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Chapter 1

Introduction

Volume Rendering includes different techniques for generating images from three-dimensional scalar
data. These data are acquired by means of computer tomography(CT), Magnetic resonance imag-
ing(MRI) and numerical simulations.

Volume rendering extensive 3D data is requiring much computing power and doing this efficiently
has been a challenge. To build a data structure of which rendering can take advantage is a common
solution. Among others these data structures are built with the purpose of empty space skipping and
adaptive sampling. Empty space skipping is the main strategy of acceleration in this work. Octree and
Kd-tree is constructed and analyzed in reference to construction and rendering performance.

Time-dependent data often come from numerical simulation and show similarities between two suc-
cessive time instances. These similarities can be exploited to facilitate construction, instead of executing
the high workload of a new data structure construction. In Chapter 4 and 5, its method and consequences
will be discussed.

Naive volume rendering is conceptually suitable for parallel computing. On the other side, both
constructing and traversing hiearchical data structures do not seem to agree with parallel nature of GPUs.
Still, it will be shown how to cope with these problems on parallel architecture.
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Chapter 2

Related Work

As an acceleration method for volume rendering, Levoy [Lev90a]introduced hierarchical empty space
skipping and early ray termination with opacity. Yagel et al. [YS93] introduced first empty space leaping
with a pre-scanned emptiness indication coded in distance from current pixel. emptiness-number of
current cell in a regular grid tells how many cells in the vicinity is empty and can be skipped. Since a
skip is relative to the direction of the ray, cells within a diameter of the specified distance must all be
empty.

For space partitioning, the idea of finding appropriate split for a volume is suggested by MacDonald
et al. [MB90]. MacDonald et al. proposes surface area heuristics and the candidates of an optimal split,
which may lie between the spatial median and median of objects sorted relatively to the axis of division.
Horn et al. [HSHH07] introduced kd-restart algorithm and short-stack as well as packetized short-track.
hapala et al. [HDW+13] implements a ’state’ based traversal with a parent pointer. Foley [FS05] applies
CPU-based kd-tree on GPU and uses kd-backtrack as traversal algorithm.

popov et al. [PGSS07] suggests rope traversal, which connects the spatially adjacent nodes. These
nodes have high probability to be traversed in nearby order. Packet traversal groups rays starting from
neighboring pixels. The expectation is that the rays intersect the subvolumes uniformly, upon which the
multiple sampling process can be reduced.

Frame-to-frame adaptation of BVH volume is shown by Wald et al. [WBS07], for a case where
there is only a gradual change between consecutive scenes. Lauterbach et al. [LYTM06] introduces
a BVH quality measure to determine at which instance of time the degradation of the tree exceeds
a predetermined value and an adaptation is not enough. In this case a complete rebuild of BVH is
initiated.

For adaptation, Levoy [Lev90b] adapts the number of rays per pixel according to local image com-
plexity. This is different from adaptation interested in this work, but is a measure of acceleration. Freund
et al. [FS97] extends the data exploitation by encoding homogenous region and accelerates volume ren-
dering.
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Chapter 3

Fundamentals

To make this paper more readable for the general computer science public, some standard concepts and
tools will be introduced in this chapter.

3.1 Volume Ray Casting

One can think volume rendering as depicting each pixel of a window. And this pixel accumulates its
color collected by the ray that has been sent through the center of the pixel. The rendering equation
from Kajiya formulates the spectral radiance coming from a specific position in the direction of the
camera. This equation can deal with scenarios where specular and diffuse reflection is involved. It
enables inspection of theoretically indefinite depth of secondary rays. The rendering equation is intrin-
sically incomplete to describe some sophisticated light phenomena like polarization and interference.
But these phenomena are rather eccentric and in decent quality scenes where global illumination(refers
to scenes with illumination by secondary rays) is the aim, the rendering equation suffices. The concept
of secondary ray is not applicable for direct volume rendering since the model to be rendered is not
composed of geometry, but is a distribution of scalar data points.

