Institute for Parallel and Distributed Systems
Machine Learning and Robotics Lab

University of Stuttgart
Universitatsstrafie 38
D-70569 Stuttgart

— Master’s Thesis Nr. 15 —

Inferring Object Hypotheses
Based on Feature Motion
from Different Sources

Steffen Fuchs

Course of Study: M.Sc. Informatik
Examiner: Prof. Dr. Marc Toussaint
Supervisor: M.Sc. Stefan Otte
Commenced: 15.10.2014

Completed: 16.04.2015

CR-Classification: 1.2.10, 1.4.8, 1.5.3

Abstract

Perception systems in robotics are typically closely tailored to the given
task, e.g., in typical pick-and-place tasks the perception systems only recog-
nizes the mugs that are supposed to be moved and the table the mugs are
placed on. The obvious limitation of those systems is that for a new task a
new vision system must be designed and implemented. This master’s thesis
proposes a method that allows to identify entities in the world based on
motion of various features from various sources. This is without relying on
strong prior assumptions and to provide an important piece towards a more
general perception system. While entities are rigid bodies in the world, the
sources can be anything that allows to track certain features over time in
order to create trajectories. For example, these feature trajectories can be
obtained from RGB and RGB-D sensors of a robot, from external cameras,
or even the end effector of the robot (proprioception).

The core conceptual elements are: the distance variance between trajec-
tory pairs is computed to construct an affinity matrix. This matrix is then
used as input for a divisive k-means algorithm in order to cluster trajecto-
ries into object hypotheses. In a final step these hypotheses are combined
with previously observed hypotheses by computing the correlations between
the current and the updated sets. This approach has been evaluated on
both simulated and real world data. Generating simulated data provides an
elegant way for a qualitative analysis of various scenarios. The real world
data was obtained by tracking Shi-Tomasi corners using the Lucas-Kanade
optical flow estimation of RGB image sequences and projecting the features
into range image space.

Contents

1 Introduction
1.1 Motivation
1.2 Objective

2 Related Work

3 Inferring Object Hypotheses
3.1 Distance Variance of Trajectory Pairs
3.2 Divisive k-Means Clustering

3.3 Label Propagation .

4 Experiments
4.1 Simulation
4.2 Example Application

5 Conclusion

11
16

17
18
24

30

Chapter 1

Introduction

1.1 Motivation

Identifying objects of interest is a key requirement for every robot. While
navigating through an uncontrolled environment a robot has to avoid po-
tential obstacles such as pedestrians or cars on the road. Localization and
mapping tasks (SLAM) require to track landmarks in order to estimate the
relative sensor position. For manipulation applications the robot has to find
the desired object and know about how it can be manipulated. For all these
tasks motion is either the mandatory element or they can benefit from it.
In fact the importance of motion for perceiving objects originates from the
“Principles of Gestalt Psychology” by Max Wertheimer, Wolfgang Kohler
and Kurt Koffka [6]. In particular the principle of “common fate” states
that for humans, elements are perceived as grouped together if they move
along a common and smooth path. This principle has already been applied
successfully to computer vision problems such as image segmentation [9], [5]
or estimation of kinematic models [§].

When creating new robot applications designing the necessary percep-
tion system usually requires a great amount of effort. As a result for many
cases these systems are typically closely tailored to the given task. For ex-
ample, in a pick-and-place scenario a simple perception system may identify
the table as a horizontal plane with a certain distance to the ground and
recognize the objects by learning models of them in advance. The obvious
limitation to this approach is that for a new task the perception system
must be redesigned, e.g., training new objects, changing the model type or
using different features. For this reason there is always high demand for
more generalization of perception systems in the robotic community. Would
it not be great to just show the robot the object we are interested in? Why
can we not just pick up the mug from the table and place it back in order
to make the robot learn the model? Why not letting the robot observe how
to pull out a drawer or open a door? One does not show an infant static

pictures of toys with bounding boxes to teach how to play with them.

1.2 Objective

The goal of this thesis is to provide a small step towards more general percep-
tion systems that are based on motion. We will address how the previously
mentioned principal of common fate can be applied to infer hypotheses about
objects by grouping features of similar motion. In particular we assume that
we receive information about the motion of certain features from different
sources and analyse their similarity in terms of rigid body motion. These
sources typically are trackers of various kinds that work with a diversity
of feature types and on different sensors. For example, the Lucas-Kanade
tracker uses corners as features in color images while another source might
use geometric primitives in point clouds obtained from a laser scanner. In
fact it is part of the initial idea to be able to fuse trackers of different types
of features in order to compensate the loss of information in situations where
one tracker might fail. The output of these sources is already very general
as they regularly provide us with observations of the same thing at different
points in time. We will denote these observations as a feature trajectory.
Observations can be simply interpreted as measurements of states of the
feature depending on time. These states are usually points or poses in Eu-
clidean space. Therefore the only requirement for comparability is that the
states of different features are comparable. Further we will use the term
object hypothesis to define the set of all features that have similar motions
with respect to there trajectories.

In order to obtain these hypotheses we compute the distance variance
between all trajectory pairs to construct an affinity matrix. This matrix is
then used as input for a divisive k-means algorithm in order to cluster trajec-
tories into object hypotheses. In a final step these hypotheses are combined
with previously observed hypotheses by computing the correlations between
the current and the updated sets.

Chapter 2

Related Work

The idea to use motion in order to learn from the environment is not really
new. One popular type of application builds around image segmentation.
For example Kenney et al. [5] use the interactive capabilities of a robot
manipulator to move objects and compute the difference of two consecutive
color images in order to segment the objects from the background. Ochs
and Brox [9] present a variational method to combine motion and color
segmentation. Their off-line approach computes the feature trajectories for
an image sequence to obtain a first segmentation based on motion. Then
they refine this sparse segmentation for every image based on the color
information.

