvers are therefore assumed to be black-box solvers delivering certain physical quantities such
as velocities, pressures, forces and temperatures. Unsurprisingly, these assumptions render the
coupling of fluid and structure within the partitioned approach more challenging. This thesis
focuses on the development and evaluation of robust and sophisticated coupling algorithms for
the partitioned approach to FSI simulation.

As FSI simulation is a very challenging type of multi-physics simulation and in particular for
incompressible fluids it tends to be ill-conditioned and instable, the pure passing of boundary
values amongst the single-physics solvers in between time steps is not feasible. In fact, a stable
and converged configuration has to be found within each time step which raises the need of an
implicit coupling iteration. There are several ways how to realize the respective iterations that
differ in terms of the calling order of the single-physics solvers and in terms of the method
used to stabilize and accelerate the coupling iteration. In terms of calling order mainly two
versions are in use that result in different fixed-point equations, namely a staggered execution
of the respective field solvers and a variation that allows for a simultaneous execution of
the single-physics solvers. Within this work, we focus on cases in which severe instabilities
are present. Thus, a pure fixed-point iteration, i e., a Gauß-Seidel- or Jacobi-type iteration,
that has been the common approach for a long time (cf. [26]) is not feasible. Consequently,
more sophisticated accelerating methods have to be applied. Regarding the accelerating
post-processing methods, we focus on different quasi-Newton methods that also yield the best
results.

For stabilization, newly coupling schemes, i. e., the combination of different fixed-point equa-
tions for the partitioned coupling with additional accelerating and stabilizing post-processing
quasi-Newton methods for the respective iterative solution, are introduced and analyzed. Both,
existing and novel coupling algorithms are intelligibly categorized and compared in detail.
Most existing coupling methods require the tuning of a set of problem dependent parameters
beforehand, e. g., the optimal amount of retained secant information from the past which is a
costly and time consuming step. In this thesis a newly and more sophisticated quasi-Newton
method, the IQN-IMVJ method that utilizes available secant information from passed time
steps in an implicit way is introduced to accelerate the coupling iteration and appears to be
optimal without the need of tuning additional parameters. In that it outperforms even state
of the art coupling algorithms such as the IQN-ILS quasi-Newton method [17] and shows
improved robustness properties, however, at the cost of storing an explicit representation of
the Jacobian approximation.
Several quasi-Newton variants are analyzed for different coupling systems and comprehen-
sively compared for a one-dimensional test scenario. The most promising combinations have
been implemented and integrated into the in-house partitioned coupling library preCICE. A
more in-depth comparison of the IQN-IMVJ quasi-Newton method with existing state of
the art coupling algorithms is conducted for a series of more realistic FSI applications and
benchmarks.
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Outline

The thesis is structured as follows:

Chapter 2 – Physics and Modelling: This chapter comprises an overview of the founda-
tions of (partitioned) FSI simulation needed in this work, i. e., the mathematical models
and governing equations for fluid and solid as well as the necessary coupling conditions at
the fluid-structure interface. Essentials concerning the spatial and temporal discretization
of the mathematical models are added.

Chapter 3 – Fixed-Point Equations for Partitioned Fluid-Structure Coupling: In
this chapter, the partitioned coupling approach is explained focusing on some basic
ingredients that are crucial for the understanding of the remainder of the thesis. Different
fixed-point formulations for the partitioned problem are introduced and several assets
and drawbacks are outlined. Basic iterative solvers for the respective fixed-point coupling
system such as pure fixed-point iteration and underrelaxation are presented at the close
of the chapter.

Chapter 4 – Quasi-Newton Post-Processing Methods: A comprehensive and struc-
tured categorization of both, existing and newly quasi-Newton post-processing methods
for the iterative solution of the respective fixed-point equations is given in this chapter.
This includes a detailed presentation of the different quasi-Newton methods with linkage
to relevant literature. At the end, all the considered coupling schemes with respective
quasi-Newton methods are summarized.

Chapter 5 – Software and Implementation: After a short introduction to the utilized
software and simulation tools, this chapter considers the implementation details for
the integration of the newly coupling algorithms into the partitioned coupling library
preCICE. Emphasis is put on a robust implementation.

Chapter 6 – Comparison and Evaluation of Implicit Coupling Schemes: All the
considered coupling schemes are comprehensively evaluated and compared for a simple
one-dimensional test problem. Assets and drawbacks of methods and variants are worked
out to identify the most promising, i. e., the most robust and fast combinations for
further investigation.

Chapter 7 – Benchmarks and Applications: A subset of the most qualified coupling
schemes is evaluated and compared for three realistic FSI applications and benchmarks.
In particular, the newly coupling schemes are compared to state of the art methods.

Chapter 8 – Summary and Outlook: A summary of the contributions and findings of
this thesis conclude this work, together with some ideas and impulses for further research
and improvement.

3





Chapter 2

Physics and Modelling

Every numerical simulation is based on a mathematical model that tries to describe the
underlying physics as good as possible. In fluid-structure interaction this involves the description
of the behaviour of fluid dynamics, structural mechanics and the coupling itself. This chapter
summarizes the mathematical models of fluid dynamics in Section 2.1 and structural mechanics
in Section 2.2, and states the essential coupling conditions in Section 2.3. An overview of the
discretization possibilities available to solve for a approximate solution to the mathematical
models is given in Section 2.4.
Since the focus of this work is not on modelling, this is ought to be a rough summary of the
essential equations and concepts that are frequently used in the following, hence derivations
and detailed explanations are omitted. A short paragraph listing the different points of view,
i. e., formulation of the models for an observer moving with the simulated material or an
observer at a fixed position in time, is given at the beginning for better understanding of
physical modelling.

For more information on modelling and discretization details the reader is referred to the
given literature. The following is based on the elaboration in [31].

Points of View

The considered point of view when observing phenomena may heavily influence the form of
the observations made. While the formulation of observations may be correct in any point
of view, certain observations or characteristics appear to have a rather complicated or even
simple description, if the point of view is changed. Hence, not all the results have an equal
description or are equally simple to interpret in each point of view. There are three important
points of view when considering continuum mechanics which are the Lagrangian Observer,
the Eulerian-Observer and the Lagrangian-Eulerian Observer which is a mixture of the two
preceding ones. For further details see [31, 37].

The Lagrangian Observer takes the initial material domain as reference frame and follows
its movements and deformations. This is also referred to as the material description, since we
follow each point in the initial material configuration and measure its properties. This point
of view is advantageous when it comes to the description of moving boundaries and it is easy
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2 Physics and Modelling

to access the property history of a material point. However, its application is limited to rather
small deformations an thus often applied in structural mechanics.

As opposed to this, the Eulerian Observer considers the moving spatial domain as
reference domain and measures material properties at fixed positions in the spatial domain, i. e,
the observer considers the phenomena from the exterior. With this point of view it is possible
to handle arbitrary deformations, however, it lacks a proper description of the boundaries of
the observed material which raises the need of special methods to deal with that. The Eulerian
Observer is very popular in fluid dynamics, due to usually large deformations.

The so called Arbitrary Lagrangian-Eulerian Observer (ALE) is a combination of the
approaches mentioned above, trying to combine the advantages of both observers, i e. to be
suitable for arbitrary displacements and provide a proper description of moving boundaries.
However, this is only possible to some extend when it comes to discretization for practical
realization.

The different points of view explained above can be translated into one another. In the face
of multi-physics simulations it is possible to have different descriptions for the different physics
in the respective domain. The different observers are of major importance when it comes
to re-meshing due to large deformation or to ensure a valid mesh at the common interface
between two material domains.

In the following, we summarize the necessary fundamentals of fluid dynamics and structural
mechanics and state the conditions that have do be met in order to obtain a stable coupling at
the interface between fluid and structure. The following is based on the elaboration in [31].
For more details, the reader is referred upon this and the references therein.

2.1 Fluid Dynamics

In this section we briefly consider the physical and mathematical models of fluid dynamics.
The field of fluid dynamics is discriminated by different types of flow, that also change the
behaviour of the governing equations. Important categories of flow are incompressible or
compressible flows, viscous or inviscid flow and laminar or turbulent flow.
We speak of incompressible flow if the density of the respective fluid is constant (or nearly
constant over space) or if the speed of sound is large compared to the velocity of the fluid which
is the case for fluids with small Mach number. In this thesis incompressible flow is of major
importance as it often leads to stability problems when coupled with structural mechanics
simulations. Nonetheless, all the coupling variants described later on are equally applicable to
compressible flow.

The viscosity determines the rate of deformation of a fluid, given a certain amount of shear
force. Inviscid flow is characterized by a very low viscosity and thus nearly vanishing shear
forces. Turbulences are highly irregular flow patterns in space and time that occur, if certain
flow parameters, summarized by the so called Reynolds number Re, exceed a certain threshold.
Here, we merely focus on laminar flow to limit the overall complexity. For further details, the
reader is referred to standard text books, e g., [29].
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2.1 Fluid Dynamics

The Mathematical Model: The Navier-Stokes Equations

The flow of a fluid in a domain ΩF ∈ RN , N ∈ N throughout time t ∈ [t0; tend] is characterized
by the following quantities:

v : ΩF × [t0; tend]→ RN velocity field,
p : ΩF × [t0; tend]→ R pressure,
ρ : ΩF × [t0; tend]→ R density.

For incompressible flow, it is given that changes in density are negligible over space and time
and thus ρ(x, t) = ρ∞ = const. The fundamental conservation laws of mass, momentum
and energy1 finally lead to a system of partial differential equations, called the Navier-Stokes
Equations

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ µ∆v + ρf (2.1)

∇ · v = 0 (2.2)

Here, µ is the shear viscosity of the fluid and f denotes the distributed volume forces such as
gravity.
The first equation (2.1) stems from the conservation of momentum, while the second equation
(2.2) ensures the conservation of mass, also referred to as continuum equation. A derivation of
the above equations is given in [32].

Boundary Conditions

In order to complete the set of equations and set up a well defined initial value problem (IVP),
we need to define proper boundary conditions and initial values. To this end, the boundary Γ
is usually decomposed in a Dirichlet part ΓD and a Neumann part ΓN with Γ = ΓD ∪ ΓN and
ΓD ∩ ΓN = ∅.

The so called Dirichlet boundary conditions fix the velocity to a prescribed value uD on
the Dirichlet-boundary while the Neumann or natural boundary conditions prescribe dynamic
variables, reading

v = vD, on ΓD, (2.3)
σ · n = fN , on ΓN . (2.4)

Here, fN denotes the prescribed force and σ = −pI + τ is the so called Cauchy stress tensor,
composed of a unidirectional pressure p and a deviatoric stress tensor τ ; n denotes the unit
normal of the boundary.

Together with the initial conditions for the velocity v

v(t0, ·) = v0, in ΩF , (2.5)

the set of initial and boundary conditions is complete.

1The conservation of energy is not considered here, as compressible flow is not in the focus of this work.
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2 Physics and Modelling

2.2 Structural Mechanics

In structural mechanics, the governing kinematic equations are formulated in terms of a
constitutive model that describes the simulated material. The latter is often derived in terms
of tensor notation, i. e., it defines a corresponding stress and strain tensor. Multiple material
deformation models exist, such as elastic material2, anelastic material3, viscoelastic4, plastic5
or hyperelastic6 material, that describe different deformation properties.

In most practical applications, we are restricted to comparatively small strains due to the
risk of material failure like for example cracks. Hence, we have to deal with rather small
displacements (compared to fluid dynamics) which allows for the lagrangian point of view to
describe the kinematics. However, in FSI applications, the displacements are usually too large
to allow for a proper description using the linear-elasticity model. Therefore, we stick to a
non-linear geometric description and furthermore assume the continuum to be homogeneous
and isotropic.
A mathematical description of these assumptions is given by the Saint-Venant-Kirchhoff
material model, that is applied in the following. We state the governing equation of motion
using the above material model and the essential model parameters. For details of the derivation
and constitutive models, the reader is kindly referred to standard text books [9, 1]. A short
derivation is given in [31].

The Mathematical Model

The deformation of a solid ΩS ∈ RN throughout time t ∈ [t0; tend] is characterized by the
displacement field

u : ΩS × [t0; tend]→ RN .

The dynamics of a structure describe its deformation under the influence of a external force.
In structural mechanics, a equation of motion can be derived similar to eq. (2.1), based on an
equilibrium of forces and Newton’s second law F = m · a, reading in differential form

ρ

(
∂2u

∂t2

)
= ∇ · S + ρf (2.6)

Here, S is the 2nd Piola-Kirchhoff stress tensor, which models surface forces and entails the
constitutive material model. The density of the solid is depicted by ρ and f represents the

2Elastic material satisfies Hooke’s Law
3Anelastic material almost satisfies Hooke’s law, but the applied force additionally induces time-dependent
resistive forces.

4For viscoelastic material the time-dependent resistive contributions are large and cannot be neglected. The
material does not satisfy Hooke’s law (elastic hysteresis)

5A material is called plastic, if the applied force induces non-linear displacements, i. e., force and displacements
are not proportional.

6For an hyperelastic material, the force induces displacements in the material following a strain energy density
function.
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2.3 Coupling of Fluids and Structures

distributed volume force.
The tensor S relates strains and stresses for the hyperelastic Saint-Venant-Kirchhoff model,
that realises non-linear deformations for linear elasticity behaviour, and is computed as

S = λ · tr(E)I + 2µE. (2.7)

The Lagrangian Green strain tensor models the kinematics in terms of non-linear deformation
and is given by E = 1

2

(
H +HT +HTH

)
with the deformation gradient H.

The parameters λ and µ are also known as the Lamé constants and are directly related to
material parameters such as Young’s modulus E and Poisson’s ratio ν, i. e.,

E = µ(3λ+ 2µ)
λ+ µ

ν = λ

2(λ+ µ) (2.8)

Boundary Conditions

Appropriate initial and boundary conditions enhance eq. (2.6) to a well posed initial value
problem (IVP). As for fluid dynamics, the boundary is partitioned into Dirichlet and Neumann
boundary Γ = ΓD

·
∪ ΓN where the following boundary conditions are applied

u = uD, on ΓD, (2.9)
S · n = fN , on ΓN . (2.10)

with the fixed displacement uD, the prescribed force vector fD and the boundary unit normal
n. Initial conditions for the displacements and the initial velocity

u(t0, ·) = u0, in ΩS , (2.11)
∂u(t0, ·)

∂t
= v0, in ΩS . (2.12)

need to be defined for time-dependent problems with the initial displacement u0 and the initial
velocity v0.

2.3 Coupling of Fluids and Structures

For a valid coupling of the fluid domain ΩF and the structure domain ΩS , we need to employ
special boundary conditions at the common interface

ΓFS = ΓF ∩ ΓS ,

also called wet-surface. The following kinematic and dynamic conditions have to be satisfied
at the fluid-structure interface ΓFS to set up a proper coupling.

In continuum mechanics it is assumed, that the corresponding fluid or solid entirely fills
its domain and that neither gaps nor overlapping of material can occur. From this, one can
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2 Physics and Modelling

conclude the equality of displacements at the fluid-structure interface. Furthermore, it is
assumed that fluid molecules next to the solid boundary are bound to it by molecular attractive
forces. Consequently, the equality of velocities is enforced at the interface.

Summarized, the kinematic interface conditions read as

xF = uS at ΓFS and (2.13)

vF = ∂uS
∂t

at ΓFS , (2.14)

where xF denotes the discretized positions of the fluid at the fluid-structure interface. Fur-
thermore, a balance of forces is required at the interface which is expressed point-wise by the
dynamic interface condition in terms of surface stresses

σF · nF = −σS · nS (2.15)

with the interface surface normals nF = −nS . Note, that σS corresponds to the 2nd Piola-
Kirchhoff stress tensor S from eq. (2.7).

2.4 Discretization of the Mathematical Models

In order to allow the computer to search for a solution of the partial differential equations
(PDEs) that describe the behaviour of fluids and structures, they need to be transformed into
algebraic equations which is called discretization. During this discretization process a so-called
discretization error is introduced. A proper discretization tries to keep the discretization error
at a tolerable size while controlling the overall computational effort.

The discretization process is usually split in two stages, the spatial and temporal discretiza-
tion. The spatial discretization transforms the PDEs into ordinary differential equations which
are then discretized in time and solved by a numerical integration scheme.

2.4.1 Spatial Discretization

The spatial discretization refers to the transformation process of the continuous representation
of space to a discrete representation with a finite number of degrees of freedom (DoFs).
Although the discretization process is crucial for a computer to find a solution, the discrete
solution differs from the ideal (often unknown) continuous solution. In order to limit that
error a suitable discretization has to be chosen.
There are a lot of available discretizations that differ in the overall computational effort required
and the resulting accuracy of the solution. In the succeeding, we state the most popular
discretization techniques, though suppress a detailed explanation or concrete discretization in
terms of formulas.

The most popular methods are the finite element method (FEM), the finite volume method
(FVM) and the finite differences method (FDM). While FEM and FVM are realized through a
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partitioning of space in cells, the finite differences method uses a point-wise representation.
There are a lot of detailed elaborations about spatial discretization of PDEs as for example
[54] that deals with the finite difference method, [3] for the finite element method and [42]
for the finite volume method. An easy to understand discretization and computation of the
Navier-Stokes equations using the FDM is given in [32].

For some of the methods stated above, there exist mesh-free approaches like for example
the particle finite-element method (PFEM) [46] or the partition of unity method [52]. In this
work we focus on mesh-based methods which are especially well understood an developed.

A mesh consists of cells, faces and nodes. One distinguishes between cartesian meshes,
structured meshes or unstructured meshes, having regular or arbitrary cells. The unknowns
from the partial differential equations are associated to cells faces or nodes. Typically the
distribution of unknowns to mesh elements is driven by stability considerations. Figrues 2.1 (a)-
(b) show a few conceivable distributions of unknowns on mesh elements.

(a) (b) (c) (d) (e)

Figure 2.1: Distribution of unknowns on mesh elements and an example of mesh motion and remeshing. (a)
Either the blue (cell based) or the green (node based) distribution of unknowns on cell elements or a combination
of both is conceivable. (b) Different unknowns are distributed on different mesh elements due to stability
considerations. For example for the Navier-Stokes equations this fully staggered approach is conceivable, where
the pressure is located at the cell center and x- and y-velocity on the indicated mesh faces (triangles). A similar
picture is found in [31].
(c)-(e) show an example of dynamic mesh behaviour. (c) Initial configuration, black denotes fluid mesh, blue
solid mesh. The red domain is a solid beam in cross flow. (b) Example of remeshing, where new nodes, cells and
faces are generated. (e) Example of mesh-motion. The nodes remain connected but undergo a transformation.

A very important point with regards to partitioned FSI coupling is the coupling of the
spatial discretization. With separate solvers for the fluid and structural part, it is very likely
to have different, non matching, spatial discretization or even mathematical models that are
described in different points of view. In order to ensure the coupling conditions (2.13) and
(2.15) a mapping of unknowns from probably different discretizations is needed. Furthermore,
the generated mesh cannot be kept constant throughout the entire simulation, but has to be
adapted according to the moving simulation domain, especially in case of fluid simulation.
While for Lagrangian approaches, the mesh is deformed analogously to the simulation domain,
the mesh-motion process is somewhat more involved for ALE approaches. Here, only the grid
points at the boundary are deformed in conformity with the moving domain, while interior
grid points are found by means of adequate interpolation and smoothing operators such as
radial-basis function interpolation. In case of large displacements, mere mesh-motion may
be not sufficient. In such cases, either renoding or remeshing techniques has to be applied.
An example of both is given in Figure 2.1 (c)-(e). In contrast to remeshing, renoding only
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changes the mesh cells and faces but leaves the mesh nodes untouched. Both techniques
are computationally expensive and induce oscillations in the numerical solving process, as
unknowns are modified, created or destroyed and should thus be avoided whenever possible.

2.4.2 Temporal Discretization

After discretizing the partial differential equations in space, the resulting ordinary differential
equations with respect to time need to be discretized and solved. One also speaks of semi-
discrete equations, that can be stated as follows

∂x

∂t
−Dx(x, t) = 0, (2.16)

where Dx indicates the spatial discretized terms and x is the vector of unknowns in space. As
for the spatial part, the continuous time is split into a finite number of discrete time steps ∆t,
where a solution for (2.16) is sought for each of the discrete points in time. As opposed to the
solving step of the spatial part, where the solution to all the unknowns is computed at once,
here the solution is obtained in a sequential manner using a time integration scheme.

A time integration scheme I computes subsequent solutions xn at discrete time instances
tn with n ∈ N. Depending on the input data, the integration schemes are divided into two
classes, the explicit time integration schemes and the implicit time integration schemes. While
the explicit schemes (2.17) solely use available information from the past time steps, the latter
(2.18) additionally use the future (unknown) solution xn+1 implicitly.

xn+1 = I(∆tn,xn, · · · ,xn−m,Dn
x, · · · ,Dn−m

x ) (2.17)
xn+1 = I(∆tn,xn+1,xn · · · ,xn−m,Dn+1

x ,Dn
x, · · · ,Dn−m

x ) (2.18)

Here, m denotes the number of past time steps that are used for integration. As for the
implicit integration scheme, the future solution xn+1 occurs on the right hand side. A system
of equations has to be solved in each time step. For fluid-structure interaction applications,
this system of equation is non-linear due to the governing non-linear equations that describe
the physics and can be solved using a Newton solver.
Although, the implicit scheme is computationally more expensive than the explicit scheme, it
provides better stability and often outweighs this drawback by being capable of choosing larger
time step sizes. Some of the more sophisticated integration schemes even choose the time step
size adaptively, for example by means of an error estimator. Explicit schemes for their part,
often raise severe instability problems and have to be limited to very small time step sizes.
Since both, the spatial and the temporal discretization error determine the overall error of
the approximation to the continuous solution, the accuracy for spatial and temporal methods
should be chosen similarly.

For a detailed elaboration of solving ordinary differential equations, the reader is kindly
referred to the standard text books [34, 35].
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Chapter 3

Fixed-Point Equations for
Partitioned Fluid-Structure
Coupling

Fixed-Point Equations for Partitioned Fluid-Structure Coupling is a large class of applications
that involve several physical effects, described by different mathematical models so called
multi-physics simulations. A brief summary of the physical modelling for fluid dynamics and
structural mechanics as well as the needed discretization methods has been given in Chapter 2.
Here, we focus on the coupling aspect between the different physics, i. e., the installation and
abidance of discretized coupling conditions at the interface as well as the choice of suitable
iterative solvers for the overall system of equations. In the following, a coupling of fluid and
structure is assumed but most of the concepts can be translated to the coupling of arbitrary
multi-physics simulations.

The coupling occurs at the fluid-structure interface and can be embedded within one global
system of equations, including the discrete flow variables xF , the discrete structure variables
xS and their coupling, reading

A(xF ,xS) = 0, (3.1)

which refers to as the monolithic approach.

Although there are plenty of variations, we assume that one discretization method is used
for both, the fluid and structural field. The above system is solved simultaneously for all
unknowns. If A is linear, the structure of the matrix is given as(

AF AFS

ASF AS

)
=
(
xF
xS

)
=
(
bF
bS

)
,

for an appropriate reordering of the unknowns. The block matrices AF and AS on the main
diagonal comprise the discretized governing equations for the fluid and structural internal
variables while the off-diagonal blocks AFS and ASF ensure the coupling of fluid and structure
at the interface. Usually the system (3.1) is non-linear and it is solved by means of Newton
iterations [56].
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3 Fixed-Point Equations for Partitioned Fluid-Structure Coupling

Monolithic solvers for FSI coupling are often dedicated to a certain FSI application or a class
of FSI problems, due to their design choices. Its range of applications is limited to a subset
that can be described and treated properly by the internal physical models and the utilized
discretization method. Hence, a new solver has to be developed in case of a substantially
different FSI problem. However, as the coupling conditions are directly implemented and
embedded on a very low level, they can be ensured during the solution step of fluid and
structural unknowns and thus the monolithic approach is very robust and provides pretty
accurate solutions for difficult problems.

A second possibility is to separate the solution of the fluid and structural equations into
different single physics solvers and enforce the coupling externally in between solver calls. This
is called the partitioned approach and is of major interest in this thesis and introduced in
detail in the following sections. Apart from that, there are a lot of hybrid forms of the above
extremes [4] that are not considered here, though.