The light transport model generally used in direct volume rendering is emission-absorption model.
This model is adopted in this work, too. According to this model, light is emitted from and absorbed by
the ’particles’(scalar values) that constitutes the volume data. It is as if the particles or material in the
scene are self-luminous. This model assumes that scattering or indirect illumination does not occur. A
ray travels through the 3D space starting from the camera. If a ray hits a particle or a material surface,
either it gets absorbed or it penetrates the material. The proportion of the absorbed light in relation to
the whole is the opacity. Unlike the global illumination model, there is no secondary light pointing into
directions other than the initial ray direction. There is a calculative method called alpha-blending by
which the ray sums the particles up. It can be shown that alpha blending can be derived from some
physical premises. Let the emission and absorption rate c and k, respectively. Emission at a distance d
is expected to decrease with a growing d, multiplied by a factor for absorption, k.

dc(d)

dd
= −kc(d) (3.1)

Assuming that k is constant all along the distance, integration over d gives:

c′ = c · e−kd (3.2)
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for varying k along the distance:

c′ = c · e
−

d∫
0

k(t) dt
(3.3)

Bear in mind that this is an emission of a single particle at a specific distance on the ray. Now consider
Integrations of rays starting from all possible positions along the ray. These additive fractions of light
must be summed up, starting from distance 0 to infinity, since theoretically every one of these have an
effect on the resulting pixel.

C =

∞∫
0

c(t) · e−τ(0,t) dt (3.4)

τ is an abbreviation for the integration of absorption coefficient over a specific distance.

τ(d1, d2) =

d2∫
d1

k(t) dt (3.5)

This Integration, also called optical depth, can be approximated by a Riemann sum.

τ(0, t) ≈ τ̃(0, t) =

bt/∆tc∑
i=0

k(i ·∆t)∆t (3.6)

∆t is the distance between the current and the next sampling locations. Summation of the exponents
equals Multiplication of the exponential expression. Hence:

e−τ̃(0,t) =

bt/∆tc∏
i=0

e−k(i·∆t)∆t (3.7)

Now let us define Opacity A and rewrite eq. 3.7

Ai = 1− e−k(i·∆t)∆t (3.8)

e−τ̃(0,t) =

bt/dc∏
i=0

(1−Aj) (3.9)

Which means the successive multiplication of 1 − Aj gives the desired light intensity after successive
absorption.

Likewise define emission of a segment and multiply that by absorption of the segmentand sum it up
over the entire distance of the ray.The multiplicative product is the component that reaches the camera
and the global summation yields the resulting pixel.

Ci = c(i ·∆t)∆t (3.10)

C̃ =

n∑
i=0

Cie
−τ̃(0,i−1) =

n∑
i=0

Ci
∏

i−1
j=0(1−Aj) (3.11)
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these derivations(equations) are from [HLSR09].

Since we don’t know the alphas and emissions(colors) before collecting the particles we meet, we
successively apply multiplication and summation for every alpha and color value we meet. this is called
alpha blending and it coincides with the upper equation.

C ′i = C ′i−1 + (1−A′i−1)Ci (3.12)

A′i = A′i−1 + (1−A′i−1)Ai (3.13)

Finally, alpha blending for color and alpha value is derived, which is used universally in graphic appli-
cations dealing with partly transparent objects.

3.1.1 Sampling and Transfer Function

As previously mentioned, 3D volume data consists of scalar data and the data points are distributed in
regular 3D grid(different than the regular grid in meaning of a partition of a space, in that a volume cell
can contain many data points). It is obvious that the exact sample positions do not coincide with the data
points. Sample point is somewhere in-between data points. There are methods to sample using those
neighboring data points. Nearest neighbor method simply picks the data point nearest to the sample
point. Trilinear interpolation is usually well supported from graphics hardware and more widely used
than more sophisticated methods like gaussian or cubic spline filter.