Learning kinematic models is another field of application. Sturm et
al. [13] fit and track planes in a 3D scene reconstructed from a sequence of
stereo images. These tracks are then used to learn articulation models of
drawers and doors as they typically can be found in domestic environments.
The method proposed by Martin and Brock [8] has a similar motivation
but is not limited to planar surfaces. They use the KLT feature tracker on
the color image of an RGB-D sensor to feed a multi-level state estimation
approach in order to obtain articulation models. Their method seems very
capable of detecting unknown objects based on motion. However they state
they require at least 15 feature points for each rigid body which would place
limitations on the type of trackers that can be used.

Clustering of feature trajectories has also been addressed in previous
work. Yan and Pollefeys [16] propose a method for motion segmentation
under affine projections. It is based on a multi-body factorization method
originally introduced by Costeria and Kanade [4]. They also suggest a divi-
sive clustering step using spectral clustering. Because their method requires
trajectories to be of equal length and frequency it seems not really practical
for online use where trajectories spawn and die regularly.

The approach proposed by Brox and Malik [3] probably had the most
influence on the method described in this thesis. Their off-line method com-

putes the large displacment optical flow [14] between every image pair of a
given video and uses this flow to create long term trajectories of points in
dense grid cells. They also perform a pair-wise comparition in order to con-
struct an affinity matrix. However they define dissimilarity of trajectories
where both motion vectors are most dissimilar which only allows transla-
tional motion. They compensate for this by relying on the dense set of
tracked points and only allow high affinities for spatially close points.

Chapter 3

Inferring Object Hypotheses

This chapter addresses the details of the proposed solution by providing the
theoretical foundation as well as giving some insight into implementation
related issues. The chapter is split into three parts corresponding to the
three core elements. Figure 3.1 illustrates these components. The first
section addresses the kernel which receives updates of the feature trajectories
from different tracker sources. The kernel constructs an affinity matrix by
pair-wise comparing the feature trajectories. The second sections describes
the clustering process. A divisive k-means approach uses this matrix to
create new object hypotheses. The final section explaines how these results
are combined with previously obtained object hypotheses and propagated
over time.

3.1 Distance Variance of Trajectory Pairs

Given a set of feature trajectories
d N

=1

where each trajectory f; : ¢t — @ describes the state @ of the ith feature at
time £. A feature can be anything that allows to easily find correspondenses

xT; (Sl)

Source 1 (i)
{ax;}(52) 5

Source 2 d Kernel A Clustering ¢ Propagation C—»

" “

Figure 3.1: Conceptual overview of the proposed method

of the same “thing” over a period of time. Hence the feature itself is time
invariant, while its state is not. A state usually is a position in 2D or 3D
Fuclidean space but could as well be a 6-D pose.

Now assume there exists some time independent association between
two different features of the form ¢; : € — &. Let X ~ f;(t) be the set
of states described by trajectory f; over a finite observation time ¢ € [0, T
and X ~ ¢;(fi(t)) be the results of some association function. We can then
write the mean squared error of this association as

E[(X — X)) = E[XY] + E[X? — 2E[X X]

E[X?] — (E[X])* + (E[X])? + E[X?] - (E[X])> + (E[X])”
2(E[XX] - E[X]E[X] + E[X]E[X])

ar(X) — 2Cov(X, X) 4 Var(X) + (E[X — X])?

which is
E[(X — X))} = Var(X — X) + (E[X — X])? (3.1)

Var(X — X) = E[(E[X —X]— (X - X))}

E[(- X)%] - (E[X - X])?

E[X?] - 2E[X X] + E[X?] - (E[X])* + 2E[X]E[X] — (E[X])?
Var(X) — 2Cov(X, X) + Var(X).

Let us now think in terms of rigid body motion. If two features belong
to the same rigid object then their association function

¢i(fi(t) = fi(t) = Gizi —x; = 0

states that at any time ¢ there exists exactly one affine transformation G;
that maps the state of trajectory f;(t) to f;(t). Or putting it differently, if
G; is the identity transformation then the distance between both trajectories

dij(t) = |[fi(t) = fi (O = \/[Filt) =[O 1at) = f3(0)]

should be constant. In this case the mean squared error of an association
can be decomposed into the squared mean distance (E[X — X])? and the
distance variance Var(X — X) as stated in (3.1). Although trajectories of
different objects still have a mean distance for an observation time interval
[0, T, their variance is significantly higher as if they were moving along the
same path. This makes the distance variance a strong indicator of whether

a pair of feature trajectories result from the same rigid body, at least if one
of the trajectories represents motion.

In case both trajectories do not move at all, although their variance
is small, this does not imply a strong association between them. In other
words motion is an important requirement in order to make assumptions
about trajectory pairs and needs to be present in at least one of them.
Hence instead of just using the uniform weighted variance

L d2.(t) dt — <1 ' di; (1) dt>2
T Ji=o ¥ T Jimo ”
we assign weights
wij(t) =1 — exp{=X (v};(t) + €)} (3.2)

with

o (1) = max { | fi(0)2, 1501}

as the greater velocity of both trajectories at ¢, a small constant factor € > 0
to omit zero weights, and A > 0 as a scaling parameter. This penalizes the
stationary sections of trajectory pairs without emphasising high motion to
much. An important aspect of this is to add some dynamic to the comparing
process so that when an object suddenly starts to move, this information
immediately can affect the variance. Otherwise the variance would rise too
slowly.