In comparison to previous coupling methods, a newly and sophisticated coupling method
has been introduced and implemented in this thesis, that provides the combination of various
coupling systems for the partitioned approach with a multi-vector quasi-Newton method that
accelerates and stabilizes the coupling. This method appears to be more robust than the
existing methods and renders the tuning of several problem dependent parameters unnecessary.
Section 3.1 presents some fundamentals of the partitioned coupling approach. Different coupling
systems and some basic iterative solvers are discussed in Section 3.2. A much deeper elaboration
of advanced solvers is given in Chapter 4, including the newly introduced concepts.

3.1 Ingredients of Partitioned Coupling

The partitioned coupling approach is driven by the idea of high flexibility and modularity and
is based on the ideas of domain decomposition methods with non-overlapping subdomains.
Here, the coupling of physics is done on the highest level possible. When applying the concepts
from domain decomposition to FSI-coupling, the simulation domain is subdivided into a
disjoint partition of fluid domain and structure domain (also called component or field). For a
mathematical description, we introduce the interface-operators F and S that represent the
fluid and structural field solver, respectively.

Fluid-structure-interaction is a surface-coupled problem, which means that the respective
field solvers are coupled by their kinematic and dynamic boundary values at the fluid-structure
interface, in such way that the coupling conditions (2.13) and (2.15) are fulfilled. Following
the Dirichlet-Neumann method for the iterative solution of a decomposed problem with non-
overlapping subdomains, this leads to the succeeding definition for the interface-operators

F : xd 7→ xf

S : xf 7→ xd.
(3.2)

Here, xd are the kinematic boundary values at the fluid-structure interface, i. e., displacements
or velocities and xf denotes the dynamic boundary values in terms of stresses or forces that
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model the impact of the fluid on the structure at the interface. The coupling is based on the
exchange of boundary values, i. e., both field solvers use the proceeding output values from
the complementary component as their input values and assume them to be fixed during their
solution. The boundary values are either instantly passed on to the complementary component
or advanced by some predictor rule as for example time extrapolation.

Flexibility and Modularity. The partitioned coupling approach requires minimal infor-
mation for the solver interface and is highly independent of the field solver internals, i. e.,
applied physical models and utilized numerical schemes. The field solvers can therefore be
seen as black-box solvers that do solely communicate input and output values at the common
fluid-structure interface. This offers a great amount of flexibility and modularity for the
partitioned coupling approach and allows to re-use existing solver software. The latter is
eminently beneficial when highly sophisticated commercial or closed software solvers are used,
where nearly no information is available concerning solver internals. As a consequence, one
can benefit from experiences that have been made in every field and the scalability of the
respective field solvers on massive-parallel machines is well known. Furthermore, the coupling
process can be implemented in a separated coupling tool for multi-physics simulations and
fluid or structural component solvers can be substituted in a plug and play manner. This
allows for a wide range of problems to be solved as the solvers can be tuned in a better way to
particular characteristics of each physical system.

3.1.1 Data Mapping

As described above, one of the most important use cases for partitioned FSI coupling is when
existing highly sophisticated solvers are used as black box solvers. In this case, it is very
unlikely that a matching surface discretization is given at the interface. The meshes can be
simply non-conforming, which means that the locations of nodes or unknowns do not match at
the interface, cf. Figure 3.1 (a). It might even be that overlapping or gaps between the meshes
occur at the interface, cf. Figure 3.1 (b). This gives raise to the crucial step of data mapping
between the surface representations of the fluid and structural components. Here, it is of
great importance to avoid introducing significant errors into the solution so that conservation
laws for mass, momentum and energy as well as preservation of rigid body motion are not
violated. Not least, the partitioned design choice together with the data mapping module
bear the advantage that for each field solver the optimal mesh can be used for discretization.
Although this is a very important part of partitioned FSI coupling, it is of no consequence
for the investigations done in this work and is therefore not discussed any further. A detailed
elaboration can be found in [31].

3.1.2 Partitioned Equation Coupling

The overall goal of partitioned coupling is to re-establish the solution of the monolithic approach.
To that end, there are plenty of different equation coupling schemes, that are divided into
explicit and implicit coupling schemes. While explicit coupling schemes are suitable for weakly
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(a) (b)

Figure 3.1: The fluid-structure interface is discretized by two partitioned, independent solvers. A non-
conforming mesh appears at the interface due to different discretization and individual meshing. (a) Both
meshes share the same interface, however, the unknowns are not aligned, i. e., the combination is non-conforming
(dots on green line) and raise the need of data mapping. (b) A more complicated fluid-structure interface is
approximated by the field solvers using different mesh types, i. e., adaptive cartesian (blue mesh) and triangular
(red mesh). Here, the meshes are not simply non-conforming, but additionally overlapping occurs. A similar
picture can be found in [31].

coupled FSI problems, where the interaction between fluid and structure is small, strong
interactions or stability issues raise the need of implicit coupling schemes.
In this work, we focus on implicit coupling schemes, especially the more sophisticated ones
that are advanced with a quasi-Newton post-processing scheme, presented in Chapter 4.

Explicit Coupling Schemes

Explicit coupling schemes approximate the solution of the monolithic system (3.1) by executing
the fluid and structural field solvers along with the exchange of boundary values for a fixed
number of times per time step. Hence, the equilibrium of displacements and stresses is only
enforced up to a certain error order which depends on the discrete time step length. This
introduces an error in every time step and is only applicable for weakly coupled FSI problems.
Different explicit coupling schemes are explained in [31], i. e., the conventional serial staggered
(CSS) and the conventional parallel staggered (CPS) together with improved variants and
generalizations. Some of the coupling schemes have been tested for compressible flow FSI
applications in the field of aerodynamical simulation in [48, 41, 47, 28].

Implicit Coupling Schemes

Implicit coupling schemes approximate the solution of the monolithic system (3.1) in an
iterative process, which means that they repeatedly solve for a solution of the structure and
fluid solvers involving the communication of boundary values, until convergence is achieved
within one time step. Convergence means, that the equality of displacements and stresses
is guaranteed up to a certain (arbitrary) precision. The use of implicit coupling schemes is
motivated by the fact that they really solve for an approximation of the monolithic solution
and are more robust in case of instabilities due to the added-mass effect (see next paragraph).
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Additionally, implicit schemes can be enhanced by a further post-processing scheme that
improves the convergence behavior (see remainder of this chapter).

In the following, we denote the fluid and structural interface variables of time step n+ 1 as
xfn+1 and xdn+1, respectively. In order to indicate the k-th iterate of the implicit coupling
scheme at the current time step we use xdk and xf k. If not stated explicitly, the current time
step is assumed to be n+ 1 and the index is omitted, i. e., xdk := xd

k
n+1.

Instabilities and the Added-Mass Effect

Although explicit schemes work well for a lot of FSI applications they fail to converge in cases
when instabilities are present. Such instabilities are created by the partitioning of equations
and are therefore inherent to the partitioned coupling approach. The instabilities occur due to
the staggered solution of fluid and structure component, where each solver has to use boundary
values from the other that are assumed to be constant for the entire time step.
For compressible flow, this effect can be circumscribed by an upper limit to the time step
size, while for FSI simulations with incompressible flow this raises the need of more advanced
coupling schemes, i. e., implicit coupling schemes with an additional post-processing method
(cf. Section 3.2 and Chapter 4).

Theoretical investigations of the so-called added-mass effect in terms of stability analysis
has been made for simplified and idealized FSI examples [12, 18, 30]. The results that have
been learned can be summarized as follows (see also [31, p. 68]). The added-mass instabilities
increase when

- the density ratio of fluid and structure is close to one

- the structural stiffness decreases or the fluid viscosity increases

- the time step size decreases for implicit coupling schemes

- the geometric aspect ratio of the fluid-structure interface increases

Subcycling. Another useful feature of partitioned FSI coupling is that of subcycling. This
means that a single time step can be subdivided into m smaller parts which allows for a
decoupling of the time scales used for the different components. Usually, the fluid field solver
requires smaller time steps than the structure solver. No data is communicated between
the solvers when subcycling is deployed but input data from the other component can be
extrapolated over time.
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3.2 Fixed-Point Formulations for the Partitioned Problem

The term coupling scheme is used to indicate the combination of a specific coupling system
with an appropriate fixed-point equation solver or post-processing method, that solves the
fixed-point equation induced by the coupling system. In this work, we focus on three implicit
coupling systems, presented in Section 3.2.1, namely a serial or staggered implicit coupling
system a vectorial or parallel implicit coupling system and a block-iterative serial coupling
system. Each of them offers some advantages and drawbacks which will be discussed later
on.

The canonical implicit coupling is represented by the serial or staggered system which is
quite efficient due to its rather low computational effort. However, it offers some drawbacks
concerning parallelization. Here, the parallel implicit system is superior while having compa-
rable convergence results. The block-iterative serial coupling system is slightly more robust
with respect to instabilities and allows, due to overlapping post-processing, for marginal better
parallel efficiency than the pure serial system. Still, its overall performance on massively
parallel machines is however insufficient.

The induced fixed-point equations need to be solved using an appropriate method. Such
a method naturally consists of a base frame fixed-point iteration, enhanced by a so called
post-processing method that further improves the convergence of the coupling. The quality
of a partitioned coupling algorithm can be measured by the extend to which it fulfils the
requirements to be both, efficient and robust for a wide range of FSI coupling scenarios. In the
context of black-box partitioning, one assumes that the largest cost with respect to the coupling
iterations in a given time step is compounded by the computational effort of the black-box field
solvers. For an efficient coupling it is therefore important to minimize the number of solver
calls, in other words the required numbers of coupling iterations. Furthermore, it is desirable
for a coupling scheme to be robust, that means that it shows comparable performance, for a
wide range of scenarios without the need for tuning a set of problem dependent parameters
beforehand. The coupling methods considered in this thesis, especially those with a quasi-
Newton post-processing, will be judged by the extend they meet the above requirements (see
Chapter 6 and 7).

In Sect. 3.3 we give a brief overview of the plain fixed-point iteration which is basically used
as base frame iteration for an additional post-processing as it provides poor or no converge for
severe instabilities.

In the succeeding, we present supporting post-processing methods that improve convergence
of the coupling, beginning with the rather simple constant and adaptive Aitken’s underre-
laxation, but focus on the more sophisticated quasi-Newton methods in Chapter 4. The
latter are of great importance for FSI scenarios that entail stability issues due to the added
mass effect. Furthermore, only quasi-Newton methods – that also showed the best results for
staggered schemes [17, 31, 7] – accelerate the parallel implicit coupling scheme enough to make
it competitive to the serial implicit coupling scheme, compare [57].
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3.2.1 Coupling Variants and Fixed Point Equations

In this section, three different implicit coupling systems and the respective fixed-point equations
are presented, namely the serial-implicit coupling system, the vectorial- or parallel-implicit
coupling system and the serial-implicit block coupling system.

(A) Serial Implicit Coupling System (S-System)

Using the serial implicit coupling system, the field solvers are executed in a staggered way.
This is the standard approach to couple a black box fluid solver with a black box solid solver in
a partitioned setting [19, 26, 7, 28]. The flow solver computes the current time step, resulting
in stresses or forces exerted by the fluid on the structure. The structural solver takes this
forces as input and computes the resulting displacements of the structure.
If the result of such a coupled iteration is the same as the input displacement, up to a certain
precision, the iteration has reached a fixed-point and the coupling is stable. The displacements
at the fluid-structure interface fulfill the sequential fixed-point equation

xd
!= S ◦ F (xd). (3.3)

Note, that multiplication of F from the left ensures equality of forces as well.

However, the inherent serial calling order of the field solvers leads to performance issues for
massively parallel simulations due to bad load balancing. A better adjusted, parallel coupling
scheme is introduced in the following and thus a few words concerning efficient parallelization
in FSI simulations are added in the following.

Efficient Parallelization. Parallel efficiency is of great importance for highly accurate
simulations. In order to be beneficial compared to single physics simulations, multi-physics
simulations do have to provide a very high accuracy. Otherwise, the additional information
obtained through multi-physics simulation would be of no consequence, compared to the overall
error due to low accuracy.
On the other hand, solving for a high accuracy solution entails very high computational costs
and in most practical cases a massive parallel computation is indispensable. In the field of
partitioned FSI coupling, massive parallel computations often raise problems and are rather
inefficient due to poor load balancing.

Due to different complexity, the fluid solver comprises the vast majority of compute resources
and/or computational time. There are very efficient parallel explicit coupling schemes [26],
that need exactly one call to the fluid and solid solver per time step. However, for most
applications that include incompressible flow, implicit schemes are required to achieve a stable
coupling. The parallel efficient approaches cannot be generalized to implicit schemes, as they
usually call for the field solvers in a serial way, see (3.3), which leads to a mismatch of work
balance and in the worst case results in a parallel efficiency of 50%.
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proc. proc. proc.

time time time

serial coupling parallel coupling impossible ideal serial coupling

Figure 3.2: The number of busy processors is plotted over time. There is a substantial mismatch of work
load for the serial coupling scheme. While the fluid solver (dark grey) entails a good scalability and keeps a lo
of processors busy, the solid solver (light grey) usually has low computational cost and cannot keep as many
processors busy. Hence, the computational time for both solvers is similar which results in a parallel efficiency
of 50%. Left: Inefficient parallelization for a serial execution order of fluid and solid solvers. Middle: Efficient
use of compute resources using a parallel coupling scheme. This, however, requires a rethinking of the coupling
numerics. Right: Ideal work load distribution which is however not possible as the structure solver does not
scale with as high number of processors than the fluid solver.

Figure 3.2 shows scalability sketches for difference coupling approaches. While the fluid
solver can be scaled on a very large number of processors P , the fluid solver runs on a small
number of processors p, having the same runtime Tr. As can be seen in the left figure, P
processors cannot be kept busy during the solution step of the solid solver. Thus, the ideal
load balancing, depicted in the right figure, is not possible and the serial coupling system has
poor performance on massively parallel machines.

A newly parallel coupling system, see (3.4), that allows for simultaneous computation of
fluid and solid solver is presented in the following and provides the possibility to a perfect load
balancing, as can be seen in the left diagram of Fig. 3.2. However, applying this system, the
coupling numerics change and need to be reconsidered.

(B) Parallel Implicit Coupling System (V-System)

As we have seen, the above serial implicit coupling system offers some drawbacks with regard
to efficient parallelization due to a substantial mismatch of work load between the structure
and the fluid field solver. The only way to overcome this limitations is to execute the fluid and
structure solver in parallel. To this end, the V-system uses the original input/output relation
for both solvers but the boundary values are exchanged after each iteration. This leads to the
vectorial fixed-point equation(

xf
xd

)
!=
(
F (xd)
S(xf )

)
=
(

0 F

S 0

)(
xf
xd

)
. (3.4)

However, the above system results in two independent instances of the S-system that need to
be coupled by a quasi-Newton step after each iteration. This coupling turns out to be strong
enough so that one iteration of the V-system is comparable to one iteration of the S-system
(cf. [11, 57]). Hence, the V-system is quite competitive, as the benefit from the good parallel
scalability clearly outweighes fractional losses in convergence speed.
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(C) Serial Implicit Block System (B-System)

This coupling system was developed as an advancement of the serial-implicit coupling system
(A). It is supposed to be more stable and robust as it provides intermediate results that are
passed along within a block-iterative scheme. Furthermore, it offers improved modularity as
one directly approximates for the Jacobians of the single-physics solvers. Thus, additional
information can be utilized if available. Although it looks quite similar to the vectorial coupling
system1 (B) the calling order of the fluid and solid field solvers remains serial, i. e., a parallel
execution of the black-box solvers is not possible. Using this coupling system, the fixed-point
equation (

xFf
xSd

)
!=
(
F ◦ S(xFf )
S ◦ F (xSd )

)
=
(
F ◦ S 0

0 S ◦ F

)(
xFf
xSd

)
. (3.5)

is solved in a block-iterative fashion which means that the equations are solved successively
and the output from the first equation is used as input for the second. The first equation can
be seen as the serial fixed-point equation for the fluid solver (superscript F ) while the second
states the equality of displacements for the solid solver (superscript S). Obviously, if one of
the fixed-point equations is fulfilled the other holds true as well.

The application of the block-iterative coupling system is somewhat more involved and differs
from the application of the two coupling systems (3.3) and (3.4) explained earlier. A generic
combination of this coupling system with a quasi-Newton method is depicted later on in
Section 4.4.

1In fact, we obtain the fixed-point equation (3.5) if we square the parallel-implicit coupling system from (3.4)(
0 F

S 0

)2(
xf
xd

)
=
(
F ◦ S 0

0 S ◦ F

)(
xf
xd

)
.

However, as we want to solve this fixed-point equation in a block-iterative way the coupling numerics appear
to be quite different than for parallel-implicit coupling system, compare Section 4.4.
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3.3 Basic Iterative Solvers for the Fixed-Point Equations

In the previous section we presented three fixed-point equations that differ in the execution
order of the fluid and structure solver but also provide different coupling numerics. These
fixed-point equations need to be solved in each FSI coupling iteration. In this section we present
a couple of fixed-point equation solvers. For the sake of completeness we firstly summarize the
rather simple and well known iterative solvers such as ordinary Schwarz iteration and constant
and dynamic Aitken’s underrelaxation. A more detailed elaboration of different quasi-Newton
variants is given in Chapter 4. This is a class of root finding algorithms based on Newton’s
method that solve for a set of non-linear equations, but rather than computing the exact
Jacobian they try to find a suitable approximation.

For a unified description of these solvers, we introduce the notation

x ∈


S-system V/B-system

xd,

(
xf
xd

)  and

H ∈


S-system B-system V-system

S ◦ F ,
(
F ◦ S 0

0 S ◦ F

)
,

(
0 F

S 0

) 
For the S-system (3.3), the V-system (3.4) and the B-system (3.5), respectively.
Thus, we have to solve a fixed point equation

H(x) = x ⇔ R(x) = H(x)− x = 0. (3.6)

Note that the unified notation for the B-system is mentioned merely for demonstrative
purposes. The hereinafter presented fixed-point equation solvers, especially the quasi-Newton
systems, can be clearly combined with the B-system however in a slightly different way. The
following elaboration is only applicable to the S-system and the V-system. As opposed to the
latter two, the B-system is solved in a block-iterative fashion and hence needs approximations
for the Jacobians of the fluid and solid interface operators F and S, rather than for the
fixed-point operator H or the residual operator R, or their inverse. The ideas and concepts
can however be transferred to the approximation of the fluid and solid solver Jacobians.

For convenience, we add a brief summary of further notation that is frequently used
hereinafter.

x̃k .. result of one fixed-point iteration, i. e., x̃k = H(xk), intermediate result
xk+1 .. next iterate of coupling scheme, usually composed of intermediate result x̃k and a

correction from a post-processing method, i. e., x̃k (PP )
 xk+1

rk .. residual of the fixed-point equation, i. e., R(xk) = rk = H(xk) − xk = x̃k − xk.
Usually the residual operator is denoted by R(xk) while the residual vector is
written as rk.

J� .. Jacobian of the operator � ∈ {R,H,F ,S}
Ĵ� .. approximation of the Jacobian of the respective operator.
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3.3 Basic Iterative Solvers for the Fixed-Point Equations

3.3.1 Pure Fixed-Point Iterations

Given the abstract fixed point equation (3.6), the canonical fixed-point iteration

x̃k = H(xk), xk+1 = x̃k (3.7)

can be seen as the plainest fixed point solver for implicit coupling schemes. Here, we refer
x̃k = H(xk) to be the result of one fixed-point iteration to differentiate is from the later
introduced result of the post-processing, which is denoted by xk+1. Depending on whether the
serial (3.3) or parallel fixed-point equation (3.4) is solved, one speaks of the multiplicative or
additive Schwarz procedure [51, 53], also known as block Gauß-Seidel method and block Jacobi
method.

Convergence Criteria. We want convergence towards the monolithic solution in every
time step. Since the latter is not available we have to use a suitable convergence criterion
to decide whether we want to proceed with the iteration or terminate. In general, different
convergence criteria will lead to different iteration numbers. Here we define that the iteration
continues until the l2-norm of the residual rk := R(xk) = H(xk)− xk falls below a certain
absolute or relative convergence criterion, i. e.,

‖rk‖L2 < εabs,
‖rk‖L2

‖x̃k‖L2
< εrel (3.8)

Since the norm of the residual can change by orders of magnitude throughout one simulation an
absolute convergence criterion is not feasible for all situations. Setting the residual in relation
to the current iterate solves this problem in terms of a relative convergence measure. However,
a relative convergence measure involves instabilities and fails to work properly if the current
iterates are close to zero. Therefore it is advisable to use a combination of both, relative and
absolute convergence measure. Not least, the number of coupling iterations depends on the
internal convergence measures of the black box field solvers that should demand for a higher
accuracy than the coupling criterion above.

The plain fixed-point iteration does only converge if the fixed-point operator H is a
contraction mapping. If instabilities are present, in general, this is not the case and the
Schwarz procedures fail to converge and are therefore not suitable to stabilize the coupling
(added mass effect). In order to guarantee for the convergence of the fixed-point iteration,
additional efforts need to be made. The multiplicative or additive Schwarz iteration can be
seen as a base frame or template for all following fixed-point equation solvers which is enhanced
by a post-processing method to improve the convergence of the coupling scheme.

A rough pseudo code representation of the fixed-point iteration as base frame iteration
for all coupling schemes, is given in Algorithm 1. To gain a clearer understanding of the
internals, especially the temporal order in which the black box solvers are called, the different
coupling schemes are depicted in terms of the fluid and structural interface operators F and
S. The result of the application of the fixed point operator is seen as a intermediate result
x̃k that is further modified by a post-processing method. In the following, but especially in
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3 Fixed-Point Equations for Partitioned Fluid-Structure Coupling

Input: initial value x0 = (x0
f ,x

0
d)T = extr(x∗n,x∗n−1,x

∗
n−2) time extrapolation from

previous time steps
Output: x∗n+1, converged configuration of current time step.

S-system(x0)

for k = 0 . . . do
x̃kf = F (xkd)
x̃kd = S(x̃kf )

x̃kd
(PP )
 xk+1

d PP
end

V-system(x0)

for k = 0 . . . do
x̃kf = F (xkd)
x̃kd = S(xkf )

x̃kd
(PP )
 xk+1

d PP

x̃kf
(PP )
 xk+1

f PP
end

B-system(x0)

for k = 0 . . . do
x̃kf = F (xkd)

x̃kf
(PP )
 xk+1

f PP
x̃kd = S(xk+1

f )

x̃kd
(PP )
 xk+1

d PP
end

Algorithm 1: Representation of the fixed-point iteration as base frame or template iteration for all
coupling schemes. The result of one fixed-point iteration is treated as an intermediate value x̃ = H(x),
that undergoes further modification in the post-processing stage (PP). The post-processing can be
either constant or dynamic underrelaxation or one of the quasi-Newton methods, considered here.
The for-loop iterates until a certain convergence criterion is fulfilled. For the sake of clarity, the base
frame fixed-point iterations are depicted in terms of the fluid and structure interface operators F ad
S. Left: Fixed-point base frame iteration for the serial-implicit fixed-point equation (S-system), also
called additive Schwarz method. Middle: Fixed-point base frame iteration for the parallel-implicit
fixed-point equation (V-system), also called multiplicative Schwarz method. Right: Fixed-point
base frame iteration for the serial-implicit block-iterative fixed-point equation (B-system). Here, the
post-processing is done block-wise in between the solver calls.

Chapter 4 multiple alternative fixed-point equation solvers are discussed, that can operate
as post-processing methods. They differ in terms of computational effort and efficiency with
respect to required coupling iterations, i. e., the rate of convergence.

3.3.2 Constant and Aitken’s Underrelaxation

One of the most straightforward approaches to stabilize the plain fixed-point iteration is
constant underrelaxation, i. e.,

x̃k = H(xk),
xk+1 = (1− ω)xk + ωx̃k = xk + ωrk

(3.9)

Here, the constant underrelaxation factor ω has to be chosen in the range of 0 < ω < 1 in
order to stabilize the iteration. However, for a lot of scenarios ω has to be chosen close to zero
in order to achieve convergence at all which leads to a unmanageable computational cost for
severe instabilities.