Now the scalar value of the sample is acquired. To perform compositing along the ray, a transfer from
the scalar value to R,G,B and alpha value is necessary. This is defined as Transfer function, usually in
the form of a look up table. In this case it is a one dimension to four dimension function, but a second
argument on the left side can be added, which is for example gradient of the underlying scalar data at the
sampling point. Widely used with medical computer tomography or magnetic resonance imaging data,
the transfer function can be tweaked to realistically match typical material properties (see fig. 3.1). User-
interactive transfer functions, for instance controlling only opacity, can be useful to highlight specific
material features.

3.2 Spatial Structures

We can use local property of the data to accelerate the sampling process by omitting some executions
of sampling, for example. the concept is to create a division by partitioning plane in the volume. The
location of the division can be predefined like octree and regular grid, or it can result from discontinuity
of data properties. Generally, higher adaptivity of structure to data yields more efficiency for rendering.
It is a trade-off between construction time and rendering efficiency. A data structure can be hierarchical
or flat. Space partitioning trees are hierarchical, the space partitioning algorithm is executed recursively
on each level of the tree. Whereas, the grid is a flat structure offering no hierarchy and is made up of
congruent cells. It is possible to conceive a space partitioning plane that is not aligned with an axis.
But for reason of compactness and aptness to computation, non-axis aligned volumes are a peculiarity
and this work will be confined to the axis-aligned planes. axis-aligned bounding boxes are shortened
AABB. Among space partitioning data structures a handful deserve interest up to now. Frequently
discussed structures including the ones implemented in this work will be introduced below.
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Figure 3.1: Scalar data is classified into Blood, Tissue, Fat, Bone region according to their density
coming from data acquisition. Appropriate setting of transfer function in accordance with material
helps classification of visible features. image courtesy of Mint Medical GmbH

3.2.1 Regular Grid

3D Volume data has a defined extent. In the Data used in this work, it spans from -1.0 to 1.0 in x, y and
z axis. The most simple and perhaps basis for other structures is the regular grid. To be exact, ’regular
grid’ in this work refers to cartesian grid which has identical dimensions in three axis, whereby the exact
definition of regular grid is tessellation of n-dimensional Euclidean space by congruent parallelotopes.
The convention seems to be using the term regular grid instead of cartesian grid.

Figure 3.2: regular grid (image from [HLSR09])
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3.2.2 Octree

One of the intuitive ideas to divide a geometry is to cut it into 2 congruent parts. Dealing with a 3D
cube, one can think of dissecting the volume through 3 planes perpendicular to each of x, y, z axis. this
procedure yields 8 sub-volumes, which can be repeated at any each level of subdivision. this recursive
property is depicted at figure 3.3.

Figure 3.3: Octree, depicting one subdivision at depth 1 and two subdivisions at depth 2. (image
from [Man06])

The subdivision can be quit at a predefined depth or if a criteria for termination is met. The termi-
nation criteria for volume partitioning is in many cases the number of items in the volume. Another
common criteria is the bound of maximum depth. This can greatly reduce construction costs and mem-
ory requirements.

Octree and binary space partitioning tree finds a broad application area. N-dimensional data can be
mapped into three spatial axis and n-3 -dimensional data point. An example is the color quantization
algorithm and nearest neighbor searching algorithm.

3.2.3 k-D Tree

k-D tree is short for k-dimensional tree and belongs to binary space partitioning tree. The difference to
octree is that the splitting plane is not fixed but dependent on geometry or data. This raises construction
cost significantly, which will in general pay off at the later rendering phase. An apt choice of splitting
plane yields a well balanced kd-tree, and this kd-tree approachs theoretic depth of logN .(In the case of
ray tracing, N is the number of total triangles or primitives, but for ray casting this formulation does not
hold.)

The computation of splitting plane for ray tracing is a well studied issue. Goldsmith et al. proposed
an algorithm that computes an optimal splitting plane [GS87]. Before then there has been manual
setting of split planes and bounding boxes, but no automatic generation of volume division. Series of
developments and improvements on the cost prediction function serves as a Heuristic toward an optimal
splitting plane [MB90].