This leads to the new measure

2

0% =1 / " ()8 1) dt — (n / " w00 dt) (3.3)

=0 =0

([0

as the normalization. Putting all this together we obtain an affinity matrix
A € [0,1]V*N with elements

with
-1

aij; = aj; = exp{—y 0} (3.4)

and another scaling parameter v > 0. The next part of this section talks
more about the special considerations needed when implementing this. It
also points out how the parameters A and 7 of (3.2) and (3.4) affect the
outcome and how to choose them.

Implementation

Previously we have silently assumed that a feature trajectory is a continuous
function of states x over time and every trajectory is observable over the
same time interval ¢ € [0, 7. In practice this is rarely the case and we rather
have to work with a discrete set of measured states at different points in time
which introduces some additional difficulties. In the following let m € [1, M;]
and k € [1, M;] be the running index over observations of trajectory i and
j. M; and M; denote the total number of available observations. Let us
redefine a trajectory as

d M;
fi= {wi,m ERY tim €R : t;m < t17m+1})
m=
where t; ,, is the timestamp when state x; ,, was observed. The issues that
arise from this when comparing a trajectory pair ¢ and j can be summarized
as:

(@) tim # tjm : Ym A M; # M;. This means that observations of both
trajectories are not aligned and cannot be treated as a fix sized vector.
Therefore an element-wise comparision is not possible.

(b) tim # tjr : Ym,k. This is an extension to the previous statement.
It states that there is no guarantee that an alignment exists even for
a subset of observations of two trajectories. This can be caused by
trackers working at different frequencies.

(c) ti1 > tjn;. Two trajectories may cover entirely different time inter-
vals and there is no guarantee that a common window exists where
a comparision is possible. This is because new trajectories may be
created or terminated at any point, e.g. because of occlusion, objects
entering or leaving the observation area.

In the discrete case distances between two trajectories are only computed
when an observation for either of them was made. We address problems (a)
and (b) by using linear interpolation between two consecutive observations.
Hence the distance of an observation x; ,,, of the ith trajectory at ¢; ,,, to the
jth trajectory is

dijom = |Tim — (aZj k1 + (1 — a)z;p)|

with
Lim — Uik
a=-—
tikt1 — tjk
and tj, < tjm < tjpq1 for k€ [1,M;). The effort of finding the appropriate
time interval [t; 1, x+1) can be reduced in practise by computing distances

on the fly as soon as a new observation of a trajectory is made. Let ;41

be this new observation then t; ,,41 and t;,, create a new time interval to
which all currently existing observations can be compared to. Since ¢; a7, <
tim+1 VJ # 4 it is sufficient to check whether the last observation of the
remaining trajectories falls into this new interval and update the set of their
distances accordingly. Therefore for every observation @; ,,, we also maintain
a set of distances

{dij,m AW ik < tign <Tjpa1: ke [1,Mj)}

to all other trajectories that have a time interval where x; ,,, falls into. The
variance 0;; from equation (3.3) is now computed over a set of distances

{dij,m7 dj“{; : Vm,]C : max{tijl, tj,l} S t@m, tj,k S min{ti,Mi,tj7Mj}} (3.5)
and weights will be applied depending on the velocity

Vijom = Vin = Lim — Lim—1
’ ’ tim — tim—1

at an observation. It should be clear that the computational cost for creating
the affinity matrix not only depends on the number of trajectories but also on
their number of observation. This would quickly become infeasible without
pruning data. Therefore we simply throw away observations that are older
then certain threshold (e.g. 10 sec) and remove the trajectory if it becomes
to short. However there might be more clever ways to approach this, for
example a stationary feature could easily be described by only using its first
and last observation.

Now what remains is to deal with case (¢) which occures when we main-
tain trajectories that have not received an update in a while and trying to
compare them with newly created trajectories. As we can see from (3.5)
this set will then be empty and choosing an appropriate affinity is not a
simple task. So why would we keep outdated trajectories in the first place?
In fact old trajectories do not add any information to the clustering pro-
cess different from when they were up-to-date. Since they will not receive
any new observations their affinity to other trajectories will not change and
it suffices to maintain their last up-to-date object hypothesis. Hence it is
save to remove these trajectories from the clustering process. However one
should make a descision when to mark a trajectory as outdated. If we have
trajectories from sources of different frequencies we can still encounter is-
sues stated by (c). In case the number of uncomparable trajectories is small
enough, setting their affinity to a constant a;; = 0.5 works fine. It should
neither emphasize high nor low affinity.

This leaves us with the interpretation of the parameters A and v from

(3.2) and (3.4). If we consider the affinity as a smooth indicator of whether
a pair of trajectories belong to same object (a;; — 1) or not (a;; — 0)

10

10 T 1 T T
gl e S oL = 230 -
3 0.6 | — Mp2 =058
04 — Xo3=26 W
0.2 |- - target i
00 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5
v
— Yo.05 = 277 |
— Y1 =69 |
N — Y.2=17 |]
target .
N e—
0.4 0.5

g

Figure 3.2: Top: parameter selection of A, for weights w based on target velocity
v. Bottom: paramter selection of 7y, for affinity a based on target standard deviation
o.

then equation (3.4) can also be seen as a soft threshold mapping standard
deviation o to affinity (see Figure 3.2 bottom). This means one could define
v as

1
Yo = —— 10g0.5
o

depending on the standard deviation at which to switch between high and
low affinity. Similiar one can specify A as

1
Ao =~ log(1 ~ 0.9)

depending on the velocity v at which to consider a feature to be moving (see
Figure 3.2 top).