The convergence of the coupling scheme can be accelerated and the above drawback can
be limited by choosing the underrelaxation parameter ω dynamically in each iteration. This
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3.3 Basic Iterative Solvers for the Fixed-Point Equations

method is called Aitken’s dynamic relaxation. Here, the dynamic relaxation factor is modified
at the beginning of each iteration, based on the information of two previous fixed-point iterates.
According to the Secant method for root finding problems, the previous iterates are linearly
extrapolated to find the position of zero residual rk = R(xk) = 0. The relaxation factor can
then be computed as

ωk = −ωk−1
(rk−1)T (rk − rk−1)
‖rk − rk−1‖

2

2
(3.10)

and the fixed-point iteration is enhanced by the underrelaxation step

xk+1 = xk + ωk(H(xk)− xk), (3.11)

This method is widely used in FSI coupling as it shows quite good convergence for a lot
of applications while being very efficient with respect to computational cost and memory
requirements. The performance and suitability of Aitken’s relaxation for FSI coupling is
investigated and compared to other methods in [57, 8].
Aitken’s relaxation is briefly revisited in the next chapter about quasi-Newton solvers to
illustrate that it is in fact the simplest form of a quasi-Newton method available.
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Chapter 4

Quasi-Newton Post-Processing
Methods

The fixed-point equation solvers presented in Chapter 3, especially the pure fixed-point iteration
(3.7) and the constant underrelaxation (3.9) tend to be unstable and are in particular up to
two times slower for the parallel fixed-point equation compared to the staggered one (compare
[57]). Therefore, using an additional method that stabilizes and accelerates the coupling is
often essential.

Solving any of the presented fixed-point equations originating from different coupling systems
in the field of FSI coupling, we are given a problem with the following characteristics, compare
[23]:

i) The dimensionality of the problem is potentially large (although its lower dimensional
than overall simulation due to surface coupling)

ii) An analytic form of the derivative of the interface operators F and S is not available,
neither for the fixed-point operator H, nor for the residual operator R

iii) The cost of evaluating R(x), resp. H(x), F (x) and S(x) is very high

iv) The problem is noisy, i. e., evaluated function values R(x) and H(x) usually contain
errors (as field solvers solve up to a certain precision)

Several existing methods are not applicable due to the listed characteristics. For example,
characteristic i) suggests to use matrix-free, limited-memory algorithms while ii) prevents us to
use standard methods such as Newton iteration. Line-searching algorithms are not advisable
because of characteristic iii) and all methods based on finite-differences, such as matrix-free
Newton-Krylov solvers, are impractical due to characteristic iii) and iv).

Therefore, algorithms that rely on secant equations using input and output data to estimate
an approximation of the system Jacobian have attracted a lot of interest in the past years.
Important examples of so called quasi-Newton methods are Broyden’s method [10, 44, 45]
and its generalized versions [23, 22, 38], also known as Anderson acceleration for fixed-point
iterations.
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4 Quasi-Newton Post-Processing Methods

In the following, we consider different variants of quasi-Newton methods, beginning with an
overview of existing methods in literature, including their classification and correlation to the
considered methods in this thesis. In the course of the presentation of considered quasi-Newton
methods, a newly post-processing method called IQN-IMVJ is introduced in combination with
various coupling systems. It is expected to render an additional tuning of problem dependent
parameters unnecessary. This costly pre-processing step in turn, is essential for all previously
existing quasi-Newton methods.

For the sake of clarity, we start with the formulation of the Newton iteration, from which
the quasi-Newton methods are motivated. For further stabilization, after computing one step
of the fixed-point iteration,

x̃k = H(xk),

we approximate a Newton iteration

solve
[
I − JH−1(x̃k)

]
∆x̃k = J R̃(x̃k)∆x̃k = −R̃(x̃k), (4.1)

set xk+1 = x̃k + ∆x̃k (4.2)

for the fixed-point equation (3.6) that is equivalent to the inverse form

R̃(x̃) = x̃−H−1(x̃) != 0 (4.3)

as H(x)− x = x̃−H−1(x̃) with x̃ := H(x).

As the exact Jacobian
J R̃(xk) := I − JH−1(x̃k)

is not accessible for black-box solvers, we work with an approximation Ĵ R̃(x̃k). Quasi-Newton
methods approximate J R̃(xk) or J−1

R̃
(xk) and obtain the current approximation by adding a

low-rank matrix to a previous Jacobian approximation or initial Jacobian in each iteration.
They use input and output values of the fixed point operator for the low-rank updates.

Broyden’s first method [10] refers to a rank-one update that uses the information from
one input-output pair. The resulting Jacobian approximation is the unique matrix that
minimizes the change in the Frobenius norm and fulfills the secant equation. The Jacobian or
its approximation are in general dense matrices. Although, the linear equation system in (4.1)
usually is rather small compared to the overall degrees of freedom of the simulation, finding a
solution for the dense system often entails a computationally bottleneck. In order to minimize
the computational costs, it is of great benefit to directly approximate for the inverse of the
Jacobian Ĵ R̃

−1(x̃k). This approach is referred to as Broyden’s second method [39] which
received a lot of attention in the field of partitioned FSI coupling [17, 57, 7]. The resulting
approximation of the inverse Jacobian is the unique matrix that minimizes the change in the
Frobenius norm in terms of the inverse approximation and fulfills a modified secant equation.

Both variants can easily be enhanced to be rank-m updates of the estimated matrix by using
m previous input-output relations to set up a system of secant equations. The minimization
process now ranges over the last m iterates and minimizes the change with respect to a initial
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guess. In the field of partitioned FSI coupling, a natural choice for m is the number of coupling
iterations k that have already been performed within the current time step. In this vein,
Broyden’s second generalized rank-m update method corresponds to the IQN-IMVJ method,
presented in Section 4.3, that minimizes the change in the Jacobian approximation within one
time step. Thus, in every time step, the initial guess for the inverse Jacobian approximation
is taken over from the previous time step. Likewise, the IQN-ILS method in Section 4.1 is a
generalized rank-m update method for the inverse Jacobian, however, minimizing the difference
of the current approximation to the zero-matrix as initial guess in every time step. For
convenience, we assume that information form k + 1 coupling iterations is readily available.

Vierendeels et al. [59] applied a block-iterative quasi-Newton least squares method using
multiple input-output pairs to FSI coupling. This method was further developed by Degroote
et al. [17] to the well known interface quasi-Newton least squares (IQN-ILS) method mentioned
above (see Sect. 4.1), which approximates the inverse Jacobian of the residual operator
by adding a rank-m update to a zero initial guess in every time step. There are several
advancements of the IQN-ILS method such as [57] which improves the parallel efficiency of the
method. As opposed to the latter, Haeltermann et al. [33] approximate for the Jacobians of the
interface operators of the respective field solvers F and S and solve the resulting system, which
refers to the concept of Broyden’s first method. Here, this method is referred to as IQN-LSHJ,
see Sect. 4.1.3. Bogaers et al. presented a method that implicitly re-uses previous information
in the approximation process of the system Jacobian in combination with a block-iterative
system. The rank-m IQN-IMVJ method in Section 4.3 is a variant of the latter.

Fang et al. [23] considered quasi-Newton methods as standalone solvers for non-linear
equations that have the characteristics listed above. They present a class of generalized
Broyden-like quasi-Newton methods that update a previous approximation of the inverse
Jacobian. Depending on the form of the update they differentiate between Type I and Type II
methods. While Type II methods update the approximation of the inverse Jacobian by
minimizing the change in the approximation of the inverse Jacobian, Type I methods do so
by minimizing the change in the approximation of the Jacobian and not its inverse. This
results in a alternative update formula. In this notation, the generalized Broyden Type II
method corresponds to the IQN-IMVJ method in Section 4.3. Walker et al. [60] used the
same classification but fixed the previous approximation of the inverse Jacobian to zero which
results in the IQN-ILS method for the Type II update and in the IQN-LSHJ method for
the Type I update after applying the Woodbury formula. Furthermore it turns out that the
Walker Type II method is equivalent with the Anderson Acceleration scheme [2] for fixed-point
iterations [22, 60].

For the methods described by Fang et al., it is essential to have a (non-trivial) initial
approximation of the inverse Jacobian. Dealing with partitioned FSI coupling this is often not
possible which renders a lot of their variants inapplicable here, including the hybrid variants
that mix the Type I and Type II update. Choosing trivial initial guesses such as the zero-matrix
translates the IQN-IMVJ method to the IQN-ILS method for the Type II update in the very
first iteration, but leads to linear dependencies in the secant equation for the Type I update.

In the following, we present a subset of the above mentioned quasi-Newton variants together
with some further extensions. Thereby, structural differences, similarities as well as possible

29



4 Quasi-Newton Post-Processing Methods

drawbacks and advantages are outlined. The subsequent methods can merely be categorized
by three criteria:

(1) To obtain a unique solution for the Jacobian approximation, the secant equation is enhanced
by a additional minimization of the Jacobian difference to an initial guess for the current
time step. The initial guess can either be taken over from the approximation for the last
time step or can be fixed to the zero-matrix (trivial guess).

(2) The variants can be discriminated by the operator that is to be approximated. As presented
above, it is advantageous to approximate for the inverse Jacobian of the residual operator
R̃, however, it is likewise possible to solve for an approximation of the Jacobian of the
residual operator or the Jacobian of the fixed-point operator H.

(3) Some methods need to set up the approximated Jacobian matrix explicitly, while for others
it suffices to provide a procedure that gives the result applying part of the approximate
Jacobian to −R̃(x̃k) = −R(xk), respectively, based on this secant equation.

The following sections consider a variety of quasi-Newton methods and refer to the discrimi-
nating characteristics above.
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4.1 Interface Quasi-Newton with Minimal Jacobian Norm (IQN-LS)

4.1 Interface Quasi-Newton with Minimal Jacobian Norm
(IQN-LS)

4.1.1 Residual Inverse Jacobian Approximation (IQN-ILS)

The interface quasi-Newton least squares method introduced by Degroote et. al [17] estimates
the inverse of the Jacobian of the residual operator R(x) = H(x)− x, i. e., Ĵ R̃

−1(x̃k). It is
shown to be equivalent [22] to a variant of the Anderson Acceleration scheme [2] and refers to
the Type II update in Walker et al. [60].

In order to find an approximation of the inverse Jacobian, we choose1 Ĵ R̃
−1(x̃k), such that

it fulfills a linearization of the residual equation (4.3). To be specific, we collect input-output
data throughout the iterations within a time step and generate the following matrices2

W k = (wk
i )k−1
i=0 =

[
∆x̃k0,∆x̃k1, · · · ,∆x̃kk−1

]
, with ∆Hk

i = ∆x̃ki = x̃k − x̃i

V k = (vki )k−1
i=0 =

[
∆Rk

0,∆Rk
1, · · · ,∆Rk

k−1

]
, with ∆Rk

i = R(xk)−R(xi).
(4.4)

The inverse Jacobian then approximately fulfills the secant equation, i.e.,

J−1
R̃

(x̃k) V k ≈W k.

This system of equations serves as a set of constraints for the entries of the approximate inverse
Jacobian Ĵ R̃

−1(x̃k).As the number of iterations per time step k is in general much smaller
than the number of degrees of freedom at the coupling interface, W k ∈ Rn×k and V k ∈ Rn×k

are tall and thin matrices. The system of equations for the entries of Ĵ R̃
−1(x̃k) is therefore

underdetermined:
Ĵ R̃
−1(x̃k)V k = W k. (4.5)

To enhance equation (4.5) to a system with a unique solution for Ĵ R̃
−1(x̃k), the IQN-ILS

method uses the norm minimization∥∥∥Ĵ R̃−1(x̃k)
∥∥∥
F
→ min. (4.6)

Here, ‖ · ‖F is the Frobenius norm. This can be seen as the minimum change with respect
to the zero-matrix. From this point of view the IQN-ILS corresponds to a member in the
generalized Broyden family described by Fang et al. [23] with the previous inverse Jacobian
approximation fixed to zero.

1Using Taylor expansion, we find a linearization of the residual equation (4.3) as T (R̃ | x, x̃k) = R̃(x̃k) +
J R̃(x̃k)(x− x̃k) +R(R̃ | x, x̃k). Hence, we find an approximation of the Jacobian in terms of input-output
modes as J−1

R̃
(x̃k)(x̃k+1 − x̃k) ≈ R̃(x̃k+1) − R̃(x̃k) = R(xk+1) − R(xk). Consequently, each pair of

input-output modes generates a constraint for the approximation of the Jacobian or its inverse.
2In order to facilitate the presentation of the quasi-Newton methods, we assume that we have already completed
k + 1 FSI coupling iterations. As the approximation of the system Jacobian needs at least two input-output
pairs, a constant underrelaxation is performed in the first iteration, i. e., x1 = x0 + ωR(x0)
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4 Quasi-Newton Post-Processing Methods

This finally leads to the approximate inverse Jacobian

Ĵ R̃
−1(x̃k) = W k

(
V T
kV k

)−1
V T
k (4.7)

and the resulting quasi-Newton update formula

xk+1 = x̃k +W k (V T
kV k)−1V k

(
−R(xk)

)
︸ ︷︷ ︸

=: α

.

The above can be seen as follows. Solving for the minimum of the Jacobian in the Frobenius
norm under the side constraints of the secant equation (4.5) can be done using Lagrangian
multipliers. The Lagrange functional reads as follows

L((Ji,j)ni,j=1 ,λ) = 1
2

∥∥∥Ĵ R̃−1(x̃k)
∥∥∥2

F
+ λ

(
Ĵ R̃
−1(x̃k)V k −W k

)
with the unknowns λ and Ĵ R̃

−1 = (Ji,j)ni,j=1.
A solution

(
J ∗i,j

)n
i,j=1

,λ∗ has to fulfill the optimality conditions

∇(Ji,j)L = Ĵ∗
R̃

−1
+ λ∗V T

k
!= 0

∇λL = Ĵ∗
R̃

−1
V k −W k

!= 0,
(4.8)

that can be solved for λ∗ = −W k

(
V T
kV k

)−1
, inserting the first equation into the second.

This finally leads to the expression for the approximate inverse Jacobian, depicted above in
equation (4.7).

IQN-ILS as Matrix-Free Approach

For this quasi-Newton variant we do not have to explicitly compute the inverse Jacobian matrix,
but it suffices to provide a procedure that computes the result of parts of the Jacobian with
the vector −R(xk). Hence, we can restrict ourselves to compute only the vector α (compare
[57]). This can be realized very efficiently by solving the least squares problem

minα∈Rk‖V kα+R(xk)‖2 , (4.9)

where ‖ · ‖2 denotes the Euclidian norm.3

3 From the update formula for xk+1 one sees, that performing a quasi-Newton step without performing a
fixed-point iteration (computing x̃k = H(xk)) in advance would have led to linearly independent columns in
W k. In this case we would have to use the input modesW k = (∆xk0 ,∆xk1 , . . . ,∆xkk−1) with ∆xki = xk−xi
and hence, xk would be corrected to xk+1 by adding multiples of differences from xk − xi from previous
iterations. As a result, all columns of W k would be in the space spanned by x0 and x1 − x0, which can be
seen by induction over the iterations.
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4.1 Interface Quasi-Newton with Minimal Jacobian Norm (IQN-LS)

To see this, we consider the estimation of the inverse Jacobian from an other perspective which
turns out to be equivalent to the above derivation. To find xk+1, we construct ∆x̃k = xk+1−x̃k
in the column space ofW k: ∆x̃k = W kα, such that a linearization of the residual equation (4.3)
is fulfilled as accurately as possible. To this end we solve the least squares problem depicted in
eq. (4.9), i. e., we do a l2-projection of the residuum −R(xk) onto the column space of V k,
such that V kα

.= −R(xk).

The quasi-Newton update can then be approximated as ∆x̃k := W kα, since

Ĵ R̃

−1
(xk)(xk+1 − x̃k) = Ĵ R̃

−1
(xk)W kα = Ĵ R̃

−1
(xk)

k−1∑
i=0

αi∆x̃k
i
.=

k−1∑
i=0

αi∆Rk
i = V kα ≈ −R(xk)

and we find the next iterate as xk+1 = x̃k +W kα.
Remark 4.1.1. The above matrix-free version of the IQN-ILS is clearly superior to the explicit
matrix approach with respect to computational effort and storage requirement. Still, the
explicit matrix approach is at least of theoretical interest. It should yield exactly the same
result as the matrix free approach which is however not the case due to different numerics
and finite precision. The explicit matrix approach – denoted by IQN-ILSJ – is expected to be
slightly more robust.

Benefit from Information from Previous Time Steps

The convergence properties of the IQN-ILS method can be greatly improved if the input-
output information from previous time steps is incorporated into the secant equation, i.e.,
into W k and V k. To achieve this, the difference matrices V {n+1−R}, · · · ,V {n},V {n+1} and
W {n+1−R}, · · · ,W {n},W {n+1} from the previous R ∈ N time steps are stored and included
in the secant equation of the current time step, i. e., we replace W k and V k by the enhanced
versions

W
(R)
k =

[
W {n+1−R},W {n−R}, · · · ,W {n+1}

k

]
,

V
(R)
k =

[
V {n+1−R},V {n−R}, · · · ,V {n+1}

k

]
.

This additional information significantly improves the convergence as shown in [17] and
Chapter 5 and 7. However, the optimal parameter R of reused time steps is highly problem
dependent and there is no analytical method available to determine the optimal R. Thus, in
practice, R has to be determined based on experiences which is a costly try and error process.
Also linear dependencies and contradicting information within the accumulated difference
matrices need to be handled properly. In Section 4.3 we present an alternative quasi-Newton
approach that provides an automatic implicit incorporation of information from passed time
steps and, thus, avoids these drawbacks of the IQN-ILS method. However, this requires to
explicitly compute Ĵ R̃

−1 instead of only the short vector α ∈ Rk.

A pseudo code of the IQN-ILS method is depicted in Algorithm 2.
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4 Quasi-Newton Post-Processing Methods

Input: initial value x0 = extr(x∗n,x∗n−1,x
∗
n−2) time extrapolation

from previous time steps
Output: x∗n+1, converged configuration of current time step.

IQN-ILS(x0)
x̃0 = H(x0) and R0 = x̃0 − x0

x1 = x0 + ω0 ·R0

for k = 1 . . . do
x̃k = H(xk) and Rk = x̃k − xk

V k = [∆Rk
0, . . . ,∆Rk

k−1] with ∆Rk
i = Ri −Rk

W k = [∆x̃k0, . . . ,∆x̃kk−1] with ∆x̃ki = x̃i − x̃k

decompose V k = QkUk

solve the first k lines of Ukα = −QkTRk

∆x̃k = W kα

xk+1 = x̃k + ∆x̃k
end

Algorithm 2: IQN-ILS quasi-Newton method. Pseudo code of the IQN-ILS algorithm, a
matrix-free approach that approximates for the inverse Jacobian of the residual operator.

Relation to Aitken’s Relaxation

There is a relation of the IQN-ILS method to the dynamic Aitken’s relaxation, presented in
Chapter 3. Indeed, the latter can be seen as the simplest quasi-Newton method available.
Assume, that solely the most recent input-output modes mk

k−1 = xk − xk−1 and vkk−1 =
rk − rk−1, rather than all k + 1 available modes are used to approximate the inverse system
Jacobian. Then, following the above derivation of the IQN-ILS method leads to a formula
for the next iterate that is very similar to the formula for Aitken’s dynamic relaxation (3.10).
Note that we use the input mode mk

k−1 instead of wk
k−1 = x̃k − x̃i for this excursus which

is equivalent to skipping the fixed-point iteration step. For the IQN-ILS method, using mk
i

would lead to linear dependent columns3 in W k, see Remark 4.3.2.

We shortly recapitulate the formula for Aitken’s dynamic relaxation

xk+1 = xk + ωkr
k = xk − ωk−1

(rk−1)T (rk − rk−1)
‖rk − rk−1‖2L2

rk

From this we see that for Aitken’s dynamic relaxation the most recent input mode mk
k−1 can

be written as xk − xk−1 = −ωk−1r
k−1. Following the derivation of the IQN-ILS method, we

now replace the matrices V and W by V = [vkk−1] and M = [mk
k−1] and try to approximate

the system Jacobian with the result of only two iterations by solving for the minimum norm of
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4.1 Interface Quasi-Newton with Minimal Jacobian Norm (IQN-LS)

the Jacobian, i. e., ‖Ĵ R̃
−1
‖F → min, with respect to the secant equation Ĵ R̃

−1
V = M .

A solution to the above minimization problem is given by

Ĵ R̃
−1 = mk

k−1

(
(vkk−1)Tvkk−1

)−1
(vk−1)T ,

compare eq. (4.7). Thus, the resulting iteration reads

xk+1 = xk +mk
k−1

(
(vkk−1)Tvkk−1

)−1
(vkk−1)T

(
−R(xk)

)
= xk + (xk − xk−1)(rk − rk−1)T

‖rk − rk−1‖2L2
(−rk)

= xk − ωk−1
rk−1(rk − rk−1)T

‖rk − rk−1‖2L2
rk

For the last equality, we used the fact that for Aitken’s relaxation the difference between
iterates can be written as xk − xk−1 = −ωk−1r

k. The above formula looks very similar to the
update formula for Aitken’s relaxation (3.11), yet, there is a not irrelevant difference. Aitken’s
method enforces the Jacobian approximation to be a scalar ωk = (·)T (·)/‖·‖2

2 while the above
derivation results in a matrix approximation (·)(·)T/‖·‖2

2. For the one-dimensional case, both
representations are equal.

4.1.2 Residual Jacobian Approximation (IQN-LSJ)

This variant of the interface quasi-Newton least squares method estimates the Jacobian of the
residual operator R(x) = H(x)− x and constructs the Jacobian matrix explicitly. Clearly,
this alternative does not have any practical utility as it does not offer any advantages over
the IQN-ILS method described earlier while entailing two remarkably drawbacks: Firstly, the
Jacobian matrix needs to be set up explicitly and secondly, it involves to solve a linear system
of equation in order to obtain the Newton update, in equation (4.2).
Still, the method is of theoretical interest, especially in comparison to the IQN-ILS method.
Both methods are mathematically identical and are therefore expected to perform similar.
Due to different numerics and different Newton update steps the two methods are, however,
likely to perform different.

As for the IQN-ILS, we minimize the Frobenius norm of the Jacobian to enhance the secant
equation to have a unique solution, i. e., we solve∥∥∥Ĵ R̃(x̃k)

∥∥∥
F
→ min subject to Ĵ R̃(x̃k)W k = V k

using Lagrangian multipliers, obtaining the approximation of the Jacobian

Ĵ R̃(x̃k) = V k

(
W T

kW k

)−1
W T

k (4.10)

and the resulting quasi-Newton update formula reads

solve Ĵ R̃(x̃k)∆x̃k = −R(xk),
set xk+1 = x̃k + ∆x̃k.
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4 Quasi-Newton Post-Processing Methods

Alternative Derivation from a Least Squares Point of View

We briefly consider the derivation of eq. (4.10) from the least squares point of view (compare
[33]) in order to clarify the understanding that both variants are equivalent. This is valuable
as the derivations are pretty much mixed up in literature. Estimating a Jacobian that fulfills
the linearized residual equation as good as possible, we write the Newton update as linear
combination of the input modes, see eq. (4.4),

∆x̃k =
k−1∑
i=0

αiw
k
i + ε

where αi denotes the coordinates of ∆x̃k with respect to the input modes and ε the part of
∆x̃k that lies outside the range of W k, i. e., ε /∈ R(W k).
We want ε to be minimal with respect to the l2-norm which is basically a least squares
approximation:

α = argminβ‖ε‖2 = argminβ‖∆x̃k −W kβ‖2

To this end, impose ε ⊥ R(W k) w. r. t. the standard scalar product. We can now rewrite ∆x̃k
as ∆x̃k = W kα+ ε which leads to

0 = W T
k ε = W T

k (∆x̃k −W kα)
α = (W T

kW k)−1W T
k ∆x̃k

The vector α is now used to make a prediction to the output, i. e., we write the same linear
combination with respect to the output modes

R(xk+1)−R(xk) ≈ V kα = V k(W T
kW k)−1W T

k ∆x̃k

R(xk+1) ≈ R(xk) + V k(W T
kW k)−1W T

k︸ ︷︷ ︸
≈ĴR̃= ∂R(x)

∂x

∆x̃k

From this, we see, that the expression V k(W T
kW k)−1W T

k approximately fulfills the role of
the derivative of R which is exactly identical to eq. (4.10).
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4.1 Interface Quasi-Newton with Minimal Jacobian Norm (IQN-LS)

4.1.3 Fixed-Point Operator Jacobian Approximation (IQN-LSHJ)

This section briefly revisits a quasi-Newton variant which was introduced in [33] for the serial
system and in [59] for a block-iterative system, respectively. It approximates the Jacobian of
the fixed-point operator ĴH(x) as the solution to the optimality problem∥∥∥ĴH(x̃k)

∥∥∥
F
→ min subject to ĴH(x̃k)Mk = W k

with the adjusted input modes

Mk = (mk
i )k−1
i=0 =

[
∆xk0,∆xk1, · · · ,∆xkk−1

]
, with ∆xki = xk − xi (4.11)

The solution is given by
ĴH(xk) = W k

(
MT

kMk

)−1
MT

k (4.12)

which leads to the resulting Newton iteration

solve
[
ĴH(xk)− I

]
∆xk = −R(xk),

set xk+1 = xk + ∆xk.