10 CHAPTER 3. FUNDAMENTALS

Figure 3.4: A Kd-tree is created from 2D data. The split planes are set in favor of empty space skipping.

The cost prediction function by MacDonald et al. [MB90] is called the Surface Area Heuristic(SAH)
and computes the estimates of traversal cost after a volume has been subdivided by a candidate plane
(see eq. 3.14). At each Node, greedy strategy to choose the plane with the minimum cost is applied.
If the minimum traversal cost is greater than the cost of intersection tests for the original node without
splitting, no splitting is performed and the node is set as a leaf. This criteria of termination of tree
construction seems more consequent and plausible, if memory consumption is not an issue.

Csplit(Vl, Nl, Vr, Nr) = Ctrav + Cisec(P (Vl|V )Nl + P (Vr|V )Nr)

where P (Vl|V ) =
SA(Vl)

SA(V )
and P (Vr|V ) =

SA(Vr)

SA(V )

surface area of a volume SA(V ) = 2(VwVd + VwVh + VdVh)

(3.14)

it is possible to calculate the probability with which a ray that hits a volume also hits any of its
sub-volumes. having a voxel V that is partitioned into two voxels VL and VR, the probability of a
ray traversing these two sub-voxels can be calculated with P (Vl|V )) and P (Vr|V )). Nl and Nr is the
number of primitives in the volume, Ctrav is the traversal cost and Cisec the cost of a single intersection
computation.

There are unrealistic assumptions under which the SAH is proposed. As the summation of area runs
over all six areas about a volume, rays are supposedly coming from all directions with equal probability.
but if one considers a scene with a volume box lying on a ground, the surface facing to the ground
remains intact from rays. Imagine a scene with a cluster of great number of objects, primitives visible
from outside occlude the ones in the center. This is not a dissipation of tree if the camera can move into
the cluster. Otherwise if those objects can be neglected from vision, occlusion-culling can be applied.
Moreover, the original SAH is supposed to compute a perfect tree which optimizes traversal cost, but
does not consider construction cost. Simple modifications to reduce computation like lessening cost
evaluation points do exist. These downsides might pose no problem for a static scene, but not for a
dynamic, time-dependent scenes.
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Just like octree (section 3.2.2), termination criteria of kd-tree construction can be a decisive perfor-
mance factor. Havran et al. regards termination at less or equal triangles to 2 and at depth 16 as optimal
performance criteria. But the total number of primitives differ from scene to scene, hence the maxi-
mum depth should be scene dependent and cannot be applied universally. For instance, if a volume at
depth 16 contains a high number of triangles, it might be profitable to further divide the volume. Of
course, this is justified only when the traversal cost does not exceed the cost of intersection tests. corre-
spondingly, Pharr and Humphreys use 8 + 1.3 logN in various scenes as the termination criteria for tree
depth [PH04].

3.2.4 Bounding Volume Hierarchy

bounding volume hierarchy(BVH) is another space partitioning hierarchical structure. The bounding
volumes do spatially belong in the parent, to conform with hierarchy. The difference is that the union
of two children does not necessarily make up the parent volume. And the two children may intersect.
Therefore for each node the bounding box must be saved and a splitting plane is not enough. This
means more memory consumption. But this cost is outweighed by a compact tree, compared to kd-tree
when considering building up same bounding boxes. While traversal, far less intersection steps must be
performed (see figure 3.5). For static scenes, manual definition of sub-bouning-volumes is thinkable.

Figure 3.5: A BVH created for empty space skipping, from the same data as fig. 3.4. The tree is more
compact then kd-tree in fig. 3.4.

3.3 CUDA

CUDA is short for Compute Unified Device Architecture and is a parallel computing platform and
programming model created by NVIDIA. below is a simplified diagram showing the process flow of
CUDA.