3.2 Divisive k-Means Clustering

We have succesfully constructed an affinity matrix A with each entry a;; €
[0,1] : Vi # j € [1, N] and a;; = 1 describing the similarity between a pair of
feature trajectories. We now seek to assign labels [; € {1,2,..., K} to each
trajectory where each label represents the hypothesis of a single object. In
other words we want to cluster our trajectories based on an affinity matrix.
The first problem we face is to determine K, that is finding the total number
of clusters within the data. Although this is a very general problem and
literature offers several approaches to solve this, it is not trivial.

11

o< v Q=

Figure 3.3: Featuring a simulated scene of 5 objects {R,G, P,Y, B} (as red,
green, purple, yellow, blue) where G, P, Y, B are objects moving from left to right
with same constant speed but with different starting times. R is the stationary
background. Each object yields 20 trajectories. The first and third row show the
scene at t = {1,2,3,4,7,9}, the second and fourth row presents the corresponding
affinity matrix (blue — 1, red — 0) of trajectories sorted by objects.

12

5000 T T T T T T T =
0 @@ full -
—5000 @@ diag i
—10000 @—0 spherical []
—15000 best -
—20000 es
—25000
—30000
1 2 3 4 5 6 7 8 9 10
10000 I I I I I | |]
5000 e—0 full i
0 @0 diag 7
—5000 @—0 spherical []
—10000 best .
—15000 es
—20000
—25000

1 2 3 4 5 6 7 8 9 10

Figure 3.4: Bayesian information criterion (y-axis) for Gaussian Mixture Mod-
els with different types of parametrizations for the covariance matrices and variing
number of components (x-axis). Fitting was performed on the affinity matrix ob-
tained from the scene shown in Figure 3.3 at time ¢t = 1 (top) and t = 3 (bottom).
The star denotes the minimal BIC and hence the suggested model parametrization.

One approach is to fit several different models to the data, evaluate the
Bayesian information criterion (BIC) [11] and select the model where BIC
is minimal. BIC uses the likelihood of the data under the selected model to
estimate the quality of the fit. Since adding more parameters to the model
can easily improve the likelihood, it also leads to overfitting. Therefore BIC
uses a penalty for the number of parameters of a model. Scikit-learn [10]
provids easy access to an implementation for fitting Gaussian Mixture Mod-
els to the data. Figure 3.4 shows the resulting BIC for different Gaussian
Mixture Models depending on the type of parametrization for the covariance
matrices (full, diagonal and spherical) and the number of components. The
used data is from a simulation scenario shown in Figure 3.3 at two different
points in time ¢ = 1 (top) and ¢ = 3 (bottom). Expected values for the
number of clusters are K = 2 in the first case, and K = 4 in the later one.
As we can see the minimum BIC suggests more clusters then expected.

Another approach comes from spectral clustering [15] and uses the eigengab
heuristic to determine the number of clusters. Our affinity matrix A can be
interpreted as the adjacency matrix of a fully connected graph, where each
trajectory resembles a vertex in the graph and the entries a;; are weights of

13

1 2 3 4 5 6 7 8 9 10

Figure 3.5: Shows the first 10 eigenvalues (y-axis) of the graph laplacian L
(top) and the normalized laplacian L,y (bottom) computed based on the affinity
matrix obtained from the scene shown in Figure 3.3 at different points in time. The
x-axis represents the indices of the corresponding eigenvalues.

an edge connecting trajectories ¢ and j. One can compute the graph Lapla-
cian as L = D — A where D is the degree matrix with diagonal elements

N
dii =Y aij.
=1

The graph Laplacian has several interesting properties that one can utilize.
For further reading on this and spectral clustering the work of [15] is highly
recommended. In particular what we are interested in is that

e the smallest eigenvalue of L is 0, the corresponding eigenvector is a
constant one vector,

e L has N non-negative, real-valued eigenvalues 0 = A\; < Ao < ... < Ay,

e the number of K eigenvalues Ai.x = 0 corresponds to the number of
connected components in the graph.

The last statement leads to the so called eigengab heuristic which suggests
that K should be chosen such that Ag — Axyq is large, hence A\.x <
Ax+1. Unfortunately for fully connected graphs as in our case this heuristic

14

0 i
3
0 s
0 i

o°
o
)

W< v QW

Figure 3.6: Featuring a simulated scene of 5 objects {R, G, P,Y, B} (as red, green,
purple, yellow, blue) where R, G, P, Y are stationary and B moves downwards (top
row, from left to right). Each object yields 3 trajectories. The bottom row shows
the affinity matrix (blue — 1, red — 0) of these trajectories sorted by objects (R:
first 3 entries, G: next 3, ...).

seems to fail when the components are not clearly separated. Figure 3.5
shows the first 10 eigenvalues of the Laplacian L = D — A (top) and the
normalized Laplacian Ljom = I — D 'A (bottom) for the same scene
used to investigate BIC (Figure 3.3) at t = {1,2,3,4,7}. The expected
value for K at the given timestamps are {2,3,4,5,5}. As we can see the
transition between consecutive eigenvalues is rather smooth in most cases
and therefore it seems as there exists some connection between different
objects that prevents a clear separation. In fact the variance criteria from
the previous section 3.1 has an interesting feature that seems responsible for
this.

To make things clear let us take a look at a different simulated scene
in Figure 3.6. There are 5 objects (R, G, P,Y, B) and each yields 3 perfect
trajectories without any noise. Only a single object B is moving downwards,
the others do not move at all. One might suspect that, since only B moves
and R, G, P,Y have the same stationary trajectory except for their location,
the affinity of B to all others should be equally small. A closer look at the
affinity matrix however reveals that only affinity between B and Y is small
and is particularly high to G. This is very different from equal. Why is
that?