Note, that W k = (wk
i )k−1
i=0 with wk

i = ∆x̃ki = ∆Hk
i = H(xk)−H(xi), now contains the

output modes.

Remark 4.1.2. Here, we derived the approximation formula (4.12) using input-output modes
for the fixed-point operator H. However, eq. (4.12) can be written in terms of ĴH

−1(xk),
applying the Shermann-Morrison-Woodbury formula which shows the (theoretical) equivalence
of the IQN-LSHJ to the Type I update presented in [60]. The methods clearly differ in
application due to different numerics.
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4 Quasi-Newton Post-Processing Methods

4.2 Interface Quasi-Newton Methods Based on Broyden’s
Method

Broyden’s method is a very basic rank-1 update quasi-Newton method. It does not restrict the
update to the system Jacobian to be either symmetric or positive definite, like other popular
rank-1 modifications as for example DFP, BFGS and SR1. It is therefore a versatile method
and it is a bit surprising, that Broyden’s method has received little attention in the field of
partitioned FSI coupling.

We briefly revisit Broyden’s second method [10, 39] that approximates for a rank-1 update of
the inverse Jacobian approximation. We mention the Broyden method in this exposure of quasi-
Newton methods, as it depicts the base case of generalized Broyden methods and motivates
the IQN-IMVJ method from the next section. For the previous methods we minimized
the difference of the approximation to the zero-matrix, whereas here, we store a previous
approximation and minimize its difference to the newly approximation in the Frobenius norm.
For the Broyden method, the difference is minimized to the approximation from the last
iteration.

Unlike the quasi-Newton methods seen so far, the Broyden method is a rank-1 update method
that solely uses the information from the two most recent iterations, i. e., wk

k−1 = x̃k − x̃k−1

and vkk−1 = rk − rk−1. Hence, instead of the matrices V k and W k we use the input-output
modes vkk−1 and wk

k−1 and set up the corresponding secant equation. This underdetermined
system of equations with regards to ĴR

−1(x̃k) is solved by minimizing the difference of two
consecutive approximations of the system Jacobian in the Frobenius norm, i. e., we solve for
the solution of the optimization problem∥∥∥Ĵ R̃−1(x̃k)− Ĵ R̃

−1(x̃k−1)
∥∥∥
F
→ min subject to Ĵ R̃

−1(x̃k)vkk−1 = wk
k−1

which results in a Jacobian update formula

Ĵ R̃
−1(x̃k) = Ĵ R̃

−1(x̃k−1) +
(
wk
k−1 − Ĵ R̃

−1(x̃k−1)vkk−1

) (
[vkk−1]Tvkk−1

)−1
[vkk−1]T

= Ĵ R̃
−1(x̃k−1) +

wk
k−1 − Ĵ R̃

−1(x̃k−1)vkk−1
‖vkk−1‖22

[vkk−1]T (4.13)

The resulting Newton iteration reads as follows

xk+1 = x̃k + Ĵ R̃
−1(x̃k)

(
−R(xk)

)
= x̃k −

Ĵ R̃−1(x̃k−1) +
wk
k−1 − Ĵ R̃

−1(x̃k−1)vkk−1
‖vkk−1‖22

[vkk−1]T
R(xk).

Minimizing for the difference of two consecutive system Jacobian approximations allows
implicit reutilization of information from the past. Theoretically, this is equally possible
when approximating the residual Jacobian Ĵ R̃ or the fixed-point operator Jacobian ĴH . The
IQN-MVJ method, presented in the next section, differs from the Broyden method as it is not
a rank-1 update because it utilizes all previous input-output modes within one time step.
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4.3 Interface Quasi-Newton Multiple Vector Method (IQN-MVJ)

4.3 Interface Quasi-Newton Multiple Vector Method
(IQN-MVJ)

4.3.1 Residual Inverse Jacobian Approximation (IQN-IMVJ)

The IQN-IMVJ method presented here is a newly developed quasi-Newton fluid-structure
coupling approach. In conjunction with FSI coupling, the concept was first presented in [8] by
Bogaers et al. for Jacobian approximations in the context of a block-iterative Newton method
(B-system). Here, we combine the idea of approximating the Newton iteration defined by (4.1)
and (4.2) based on the secant equation (4.5) with the concepts of Bogaers et al. This approach
is equivalent to the generalized Broyden method with Type II update in the classification of
Fang et al. [23], imposing the natural choice of minimizing over time steps, i. e., performing a
rank-k update.

This practice of minimizing the change of the inverse Jacobian approximation in the Frobenius
norm with respect to the approximation from the last time step enhances the method to
implicitly use information from previous time steps in directions where it is needed. The
resulting minimization problem reads as follows∥∥∥Ĵ R̃−1(x̃k)− Ĵ R̃

−1
prev

∥∥∥
F
→ min

subject to
(
Ĵ R̃
−1(x̃k)− Ĵ R̃

−1
prev

)
V k =

(
W k − Ĵ R̃

−1
prevV k

) (4.14)

Here, Ĵ R̃
−1
prev denotes the last inverse Jacobian approximation of the previous time step. We

get the approximate inverse Jacobian

Ĵ R̃
−1(x̃k) = Ĵ R̃

−1
prev +

(
W k − Ĵ R̃

−1
prevV k

) (
V T
kV k

)−1
V T
k (4.15)

and the corresponding quasi-Newton update formula

xk+1 = x̃k + Ĵ R̃
−1(x̃k)

(
−R(xk)

)
= x̃k −

(
Ĵ R̃
−1
prev +

(
W k − Ĵ R̃

−1
prevV k

) (
V T
kV k

)−1
V T
k

)
R(xk).

Equation (4.14) illustrates that the current approximations always stay as close as possible to
the approximation from the last time step. This automatically guarantees that we profit from
past information without having to explicitly re-use previous W and V matrices, as deployed
for the IQN-ILS method. This lessens the possibility of having linear depending columns
within W and V , and first and foremost renders the tuning of the optimal parameter R of
reused previous time steps unnecessary. Furthermore, as information from previous time steps
is matched in a minimum norm sense only, it is naturally less emphasized in the approximation.
Hence, if newer information falls along the same direction as existing old information, the
latter is replaced which entirely banns the risk of having contradicting information.
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4 Quasi-Newton Post-Processing Methods

This advantageous behaviour, however, comes at the cost of the necessity for an explicit
inverse Jacobian matrix. This is due to the fact, that we reuse the estimation of the inverse
Jacobian from the previous time step and solve for an update of the approximation

Ĵ R̃
−1(x̃k) = Ĵ R̃

−1
prev(x̃

k) + Ĵ R̃
−1
prev

Remark 4.3.1. We obtain the inverse Jacobian update rule in eq. (4.15) if we solve the
minimization problem (4.8) for the Jacobian update J̃ R̃

−1(x̃k). This shows the relation of the
IQN-IMVJ method to the IQN-ILS method. For the latter, it holds that Ĵ R̃

−1(x̃k) = J̃ R̃
−1(x̃k)

as the difference to the zero-matrix is minimized in the Frobenius norm. Setting Ĵ R̃
−1
prev := 0

The minimization problem together with the secant equation in eq. (4.14) turns out to be
identical to the minimization problem for the IQN-ILS method (4.6).

A clearly listing of the IQN-IMVJ method is depicted in Algorithm 3.

Input: initial value x0 = extr(x∗n,x∗n−1,x
∗
n−2) time extrapolation,

initial value for Ĵ R̃

−1
prev

Output: x∗ and Ĵ R̃

−1
(x̃∗) for converged configuration of current

time step.

IQN-IMVJ(x0)
x̃0 = H(x0) and R0 = x̃0 − x0

x1 = x0 + ω0 ·R0

for k = 1 . . . do
x̃k = H(xk) and Rk = x̃k − xk

V k = [∆Rk
0, . . . ,∆Rk

k−1] with ∆Rk
i = Ri −Rk

W k = [∆x̃k0, . . . ,∆x̃kk−1] with ∆x̃ki = x̃i − x̃k

Ĵ R̃
−1(x̃k) = Ĵ R̃

−1
prev+

(
W k − Ĵ R̃

−1
prevV k

) (
V T
kV k

)−1
V T
k

∆x̃k = −Ĵ R̃
−1(x̃k)Rk

xk+1 = x̃k + ∆x̃k
end

Algorithm 3: IQN-IMVJ method. Pseudo code of the IQN-IMVJ algorithm which explicitly
stores the matrix of the Jacobian estimation. The inverse of the Jacobian of the residual
operator is approximated using information from previous time steps implicitly. In practice,
the Jacobian update is performed using a QR-decomposition, see Chapter 5
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4.3 Interface Quasi-Newton Multiple Vector Method (IQN-MVJ)

Relation to the Broyden Method

As already mentioned, the IQN-IMVJ method can be seen as a generalized Broyden method,
performing a rank-k update rather than a rank-one update. Both methods minimize dis-
tances between successively computed Jacobian approximations. However, Broyden minimizes
between two successive quasi-Newton iterations ‖Ĵ R̃

−1(x̃k) − Ĵ R̃
−1(x̃k−1)‖F , whereas the

IQN-IMVJ method minimizes the distance of approximations between two successive time
steps ‖Ĵ R̃

−1(x̃k)− Ĵ R̃
−1
prev(x̃

k)‖F . This is due to the fact, that all input-output modes available
within the current time step are used for the approximation.

4.3.2 Residual Jacobian Approximation (IQN-MVJ)

Generalizing Broyden’s first method, we can also approximate for the Jacobian of the residual
operator R, instead of its inverse. Likewise, it is possible to approximate for the Jacobian of
the fixed-point operator H , following the IQN-MVJ scheme. For both variants, the derivation
is straightforward an can be obtained in analogy to the above version. Yet, the secant equations
need to be adapted properly, i. e., in terms of the update matrix they read J̃ R̃(x̃k)W k = V k

for the residual operator and J̃ H̃(x̃k)Mk = W k for the fixed-point operator, respectively.

The Newton iteration then reads as in eq. (4.1), but involves the solution of a linear system
of equations.

Remark 4.3.2. Towards the issue with linear dependent iterates for the IQN-ILS method. In
equation (4.4) we collected differences of the intermediate results from the fixed point-equation
x̃k−x̃i in the matrixW k in order to ensure proper working of the IQN-ILS method3. Although
it is not unfavourable to use the matrix W k for the Broyden and IQN-IMVJ methods, this is
theoretical not essential, if a initial guess for the approximation of the Jacobian or its inverse
is available. Compare for example [23] where all generalized Broyden methods are introduced
using the plain input modes Mk.

To see that, we recapitulate the definition of the matrices, gathering the input-output modes
within one time step.

Mk = (mk
i )k−1
i=0 =

[
∆xk0,∆xk1, · · · ,∆xkk−1

]
, with ∆xki = xk − xi

W k = (wk
i )k−1
i=0 =

[
∆x̃k0,∆x̃k1, · · · ,∆x̃kk−1

]
, with ∆Hk

i = ∆x̃ki = x̃k − x̃i

V k = (vki )k−1
i=0 =

[
∆Rk

0,∆Rk
1, · · · ,∆Rk

k−1

]
, with ∆Rk

i = R(xk)−R(xi).

The quasi-Newton update for the IQN-ILS method reads

xk+1 = x̃k +W k (V T
kV k)−1V k

(
−R(xk)

)
︸ ︷︷ ︸

=: α

.
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4 Quasi-Newton Post-Processing Methods

Thus, xk+1 is x̃k plus a linear combination of the columns of W k. Replacing x̃k by xk and
W k byMk would lead to iterates that are all linear combinations of x0 and x1−x0 = x̃0−x0.
For the IQN-ILS method, it is therefore essential to use the matrix W k.

On the contrary, the quasi-Newton update rule for the IQN-IMVJ reads

xk+1 = x̃k +
(
Ĵ R̃
−1
prev +

(
W k − Ĵ R̃

−1
prevV k

) (
V T
kV k

)−1
V T
k

)(
−R(xk)

)
.

and xk+1 is a linear combination of the columns of W k, Ĵ R̃
−1
prev and Ĵ R̃

−1
prevV k. Hence,

replacing W k by Mk would not lead to linear dependent iterates for the IQN-IMVJ method.
Though, this holds true only if a suitable initial guess for the approximation of the inverse
Jacobian is available. As this is not the case in the face of partitioned FSI coupling, we fix the
initial guess to zero, which in particular, is equivalent to performing an IQN-ILS iteration for
the first time step (compare Remark 4.3.1) and finally leads to linear dependent iterates.

The above turns out to be the main reason, why the different Type I and Type II variations
in Fang et al. [23], but especially the therein introduced hybrid methods that combine both
update types are not applicable to the present setting.

To stay on top of things, the methods presented above are summarized and categorized
in Table 4.1 with respect to the discriminating criteria, mentioned in the introduction to
this detailed consideration of quasi-Newton methods. It views all the considered variants,
pointing out the form of applied norm minimization, the approximated operator and whether
a matrix-free computation is possible or an explicit computation of the matrix is required.

Norm Minimization
‖J ‖F → min ‖J − Jprev‖F → min

inverse Jacobian Jacobian inverse Jacobian Jacobian

explicit
Jacobian

IQN-LSJ
J := ĴR̃
ĴR̃∆x̃k = −Rk

IQN-IMVJ
J := ĴR̃

−1

∆x̃k := −ĴR̃
−1
Rk

IQN-MVJ
J := ĴR̃
ĴR̃∆x̃k = −Rk

IQN-LSJH
J := ĴH

(ĴH − I)∆x̃k = −Rk

Broyden-IJ
J := ĴR̃

−1

∆x̃k := −ĴR̃
−1
Rk

provides
−Ĵ R̃

−1
Rk

IQN-ILS
J := ĴR̃

−1

∆x̃k := −ĴR̃
−1
Rk

Table 4.1: Categorization of quasi-Newton coupling schemes, examined in this thesis with respect to the
following three criteria: The minimization expression for the Jacobian approximation with respect to the
Frobenius norm, the estimated operator, i. e., R, H or F and S as well as approximating for the inverse or
forward Jacobian.
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4.4 Combining the Block-Iterative System with a
Quasi-Newton Method

In this section, we focus on the solution of the fixed-point equation (3.5) that stems from
the serial-implicit block-iterative coupling system, using a generic quasi-Newton method for
post-processing. As mentioned earlier, this coupling system offers some kind of speciality
compared to the two remaining systems, i. e., the serial-implicit and parallel-implicit system.
The rather complicated formulation of the fixed-point equation stems from the intention to
solve the system using a block-iterative system with interlaced quasi-Newton post-processing,
as depicted in the schematic representation in Algorithm 1.

Obviously, it is likewise possible to solve the B-system following the methods presented
above, that means to approximate the Jacobian or its inverse for the residual operator or
the fixed-point operator itself. This would however not allow for a block-iterative solution to
the fixed-point equation including the interlacing of post-processing. It would rather yield
the same result that would be obtained if the squared V-system was solved. The following
elaboration is based on versions of the method in [19] and [31].

We start from the serial block-iterative fixed-point equation (3.5), which can be written in
residual form0

0

 =

RF (x)
RS(x)

 =

F ◦ S(xf )− xf
S ◦ F (xd)− xd

 =

F ◦ S − I 0
0 S ◦ F − I

xf
xd


This coupled system can be solved by computing the system Jacobian and solving for an
Newton update in direction∂F∂S ∂S

∂xf
− I ∂F

∂S

∂S
∂F

∂S
∂F

∂F
∂xd
− I

∆xf
∆xd

 =

RF (x)
RS(x)

 (4.16)

It can be easily seen, that ∂F
∂S = ∂F

∂xd
and ∂S

∂F = ∂S
∂xf

. As we aim to solve this system in a
block-iterative manner, we define JF := ∂F

∂xd
and JS := ∂S

∂xf
and try to find approximations

ĴF and ĴS for the Jacobians of the fluid and structural interface operators, that are updated
in each coupling iteration.

As suggested in Alg. 1 the block Gauß-Seidel solution of (4.16) implies a special ordering of
the solver inputs and outputs together with the interlaced post-processing, i. e.,

k−1 · · ·y x̃kf = F (xkd)
invoke F

∗y
ĴF
′
x̃kf

(PP )
 xk+1

f

QN update

y x̃kd = S(xk+1
f )

invoke S

∗y
ĴS
′
x̃kd

(PP )
 xk+1

d

QN update

y · · · k+1

The fluid and solid solvers do not directly compute the coupling values used as input by
the respective counterpart solver, unlike in the S-system. Here, ĴF

′ and ĴS
′ at the marked

positions ∗y indicate, that the approximations for the Jacobian of the fluid or structural
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interface operator are updated before the respective post-processing step – namely performing
a quasi-Newton iteration.

In order to solve the block-iterative coupling scheme, we assume that k − 1 coupling
iterations have been performed. As a first step of coupling iteration k, the fluid solver is called,
which returns an interface traction xf as an intermediate result. Consequently, the residual
RF (xf ,xd) changes and the approximation for the Jacobian of the fluid interface operator is
updated ĴF

k−1
 ĴF

k .

Then, ∆xf is computed by solving the system(
ĴF

k
ĴS

k−1
− I

)
∆xkf = −Rk

F (xf ,xd)
x̃kf−x

k
f

−ĴF
k
Rk−1
S (xf ,xd)
x̃k−1
d
−xk−1

d

(4.17)

and the solid solver input is computed by the quasi-Newton update xk+1
f = xkf + ∆xkf

(post-processing).

Similarly, following a call to the solid solver with the generation of the displacements x̃kd as
an intermediate result, the residual RS(xf ,xd) changes and the estimation of the Jacobian of
the solid interface operator is updated ĴS

k−1
 ĴS

k. Thereafter, ∆xkd is computed from the
updated system (4.16) by solving the system(

ĴS
k
ĴF

k
− I

)
∆xkd = −Rk

S(xf ,xd)
x̃kd−x

k
d

−ĴS
k
Rk
F (xf ,xd)
x̃kf−x

k
f

(4.18)

Finally, the input for the invocation of the fluid solver in the next coupling iteration k + 1 is
computed as xk+1

d = xkd + ∆xkd.

Having said this, the only thing that needs to be discussed is how the approximations to the
solver Jacobians ĴF and ĴS are obtained. For this purpose, we can use the methods presented
above, especially the IQN-LSJ and IQN-MVJ quasi-Newton method, which ultimately act as
different post-processing methods.
In order to approximate for the Jacobians ĴF and ĴS of the fluid and structural interface
operators, rather than for the residual operator R or fixed-point operator H, one needs
to adjust the matrices V k and W k appropriately. As opposed to the previous Jacobian
estimations, we now need a pair of input-output matrices for each of the interface operators,
i. e., V F

k ,W
F
k and V S

k ,W
S
k .

For the Jacobian of the fluid solver, input coupling value modes ∆xd|kk−1 = xkd − x
k−1
d and

(intermediate) output coupling value modes ∆x̃f |kk−1 = x̃kf − x̃
k−1
f are computed and collected

during the coupling iterations

W F
k = (wF |ki )

k−1
i=0 =

[
∆xd|k0,∆xd|k1, · · · ,∆xd|kk−1

]
, with ∆xd|ki = xkd − xdi

V F
k = (vF |ki )

k−1
i=0 =

[
∆x̃f |k0,∆x̃f |k1, · · · ,∆x̃f |kk−1

]
, with ∆x̃f |ki = x̃kf − x̃if

(4.19)
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4.4 Combining the Block-Iterative System with a Quasi-Newton Method

Having defined these matrices, an approximation of the fluid interface operator ĴF can be
obtained by the methods presented above that use a forward approximation of the Jacobian
(do not approximate the inverse Jacobian), i. e., the IQN-LSJ method, the IQN-MVJ method
as well as the Broyden method. These can easily be modified to approximate the forward
Jacobian. To this end, we need to replace the matrices V k and W k from above: V k := V F

k

and W k := W F
k .

The reduced order model for the solid interface operator ĴS is established in an analogous
way. Input modes ∆xf |k+1

k = xk+1
f −xkf and output modes ∆x̃d|kk−1 = x̃kd− x̃

k−1
d are collected

in matrices

W S
k = (wS |ki )

k−1
i=0 =

[
∆xf |k+1

1 ,∆xf |k+1
2 , · · · ,∆xf |k+1

k

]
, with ∆xf |k+1

i = xk+1
d − xdi

V S
k = (vS |ki )

k−1
i=0 =

[
∆x̃d|k0,∆x̃d|k1, · · · ,∆x̃d|kk−1

]
, with ∆x̃d|ki = x̃kd − x̃id

(4.20)
that can be used by the respective quasi-Newton method presented earlier.

Remark 4.4.1. It is also possible to build the differences of subsequent input and output pairs
and collect them in the matrices W ∗

k and V ∗k, which is clearly more efficient, i. e.,

W S
k =

[
∆xf |21,∆xf |32, · · · ,∆xf |k+1

k

]
and V S

k =
[
∆x̃d|10,∆x̃d|21, · · · ,∆x̃d|kk−1

]

Remark 4.4.2. For the IQN-LS method it suffices to provide a method that gives the result of
the estimated Jacobian approximation multiplied with a vector, i. e., ĴF

k
v and ĴS

k
v. That

means it is not indispensable to set up an explicit representation for the Jacobians of the
interface solvers.

A nicely structured overview of the block-iterative quasi-Newton coupling scheme is given
by the pseudo code in Algorithm 4.
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4 Quasi-Newton Post-Processing Methods

Input: initial value xd
0 = extr(x∗n,x∗n−1,x

∗
n−2) time extrapolation,

initial Jacobains ĴF

0
and ĴS

0

Output: x∗ for converged configuration of current time step.