CUDA source code (.cu extension) written in C or C++ must be compiled with nvcc, Nvidia CUDA
Compiler. Unlike GLSL, CUDA source code can contain codes that run on CPU and GPU. Functions
and variables are to be marked with qualifiers ’host’ and/or ’device’, denoting that those are to be run on
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Figure 3.6: 1. Copy data from RAM to GPU memory
2. Instruction from CPU to GPU
3. Parallel execution on GPU
4. Copy results back to GPU image from [Tos]

CPU and/or on GPU, respectively. Nvcc then passes the host code to C compiler like GCC and device
code is further compiled and sent to GPU.

There are significant advantages of CUDA over other GPGPU possibilities, which made CUDA so
common. among others, memory usage is more advanced in allowing code to access arbitrary GPU
memory. additionally CUDA is equipped with shared memory which can be shared among threads in
the same block. Shared memory up to 48KB per block provides very fast read and write access. If the
result of the computation is not directly to be displayed on graphics output, it has to be copied back
to CPU memory. This overhead with the initial data copy before CUDA computation is a performance
bottleneck in many cases. To list further negatives of CUDA, it can run only on Nvidia graphic cards and
no emulator is provided for alternative GPUs. To save run-time costs, exception handling within device
code is excluded. In case of a run-time error, only by running the code with debugger like cuda-gdb or
cuda-memcheck it will be possible to spot the thread where the error occurred.

3.3.1 CUDA Thread Hierarchy

The function that runs parallel on GPU is called kernel and must be labeled with function declaration
specifier ’global’. Along with the mandatory information of how many threads should be invoked,
address to data or user input can be passed as parameters. The threads are organized into blocks, and
blocks form grids. The numbers of blocks and grids can be defined with integer or integer vector type
dim3. In the code below, 2-dimensional block and grid is created to hierarchically administer threads.
The thread IDs are automatically created on local memory for each thread. In the device code, these
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are used to identify the thread and guarantee mutual exclusion between threads by avoiding access to
identical memory address.

Figure 3.7: kernel invocation with gridDim(3,2) and blockDim(4,3) block and grid can be scalar, 2- or
3-dimensional.

In the listing 3.1 Every one of 4 ∗ 4 blocks contain 8 ∗ 8 threads. Total number of threads are (4 ∗ 4 ∗
8 ∗ 8 = 1024) equal to array size, so assignment of workload for each thread is plausible. cudaMalloc
is an analogue to C malloc and allocates specified bytes of global memory. cudaMemCpy is responsible
for reads and writes between host and device and within each.

__global__ void kernel_func(int* a){
int thread_index = blockIdx.x *gridDim.y*blockDim.x*blockDim.y

+blockIdx.y *blockDim.x*blockDim.y
+threadIdx.x *blockDim.y
+threadIdx.y;

foo(a[thread_index]);
}
int main(){

int a[] = {1, 2, 3, ..., 1024}
int* dev_a;
int num_bytes = 1024 * sizeof(int);
cudaMalloc((void**)&dev_a, num_bytes);
cudaMemCpy(dev_a, a, num_bytes, cudaMemCpyHostToDevice);
dim3 gridSize(4, 4);
dim3 blockSize(8, 8);
kernel_func<<<gridSize, blockSize>>>(dev_a);
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cudaMemCpy(a, dev_a, num_bytes, cudaMemCpyDeviceToHost);
}

Listing 3.1: A kernel function call in CUDA

In case of GeForce GTX TITAN, it has 14 streaming multiprocessors(SM). Each of these SMs contain
192 cores and a core executes one kernel block at a time. So 192× 12 = 2688 blocks can be worked on
simultaneously. In a core, a bundle of 32 threads called a warp are executed parallel in SIMT fashion.
Threads in a warp execute the same instruction for each clock. if kernel func<<< 1024, 48 >>> is
launched, 1024 cores will be active and be running the same code twice, in order to handle 48 threads
once with 32 active threads and 16 threads the next. Since a warp runs regardless of whether all of
its threads are active, it yields better performance to distribute threads over greater number of blocks.
Let the number of total instructions in the kernel code 100 and consider a kernel function call with
kernel func<<< 2048, 24 >>>. 2048 blocks will be invoked and 1warp will do the job, so total
number of parallel instructions are 100. Performance is improved compared with the previous case of
48 threads per block giving 200 instruction cycles. Generally it is advantageous to set the number of
threads per block a multiple of 32. As seen in the example, for full exploitation of parallel computing
power you may want to launch a broader grid than to launch a broader block.