If we think again in terms of rigid bodies then the motion of B could also
indicate a rotation around G and having high affinities in this case is a good
thing. This also shows that the chosen criteria is not entirely independent

15

to relative position and movement. If the motion vector and distance vector
are parallel (B and Y') small distance variations lead to significent affinity
changes. More specifically only the projected portion of the motion vector
onto the distance vector affects the variance. This leads to the conclusion
that different feature trajectories of two objects may have different affinities
depending on where the features are located. If we see R,G, P,Y as one
object, e.g. the background, than we need to take into account that some
parts of this object may still have strong connections to other objects (G to
B). A weak connection however is what separates it from others (Y to B).

The divisive k-means approach tries to solve this issue by splitting the
graph into two similar parts and removing all edges connecting both clusters.
This step is repeated for each cluster if there still exists a decent amount of
dissimilarity within it. In general k-means minimizes

K
min 337 i — gl (3.6)

k=11i€eCy,

for the label vector I € {1,2, ..., K} and C;, = {i|l; = k} as the set of cluster

indices.)
He=1e] > @i
k 1€Cy,
is the mean of all rows x; = (ai,lzN)T of matrix A assigned to the kth cluster.
Hence equation (3.6) attempts to minimize the variance within all clusters.
We stop further dividing clusters if the minimum affinity within the cluster
after the edge removal step is greater than 0.4.

3.3 Label Propagation

Finally we need to combine the hypotheses obtained from clustering C with
previously observed hypotheses C. To accomplish this we create a single
correlation matrix M € REXK with entries

N
My = Z p(eklzi)p(ér|zi)p(z;)

where p(cg|z;) denotes the probability of the ith trajectory belonging to
cluster ¢, which is the currently assumed object hypothesis, p(¢|z;) the
probability that z; belongs to ¢;, which is the updated hypothesis obtained
from clustering. p(w;) is assumed to be uniform, so p(z;) = N~'. When
p(eg|zi) = 1if x; € ¢ and else p(cg|x;) = 0, this basically counts the number
of trajectories that are in ¢ and ¢;. From M we K-times pick the indices
k,l with the maximum value and set row and column my 1. = mi.x; = —1
to prevent from picking there again. Every pick assigns all trajectories from
cluster ¢ to cy.

16

Chapter 4

Experiments

This chapter investigates the theoretical capabilities of the proposed method
by discussing the results based on simulation data. The remainder presents
a real world application using the Lucas-Kanade-Tomasi Tracker as a source
of feature trajectories from RGB-D data.

In order to evaluate clustering methods, [7] suggests several criterias.
One of them is the normalized mutual information (NMI) which is defined

* 21(C;)
H(C)+ H(G)

Let G = {g1,92,...,g1} be the set of L clusters denoting the ground truth,
where each g; is a cluster of trajectories that form the true object hypothesis.
Let C = {c1, ¢, ...,ck } be the set of K object hypothesis obtained from the
proposed method. In general the mutual information /(X;Y") of two random
variables expresses the amount of dependence between both variables. If X
and Y are independend and therefore p(x,y) = p(x)p(y), then I(X;Y") = 0.
In our case mutual information is computed as

NMI = (4.1)

L

ZP ck N gi)log
k=1 =1

plex N gr)
p(cx)p(g1)

where

N 1
ple) =D plerle)pla:) = ekl
=1

is the probability of trajectories x; being in the kth cluster (and p(g;) ac-
cordingly) and

N
1
plex Ngr) = le(ckiﬂi)p(gl|$z‘)1?($i) = N'Ck N gl
1=

17

is the probability of trajectories being in both clusters. The minimum of
I(C; @) is 0 if the hypotheses are random with respect to the expected clus-
ters. The maximum mutual information is reached when the obtained hy-
pothesis exactly match the expectation. However the maximum does not
change when the perfect results are further subdivided into smaller clusters
and therefore this value is also reached if every cluster consists of only a sin-
gle trajectory (K = N). To fix this mutual information is normalized using
the average entropy of the obtained and expected clusters H(C) + H(G))/2

with
K

H(C) == plex) logp(cx)
k=1
and similiar for H(G). Since the entropy has its maximum at K = N this
normalization penalizes oversegmentation and ensures an upper bound of 1,
hence NMI(C;G) € [0,1].

The ground truth of simulation and the real world datasets is fixed for
each trajectory. Every trajectory is assigned to exactly one true hypothesis
independend of the time. This means even if the trajectories are similiar at a
certain point in time (e.g., the background and an object that did not start
to move, yet), the ground truth assumes different objects over the entire
lifetime of both trajectories. Since we evaluate the NMI for every obtained
update on the object hypotheses, we only consider trajectories in the ground
truth that are currently active. Hence, the set we use for ground truth only
contains trajectories we receive from clustering.

4.1 Simulation

In principal, the simulation can be seen just as another source of feature
trajectories that we send as input to our processing pipeline. The major
difference however is that we know the exact properties of each trajectory
and what the corresponding true object hypothesis is. This not only en-
ables us to quickly create new scenarios to review problems that occured
with a real application, it is also a great way to qualitatively assess the
effect of parameter changes and algorithm adjustments. In the following
we will discuss the effect of the parameter 7 of equation (3.4) with respect
to noise of the trajectories and the effect of using weights based on veloc-
ities. In a last scenario we show that the neither translation nor rotation
is a problem and how suddenly spawning new trajectories affects the results.