Block-Iterative-QN(x0)
x0
d prediction from previous time steps
x1
f = x̃0

f = F (x0
d)

x̃0
d = S(x1

f )
x1
d = x0

d + ω0(x̃0
d − x0

d) . underrelaxation as PP
for k = 1 . . . do

x̃kf = F (xkd) and Rk
F = x̃kf − xkf

update matrices V F
k and W F

k (4.19)
update ĴF

k−1
 ĴF

k
. according to QN post-processing

solve for ∆xkf : equation (4.17), i. e.,
(ĴF

k
ĴS

k−1
− I)∆xkf = −Rk

F − ĴF
k
Rk−1
S

xk+1
f = xkf + ∆xkf . post-processing correction

x̃kd = S(xk+1
f ) and Rk

S = x̃kd − xkd
update matrices V S

k and W S
k (4.20)

update ĴS
k−1
 ĴS

k
. according to QN post-processing

solve for ∆xkd: equation (4.18), i. e.,
(ĴS

k
ĴF

k
− I)∆xkd = −Rk

S − ĴS
k
Rk
F

xk+1
d = xkd + ∆xkd . post-processing correction

end

Algorithm 4: Pseudo code for the serial-implicit block-iterative coupling scheme (3.5) using a
quasi-Newton method as post-processing. The algorithm shows the coupling scheme for one time step,
where the for-loop iterates until convergence is achieved. Input values for the initial displacement
and, depending on the quasi-Newton variant, initial values for the estimated solver Jacobians are
expected. The initial displacement is usually extrapolated from previous time steps. In the first
time step the initial estimations for the Jacobians are set to zero. The solution is computed in a
block-iterative manner, i. e., intermediate results for forces and displacements are corrected by a
post-processing scheme before they are taken as input for the complementary solver.
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4.5 Summary of Coupling Schemes – All valid Combinations

Summarizing the findings from this chapter together with Chapter 3, we are given a construction
kit for implicit, partitioned FSI coupling, which consists of three different coupling schemes,
induced by the respective fixed-point equations (3.3), (3.4) and (3.5) as well as a variety of
quasi-Newton solvers that act as a post-processing scheme to improve convergence. Although
it is not possible or practical to use all of the combinations, i. e.,

S-system,
V-system,
B-system

×
 IQN-ILS, IQN-LSJ, IQN-LSHJ,

IQN-IMVJ, IQN-MVJ, Broyden

 ,
the majority of the combinations are valid and they are either of practical relevance by being
competitive to other (e. g., monolithic) FSI coupling solvers, or of theoretical interest. All
the valid combinations of a coupling scheme with one of the post-processing schemes are
depicted in Table 4.2. While the others are merely of theoretical interest, the V-IQN-ILS
and V-IQN-IMVJ are of practical interest, as they provide good convergence rates and are
robust with respect to instabilities due to the added mass effect. The S-IQN-ILS, S-IQN-IMVJ
and B-IQN-MVJ methods are also very robust and show small coupling iteration numbers,
however, they provide a bad load-balancing for massive parallel applications which results in a
poor parallel efficiency. A comprehensive evaluation and comparison of all the listed coupling
schemes from Table 4.2 is conducted in Chapter 6.

Serial System Vectorial System Block System

IQN-ILS S-IQN-ILS\ [17] V-IQN-ILSz [57] –
S-IQN-LS V-IQN-LS –

IQN-LSHJ S-IQN-LSHJ† [33] V-IQN-LSHJ B-IQN-LS∗ [59]
IQN-IMVJ S-IQN-IMVJ£ V-IQN-IMVJ –

S-IQN-MVJ V-IQN-MVJ B-IQN-MVJ‡ [8]
S-Broyden S-Broyden V-Broyden B-Broyden

.
Table 4.2: Numerical coupling methods examined in this thesis: each method is defined by choosing either
the serial fixed-point equation (3.3), the vectorial fixed-point equation (3.4) or the block-iterative scheme
(3.5) and either the least-squares quasi-Newton solver with inverse or forward Jacobian approximation, the
Broyden method or the multiple-vector quasi-Newton approach with both flavours: forward and inverse Jacobian
approximation.
\ The S-IQN-ILS method is equivalent to the known IQN-ILS method by Degroote et al. [17] and to the Type II
update presented by Walker et al. [60], which is proven to be equivalent to the Anderson Acceleration [2].
z The V-IQN-ILS method is the parallel version of the IQN-ILS, introduced by Uekermann et al. [57].
∗ The B-IQN-LS method was first introduced by Vierendeels et al. [59].
† The S-IQN-LSHJ method was first described by Haeltermann et al. [33].
£ The IQN-MVJ is equivalent to a member of the generalized Broyden family, presented by Fang et al. [23]
using the Type II update.
‡ The B-IQN-MVJ method is referred to the MVQN method, presented by Bogaers et al. [8]
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Chapter 5

Software and Implementation

All numerical experiments in Chapter 7 are carried out using the coupling library preCICE,
together with the numerical toolbox openFOAM. In Section 5.1 we give a brief introduction to
both simulation tools. A very detailed elaboration on preCICE, including all the internals of
used concepts and algorithms together with the description of the application programming
interface (API), is given in [31]. The reader can reference this for further information.

The remainder of this chapter discusses implementation details and used concepts for
the realization of the most practical quasi-Newton coupling schemes from Chapter 3 and
4 into preCICE. This includes the definition of proper initial values as well as practical
considerations for realizing the Jacobian update with the focus on a efficient but robust and
stable implementation.

5.1 Coupling and Solver Software

5.1.1 preCICE: A Generic Library for Black Box Coupling

preCICE1 (precise Code Interaction Coupling Environment) is a flexible and powerful library
for the numerical coupling of single physics solvers. preCICE is developed at the Technische
Universität München and the Universität Stuttgart with the main purpose to facilitate the
partitioned coupling approach for surface problems. It is designed for the coupling of black
box simulation software with the focus on FSI simulation, and provides ready-to-go solutions
for the main problems occurring in partitioned coupling. To that end, it aims to meet two
major design goals, i. e., to minimize the effort of preparing an existing solver for partitioned
coupling, and secondly, to maximize the coupling flexibility that comes with the partitioned
approach. Its software architecture as a library, together with a high level API that hides all
coupling functionality, allows for a minimal-invasive integration into existing solver software.
With this, solvers can be exchanged in a plug-and-play manner and a pool of ready-to-use

1http://www5.in.tum.de/wiki/index.php/PreCICE Webpage
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Figure 5.1: The complete picture of preCICE. The main functionalities of preCICE are depicted in the middle.
Two single physics solvers are coupled. preCICE supplies solver adapters and allows for parallel or serial execution
of the solvers.

solvers can be employed in any physical meaningful combination, i. e., it is possible to choose
the best combination of single physics solvers for a particular problem.

A schematic representation of the main components is given in Figure 5.1. preCICE supplies
solutions for three main functionalities that are essential for partitioned coupling:

1. Equation Coupling

2. Data Mapping

3. Data Communication

A geometry interface representation for fixed cartesian grid solvers with a efficient treatment
of spatial queries is provided. For the exchange of coupling data between the solvers, a peer-
to-peer communication concept without a central control instance is used. Various methods
for data mapping between non-matching grids are available, ranging from simple projection
to approaches based on radial-basis function interpolation. The equation coupling module
provides a wide variety of runtime configurable aspects of numerical coupling, like serial
or parallel as well as explicit and implicit coupling schemes along with several acceleration
schemes, so called post-processing methods. The latter category of implicit schemes with
suitable post-processing methods is of particular interest with regards to this work. preCICE
comes with a XML configuration module that allows for runtime specification and steering of
coupling algorithms and auxiliary tools.

preCICE is written in C++ and features a clean and modern software design, including
unit and integration tests. It provides efficient coupling concepts while maintaining minimal
external library dependencies. All application programming interfaces are available in C++,
C and Fortran.
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5.2 Implementation Details

5.1.2 OpenFOAM

OpenFOAM2 (Open Source Field Operation and Manipulation) is a open source numerical
simulation toolbox for problems in continuum mechanics with emphasis on flow simulation. It
provides a variety of single physics solvers using different discretizations such as FVM and
FEM. The fluid-structure simulations within this work were conducted using single physics
solvers from a software based on openFOAM, called the foam-extend-3.1 project3. The preCICE
adapter as well as the actual used solver were developed by David Blom et al. from the TU
Delft.

The fluid solver uses a second order finite volume discretization of the incompressible
Navier-Stokes equations. A coupled solution algorithm as proposed in [15] is used, instead
of a standard PISO (Pressure Implicit with Splitting of Operators) approach. The governing
fluid equations are formulated in the arbitrary-lagrangian-eulerian point of view and mesh
movement is done via radial-basis function interpolation as in [16]. Time integration is done
using a second order backward differencing scheme.

The structural solver uses a full Lagrangian formulation and a Saint-Venant-Kirchhoff
material model.

5.2 Implementation Details

A considerable amount in this work comprised the realization and implementation of the
coupling scheme variants as presented in Chapter 3 and 4. These turned out to be valuable for
partitioned FSI coupling, namely the serial IQN-IMVJ method and its parallel counterpart.
The integration of a stable, robust and efficient implementation of those schemes into the
partitioned black box library preCICE was intended. While several explicit schemes as well
as some important implicit schemes, i. e., the dynamic Aitken’s relaxation and the serial and
parallel IQN-ILS scheme are already available in the preCICE library, the implementation of
the multi-vector schemes has been done within this work.

In the following, we consider a few aspects of the implementation that have substantial
influence on the stability, robustness and efficiency of the coupling schemes. Section 5.2.1 and
5.2.2 show some aspects that are readily realized in the preCICE implementation.

In order to facilitate the findings in this section, we simplify the notation. In the remainder,
we referW to be the matrix composing the input modes and V to be the matrix that keeps all
the output modes, regardless of which method is used. Furthermore, we drop the distinction
between the Jacobian and its inverse and do not differentiate between the Jacobian of the
residual operator or any other. The approximation of the Jacobian is referred to as Ĵ .

2http://www.openfoam.org/
3http://www.extend-project.de
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5.2.1 Advance and Initialize the Coupling Schemes

In Chapter 3 and 4 we particularly focused on the solution of the fixed-point equation within
one time step but suppressed how to initialize the coupling algorithm and how the coupling is
advanced in between time steps. These aspects are covered in what follows.

Initialization. The initialization of a coupling scheme that uses one of the quasi-Newton
methods for acceleration and stabilization comprises to provide initial values for the input-
output matrices V and W as well as initial guesses for the Jacobian approximation Ĵ .

As we have seen in Chapter 4 and in particular in Remark 4.3.2, the initialization of the
Jacobian approximation is of great importance, especially for the Broyden and multi-vector
methods. In absence of a suitable initial guess4 for the Jacobian, the initial approximation is
fixed to the zero-matrix for all methods within this work. Indeed, this choice showed reasonable
results for all the inverse methods as well as for the forward methods in conjunction with
the block-iterative coupling system. For the latter, the initial matrix that is involved in the
solution process for the quasi-Newton update, thus is the identity matrix. For the IQN-ILS
method, the initial inverse Jacobian is irrelevant and for the multi-vector method, the zero
initial guess renders the method to be exactly identical to the IQN-ILS method for the first
time step.

All of the quasi-Newton methods work with differences of subsequent input and output
values of the fixed-point equation. Hence, data from at least two iterations is needed to provide
initial data for the matrices V and W . Therefore, the first iteration performs a constant
underrelaxation step to provide the data, i. e.,

x1 = x0 + ω0R(x0)

Clearly, the underrelaxation step does not result in a drop of the residual comparable to one
quasi-Newton iteration. As the problem advances in time, it is possible to provide a more
sophisticated first iteration for all time steps, except the first. For now, assume that the
quasi-Newton method only utilizes information from the current time step for the estimation
of the Jacobian, i. e., the input-output matrices do not contain any column from previous time
steps. For all time steps t = 2, · · · , the first iteration performs a quasi-Newton update using
the input-output matrices from the previous converged configuration. Thereafter, enough
input-output data from the current time step is available and the old information is discarded.

This technique decreases the required average iterations per time step by one iteration. As
the IQN-ILS method usually is applied in a mode that reuses information from several time
steps in V and W , the effect of the alternative first iteration is vanishingly low5. However,
for the IQN-IMVJ method it is of great benefit, as this methods usually works best if no
information from old time steps is incorporated in V and W .

4For partitioned FSI coupling it is in general not possible to provide a initial guess for the Jacobian, as we aim
to o approximate the Jacobian of entire single-physics solvers that additionally do highly depend on time.

5If columns from previous time steps are kept in the input-output matrices, this improved first iteration is
performed implicitly.
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Advance Scheme in Between Time Steps. While for all post-processing schemes it
is beneficial to have a start value that is not too far from the sought fixed-point, for the
quasi-Newton methods this is essential due to their inherent local convergence property. While
for the first time step a good initial guess x0

0 is required, an extrapolation of coupling values
from previous time steps x∗n,x∗n−1, · · · can be employed for all succeeding time steps, to achieve
a better initial guess. Only the coupling data that is directly used as input by one of the
black-box solvers is extrapolated in time, i. e., displacements for the serial and block-iterative
system and both, displacements and pressure values for the parallel system. In Chapter 4
this extrapolation step was referred to as x0

n+1 = extr(x∗n,x∗n−1,x
∗
n−2) and is implemented in

preCICE to perform a second-order extrapolation in time, reading

x0
n+1 = 5

2x
∗
n − 2x∗n−1 + 1

2x
∗
n−2

which falls back to a first-order extrapolation

x0
n+1 = 2x∗n − x∗n−1

for the second time step, since no two time step solutions are available by then.

5.2.2 Realizing the Newton Update and Solving the Linear System of
Equations

All the rank-m quasi-Newton update schemes presented in Chapter 4 use either of the two
update formulas

J = W
(
V TV

)−1
V T (5.1)

J = Jprev + (W − JprevV )
(
V TV

)−1
V T , (5.2)

Both include the solution of a linear system of equations or the solution to a least squares
problem, respectively. Here, we have V ∈ Rn×m, W ∈ Rn×m and J ∈ Rn×n where m� n is
the number of columns in the difference matrices. If no information from previous time steps
is re-used, it holds m = k. For those quasi-Newton methods with explicit representation of
the Jacobian, that use the second update formula, we need to compute Z = (V TV )−1V T

with Z ∈ Rk×n. Whereas for the matrix-free methods it suffices to compute the vector
α = −Zrk. The latter has been shown to be equivalent to solving the least squares problem
α = argminβ‖V β + rk‖2 in Section 4.1. Either way, both methods need to solve a system
of equations, whose realization is discussed in the following with regards to stability and
conditioning as well as complexity of the solution.
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Solving the Normal Equations. A straightforward and simple approach is to solve the
least-square linear system using the normal equations, that is, solving the system directly as
stated in the update formulas. It is naturally to replace (V TV )−1V T by the system

(V TV )z = V Ty (5.3)

for arbitrary y and corresponding z. This system can be solved using LU-decomposition for
the matrix (V TV ), followed by forward and backward substitution. The matrix Z is obtained
by solving this system for all unit vectors y = ei. A pseudo code is given in Alg. 5, left. Note,
that for the matrix-free methods it suffices to solve the normal equations once for y = −rk.

Usually V is close to rank-deficient and has a high condition number. Computing the
product (V TV ) even doubles the condition number, which results in a bad conditioned
problem when solving the normal equations and is thus impractical for a lot of applications.
Using this approach, the overall complexity can be easily seen from the pseudo code to be in
O(m2n+m3).

Solving the Least Squares Problem Using QR-Decomposition. An alternative so-
lution is to solve an equivalent least-squares problem that entails a much better condition
number. The resulting algorithm turns out to be numerically more stable than solving the
normal equations. Solving the normal equations (5.3) is equivalent to solving the unconstraint
least-squares problem

minz∈Rn ‖V z − y‖2 (5.4)

This formulation is convenient for storing and updating information from previous time steps
(no re-computation of V TV required) and, in particular, it is efficient when solving successive
least-squares problems over a number of iterations. Looking at eq. (5.4), it suffices to solve
V z = y, which is done using a economy-size QR-decomposition, i. e., V = QU with the
orthogonal matrix Q ∈ Rn×n and the upper triangular matrix U ∈ Rn×m.

Then, z is computed from solving the quadratic m×m system

Ũz = Q̃
T
y

via backward substitution, where Ũ ∈ Rm×m denotes the first m rows of U and Q̃ contains
the first m rows of Q. As before, we obtain the matrix Z by solving this system n-times for
the unit vectors y = ei, while for the matrix-free versions it suffices to solve this system once
for y = −rk. A pseudo code for the computation of Z is depicted in Alg. 5, right.

With this straightforward implementation, the QR-decomposition is re-computed in every
iteration, requiring approximately 2m2(n − m/3) ∈ O(m2n) flops using Householder QR-
decomposition. However, the complexity can be reduced if the decomposition is updated rather
than recomputed throughout the iterations. Since each V k is obtained by its predecessor
V k−1 by adding one column to the right and probably dropping one or more columns to
the left, it suffices to compute one additional Householder transformation for the rightmost
column to update the previous QR-decomposition. This can be done in O(mn) arithmetic
operations. It is likewise possible to add and delete columns at arbitrary position for the sake
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solve V TV z = V Ty via LU-dec.

compute product V TV ∈ Rm×m ∈ O(m2n)
compute LU = V TV ∈ 2

3O(m3)
for i = 1 to n do

forw. subst. Lw = V T (·, i) ∈ 1
2O(m2)

backw. subst. Uz = w ∈ 1
2O(m2)

Z(·, i) = z
end

solve V z = y via QR-dec.

compute QU = V ∈ 4
3O(m2n)

for i = 1 to n do
backw. subst. Ũz = QT (·, i) ∈ 1

2O(m2)
Z(·, i) = z

end

Algorithm 5: Solving the least squares linear system Z = (V TV )−1V T left: via solving
the normal equations using LU-decomposition of V TV , and right: via solving a equivalent
least squares problem and QR-decomposition of V . The latter approach is favourable
because of better conditioning and good stability properties.

of stability and well-conditionedness using suitable Givens rotations within O(mn) flops. A
very detailed elaboration on updated QR-decomposition, including an exact comparison of
complexity with respect to required arithmetic operations and implementation details, is given
in [36]. In evaluating a large set of test cases, Hammerling et al. showed that the updated
QR-decomposition appears to be way more efficient than recomputing the entire factorization
if changed.

In preCICE, the update for all quasi-Newton methods is done using a updated QR-
decomposition of the matrix V k via a modified Gram-Schmidt algorithm and a set of suitable
Givens rotations [14]. The respective system of equations is solved in every iteration. In litera-
ture it is also proposed to use singular-value decomposition or rank-revealing QR-decomposition
with full pivoting [23]. Although those methods perform better in case of rank-deficiency,
they are more costly and, in particular, perhaps less necessary if additional effort is made to
maintain a acceptable conditioning of the system, as described in the following.

Maintaining Acceptable Conditioning. As we store differences of subsequent input-
output data, V is often close to rank-deficient and the condition of the problem is critical.
The condition number highly depends on the number of columns m in V k as the risk of
linear dependence increases with growing m. Furthermore, a large m entails the risk of having
outdated or contradicting information, especially if a large number of time steps are reused.
On the contrary, restricting m to be small bears the possibility that the secant information
is too limited to provide sufficient convergence of the method. To solve this dilemma, the
preCICE implementation monitors the condition number of the least-squares coefficient matrix,
which is just the condition number of the matrix Ũ , and keeps it at tolerable size by dropping
critical columns. To be specific, if the diagonal element U ii falls below a prescribed tolerance,
the corresponding column is removed from V k and the QR-decomposition is updated.
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Scaling of Coupling Data. In practice, the input-output data of forces and displacements
often differs by orders of magnitude. Usually the changes of the displacements are much smaller
than the changes in the forces exerted by the fluid. Once again, this causes bad conditioning
for the least squares system that needs to be solved. To overcome this stability problem, the
coupling data can be scaled previous to the post-processing process, so that both, forces and
displacements are in the same order of magnitude. So far, the optimal ratio rdf = ‖xd‖2/‖xf‖2

for the different methods is obscure and an automatic choice of the respective scaling factor is
not possible. Thus, to obtain optimal performance of the coupling scheme, a parameter study,
searching for the best scaling factor, has to be performed in a post-processing stage. Although,
it might not be optimal a ratio of rdf ≈ 1 always guarantees proper working of the considered
quasi-Newton methods. Note, that this is only necessary for the parallel-implicit coupling
scheme, as the serial-implicit coupling scheme solely uses displacement input-output data to
approximate the Jacobian of the System.
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Chapter 6

Comparison and Evaluation of
Implicit Coupling Schemes

In this chapter, the previously introduced implicit quasi-Newton coupling schemes are evaluated
and compared for a one-dimensional model for the internal flow through a flexible tube, based
on [18]. To allow for a comprehensive and feasible comparison of different coupling schemes
and solver variants, the fluid and structure solver as well as the coupling algorithm has
been implemented in MatLab, supporting fast prototyping. The description of the scenario,
including the physical model and discretization, is given in Section 6.1.

In Chapter 4 a whole range of coupling schemes and quasi-Newton post-processing methods
was presented. In order to figure out the most promising variants for real world scenarios and
benchmark examples, a qualitative comparison of all the coupling schemes from Sect. 4.5 is
elaborated in Section 6.2. The preCICE implementation for newly developed coupling schemes
is validated in Section 6.3 for the one-dimensional test scenario.

6.1 One-Dimensional Flexible Tube: Scenario Description

This scenario considers a flexible tube with internal inviscid and incompressible flow, where
gravity impacts are neglected. It is taken from [18] and the description of the physical model
is based thereon and on [31].

Physical Model. Due to the axis-symmetry we obtain a one-dimensional model by aver-
aging over the tube in radial direction as shown in Figure 6.1. The simplified equations for
conservation of mass and momentum read

∂(av)
∂t

+ ∂(au2)
∂x

+ a
∂p

∂x
= 0 (6.1)

∂a

∂t
+ ∂(au)

∂x
= 0, (6.2)
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6 Comparison and Evaluation of Implicit Coupling Schemes

Figure 6.1: Schematic representation of the deformed flexible tube with internal flow in x-direction, radius r,
wall thickness h and total length L. The fluid caused pressure acting on the inner tube walls in radial direction
causes circumferential stresses σϕϕ(x) that result in a deformation in radial direction. This illustration is taken
from [31, p. 134].

where v(x) is the flow velocity in x-direction, a(x) = πr(x)2 denotes the cross sectional area of
the tube and p(x) is the fluid pressure in radial direction. A sinus-shaped time-varying inlet
velocity and non-reflecting outlet boundary conditions are imposed.

vin = v0 −
v0

100 sin2(π t
T

)

The elastic tube wall is described by a linear elastic constitutive law with the scalar
circumferential stress

σϕϕ = E
r − r0
r0

σ0, (6.3)

where E is the Young’s modulus and r0 and σ0 denote the reference position of the wall and its
initial circumferential stress, respectively. The tube wall is assumed to contain no mass, since
the inertia of the latter is neglected. The motion of the wall is restricted in radial direction.
The dynamic FSI interface conditions are given by

ρpr = σϕϕh (6.4)

with the thickness h of the tube wall. Substituting the constitutive law (6.3) in (6.4) and
introducing the Moens-Korteweg wave speed cmk =

√
Eh/2ρr0, the cross sectional area finally

can be rewritten as an explicit function of the pressure

a(p) = a0

(
p0 − 2c2

mk

p− 2c2
mk

)2

(6.5)

with the reference values r0 and a0. For this scenario, the general coupling variables xf for
the forces and xd for the displacements can be substituted by the pressure p and the cross
sectional area (csa) a. For further details of the model, refer to [18].

Discretization. To discretize the physical model, the spatial domain [0, L] is subdivided
into NS equidistant cells of size ∆x = L/NS. The pressure and velocity unknowns vi and pi as
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6.2 Numerical Results and Comparison of Coupling Schemes

well as the cross sectional area values ai are located at the cell centers, i. e., the same mesh is
used for fluid and structural solver. Finite volumes using central discretization schemes are
applied to discretize all terms in the fluid and structural equations, except for the convective
flow terms, where a stabilizing first-order upwind scheme is used. To account for the absence of
a diffusive term, an additional pressure stabilization term is added to the continuity equation
(6.2). At the inflow and outflow boundary x = 0 and x = L, respectively, the values from the
cell centers are linearly extrapolated to the boundary.

The time interval [0, T ] is analogously subdivided into NT time steps of the same length ∆t.
The time derivatives for both, the structure and fluid equations are discretized by means of a
first-order backward Euler scheme.

In order to control the hardness of the problem and to study the behaviour of different
coupling schemes, two characteristic quantities are defined, referring to [18], namely the
dimensionless stiffness parameter κ and the dimensionless time step τ , reading

κ := 1
U0

=

√
Eh

2ρr0
− p0

2ρ

v0
, τ = U0

D0NT
= v0∆t

L

Here, the initial velocity v0, the initial dimensionless velocity U0, the initial pressure p0 and
the dimensionless spatial discretization width D0 are used. Stability analysis in [18] and
[12] showed, that obtaining stability for the FSI coupling is more challenging for decreasing
structural stiffness κ, decreasing time step size τ and increasing spatial resolution. The spatial
resolution is fixed to NS = 100 for all the conducted experiments. A full period of the time
dependent sine-shaped inlet velocity is simulated.

6.2 Numerical Results and Comparison of Coupling Schemes

Because of the simplicity of the scenario, it is possible to analyze a whole range of methods
and parameters with relatively low implementation effort. Supporting this, both single-
physics solver as well as the coupling algorithm were implemented in simple MatLab code.
This section aims for a qualitative comparison of the coupling schemes introduced in Sec-
tion 4.5, i. e., all valid combinations of coupling systems {S, V,B} and post-processing schemes
{IQN-ILS, IQN-LSJ, IQN-LSHJ, IQN-IMVJ, IQN-MVJ,Broyden}.

Although the here considered one-dimensional example is rather easy to implement and
analyze, it shows some inherent bad-conditioning which is particularly intensified by the
assumption of having a tube wall with no mass. Further, the pressure and cross sectional area
values differ by orders of magnitude. Consequently, all the numerical experiments carried out
in this chapter aim to investigate and compare the rough behaviour of the coupling schemes in
order to spot the most promising candidates for further experiments. Here, we are interested
in the qualitative properties of the coupling algorithms to be able to formulate tendencies and
do not focus on quantitative results.
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6 Comparison and Evaluation of Implicit Coupling Schemes

We obtain the same physical values up to an absolute l2-precision of 10−9 for all investigated
coupling variants, provided that convergence is achieved. In the very first iteration, a constant
underrelaxation step is performed, while using the approximation from the last time step for
the first iteration of all the subsequent ones. A second-order time extrapolation in between
time steps is computed for the coupling data. The fluid solver solves up to a l2-precision of
10−15 and the coupling algorithm proceeds until the l2-norm of the residual drops below a
relative convergence criterion of 10−7 for the cross sectional area a = xd and the pressure
p = xf , respectively, i. e.,

‖âk − âk−1‖2 ≤ 10−7‖âk‖2 and ‖p̂k − p̂k−1‖2 ≤ 10−7‖p̂k‖2.

The offsets a0 and p0 are subtracted before the measurement of the residual, i. e., â = a− a0
and p̂ = p− p0.

The update of the Jacobian matrix or its inverse is done naively, solving the normal equations
using built-in MatLab functions. No effort is made to stabilize the system or maintain a good
conditioning of the matrices beyond the internal MatLab implementation.

In Section 6.2.1, we investigate the behaviour of the different coupling systems, i. e., {S, V,B},
followed by a comparison of the different quasi-Newton methods in Section 6.2.2. In this
connection a few prototypes of additional variants are considered.

6.2.1 Comparison of Coupling Systems

The serial-implicit coupling system as described in Section 3.2.1 represents the standard
approach to partitioned FSI coupling. However, it offers some drawbacks with regards to
parallel efficiency due to bad load balancing. The parallel-implicit coupling system is designed
to overcome these drawbacks. A priori the latter introduces the double amount of work,
though, allowing for a fully parallel execution of the field solvers. This can be seen from solving
both systems with a plain fixed-point iteration, as examined in [57], which requires twice as
many minus one iterations for the V-system than for the S-system to converge. The authors
show, that only quasi-Newton methods (namely the IQN-ILS method) turn out to be powerful
enough to make one iteration of the V-system comparable to one iteration of the S-system.
This is mainly due to the fact, that additional input-output information from the present and
previous time steps for the force or pressure data can be incorporated into the approximation
process.

Likewise, the B-system ought to be an advancement to the serial-implicit system, however
coming from a different perspective. The block-iterative execution allows for a better modularity
as the Jacobians for the respective field solvers need to be approximated directly. This can
be beneficial if any information of solver internals or initial Jacobian guesses is available, in
contrast to our assumptions. However, the execution order of the field solvers is restricted to
be serial.

Table 6.1 shows the mean iteration numbers over the first hundred time steps for the different
coupling schemes, applied to the one-dimensional flexible tube scenario. The dimensionless
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6.2 Numerical Results and Comparison of Coupling Schemes

Figure 6.2: Comparison of mean iteration numbers for the S-system and the V-system and different values
for τ (y-axis) and κ (x-axis). The factor of how much more or less iterations the V-system required with
respect to the mean iterations for the S-system is visualized for each parameter setting, i. e., the factor
fVS = mean iterations V-system/mean iterations S-system. The lower right corner is undefined for all cases, except for the
IQN-LSHJ method.

stiffness parameter κ and the time step size τ control the amount of present oscillations and
instabilities and are varied, i. e., κ ∈ {1000, 100, 10} and τ ∈ {0.1, 0.01, 0.001}. The hardness
of the coupling scenario increases from the top left corner to lower right corner of the iteration
tables. Firstly, the findings from [57] can be confirmed when comparing the iteration numbers
for the serial- and parallel-implicit coupling system. For all the considered quasi-Newton
post-processing schemes, the average number of iterations per time step for the V-system is
comparable to the S-system. To be specific, we have a deviation of plus/minus one iteration
for the easier cases, and we require a multiple of 1.3 of the mean iterations of the S-system
in order for the V-system to converge for the harder cases, averaged over all methods. This
factor

fVS = mean iterations for V-system
mean iterations for S-system

is visualized in Figure 6.2 for the different quasi-Newton methods. The V-system yields
especially good results for the IQN-IMVJ method where it is always superior to the S-system,
but also shows good performance for the IQN-ILS and Broyden method. As opposed to the
V-system, the S-system appears to have difficulties with the most challenging parameter setting
(τ, κ) = (0.001, 10), where the coupling fails to converge for most methods. This however, is
not in the least due to the bad conditioning of the scenario.

Comparing the block-iterative coupling system with the S-system, we see from Table 6.1
that there is no remarkable difference between the two coupling variants. To be more accurate,
the B-system shows slightly worse average iteration numbers than the S-system. A possible
explanation for this is that the B-system requires the approximation of the forward Jacobians,
which turned out to be less stable than the approximation of the inverse Jacobian of one of the
operators (see Sect. 6.2.2). Similarly, the B-system offers no identifiable advantage over the
V-system, while having several drawbacks. While providing no better convergence properties,
the computational effort of the B-system is comparable to that of the V-system, but is not
suitable for a massive parallel computation. Furthermore, it involves the solution step of a
linear system of equations in each iteration, as it approximates for the solvers’ Jacobians.

Summarizing the above, we can conclude, that the B-system offers several drawbacks without
having a better convergence behavior. The performance of the S-system and the V-system is
quite comparable. Together with its better parallel efficiency, this yields an advantage of the
V-system over the S-system.
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S-System V-System B-System

S-IQN-ILS V-IQN-ILS

IQ
N
-I
L
S τ \ κ 1000 100 10

0.1 2.98 3.06 4.15
0.01 3.03 3.41 7.26

0.001 3.45 6.96 –

τ \ κ 1000 100 10
0.1 2.70 3.25 5.14

0.01 3.19 4.39 11.14
0.001 4.39 10.09 35.75 z

S-IQN-LSJ† V-IQN-LSJ†

IQ
N
-L
SJ τ \ κ 1000 100 10

0.1 2.98 3.07 4.24
0.01 3.02 3.16 –

0.001 3.39 – –

τ \ κ 1000 100 10
0.1 2.69 3.65 –

0.01 3.15 – –
0.001 11.65 – – z

S-IQN-LSHJ V-IQN-LSHJ B-IQN-LSJ

IQ
N
-L
SH

J

τ \ κ 1000 100 10
0.1 2.98 3.08 4.07

0.01 3.03 3.49 7.64
0.001 3.25 7.21 20.11

τ \ κ 1000 100 10
0.1 3.04 3.84 5.77

0.01 3.61 5.15 12.57
0.001 5.16 11.41 35.25

τ \ κ 1000 100 10
0.1 3.02 3.31 5.29

0.01 3.07 4.80 8.39
0.001 4.36 8.19 –

S-IQN-IMVJ V-IQN-IMVJ

IQ
N
-I
M
V
J

τ \ κ 1000 100 10
0.1 2.98 3.10 3.40

0.01 3.01 3.19 4.34
0.001 3.07 4.45 –

τ \ κ 1000 100 10
0.1 2.39 2.78 3.27

0.01 2.57 3.13 4.08
0.001 3.14 3.78 8.04 z

S-IQN-MVJ† V-IQN-MVJ† B-IQN-MVJ

IQ
N
-M

V
J

τ \ κ 1000 100 10
0.1 2.98 3.06 4.23

0.01 3.01 3.33 –
0.001 3.38 – –

τ \ κ 1000 100 10
0.1 3.11 3.29 5.25

0.01 3.45 4.46 –
0.001 4.47 8.65 –

τ \ κ 1000 100 10
0.1 3.01 3.04 3.32

0.01 2.06 3.09 5.01
0.001 3.05 4.24 –

S-Broyden V-Broyden B-Broyden

B
ro
yd

en

τ \ κ 1000 100 10
0.1 2.98 3.12 4.63

0.01 3.08 3.19 6.18
0.001 3.44 5.80 –

τ \ κ 1000 100 10
0.1 2.61 3.13 5.06

0.01 3.05 3.70 8.74
0.001 3.49 8.07 –

τ \ κ 1000 100 10
0.1 3.02 3.28 6.07

0.01 3.18 4.50 –
0.001 5.05 – –

Table 6.1: One-dimensional elastic tube. All valid coupling schemes, as summarized in Sect. 4.5, are evaluated
for the one-dimensional flexile tube scenario. The average number of iterations over the first 100 time steps is
depicted for different parameter combinations of the dimensionless stiffness parameter κ and the dimensionless
time step size τ . The occurring instabilities become more intense for decreasing structural stiffness κ and
decreasing time step size τ . z Left blank, because the block-iterative scheme is only valid for a approximation
of the Jacobian of F and S. † IQN-MVJ and IQN-LSJ methods that approx. the Jacobian matrix do only
work properly with an initial guess 1 · 1010I, which is kind of complementary to the zero-matrix for the inverse
approximation. Though, they are highly sensitive to the choice of the scaling factor for the identity.
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6.2.2 Comparison of Quasi-Newton Post-Processing Methods.

IQN-IMVJ Method. This generalized Broyden method, approximating the inverse Ja-
cobian of the residual operator, is newly introduced within this thesis and up to now only
tested for the B-system in Bogaers et al. [8]. It yields the overall best results for the considered
one-dimensional flexible tube scenario, as can be seen from Table 6.1. The mean iteration
numbers for the S-system as well as for the V-system dominate the results for the remaining
methods. Here, the V-system even appears to outperform the S-system and the method
provides a good overall robustness. Even the case (τ, κ) = (0.001, 10), where severe instabilities
are present, converges fast and reliable. The good convergence behaviour for this method can be
explained considering its properties and features as explained in Section 4.3. Information from
previous time steps is implicitly incorporated into the approximation process in a minimum
norm sense which lessens the risk of linear dependence and contradicting information in the
secant equation. Additionally reusing columns from old time steps in the matrices V and W
showed further improvements for this scenario, however, this behaviour could not be confirmed
for more realistic applications, see Chapter 7.

Consequently, this method yields excellent results without explicitly re-using past information
in the secant equation, and thus renders the tuning of the highly problem dependent parameter
R of re-used time steps unnecessary. This is beneficial for two reasons: Firstly, it saves us
a very costly pre-processing step. Secondly, the number of columns in the secant equation
is usually significantly smaller. Yet, this comes at the cost of having to store an explicit
representation of the Jacobian approximation matrix.

IQN-ILS Method. The well-known IQN-ILS method shows comparable results to previous
investigations [57] for the serial and the parallel coupling system. The iteration numbers
in Table 6.1 were obtained without re-using any information from previous time steps in
the difference matrices V and W . In doing so, the convergence behaviour of this method
can be greatly improved, which allows for a fair comparison to the IQN-IMVJ method. In
Table 6.2 the mean iteration numbers are given for the S-system and the V-system, re-using the
information from 4, 8, 16 and 32 previous time steps in the approximation process. For both
coupling systems we observe a significantly improved convergence behaviour and robustness,
especially for the harder cases in the lower right corner. Unlike the serial coupling system, the
V-system further improves for the re-use of 8 or 16 previous time steps, which suggests that
it is beneficial to re-use more previous information for the V-system than for the S-system.
Nonetheless, the performance cannot be arbitrarily improved, as the risk of linear dependencies
and contradicting information within the secant equation increases if more and more outdated
information is retained. Although this scenario is exceptional well suited for retaining passed
information, the effect is visible from Table 6.2 in that the S-system presents worsened mean
iteration numbers for a large number R and the V-system is at least not further improved
reusing 16 or 32 passed time steps. Thus, in general, the optimal number of reused time
steps R is highly problem dependent and needs to be tuned for every application in a costly
pre-processing stage.
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S-IQN-ILS(4) S-IQN-ILS(8) S-IQN-ILS(16) S-IQN-ILS(32)

τ \ κ 1000 100 10
0.1 2.98 3.04 3.18

0.01 3.02 3.08 3.61
0.001 3.08 3.27 –

τ \ κ 1000 100 10
0.1 2.98 3.04 3.54

0.01 3.02 3.11 3.62
0.001 3.08 3.32 –

τ \ κ 1000 100 10
0.1 2.98 3.04 9.08

0.01 3.02 3.23 4.27
0.001 3.08 3.54 –

τ \ κ 1000 100 10
0.1 2.98 3.17 7.47

0.01 3.02 4.23 4.64
0.001 3.08 3.83 –

V-IQN-ILS(4) V-IQN-ILS(8) V-IQN-ILS(16) V-IQN-ILS(32)

τ \ κ 1000 100 10
0.1 2.07 2.13 2.34

0.01 2.10 2.21 3.73
0.001 2.20 3.28 10.72

τ \ κ 1000 100 10
0.1 2.08 2.14 2.51

0.01 2.11 2.19 3.14
0.001 2.16 2.74 8.77

τ \ κ 1000 100 10
0.1 2.09 2.34 2.50

0.01 2.13 2.25 2.76
0.001 2.17 2.44 8.01

τ \ κ 1000 100 10
0.1 2.28 2.89 2.93

0.01 2.86 2.38 2.92
0.001 2.25 2.46 7.98

Table 6.2: One-dimensional elastic tube. Average iteration numbers over the first 100 time steps for the IQN-ILS
method, re-using information from previous time steps in the approximation process. For the serial-implicit and
the parallel-implicit coupling system, the mean iteration numbers are given for 4, 8, 16 and 32 retained passed
time steps (indicated in brackets).

It has to be mentioned, that for this scenario the IQN-ILS(R) variant yields better results
than the IQN-IMVJ method. This is partly due to the fact that the benefit from re-using
previous time steps is enhanced for this example, which also explains an improved performance
for the IQN-IMVJ if information is re-used explicitly in V and W . Although the IQN-ILS(R)
shows quite good results, one has to keep in mind, that this optimum with respect to the
parameter R is found in a costly try and error process.

IQN-LSHJ Method. The IQN-LSHJ method shows no better convergence behaviour than
the IQN-ILS and the IQN-IMVJ method, while carrying some severe drawbacks. Firstly, it
approximates the Jacobian matrix of the fixed-point operator, which means that a linear
system of equations needs to be solved in each quasi-Newton iteration and the approximate
Jacobian matrix has to be computed explicitly. As a consequence, this method is considered
inferior and is not investigated further.

IQN-MVJ and IQN-LSJ Method. Both methods correspond to the forward approxima-
tion variants to their inverse counterparts IQN-ILS and IQN-IMVJ. As opposed to the latter,
the forward approximations appear to be very unstable and offer bad conditioning. The main
problem here is to find a suitable initial guess for the Jacobian approximation. The zero-matrix
initial guess is impractical, as a rank-one update for the very first iteration does not lead to a
regular matrix for the Jacobian approximation. Thus, it is not possible to solve the respective
system.
A natural solution is to choose a scaled identity matrix finit · I as initial guess, which is kind
of complementary to the initial zero-guess for the inverse versions. This choice appears to
work for the multi-vector variant, but fails to stabilize the harder cases properly as can be
seen from Table 6.1. For both methods, convergence was achieved only for the easy cases for
which a pure fixed-point iteration yields comparable results. Furthermore, the stability and
conditioning is highly sensitive to the scaling parameter finit.
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The above, in conjunction with the other drawbacks that come with the approximation of
the Jacobian instead of the inverse Jacobian, render these methods useless and impractical for
realistic applications in partitioned FSI coupling.

Broyden Method and Generalized Broyden Methods. The results for the Broyden
method are of particular interest in comparison with those from the IQN-IMVJ method, as it
simply minimizes the change in the approximate inverse Jacobian within one iteration, finally
doing a rank-one update. It will now be interesting to see if the additional computational effort
and storage requirement for the IQN-IMVJ rank-m update in terms of convergence speed and
stabilizing behaviour pays off. At first, we see from Table 6.1 that the Broyden method works
quite good for the easier cases and, in particular, performs far better than dynamic Aitken’s
underrelaxation (compare [57]). The latter can be seen as the rank-one update version of the
IQN-ILS method and has comparable complexity to the Broyden method. Furthermore, it
yields even better results than the IQN-ILS method, if the latter is applied without retaining
past information. This shows that the implicit incorporation of old information works good,
even if the minimization ranges over no more than one iteration. However, it does not measure
up with the generalized rank-m variant which is clearly superior, especially for the harder
cases.

Considering the complexity of both methods, we see from eq. (6.6) that the Broyden rank-one
update has an overall complexity of O(2n2 + n) in terms of required multiplications.

Jk = Jk−1 +
(
wkk−1−

O(n2)

Jk−1v
k
k−1

O(n2)

)
[vkk−1]T /‖vkk−1‖2L2

O(n)

(6.6)

As opposed to this, the IQN-IMVJ rank-m update involves matrices of size m × n and the
solution to a linear system of equations.

Jk = Jprev +
(
W k −

O(n2m)

JprevV k

O(n2m)

) (
V T
kV k

)−1
V T
k

O(m2n+mn)

(6.7)

The latter can be efficiently computed using an economy-size QR-decomposition which is
updated in each iteration, requiring O(mn) multiplications (compare Section 5.2). This results
in an overall complexity of O(2n2m+m2n+mn) in terms of required multiplications, which
can be seen from eq. (6.7). For a less efficient implementation of the QR-decomposition the
complexity increases to O(3n2m). Consequently, as m is usually rather small, the updated
QR-decomposition allows for efficient implementation of the generalized rank-m update, which
clearly pays off due to better convergence. In case of having a more costly QR-decomposition
implementation, it could be worth considering the Broyden method, if moderate instabilities
are present.

The generalized Broyden methods a priori allow for an arbitrary choice ofm, i. e., partitioning
of input-output data into groups to perform the rank-m update. The very natural choice for
partitioned FSI coupling of m = k, the number of iterations performed in the current time
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V-Broyden V-IQN-IMVJ V-IQN-IMVJ−2 V-IQN-IMVJ−4

τ \ κ 1000 100 10
0.1 2.61 3.13 5.06

0.01 3.05 3.70 8.74
0.001 3.49 8.07 –

τ \ κ 1000 100 10
0.1 2.39 2.78 3.27

0.01 2.57 3.13 4.08
0.001 3.14 3.78 8.04

τ \ κ 1000 100 10
0.1 2.53 2.91 3.39

0.01 2.91 3.30 5.25
0.001 3.25 4.37 12.06

τ \ κ 1000 100 10
0.1 2.59 3.07 3.59

0.01 3.07 3.47 6.00
0.001 3.38 5.13 15.04

min
∥∥∥ĴR̃−1

k
− ĴR̃

−1
k−1

∥∥∥
F

min
∥∥∥ĴR̃−1

n
− ĴR̃

−1
n−1

∥∥∥
F

min
∥∥∥ĴR̃−1

n
− ĴR̃

−1
n−2

∥∥∥
F

min
∥∥∥ĴR̃−1

n
− ĴR̃

−1
n−4

∥∥∥
F

Table 6.3: One-dimensional elastic tube. Comparison of mean iteration numbers for different minimization
distances in the context of generalized Broyden methods. Left: The already introduced Broyden and IQN-IMVJ
method, that minimize the difference in the Jacobian approximation within one iteration and within one
complete time step, respectively. Right: Two modifications for the IQN-IMVJ method, that minimize the
change in the Jacobian approximation within two, resp. four entire time steps.

step, yields the IQN-IMVJ method. However, it is equally conceivable to minimize over the
change in the Jacobian approximation over more than one time step and setting m accordingly.
Table 6.3 shows a test series that considers minimization over more than one time step for the
one-dimensional flexible tube scenario. Mean iteration numbers are given for two modified
multi-vector methods that minimize the difference of the Jacobian approximation over two
and four time steps, respectively. Comparing the resulting mean Iteration numbers with the
reference case, namely the IQN-IMVJ method, we see that for this scenario no benefit is gained
from minimizing over more than one time step. The convergence behaviour gets even worse
when minimized over a larger distance. Thus, these alternatives are not promising, while
having higher computational costs and memory requirements.

On the other side, it is equally possible to choose m small but constant, that means the
used information is limited to a small number L ∈ N, e. g., L ∈ {1, 2, 3, 4}, of most recent
input-output modes. Here, two different forms are conceivable. It is either possible to limit
the number of utilized input-output modes to a small constant number L, but persist with the
minimizing within one entire time step. This method is referred to as IQN-IMVJ-truncated(L)
in the following. Or, an update can be performed each time the number of columns in V
and W exceeds the limit. This alternative, denoted as IQN-IMVJ-limited(L), constitutes
the counterpart to the earlier introduced IQN-IMVJ−R methods, performing a true rank-L
update in the sense of generalized Broyden methods. Note that the IQN-IMVJ-limited(1)
method coincides with the rank-one Broyden method. Both alternatives provide a Jacobian
update that is computationally cheap and independent on the number of required coupling
iterations. In particular, the complexity of the update appears to be a constant multiple of
the Broyden’s update complexity. Table 6.4 shows mean iteration numbers for both limited-
information alternatives, applied with the vectorial coupling scheme for different parameter
settings for the one-dimensional flexible tube scenario. While the results for the IQN-IMVJ-
truncated(L) methods deteriorate sharply compared to the reference case IQN-IMVJ, the
IQN-IMVJ-limited(L) methods show worsened but satisfying results. Thus, due to their rather
low computational complexity these limited-information alternatives seem to be promising in
cases, where moderate to little instabilities are present.
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IQN-IMVJ-truncated(2) IQN-IMVJ-truncated(3) IQN-IMVJ-limited(2) IQN-IMVJ-limited(3)

τ \ κ 1000 100 10
0.1 4.06 4.25 7.05

0.01 4.10 4.98 –
0.001 4.82 – –

τ \ κ 1000 100 10
0.1 2.59 3.13 4.00

0.01 3.07 3.42 –
0.001 3.35 9.60 –

τ \ κ 1000 100 10
0.1 2.59 3.07 3.58

0.01 2.93 3.28 7.45
0.001 3.25 4.74 –

τ \ κ 1000 100 10
0.1 2.52 2.82 3.40

0.01 2.88 3.24 5.04
0.001 3.24 4.24 –

Table 6.4: One-dimensional elastic tube. Mean iteration numbers for different limited-information V-IQN-IMVJ
variants that restrict the utilized input-output modes to a small, constant number. Left: IQN-IMVJ-truncated(L)
methods. Here the number of columns in difference matrices is restricted to L, but the minimization spans
over the entire time step. Right: IQN-IMVJ-limited(L) methods. True rank-L updates where the minimization
distance is aligned to the constant number L of utilized input-output modes.

Nonetheless, the IQN-IMVJ method appears to be the optimal choice, which is a very nice
result for two reasons: Firstly, m usually is limited to be rather small and secondly, (for the
IQN-IMVJ method) we do not have a problem dependent control parameter, neither for the
number of re-used time steps in V and W , nor for the distance that is optimal to minimize
about, that needs to be tuned beforehand.

Summarizing this section, it is worth considering the serial-implicit and the parallel-implicit
coupling system for further more sophisticated applications and benchmarks. The V-systems
offers a better parallel efficiency while the S-system often results in slightly better convergence
behaviour. The block-iterative coupling system showed no advantages over the other coupling
variants, but suffers from the same drawbacks with regards to parallel efficiency as the S-system.
Investigating the quasi-Newton post-processing methods from Chapter 4, all methods that
approximate for the (forward) Jacobian appeared to be very unstable and yield unsatisfactory
overall convergence behaviour while having a larger computational effort. Thus, we focus on
the inverse Jacobian approximations in the following, especially on the comparison of the
IQN-IMVJ method with the IQN-ILS method, re-using information from previous time steps.