In order to create a new scenario we first define a set of objects O =
{R,G,P,Y, B, ...}, where each object defines a rectangular region. A remark
on the notation: letters R, G, P,Y, B are chosen such that they denote the
color of the corresponding rectangles in the images (R: red, G: green, P:
purple, Y: yellow, B: blue). For each object o we also define a set of

18

,ﬂ .
¥ x
L0 &
o
<
= ~
b F B
o -
=)
2 G
= :
I .
e} N
¥ AN =
I "
o |k #
—
< .
(e Bl ‘
|| ‘1 " k<
5 <
o
N
o E
Il
o}
x %
o LT
o
— H
o .
[l
b k:
& . o\
A

Figure 4.1: Shows the effect of choosing ~ based on different values for o. The
scene consists of two objects O = {R, G}, where R resembles the background with
40 stationary features and Gaussian noise og = 0.01. G is an object moving from
left to right with 10 features and o¢ = 0.005. The first three pictures of each row
present a snapshot of the scene at time ¢ = {1,5,10}. The colors of the trajectories
indicate the resulting hypotheses. The last column of each row shows the affinity
matrix corresponding to the scene in the middle picture (¢ = 5)

19

key-states {So1,802,...S0 M} Where 5,1 = (pm,py,qS)T is the position and
orientation at the beginning of the simulation (¢ = 0) and s, s at the end
(t = T). The simulation runs with a frequency of 15Hz and interpolates
linearly between two consecutive key-states to obtain the current state s, ;
of each object.

The initial state s,1 and the specified rectangular region are used to
define the initial states x; 1 of the features for each object. All new features
are always spawned randomly relative to s, and within the region. With
each simulation update all feature states will be transformed based on the
current state s,; of their corresponding object. These transformed states
create new observations for each feature as

it =Ts,, i1 +¢€

)

with € ~ N(0,0,) being normal distributed noise.

The effect of

At the end of section 3.1 we have seen that a more convenient way of choosing
v is to set it with respect to a desired standard deviation o

1
Yo = —— 10g0.5
o

at which we want to switch between high and low affinities. Figure 4.1 shows
the results for different values of ¢ on a simple scenario that consists of only
two objects O = {R, G}, where R resembles the background with 40 sta-
tionary features and Gaussian noise og = 0.01. G is an object moving from
left to right with 10 features and og = 0.005. All features are spawned ini-
tially and do not die. Each row of Figure 4.1 shows the scene at timestamps
t = 1,5,10. The color of the trajectories denotes the estimated object hy-
potheses where the same color corresponds to the same hypothesis. The last
image in each row shows the affinity matrix at t = 5 (hence, corresponding
to middle image of the three scene snapshots).

From the first row we see that if o is too small, each trajectory is assigned
to a separate object hypothesis and we have a classical case of oversegmen-
tation. In the second row the trajectories of G are already placed in the
correct hypothesis but the background is still incorrect. In the middle row
it becomes better but it still takes quite some observations until all trajecto-
ries in the background are assigned to the same hypothesis. Row four shows
almost perfect results except at the very beginning and in the last row the
object G has to move almost entirely across the scene to be separated from
the background. A plot of the NMI in Figure 4.2 presents these results more
precisesly and shows exactly how long it takes to reach a perfect solution if
possible.

20

NMI

11

t in seconds

Figure 4.2: Normalized mutual information over time corresponding to the scene
from Figure 4.1. Shows the results of the effect for choosing v based on different
values for o.

The best choice for v in this scenario is with respect to ¢ = 0.02. In fact
this result is not very surprising if we take another look at the decomposition
of the variance in equation (3.1) as

Var(X — X) = Var(X) + Var(X) — 2Cov(X, X)

which becomes smaller when COV(X ,X) > 0. Since a positive covariance
between two random variables indicates similiar behavior and the opposite
for negative values, defining the switch between high and low affinity at the
point where COV(X , X) = 0 makes perfectly sense. In this case we get

Var(X — X) = Var(X) + Var(X) = 0% + 0%

which suggests to redefine the choice for v as

1
Yij = _JZ.QTJQ. log 0.5
if the values for o; and o; of the ith and jth trajectory are known in advance.
Yet, adjusting v depending on the trajectory pair that is being compared
has not been investigated any further and we will leave this topic to future
work. Hence we set
o = 2max{o;}

for all known standard deviations. The obvious limitation to this is the
assumption that the error of a trajectory can be approximated by Gaussian
noise.

21

1.0 F—————= SRR (EEEEEEE T j T =
s even weights | | s S]
— v =10.0001 : : : :

o6H el R R =
S | — v=01 5 | | |
Z 04 SEEEEEEEEEE LR cef P =
o2
0.0 ! t = foceeeooaees (R =
9.0 9.5 10.0 10.5 11.0 11.5 12.0

t in seconds

Figure 4.3: Normalized mutual information over time for investigating the effect
of weights based on velocity.

Assigning Weights Based on Feature Velocity

The idea of using weights when computing the distance variance is to add
some dynamic to the process when an object starts to move after a longer
period at rest. To evaluate the effect of this we slight change the previously
used scenario from Figure 4.1 so that object G does not move for 10 seconds
and then moves to the other side of the scene with constant velocity vg = 0.3.
Since great noise would also put high weights on the background trajectories
we set op = og = 0.0005. Figure 4.3 shows the NMI of this setup for placing
equal weights on all distances, setting A to very small velocity and for a
good choice of v = 0.1. Because of how the weighting scheme is designed
(3.2), choosing a small threshold velocity v is not very different from setting
equal weights. Selecting a good value for v provides the expected increased
dynamic although the effect is quite small.