A Remark Towards the Methods’ Independence w. r. t. Spatial Resolution. For
the sake of completeness a few results are added, that indicate the robustness of the considered
quasi-Newton method, especially the IQN-ILS(R) and the IQN-IMVJ, with respect to different
spatial resolutions, i. e., different numbers of unknowns at the coupling interface. For the pure
fixed-point iteration, i. e., Gauß-Seidel or Jacobi like iteration, the mean iteration numbers
for the considered parameter settings deteriorate if the spatial resolution is increased, cf. [31,
p. 135]. Similar results have been found in a stability analysis by Degroote et al. [18]. However,
several experiments using quasi-Newton methods as stabilizing post-processing methods show
that the convergence behaviour of the coupling appears to be independent of the spatial
resolution. Table 6.5 illustrates exemplary results for the IQN-ILS(8) and the IQN-IMVJ
method for spatial resolutions of N = 100 and N = 1000 unknowns at the fluid-structure
interface. Both methods show unchanged convergence behaviour apart from some very small
fluctuations. Similar results are obtained for different numbers of N and other quasi-Newton
methods.
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6 Comparison and Evaluation of Implicit Coupling Schemes

V-IQN-IMVJ V-IQN-ILS(8)
N = 100 N = 1000 N = 100 N = 1000

τ \ κ 1000 100 10
0.1 2.39 2.78 3.27

0.01 2.57 3.13 4.08
0.001 3.14 3.78 8.04

τ \ κ 1000 100 10
0.1 2.39 2.78 2.92

0.01 2.77 3.22 4.53
0.001 2.93 3.50 9.21

τ \ κ 1000 100 10
0.1 2.08 2.14 2.51

0.01 2.11 2.19 3.14
0.001 2.16 2.74 8.77

τ \ κ 1000 100 10
0.1 2.08 2.14 2.50

0.01 2.13 2.21 3.34
0.001 2.16 2.82 8.86

Table 6.5: One-dimensional elastic tube. Mean iteration numbers for the parallel coupling with IQN-ILS(8)
and IQN-IMVJ, using different resolutions in spatial discretization. The number of unknowns at the interface is
set to N = 100 and N = 1000.

6.3 Validation of the preCICE Implementation

Within this work, the IQN-IMVJ post-processing method has been implemented into the
preCICE library for partitioned FSI coupling. The implementation follows the considerations
from Chapter 5, particularly Section 5.2. In order to validate the implementation, the here
considered one-dimensional flexible tube scenario is carried out using the preCICE library
for the coupling of the fluid and solid single physics solver, written in C++. The results for
the serial and parallel coupling system, together with the IQN-IMVJ post-processing method
as well as for the parallel system accelerated by the IQN-ILS post-processing, are given in
Table 6.6.

While for the easy cases the preCICE implementation confirms or even improves the results
from the MatLab test bench, the preCICE implementation shows slightly worse convergence
behaviour for the harder cases. This can be explained by means of several reasons and is mainly
caused by the bad conditioning and sensitivity of the considered scenario. Firstly, MatLab
provides a whole range of stabilizing internal techniques that are chosen adaptively, such as rank-
revealing decompositions or singular-value decompositions in our case. Thus, it is likely that
the MatLab implementation maintains stability in cases where the preCICE implementation
becomes ill-conditioned. As this scenario is very sensitive, small differences in the conditioning

S-IQN-IMVJ V-IQN-IMVJ V-IQN-ILS

M
at

L
ab

τ \ κ 1000 100 10
0.1 2.98 3.10 3.40

0.01 3.01 3.19 4.34
0.001 3.07 4.45 –

τ \ κ 1000 100 10
0.1 2.39 2.78 3.27

0.01 2.57 3.13 4.08
0.001 3.14 3.78 8.04

τ \ κ 1000 100 10
0.1 2.70 3.25 5.14

0.01 3.19 4.39 11.14
0.001 4.39 10.09 35.75

pr
eC

IC
E

τ \ κ 1000 100 10
0.1 2.99 3.11 3.73

0.01 3.04 3.17 6.20
0.001 4.07 5.08 –

τ \ κ 1000 100 10
0.1 2.04 2.09 3.10

0.01 3.07 2.22 7.76
0.001 2.14 5.67 –

τ \ κ 1000 100 10
0.1 2.04 2.17 4.87

0.01 2.14 4.05 15.98
0.001 3.79 13.30 –

Table 6.6: One-dimensional elastic tube. Validation of the preCICE implementation of the newly introduced
IQN-IMVJ method for the one-dimensional flexible tube scenario. Mean iteration numbers for different parameter
settings are displayed.
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6.3 Validation of the preCICE Implementation

of the least-squares problem easily increase the average number of coupling iterations required.
For the most challenging case (τ, κ) = (0.001, 10) the preCICE implementation does not
fail completely, but diverges in one of the last time steps due to bad-conditioning of the
least-squares problem. The average number of iterations by then is comparable to the MatLab
implementation. Lastly, the preCICE implementation does not subtract the offset for the
cross sectional area and the pressure values before measuring the convergence, as this is not a
typical task for FSI coupling. Though, the latter further fosters higher iteration numbers on
average. Similar behaviour can be observed for the IQN-ILS method and an already existing
implementation within the preCICE library.

In conclusion, the preCICE implementation of newly post-processing methods can be
validated using the MatLab results. Especially the findings from the previous chapter, i e., the
improved convergence and robustness properties of the IQN-IMVJ method in comparison to
the IQN-ILS method, are clearly visible.
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Chapter 7

Benchmarks and Applications

In Chapter 6 a whole range of coupling schemes, using quasi-Newton methods for stabilization
and acceleration have been tested and investigated for a rather simple, one-dimensional test
problem. The herein considered FSI applications are more sophisticated and are motivated
from real world problems in the field of hemodynamics and aeronautics. All the considered
scenarios are investigated for the most promising coupling variants as suggested in Chapter 6,
i. e., the IQN-ILS and the IQN-IMVJ method for the serial as well as for the parallel coupling
system. In doing so, we aim to confirm the findings from earlier experiments but also want to
gain a deeper understanding of the behaviour of the two quasi-Newton methods to carry out a
detailed comparison.

All applications were conducted using the in-house coupling library preCICE together with
the open source toolbox openFOAM for the single physics solvers. Thereby, the newly integrated
parts and improvements for the preCICE library, as described in Chapter 5, are deployed. In
the following, three different scenarios are considered. Section 7.1 discusses a three-dimensional
flow over an elastic structure based on [49]. The wave propagation through a three-dimensional
flexible tube [17, 5, 8], induced by an initial pressure pulse, is investigated in Section 7.2. As a
closing example, the FSI3 benchmark scenario [55] is carried out for the considered coupling
schemes in Section 7.3.

7.1 Three-Dimensional Flow over an Elastic Structure

7.1.1 Scenario Description

This fluid-structure interaction application consists of a three-dimensional laminar and in-
compressible flow over an elastic structure based on [49]. The problem is considered to be
symmetric in the x/y-plane, hence, the simulation is only performed in one half of the domain.
The computational domain has a width and height of 0.4 m and spans a length of 1.5 m. The
elastic structure consists of a rectangular obstacle with dimensions 0.2 m × 0.2 m × 0.2 m,
which is mounted on the wall. The geometry of the scenario is given in Figure 7.1.
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7 Benchmarks and Applications

The fluid flow is driven by a parabolic velocity profile v, which is imposed as a Dirichlet
boundary condition at the inflow boundary with a peak velocity of vmax = 0.2 m

s . The profile
is faded in smoothly, i. e.,

v(t) =

v
1−cos(π2 t)

2 if t < 2.0,
v otherwise

(7.1)

At the outflow boundary, standard outflow conditions are applied for velocity and pressure and
no-slip conditions on all remaining boundaries. On the symmetry surface free-slip conditions
need to be applied. The considered incompressible fluid has a density of 1× 103 kg

m3 and a
dynamic viscosity of 1× 10−3 Pa s. The density of the solid obstacle is 1× 103 kg

m3 , the Poisson
ratio is 0.4 and the Young’s modulus is set to 1× 104 N

m2 .

t = 0.3 s t = 0.5 s

t = 0.7 s t = 1.3 s

Figure 7.1: Three-dimensional flow over an elastic structure. The geometry and deformation of the elastic
structure in the cross flow are depicted at different points in time. Pressure contours and streamlines for the
parabolic flow are given.

7.1.2 Numerical Results

The numerical simulation is conducted using the single-physics solvers from openFOAM,
augmented with the preCICE library functions to realise the partitioned coupling, as described
in Section 5.1.2. The domain is decomposed into 1632 cells for the fluid mesh and 32 cells for
the solid mesh. The scenario is simulated for a physical timeframe of 4 s, divided into 40 time
steps of size 0.1 s. For both coupling variables, a relative convergence measure of 10−5 is used,
i. e.,

‖xkd − xk−1
d ‖2 ≤ 10−5‖xkd‖2, ‖xkf − xk−1

f ‖2 ≤ 10−5‖xkf‖2.
Figure 7.1 shows pressure contours and the physical deformation of the elastic structure at
different time instances.
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7.1 Three-Dimensional Flow over an Elastic Structure

scaling factor 100 10−1 10−2 10−3 10−4 4 · 10−4 6 · 10−4 8 · 10−4 10−5

ratio rd
f = ‖xd‖2

‖xf‖2
1.09−05 1.09−04 1.09−03 1.09−02 1.09−01 4.36−01 6.54−01 8.72−01 1.09

V-IQN-IMVJ(0) 13.92 11.30 8.97 7.40 6.65 6.82 6.82 7.05 7.17
V-IQN-IMVJ(5) − − − − 7.72 7.65 7.97 8.22 8.27
V-IQN-ILS(0) 16.22 14.97 12.37 10.75 9.40 9.22 9.37 9.32 9.37
V-IQN-ILS(5) − 11.50 8.97 7.45 6.67 6.80 7.05 7.22 7.27
V-IQN-ILS(8) − − − 9.02 7.57 7.45 7.67 7.85 8.10

Table 7.1: Three-dimensional flow over an elastic structure. Average number of iterations over the first 40
time steps with τ = 10−1 for the parallel-implicit coupling system, combined with different quasi-Newton
post-processing methods is depicted for various scalings of the force data. For a well-conditioned V-system, a
scaling of data has to be done previous to the post-processing, so that forces and displacements have the same
order of magnitude. The V-IQN-IMVJ and the V-IQN-ILS were conducted with different numbers of reused
time steps, indicated in brackets. The optimal value for each coupling scheme is underlined.

For the vectorial coupling, a scaling of the coupling data is necessary in order to pre-condition
the system. To that end, the forces are scaled prior to each coupling iteration but with a
constant factor for the entire simulation, such that forces and displacements have the same
order of magnitude. Table 7.1 shows the results of a parameter study for the optimal scaling
parameter for the respective quasi-Newton method. The average iteration numbers over the
first 40 time steps are depicted for the IQN-ILS and the IQN-IMVJ post-processing methods
for different number of reused time steps in the columns of V and W . From this, several
observations can be made. Firstly, it is obvious that the pre-conditioning is essential, as it
improves the convergence speed by factor two for this scenario and, more importantly, most
post-processing variants fail to converge at all if no scaling is performed in advance. Further,
we see that for this scenario, the average iteration numbers for the optimal scaling factor
do not differ remarkably from those that stem from a l2-norm ratio of approximately one
between the force and displacement data, as depicted in the last column. For optimal results
in the following experiments, the V-system is applied with a pre-conditioning using a factor of
1 · 10−4 for the IQN-IMVJ method and a factor of 4 · 10−4 for the IQN-ILS method to scale
the forces.

The re-use of information from previous time steps in the approximation process is of major
importance for quasi-Newton methods. This is exactly the characteristic in which the IQN-
IMVJ and the IQN-ILS methods differ the most. Table 7.2 shows the mean iteration numbers
over the first 40 time steps for both variants, applied with the serial and vectorial system, for
different numbers of retained previous time steps in the secant equation, i. e., in the matrices
V and W . The multi-vector method IQN-IMVJ that implicitly re-uses old information in a
minimum norm sense, does not benefit from additionally incorporating previous information in
an explicit sense via the secant equation. Instead, its convergence behaviour even deteriorates
if done so. As opposed to this, the latter greatly improves the convergence speed for the
IQN-ILS quasi-Newton method, but the optimal value of re-used time steps is apparently
unknown and highly problem dependent. Thus, using the newly introduced IQN-IMVJ method
renders the very costly tuning of the parameter R unnecessary, as suggested in Chapter 4 and
6.
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7 Benchmarks and Applications

reused steps (R) 0 1 2 3 4 5 6 7 8

S-IQN-ILS(R) 5.15 4.75 4.50 4.45 4.65 5.05 5.65 5.70 6.15
S-IQN-IMVJ(R) 5.15 5.22 5.57 5.87 6.32 6.70 7.00 7.45 7.62
V-IQN-ILS(R) 9.30 7.85 7.07 6.90 6.70 6.80 7.05 7.15 7.45
V-IQN-IMVJ(R) 6.65 6.75 6.82 7.27 7.47 7.72 8.02 8.10 8.52

Table 7.2: Three-dimensional flow over an elastic structure. Average numbers of coupling iterations over first
40 time steps for the IQN-ILS and IQN-IMVJ method, and for serial and parallel coupling. Different numbers
of reused time steps are evaluated. † For a well-conditioned V-system, the forces are scaled by a factor of 4 · 104

for the IQN-ILS method and by a factor of 1 · 104 for the IQN-IMVJ method.

Furthermore, this experiments confirm the observations from Section 6.2.1 in that the
V-system yields comparable results to the S-system, while achieving slightly worse convergence
behaviour. This can also be seen from Figure 7.2, where the iterations per time step, required
by the optimal (underlined) quasi-Newton variants from Table 7.2, are depicted for the entire
simulation. Here, all variants show relatively fast and robust convergence behaviour after a
attack time of ten time steps. The V-system, on average, requires two iterations more per time
step than the S-system. However, the difference between the coupling systems is higher for
the IQN-ILS method.

Figure 7.2: Three-dimensional flow over an elastic structure. Iteration numbers per time step for the serial
(solid line) and vectorial (dashed line) coupling system are plotted for the first 40 time steps for both, the
IQN-IMVJ and IQN-ILS post-processing method. The V-system is pre-conditioned with a scaling factor for the
forces of 4 · 10−4 for the IQN-ILS method and a factor of 1 · 10−4 for the IQN-IMVJ method.
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7.2 Wave Propagation in a Three-Dimensional Elastic Tube

7.2 Wave Propagation in a Three-Dimensional Elastic Tube

7.2.1 Scenario Description

Let us now consider a three-dimensional internal flow problem through a flexible tube, referring
to [17, 5, 8]. The scenario is inspired by the type of flow problems encountered in hemodynamics
and constitutes a very strongly coupled FSI problem, as the density ratio of fluid and solid are
near unity and incompressible internal flow is considered. The scenario simulates the wave
propagation in a straight, three-dimensional flexible tube, induced by the pressure that is
exerted on the tube walls by the internal flow. The tube has a length of 0.05 m and a wall
thickness of 0.001 m. The internal fluid domain has a diameter of 0.003 m and both ends of
the tube are fixed.

A pressure driven flow is generated by setting the boundary condition for the pressure inlet
to a peak value of 1333.2 Pa for a initial duration of 0.003 s. To avoid spurious pressure waves,
that may occur if a high and sharp pressure profile is applied from the start of the simulation,
the pressure is faded in smoothly for t < 0.003 s. Thereafter the pressure is set to zero at the
inlet boundary. Zero Dirichlet boundary conditions are imposed for the pressure at the outlet
at every time instant.

t = 1.9 · 10−1 s t = 3.0 · 10−1 s

t = 5.5 · 10−1 s t = 8.2 · 10−1 s

Figure 7.3: Wave propagation in a three-dimensional elastic tube. Geometry and pressure contours on the fluid-
structure interface at different time instances. A pressure pulse propagates through the tube. Fluid-structure
interface displacements are amplified.
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7 Benchmarks and Applications

For the tube, a hyper-elastic material model is assumed with Young’s modulus of E =
3× 105 N

m2 , a Poisson’s ratio of 0.3 and density ρs = 1.2× 103 kg
m3 . The fluid has a density

of ρf = 1× 103 kg
m3 and a dynamic viscosity of ν = 3× 10−3 Pa s. The pressure pulse that

propagates through the tube and the arising wave in the tube wall are shown in Figure 7.3 for
different time instances.

7.2.2 Numerical Results

For the simulation of this test case, the fluid and solid solvers from openFOAM are coupled
using the preCICE library. A fluid mesh consisting of 17600 cells and a solid mesh with 800 cells
are used. Hundred time steps of 1× 10−4 s are performed. A relative convergence measure
of 10−5 for both, the traction and the displacements on the fluid-structure interface is used.
Mesh deformations are computed using a mesh motion solver based on radial basis function
interpolation.

As a first experiment, the pre-conditioning for the V-system is considered. A parameter
study for the scaling parameter of the pressure data is given in Table 7.3. It can be seen that
the IQN-IMVJ and the IQN-ILS method have their optimum at displacement-force ratios that
differ by factor 25. In particular, a tendency for the coherence of the displacement-force ratio
and the optimal convergence behaviour of the quasi-Newton methods can hardly be detected,
referring to the results from Scenario 7.1. However, the iteration numbers are not considerably
worse for an automatic scaling to the same order of magnitude, i. e., rdf ≈ 1. Moreover, it turns
out, that the IQN-IMVJ method is slightly more robust with respect to the pre-conditioning.

A second experiment investigates the performance of the multi-vector and IQN-ILS quasi-
Newton method for serial and parallel coupling with different amount of retained information
form previous time steps. The results are given in Table 7.4. When comparing the serial
and vectorial coupling system, the choice of the convergence criterion is of major importance.
Table 7.4 shows two test series for the S-system. The first measures the convergence only
for the displacement data, while the second demands the residual of both, displacements

scaling factor 1 · 10−6 1 · 10−7 1 · 10−8 4 · 10−8 8 · 10−8 1 · 10−9 1 · 10−10 1 · 10−11

ratio rd
f = ‖xd‖2

‖xf‖2
3.59−03 3.59−02 3.59−01 1.43 2.87 3.59 3.5901 3.5902

V-IQN-IMVJ(0) 17.26 12.62 9.70 8.67 9.02 9.24 10.70 15.76
V-IQN-ILS(0) 37.85 29.77 24.45 22.12 21.65 21.50 21.28 25.62
V-IQN-ILS(5) 16.64 14.35 13.40 13.61 13.35 13.12 12.90 15.31
V-IQN-ILS(8) 15.07 12.90 12.08 12.20 12.01 11.93 11.99 14.63

Table 7.3: Wave propagation in a three-dimensional elastic tube. Average number of iterations over the first
100 time steps with τ = 10−4 for the parallel-implicit coupling system, combined with different quasi-Newton
post-processing methods is depicted for various scalings of the force data. For a well-conditioned V-system a
scaling of data has to be done previous to the post-processing, so that forces and displacements have the same
order of magnitude. The V-IQN-IMVJ and the V-IQN-ILS were conducted with different numbers of reused
time steps, indicated in brackets. The optimal value for each coupling scheme is underlined.
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7.2 Wave Propagation in a Three-Dimensional Elastic Tube

reused steps (R) 0 1 3 5 7 9 11 13 15 17

S-IQN-ILS(R) 9.97 9.45 6.80 6.35 6.17 6.05 6.05 6.06 6.15 6.21
S-IQN-MVJ(R) 5.36 8.97 9.47 9.32 9.25 9.21

S-IQN-ILS(R)∗ 13.27 12.89 10.05 8.25 7.65 7.47 7.51 7.56 7.66 7.81
S-IQN-IMVJ(R)∗ 7.19 10.49 10.40 10.24 11.07 11.02

V-IQN-ILS(R)† 21.41 18.63 13.73 12.90 12.28 11.95 11.71 13.36 13.36 11.47
V-IQN-IMVJ(R)† 8.67 15.18 17.66 17.60 16.99 17.13

Table 7.4: Wave propagation in a three-dimensional elastic tube. Average numbers of coupling iterations over
the first 100 time steps for the IQN-ILS and IQN-MVJ method combined with the serial and parallel coupling
system. Different numbers of reused time steps are evaluated. † For a well-conditioned V-system, the forces
are scaled by a factor of 10−10 for the IQN-ILS and 4.0 · 10−8 for the IQN-IMVJ method. ∗ To ensure proper
conditions for the comparison with the V-system, the S-system also needs to fulfill both relative convergence
criteria, i. e., for the displacements and the pressure. The test series for the S-system differ in that the first only
uses one criterion for the displacements while the second (∗) applies both.

and pressure, to fall below the relative convergence measure. As a consequence, the required
numbers of coupling iterations increase by 1.4 iterations for the IQN-ILS(9) method and by 1.8
iterations for the IQN-IMVJ(0) method, on average. This can be explained by the observation,
that the residual for the displacements usually comes down faster than the residual for the
pressure values, as can be seen in Figure 7.6. Therefore, to ensure a fair comparison between
the coupling systems, the serial system additionally needs to fulfill the relative convergence
criterion for the pressure.

Regarding Table 7.4 we see once again that the IQN-IMVJ method yields best results if
no information is re-used explicitly within the secant equation, that means it appears to be
optimal without any tuning of problem dependent parameters. Furthermore, it outperforms
the optimal configurations for the IQN-ILS method for both coupling systems, but especially
for the vectorial coupling, where the difference almost amounts to three iterations on average.
On the contrary, for the IQN-ILS method, retaining information from 17 time steps in the
past results in a halving of the required coupling iterations for the vectorial system. All these
observations confirm the suppositions and findings from Chapter 6.

Similar to previous findings for the IQN-ILS method [57], the IQN-IMVJ method almost
retains the convergence order when switching from the serial to the parallel coupling scheme.
This can be seen nicely in Figure 7.4-(left), where the required coupling iterations per time step
are given for the optimal coupling scheme configurations from Table 7.4, after a attack time
of 15 time steps. The curves for the iteration numbers required by the V-system are pretty
similar to those for the S-system, but they show higher peaks at somehow critical positions in
time, like for example at time step 31.

Considering the attack time of the coupled system within the first 15 time steps, depicted
in Figure 7.4-(right), we see that the IQN-ILS method entails very high numbers of required
coupling iterations at the very beginning of the simulation, while the IQN-IMVJ method
shows very robust behaviour and fast convergence. This improved convergence during the
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Figure 7.4: Wave propagation in a three-dimensional elastic tube. Iteration numbers for IQN-ILS and IQN-
IMVJ, and for serial (solid line) and parallel (dashed line) coupling. left: time steps 16 to 100, right: time
steps 1 to 15.

attack time first and foremost accounts for the dominance of the IQN-IMVJ(0) method over
the IQN-ILS(17) method, cf. Table 7.4. A similar behaviour can be observed for the serial
coupling system, but is not as pronounced as for the parallel.

For a more detailed comparison of the two quasi-Newton methods, we investigate the
convergence rates for pressure and displacement values for different time steps. Figure 7.5
shows the relative l2-norm of the pressure residual along with the relative convergence criterion,
plotted over the required numbers of coupling iterations for serial and parallel coupling. Here,
the earlier discussed different start performance is reflected and clearly visible. Considering
the S-system in Figure 7.5, we see, that the convergence behaviour of the IQN-ILS method
improves considerably as the Jacobian is trained through the simulation process. Indeed, this
holds true from the very beginning of the simulation. On the contrary, the IQN-ILS method
shows a stagnating convergence behaviour in the early stage, in that the convergence rates
for the first ten time steps do not improve. Thereafter, the convergence behaviour is fairly
comparable. Note, that the convergence curve for the first time step is the same for both
variants, as the IQN-IMVJ is identical to the IQN-ILS at the very beginning, due to the initial
zero-guess for the Jacobian. Thus, we can conclude, that retaining old information in an
implicit, norm-minimizing manner endorses the quasi-Newton iteration to be faster and more
robust.

These observations can equally be drawn from the vectorial coupling scheme, where the
effect of the different convergence behaviour for the IQN-ILS(17) and IQN-IMVJ(0) method
in the early stage of the simulation is far more pronounced (compare Figure 7.5). While the
IQN-IMVJ(0) method supplies fast and steep Newton-like convergence after the first time step,
the IQN-ILS(17) method shows stagnation or even deterioration for the convergence rates of
the early time steps. As a result, the IQN-ILS(17) method requires up to 20 coupling iterations
more then the multi-vector method for certain time steps within the attack time. Note, that
the reason for the different convergence curves of the V-IQN-ILS(17) and V-IQN-IMVJ(0)
for the first time step is found in the different scaling of pressure values which results in a
different conditioning for least-squares problem.
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S-IQN-ILS(9) S-IQN-IMVJ(0)

V-IQN-ILS(17) V-IQN-IMVJ(0)

Figure 7.5: Wave propagation in a three-dimensional elastic tube. The l2-norm of the pressure residual is
plotted over the number of required coupling iterations for different time steps spread over the entire simulation.
Typical convergence rates for both quasi-Newton variants are shown for the serial (top row) and vectorial
(bottom row) coupling scheme. The relative convergence criterion is depicted as a dashed red line.

Up to this point, we solely considered the drop with respect to the l2-norm of the relative
residual for the pressure. In general, looking at the convergence rates for the relative residual
of the displacement values, a faster and slightly better convergence behaviour can be observed.
Figure 7.6 shows the convergence rates for the pressure and displacement residuals at different
time instances within the early stage of the simulation. For the serial system, we observe, that
the residual of the displacement drops below the relative convergence criterion at a maximum
of two iterations earlier as for the pressure. This in turn fairly explains the different numbers
of required coupling iterations for the two test series for the S-system in Table 7.4 with and
without convergence criterion for the pressure residual.

Considering the vectorial coupling, the number of additional iterations, required by the
IQN-ILS(17) method to drop the relative residual of the pressure below the convergence
criterion, seems to be arbitrary large. This, in particular applies to time steps within the
attack time of the simulation, i. e., we observe a difference of 25 coupling iterations between
the satisfaction of the relative convergence criterion for the displacements and for the pressure
values for the second time step, as can be seen from Figure 7.6. This is not an exceptional
phenomenon, but can be equally observed for the fifth, sixth, seventh and more time steps
in comparable proportions. On the contrary, the IQN-IMVJ(0) method appears to reduce
both residuals with comparable speed and reliability, which once more accounts for a better
robustness of this method.
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S-IQN-ILS(9) S-IQN-IMVJ(0)

V-IQN-ILS(17) V-IQN-IMVJ(0)

Figure 7.6: Wave propagation in a three-dimensional elastic tube: Convergence rates for the relative pressure
and displacement residual, plotted over the required number of coupling iterations for various coupling schemes
at different time steps. The relative displacement residual is shown in light gray and the relative pressure
displacement is shown in dark gray.

As a last experiment, the discussed coupling schemes along with their respective optimal
amount of retained information from the previous time steps are conducted for different relative
convergence criterions. While all the experiments are carried out using a relative convergence
criterion of εr = 10−5, two additional series for εr = 10−7 and εr = 10−10 are realised. For
the rather small convergence criterion of εr = 10−10 all methods fail to converge. Here, the
least squares system becomes ill-conditioned, as a lot of differences in the secant equation
are near machine precision. The mechanism to preserve good conditioning as described in
Chapter 5 would discard almost all recent information, thus no convergence can be obtained.
The results for εr = 10−7 are given in Figure 7.8-(left) for the different coupling schemes. Both
quasi-Newton variants show a deterioration of the convergence behaviour for the very first
time steps of the simulation, where little or no information can be retained. However, while
the IQN-IMVJ(0) method reveals fast and monotonic advancing convergence rates after few
time steps, the IQN-ILS(17) method once more presents the earlier discussed problematic
convergence behaviour within an attack time of 20 time steps, but far more pronounced due
to the smaller convergence criterion. This can be seen clearly in Figure 7.7 for time step six
where we obtain good reduction of the pressure residual for the IQN-IMVJ(0) method, but
deterioration of convergence speed for the IQN-ILS(17) method. Note that this is not an
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V-IQN-ILS(17) V-IQN-IMVJ(0)

Figure 7.7: Wave propagation in a three-dimensional elastic tube. Convergence rates for the pressure residual
with a relative convergence criterion of 10−7 are plotted for different time steps. Results are shown for the
V-IQN-ILS(17) and V-IQN-IMVJ(0) method.

individual case, but can be observed frequently within the first 20 time steps. This can be
confirmed by Figure 7.8-(right). Here, the average convergence rate per time step

ρ̄l2 =
(
‖rk‖2/‖xk‖2

‖r0‖2/‖x0‖2

) 1
k

(7.2)

is plotted for the pressure over the entire simulation, applying the vectorial coupling scheme.
The V-IQN-ILS(17) method presents poor average convergence rates or even stagnation in
the early stage of the simulation. Though, after this attack time, we obtain steep and reliable
linear convergence rates with a good constant for both methods as well as a minor plus for the
V-IQN-IMVJ(0). This is endorsed by the iteration numbers from Figure 7.8-(left). Here, the
mean iteration numbers are given, cutting off the attack time. From this, two observations
can be made that confirm the previous findings. Firstly, the number of required iterations
increases linearly if a smaller convergence criterion is applied, and secondly, the dominance
of the multi-vector method over the IQN-ILS method is mainly caused by the unfavourable
behaviour of the latter in the early stage of the simulation.

conv. measure 10−5 10−7 10−5
† 10−7

†

S-IQN-ILS(9) 7.47 10.54 4.93† 8.78†

S-IQN-IMVJ(0) 7.19 9.80 4.92† 8.89†

V-IQN-ILS(17) 11.47 18.81 8.65† 12.39†

V-IQN-IMVJ(0) 8.67 15.17 7.90† 11.48†

Figure 7.8: Wave propagation in a three-dimensional elastic tube. left: Mean iteration numbers for a relative
convergence measure of 10−5 and 10−7, respectively. † Mean iteration numbers, averaged over time step 16-100,
cutting off the attack time. right: Average convergence rates for the pressure residual of both methods using
the V-system.
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limited columns (L) 4 3 2 1 \Broyden V-IQN-IMVJ(0)† V-IQN-ILS(8)†

IQN-IMVJ-limited(L)† 11.97 12.73 14.50 16.50 8.67 12.20

Table 7.5: Wave propagation in a three-dimensional elastic tube. Average numbers of coupling iterations over
the first 100 time steps for limited-information variants of the multi-vector method combined with the vectorial
coupling scheme. The number of utilized input-output information is limited to be small and constant. The
norm-minimization ranges over the distance L. † For a well-conditioned V-system, the forces are scaled by a
factor of 4.0 · 10−8 such that a displacement-force ratio of approximately one rdf ≈ 1 is ensured.

In attempting to reduce the overall computational complexity of the multi-vector method,
some limited-information variants had been introduced in Chapter 6, where the number of
allowed columns in the secant equation system was limited to a small but constant number
L. For the case of restricting the method to only use the single most recent input-output
information, this exactly coincides with the Broyden rank-one update method. The results for
the one-dimensional flexible tube lead us to hope that such limited versions are interesting and
beneficial for less demanding scenarios due to their low computationally complexity. For further
evaluation, a test series with L ∈ {1, 2, 3, 4} is carried out for the three-dimensional flexible
tube scenario in conjunction with the vectorial coupling scheme. The results are depicted in
Table 7.5, together with some reference values for the original IQN-IMVJ(0) method and the
IQN-ILS(8) method.

While the full-information V-IQN-IMVJ(0) method clearly shows highly superior results, the
mean iteration numbers for the limited-information versions with L ∈ {3, 4} appear to be quite
comparable to the V-IQN-ILS(8). It is to be signalized that the number of utilized columns for
the V-IQN-ILS(8) is up to 96 on average, while for the limited-information methods it never
exceeds L ≤ 4. Additionally, the system that needs to be solved for the Jacobian update is
small with a quadratic L×L matrix and thus even allows for direct inversion. On the downside,
the Jacobian approximation has to be stored explicitly. Concluding, the limited-information
variants indeed offer an interesting and computationally efficient alternative with satisfying
coupling properties. However, for a more informed utterance, a detailed comparison including
computational complexity, overall memory consumption and robustness issues has to be done.
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7.3 FSI3 Benchmark–Cylinder Flap

Turek et al. proposed a series of FSI benchmarking scenarios as described in [55]. Here, a
two-dimensional scenario for laminar incompressible flow around a fixed cylinder is considered,
which is referred to FSI3 benchmark scenario. The test case appears to be quite challenging
despite being only two-dimensional, since it involves large deformations of the elastic structure
and thus of the fluid-structure interface. The scenario involves the initiation of oscillations,
therefore a large number of oscillation periods has to be simulated until a quasi-stationary
state is reached. This makes the simulation very time consuming. The original formulation of
the benchmark scenarios comprises three different parameter settings with a different level of
difficulty with respect to FSI coupling. Here, only the third benchmark scenario is considered,
as it offers the highest Reynolds number and the lowest density of the structure and thus
constitutes the most challenging setting for FSI coupling algorithms.

7.3.1 Scenario Description

The FSI3 benchmark scenario describes a two-dimensional incompressible flow around a fixed
cylinder. A flexible Saint-Venant-Kirchhoff cantilever is attached to the cylinder and placed
near the middle of the flow channel, but with a small vertical offset such that oscillations are
induced. The geometry of the scenario and all essential dimensions of the channel, the cylinder
and the cantilever are given in Figure 7.9. A parabolic inflow profile is prescribed at the left
boundary, while free outflow conditions are imposed on the right boundary. All remaining
boundaries, i. e., the top and the lower wall of the flow channel as well as the surface of the
cylinder and cantilever are no-slip boundaries.

An incompressible Newtonian fluid with density ρf = 1× 103 kg
m3 , a dynamic viscosity of

νf = 1× 10−3 m2

s and a Reynolds number Re = 200 is considered with a mean inflow velocity
of Ū =2 m

s . The elastic cantilever is modeled using the Saint-Venant-Kirchhoff material model,
allowing for large displacements. Here, a Young’s modulus of E =1.4× 106 N

m2 a Poisson’s
ratio of νs = 0.4 and a density of ρs = 1× 103 kg

m3 is assumed.

Figure 7.9: FSI3 Benchmark. Sketch of the geometry for the FSI3 scenario, as proposed in [55]. A fixed
cylinder with attached elastic cantilever is placed in the middle of a channel, but with a small vertical offset at
point C = (0.2m,0.2m). This picture is taken from [31].
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Figure 7.10: FSI3 Benchmark. Geometry of the scenario with pressure (upper) and velocity magnitude (lower)
contours at t =0.697 s. The pressure values are given in Pa and the velocity magnitude is given in m

s .

7.3.2 Numerical Results

As for the previous scenarios, fluid and solid single-physics solvers from openFOAM are coupled
using the preCICE library. For the fluid solver, the mesh is decomposed into 5981 cells, while
the solid mesh consists of 82 cells. A timeframe of T =20 s is simulated and subdivided into
20000 time steps of length 1× 10−3 s. A relative convergence measure for the traction and the
displacements at the fluid-structure interface is used with a stopping criterion of εr = 10−3.
The dynamic movement of the cantilever converges to a periodic oscillation with an average
period of 128 time steps, i. e., 0.128 s, after an attack time of the system. Figure 7.10 shows
pressure contours and the velocity magnitude of the flow at t =0.697 s.

A parameter study to supply the optimal pre-conditioning for the vectorial coupling system
results in a force-scaling factor of 10−8 for the V-IQN-ILS method and of 10−9 for the V-IQN-
IMVJ method. This refers to a displacement-force ratio of rdf ≈ 1 for the parallel multi-vector
method and to a ratio of rdf ≈ 0.1 for the V-IQN-ILS method. Experiments for the multi-vector
method and the IQN-ILS method have been carried out for serial and vectorial coupling,
retaining information from zero, four and eight previous time steps. The results are shown
in Table 7.6. For this scenario, the vectorial coupling in combination with either of the two
quasi-Newton post-processing methods appears to be superior to the serial coupling system.
Regarding the multi-vector method this accounts to an improvement of 1.5 iterations on
average for the best configuration. Considering the re-use of information from the past, we see
that the vectorial coupling benefits from retaining more time steps than the serial coupling.
This confirms the observations from the previous scenarios.
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reused steps (R) 0 4 8

S-IQN-ILS(R)∗ 7.60 4.27 4.88
S-IQN-IMVJ(R)∗ 6.08 5.44 5.54

V-IQN-ILS(R)† 11.86 5.26 4.23
V-IQN-IMVJ(R)† 5.81 3.98 4.82

Table 7.6: FSI3 Benchmark. Average numbers of coupling iterations over first 20000 time steps for IQN-ILS
and IQN-MVJ method combined with the serial and parallel coupling system. Different numbers of reused time
steps are evaluated. † For a well-conditioned V-system, we scale the forces by a factor of 10−8 for IQN-ILS and
10−9 for IQN-IMVJ. ∗ For a fair comparison between the V-system and the S-system, the latter needs to fulfill
both relative convergence criteria, i. e., for the displacements and the pressure.

For the multi-vector method we observe a new phenomenon, which is partially contradictory
to the findings from the previous scenarios. Here, the IQN-IMVJ method shows an improved
convergence behaviour that results in nearly two iterations less on average, if a few number of
previous time steps are retained explicitly within the secant equation. With this configuration,
the V-IQN-IMVJ(4) method outperforms the V-IQN-ILS(8) method. Although, without
tuning the parameter R of re-used time steps, the multi-vector method on average requires
approximately one iteration more to converge than the V-IQN-ILS(8) method with optimal
configuration, but is twice as fast as the V-IQN-ILS(0) method.

In compliance with previous findings, we observe the typical poor performance of the IQN-
ILS method in the early stage of the simulation. This can be seen from Figure 7.11-(left), where
the average convergence rates ρ̄l2 of the pressure residual are plotted every 250 time steps over
the entire simulation. The V-IQN-IMVJ(4) method shows robust and reliable convergence
behaviour from the very beginning of the simulation. In Figure 7.11-(right), the average
convergence rates are depicted for one oscillation period of the cantilever, approximately
ranging from time step 3066 to time step 3248. Here, the multi-vector method shows superior

Figure 7.11: FSI3 Benchmark. Average convergence rates ρ̄l2 , cf. eq. (7.2), of the pressure residual for the
IQN-ILS(8) and the IQN-IMVJ(4) post-processing method and a parallel coupling scheme. left: Average
convergence rates over the entire simulation, plotted every 250 time steps. right: Average convergence rates for
the duration of one oscillation period, approximately from time step 3066 to time step 3248.
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convergence rates, which accounts to the fact that the oscillation has not fully converged and
is still within its attack time.

Summary

Summarizing the findings from this chapter, the multi-vector method appears to have an edge
over the IQN-ILS method for all the conducted experiments. Especially the IQN-IMVJ method
in general renders the tuning of the problem dependent parameter R of re-used previous time
steps unnecessary, which accounts to a major advantage of this method. The dominance of
the multi-vector method above the IQN-ILS(R) method has been found to be mainly due to a
poor convergence behaviour of the latter during the early stage of the simulation, when little
information from the past is available. As opposed to this, the IQN-IMVJ method provides
robust and reliable convergence from the very beginning, which suggests that it is beneficial
to incorporate past information implicitly in a minimum norm sense, rather than explicitly
in the secant equation. After a certain time, both quasi-Newton variants show comparable
convergence rates right up to very high precision.
Comparing the serial and the vectorial coupling system, the latter appears to achieve quite
similar performance than the former, if coupled with the multi-vector method. Similar results
have been found earlier for the IQN-ILS method in [57] and can be confirmed for the herein
considered scenarios. For the vectorial coupling system a pre-conditioning in terms of scaling
the force values has to be done in advance. While the coherence between the l2-displacement-
force ratio rdf and the optimal performance of the respective quasi-Newton method varies a lot
throughout the conducted experiments, at least for the V-IQN-IMVJ method an automatic
scaling mechanism to rdf ≈ 1 appears to be practical.

Concluding, the multi-vector method clearly shows some noticeable advantages compared to
the IQN-ILS method, i. e., providing a more robust convergence behaviour and rendering the
tuning of additional problem dependent parameters unnecessary. However, the IQN-IMVJ
method requires to store an explicit representation of the Jacobian approximation, which
constitutes to a higher memory requirement and higher computational costs for the Jacobian
update.
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Chapter 8

Summary and Outlook

8.1 Summary of Findings and Achievements

This thesis’ main goal was to supply a comprehensive categorization and comparison of
various existing implicit coupling schemes for the coupling of partitioned FSI simulation as
well as the introduction of some new combinations of quasi-Newton methods and fixed-point
equation coupling systems. This comprises a clear and uniform exposition of different coupling
algorithms, mainly the quasi-Newton post-processing methods, along with the linkage to recent
literature as well as the implementation and evaluation for a qualitative and quantitative
comparison.

To provide a lucid overview of the different coupling algorithms, we separated the formulation
of the coupling system, i. e., the calling-order of the single-physics solvers which results in a
certain fixed-point equation, from the description of the so called post-processing methods that
accelerate and stabilize the pure fixed-point iteration. In doing so, three different coupling
systems have been formulated in Chapter 3, that differ with respect to parallel efficiency and
modularity properties, namely the serial implicit coupling scheme, the vectorial- or parallel-
implicit coupling scheme as well as the block-iterative serial coupling scheme. This thesis
considers the case of strongly coupled FSI problems, thus the pure fixed-point iteration fails to
converge and needs to be stabilized and accelerated by additional advanced methods, i. e., quasi-
Newton methods. A comprehensive exposition and classification of quasi-Newton methods
has been provided in Chapter 4. Various generalized Broyden methods are described, that
differ in the way in which past information is incorporated into the approximation process and
which operator is to be approximated. Emphasis is put on the newly introduced inverse multi-
vector method that re-uses past information in an implicit way. Different coupling schemes
are obtained, combining one of the coupling systems with an appropriate post-processing
quasi-Newton method.

A substantial share of this work was furthermore the implementation and realization of
robust and fast converging quasi-Newton methods into the preCICE framework. This is a
flexible and powerful library for the numerical coupling of partitioned FSI problems, optimized
for black box single physics solvers. In order to spot the most promising coupling algorithms for
the integration, a whole range of coupling schemes has been analyzed, evaluated and compared
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in Chapter 6 for a simple one-dimensional test problem. The investigation of the different
coupling systems with the resulting fixed-point equations showed, that the vectorial-implicit
coupling appears to have quite comparable performance in terms of required coupling iterations
than the serial-implicit scheme, while bearing the chance of improving the parallel efficiency
up to a factor of two compared to the latter. Thus, the better parallel efficiency of the
V-system clearly outperforms a potential minor loss in convergence speed. The block-iterative
serial-implicit coupling scheme showed no advantages over the remainder coupling schemes,
while having the same drawbacks with regards to parallel efficiency as the S-system.
In comparing the different quasi-Newton post-processing methods, all the forward approxi-
mations of the Jacobian for the residual- or fixed-point operator have been shown to provide
poor robustness and convergence behaviour. We therefore focused on the inverse Jacobian
approximations that also spare us from solving a additional system of equations in the quasi-
Newton updating process. Here, the multi-vector method (IQN-IMVJ) showed the best results
and appeared to outperform even standard coupling algorithms for FSI coupling, such as
the IQN-ILS method. To the best of the authors’ knowledge the multi-vector method with
approximation of the inverse Jacobian for the residual operator has not been applied to FSI
coupling problems in conjunction with the vectorial coupling scheme before. Due to its implicit
minimum norm like incorporation of past information into the approximation process, the
IQN-IMVJ method occurs to be mostly optimal without the need of tuning problem dependent
parameters such as the number of re-used time steps for the IQN-ILS method. The Broyden
method and other variations of the multi-vector method, such as limited secant information
methods IQN-IMVJ-limited(L), have been found to provide worse, but satisfying results and
are, due to their lower computational costs, a striking alternative for weakly coupled problems
that bear fewer instabilities.

Based on these insights the multi-vector method has been integrated into the preCICE library
for the serial and vectorial coupling scheme. Here, special emphasis has been put on the
robust and efficient realization of the Jacobian update step. To that end, an economy-size
QR-decomposition that is updated and computed successively, together with a mechanism to
maintain a good conditioning of the least squares system, has been implemented.

In Chapter 7 a multitude of experiments for three different FSI applications have been
carried out using the preCICE implementation in conjunction with the openFOAM toolbox.
Thereby, mainly two objectives were pursued. Firstly, the preCICE implementation had to
be tested and validated for more realistic and real world scenarios. Secondly, we aimed to
confirm the suppositions and findings concerning the performance of the quasi-Newton methods
proposed earlier. IN doing so we gained a deeper insight to the behaviour of the different
coupling schemes. It has been manifested that the multi-vector method appears to outperform
the IQN-ILS(R) method with an optimal number of re-used time steps R. On top of that,
the IQN-IMVJ method shows optimal behaviour without any tuning of problem dependent
parameters in almost all considered cases. This means that the parameter R of explicitly
retained previous time steps can be set to zero and the scaling parameter to pre-condition
the V-system can be chosen automatically such that both displacements and forces have the
same order of magnitude. The dominance of the multi-vector method above the IQN-ILS
method has been found in a very robust convergence behaviour of the former from the very
beginning of the simulation, while the latter suffers from poor convergence properties or even
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stagnation in the early stage of the simulation. After a certain attack time both quasi-Newton
methods provide reliable and fast convergence with comparable rates. However, the improved
performance of the IQN-IMVJ method and its better robustness properties come at the cost
of a more costly computation and higher memory-requirements, as an explicit representation
of the Jacobian matrix needs to be available.

Obviously, if the solver complexity highly dominates the overall simulation and the coupling
complexity is diminishable, the IQN-IMVJ post-processing method is to be preferred either
way, i. e., there always exists a break-even-point with respect to the complexity ratio of field
solvers versus coupling algorithm at which the IQN-IMVJ clearly pays off. On the other hand,
the IQN-IMVJ method is impractical if the number of coupling variables is very high. This
situation mainly occurs for volume-coupled problems such as flow transport problems.

8.2 Outlook and Ideas for Further Research

The findings and contributions within this work enable a robust and efficient simulation of
a whole range of strongly coupled multi-physics simulations and provide a deep insight into
the characteristics and properties of various coupling schemes. Nonetheless, there is space
for further improvements as well as a lot of possibilities and ideas for more in-depth research.
This section serves as a pool of ideas for future extensions and research directions.

As preCICE supplies the possibility of massive parallel execution of the single-physics solvers,
the coupling algorithm itself appears to become a major bottleneck in the simulation. Thus, it
would be desirable to parallelize the considered coupling schemes. In particular, this concerns
the efficient parallel computation of the Jacobian updating step, i. e., implementing an efficient
parallel QR-decomposition (or updating, respectively) as well as parallel matrix operations. A
massive parallel execution of the coupling algorithm would in fact be especially beneficial for
the multi-vector quasi-Newton variant such that its higher computational effort would pass
unnoticed.

Furthermore, an all-encompassing quantitative and qualitative comparison of the IQN-ILS
and the IQN-IMVJ method as well as reliable statements for the usage of the respective
method given certain assumptions and scenario characteristics, would be desirable. To that
end, an accurate time and complexity analysis for all coupling algorithms is indispensable.
This includes cost-effectiveness considerations for the IQN-ILS(R) method, the IQN-IMVJ
multi-vector method and its limited-information alternatives IQN-IMVJ-limited(L). As a
matter of course this requires highly optimized implementations for all alternatives. For
weakly-coupled problems with less instabilities, a more in-depth cost-benefit analysis for the
limited-information methods seems to be of special interest.

Aside from the herein considered surface-coupled FSI applications, there are plenty of
coupled problems that still await to be coupled using the presented coupling schemes. To
mention just a few examples, acoustic fluid coupled problems considering the near field or pure
acoustics problems that include the wave equation and far field simulation, are interesting
examples for surface coupled problems. Here, a bi-directional coupling is required in case of
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reflections of acoustic waves going back in the acoustic fluid domain. Considering volume
coupled problems, flow with transport, chemical reactions an the simulation of electric fields
are worthwhile applications.
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