Spawning New Trajectories

In the last scenario we will take a closer look at what happens if we regularly
initialize new trajectories. This investigation is motivated by the fact that
for real applications it is quite common for trajectories to die due to occlusion
or other problems causing the tracker to loose the feature. To compensate
for this loss it is practical to regularly search for new features and create
new trajectories.

Figure 4.4 depicts the test scenario of three objects O = {R,G, P},
where again R is the set of 20 background features with op = 0.005. G is an
object moving from right to left, containing 10 features with o = 0.005 and
spinning around its center in changing directions (CCW — CW — CCW).
P resembles an elongated rectangle with 10 features and op = 0.001 that
slowly rotates by 90 degrees. Every 2 seconds, 20% of the existing features
of each object are randomly removed and replaced by new ones. We set
with respect to ¢ = 0.01 and use even weights.

22

Figure 4.4: Shows a simulation scenario of three objects O = {R, G, P}, where
R is the set of 20 background features with og = 0.005. G is an object moving
from right to left, containing 10 features with o = 0.005 and spinning around its
center. P rotates to the left by 90 degrees, contains 10 features with op = 0.001.
Every 2 seconds, 20% of the existing features of each object are randomly replaced
by new ones. Colors of the tracks indicate the estimated hypotheses.

NMI

t in seconds

Figure 4.5: Normalized mutual information over time corresponding to the scene
shown in Figure 4.4. The drops of the NMI are caused when new features are
initialized.

23

In general the results as shown in Figure 4.4 look satisfying and most
of the trajectories are assigned to the correct hypothesis. Another look
at Figure 4.5 however reveals a drop of the NMI at ¢ = {2,4,6}, which is
exactly when new trajectories are spawned. This is because new trajectories
have high affinities to all existing ones since their common observations are
very small. When a split of data is performed by the clustering step, these
features tend to be placed within the greater of both clusters and therefore
usually get assigned to the background first. They get reassigned to the
correct hypothesis as soon as more observations are available. Hence, the
NMI in Figure 4.5 slowly moves back up to 1.

An approach to solve this problem could incorporate a prior belief based
on the spatial distance to existing trajectories. This would result in new
trajectories to takeover the hypothesis of nearby features as long as the
number of observations is too small. This is another aspect we will leave to
future work.

4.2 Example Application

Let us now turn to a more practical application. For this purpose we fall
back on the publicly available implementation of the popular Lucas-Kanade
feature tracker [1] provided by the OpenCV Library [2]. Shi-Tomasi cor-
ners [12] will be used as features in the color image. A very simple way
to extend this tracking method by additional spatial information is to use
an RGB-D sensor such as Microsoft Kinect and project the positions of the
tracked features from the color image into Euclidean space. This is very
easy since color and depth images are already aligned on hardware side
which means for every color pixel we also have a 3D point.

A common way to detect tracking errors caused by occlusion is to per-
form a consistency check of the forward and backward flow for each fea-
ture [14]. Let x;; be the position in pixel coordinates of the ith feature in
the current image. We obtain the position ;41 in the new image by apply-
ing the Lucas-Kanade flow estimation between images at ¢ and t4+1. We can
now also apply this method backwards by tracking x; ;41 from image ¢ + 1
to t in order to obtain Z;;. Idealy this would result in the same position.
As suggested by [14] we stop tracking if

[lwi + i < 0.5(]fwil|* + [|w]|*) + 0.5

where w; = ;441 — x;+ denotes the forward motion and w; = &;; — ;¢
the backward motion of the ith feature. Another heuristic used to stop
tracking is to restrict the length of the motion vector in Euclidean space.
This is necessary because color and depth image are not perfectly aligned
and points may suddenly jump between the object and the background in
depth image. To compensate for the lost features we create new features

24

Figure 4.6: Shows the estimated hypotheses at different points in time for the toy
truck scene. Trajectories are obtained using the KLT tracker.

after certain number of frames at the 100 best positions in the current image.
In order to prevent spawning new features at same locations every time, we
subdivide the image into equal sized grid cells and only keep the newly
created features if they fall into an empty cell.

This application was evaluated on three different scenes. Figure 4.6
shows how a toy truck is pulled from the right side of the image to left.
New features are initialized after every 15th frame. Figure 4.9 provides
the corresponding NMI results. Notice that trajectories of the hand and
the truck are assigned to different hypotheses (red and green) if they are
observed for a long time. Trajectories that are spawned later in time and
therefore lack the observations to discriminate them from other objects are
assigned to the bigger cluster. For this reason some parts of the hand show
red trajectories instead of green ones. We can observe another source of
error in this scene: points in the background tend to be separated into small
clusters. This is because the measurement noise of the Kinect raises rapidly
with increasing distance.

Figure 4.7 shows a similar scene but this time with two objects moving
at the same time with dissimilar motion. The truck moves from right to left
while the tower is pushed from the left to the right at the same time. In

25

Figure 4.7: Shows the estimated hypotheses at different points in time for the
scene of a toy truck and a tower moving in different directions. Trajectories are
obtained using the KLT tracker.

26

this case we initialized new features with only half the rate at every 30th
frame (hence, every second). The results are similar to the previous scene.
Tower and truck are nicely separated (blue and red). Notice the two yellow
trajectories on the truck whos feature is located close to the border. While
motion looks good in the color image, their corresponding 3D point however
sometimes jumps between table and truck. Such outliers are currently not
handled well. Figure 4.10 gives the results of the NMI evaluation.

In the last scene as shown in Figure 4.8 and the corresponding NMI in
Figure 4.11 we see a shelve with drawers and doors. At first the lower door
is opened and closed showing rotational motion. Then the drawer is pulled
out and back in. In this scene special attention should be given to the lower
door. The hypothesis actually changes when the door is fully open. This is
because at this point all features are lost and there is no association to the
trajectories for closing the door again.

27

Figure 4.8: Shows the estimated hypotheses at different points in time for a scene
with translational and rotational motion. Trajectories are obtained using the KLT
tracker.

28

NMI

. 10
t in seconds x10

Figure 4.9: Normalized mutual information over time for the toy truck scene
shown in Figure 4.6 for different values of o.

1.0 T T T T T T T T
08f A A
= 00l 3\Va Sty I A P B A
= o e
ZAN R Vst S P P P P s s R 1
02 : : .| — 0=0005 — o0=0.015
' g g .| — o0=0.010
0.0 | | | | | | | |
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
. 10
t in seconds x10

Figure 4.10: Normalized mutual information over time for the toy truck and tower
scene shown in Figure 4.7 for different values of o.

1.0 T T T
08 — =000 — o0=0.010 — o¢=0.015
e 06 N B e T R NS Wy A |
= s ; s
Z0a S7EEE | R st SR | B Feene e .
02 b b UL TSSO e A -
00 i i i
0.0 0.5 1.0 15 2.0
t in seconds x10'

Figure 4.11: Normalized mutual information over time for the drawer scene
shown in Figure 4.8 for different values of o.

29

Chapter 5

Conclusion

In this thesis we investigated an approach to fuse trajectories from different
feature trackers and to create hypotheses about objects under the constraint
of rigid body motion. This could eventually become an important piece of
a system that leads to a more general way of how perception is addressed
in robotic applications.

The presented method shows promising capabilities to identify objects
of translational as well as rotational motion for feature trajectories with
Gaussian noise. This was verified by various experiments using data from
simulation. The results of an example application using the KLT tracker as
a single source for trajectories however suggsets that Gaussian noise approx-
imation may not suffice for real trackers. Despite the heuristics that were
applied to reduce the number of tracking errors, the simple nature of how we
extended the KLT tracker from color image to the depth image still leads to
outliers in the trajectories. One way to deal with small outliers is to reduce
parameter - at the price of requiring larger motion to discriminate between
objects. This however is not a satisfying solution and therefore should be
placed on top of the list of potential improvements.

Another important issue that should be addressed in future work is to
improve how newly initialized features are handled. A good starting point
would be to incorporate a spatial prior so that new trajectories preferably
takeover the hypotheses of their close neighbors. Unfortunately the actual
fusion of different types of trackers has only been covered in the conceptual
phase. For this reason future work should also be dedicated to an evalu-
ation of using multiple trackers in order to verify results. One potential
obstacle might require to address different levels of trajectory noise. If one
could guarantee gaussian noise of the feature states, choosing the value for
~ depending on the tracker types of the compared pair of trajectories could
make a difference.

30

Bibliography

[1]

[10]

J.-Y. Bouguet. Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm. Intel Corporation, 5:1-10,
2001.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

T. Brox and J. Malik. Object segmentation by long term analysis of
point trajectories. In Computer Vision-ECCV 2010, pages 282-295.
Springer, 2010.

J. P. Costeira and T. Kanade. A multibody factorization method for
independently moving objects. International Journal of Computer Vi-
sion, 29(3):159-179, 1998.

J. Kenney, T. Buckley, and O. Brock. Interactive segmentation for ma-
nipulation in unstructured environments. In Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, pages 1377-1382.
IEEE, 2009.

K. Koffka. Principles of gestalt psychology. 1935.

C. D. Manning, P. Raghavan, and H. Schiitze. Introduction to informa-
tion retrieval, volume 1. Cambridge university press Cambridge, 2008.

R. M. Martin and O. Brock. Online Interactive Perception of Artic-
ulated Objects with Multi-Level Recursive Estimation Based on Task-
Specific Priors. 2014.

P. Ochs and T. Brox. Object segmentation in video: a hierarchical
variational approach for turning point trajectories into demse regions,
page 1583-1590. IEEE, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825-2830, 2011.

31

[11]

[12]

[13]

G. Schwarz et al. Estimating the dimension of a model. The annals of
statistics, 6(2):461-464, 1978.

J. Shi and C. Tomasi. Good features to track. In Computer Vision and
Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Com-
puter Society Conference on, pages 593-600. IEEE, 1994.

J. Sturm, K. Konolige, C. Stachniss, and W. Burgard. Vision-based
detection for learning articulation models of cabinet doors and drawers
in household environments. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, pages 362-368. IEEE, 2010.

N. Sundaram, T. Brox, and K. Keutzer. Dense point trajectories by
gpu-accelerated large displacement optical flow. In Computer Vision—
ECCV 2010, pages 438-451. Springer, 2010.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and com-
puting, 17(4):395-416, 2007.

J. Yan and M. Pollefeys. A general framework for motion segmenta-
tion: Independent, articulated, rigid, non-rigid, degenerate and non-
degenerate. In Computer Vision—-ECCYV 2006, pages 94-106. Springer,
2006.

32

Declaration

I hereby declare that the work presented in this thesis is entirely my own.
I did not use any other sources and references than the listed ones. I have
marked all direct or indirect statements from other sources contained therein
as quotations. Neither this work nor significant parts of it were part of
another examination procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all submitted copies.

33

	Introduction
	Motivation
	Objective

	Related Work
	Inferring Object Hypotheses
	Distance Variance of Trajectory Pairs
	Divisive k-Means Clustering
	Label Propagation

	Experiments
	Simulation
	Example Application

	Conclusion