3.3.2 CUDA Memory

Memory on CUDA-capable GPUs are hierarchically organized (see fig. 3.8). Since memory transfers
are the most time-consuming jobs in a cuda application and memory copies between host and device are
to be reduced to a minimum(while theoretical maximum bandwidth between host and device is 8GB/s
on PCIe x16 Gen2, memory Bandwidth on geforce gtx titan is 288.4GB/sec), prompt rule of thumb is
to use as much on-chip memory as possible. Still, off-chip memories as texture and constant memory
serve its own purpose. Additionally, cuda provides some methods by which it partly overcomes the
shortcomings of off-chip memory and alleviates speed drawback.

3.3.2.1 Global Memory

As aforementioned, global memory is slow to access. But in coalesced patterns of memory access,
multiple accesses of global memory can be reduced to one. cudaMalloc allocates the start of a memory
block at an aligned address. When dealing with 2D array, cudaMalloc2D aligns each row. Access from
the threads in a warp coalesce into aligned read that is necessary to cover the memory area required by
all threads in the warp. If the accesses are far from adjacent but scattered, suffer from inefficiency since
greater proportion of irrelevant memory area is fetched. This inefficiency is worsens when L1 cache
with 128 byte lines is used. This holds for devices with compute capability 2.x. Devices with compute
capability 3.x use L2 cache with 32 byte lines for global memory access.

Since global memory is available from everywhere within application, threads running parallel shall
not write to the same address without synchronization. The precedence is undefined in this case and
it leads to undefined value. Global memory allows more accustomed memory handling in c-fashion.
Memory address can be accessed by pointers and pointers can be passed to kernel functions. Pointers can
be defined by keyword device and can be allocated by cuda function cudaMalloc or cudaMallocPitch.
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Figure 3.8: Register memory is on chip, can be served from a thread, but cannot be accessed by address-
ing. Shared memory has block-scope and on chip. Local memory has thread scope but off chip, so very
slow and auxiliary to register. Global, Constant and Texture memory is off chip and can be written from
cpu. Among these three only to global memory write access is granted from gpu code. Scope of the last
three memories run over all threads.

Host and device pointer can not be mixed by any means. Dereferencing a host pointer in device code
and vice versa will cause a run-time error.

3.3.2.2 Constant Memory

Among the DRAM-memories off GPU, constant memory and texture memory are specialized for read-
only constant values and texture and perform efficient caching. Constant memory performs broadcasting
if all threads in the warp accesses the same memory. In this case it is way faster than texture memory and
makes the advantage of constant memory. As the name suggests, it best performs when holding constant
data and kernel arguments that is used in common over all threads. If a thread accesses differently
though, memory read serializes and gets slower than uncached texture memory read. Using constant
memory is described as profiting from temporal locality while kernel function is running. Geforce gtx
titan has 64KB of constant memory and 8KB of constant memory cache.

3.3.2.3 Texture Memory

In cuda hardware texture processing cluster is assigned per a few streaming multiprocessors and each
cluster contain a texture specific unit. Texture unit is composed of texture address units and texture fil-
tering units and share a read-only texture L1 cache. Advantages of texture memory regarding addressing
and filtering are performed in these units. Cuda provides various address modes to cope with texture
addresses that are out of bound (between 0 and 1). For example if texture parameter addressMode is
set to cudaAddressModeClamp, parameter 1.23 will yield 1.0, cudaAddressModeWrap will yield 0.23,
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cudaAddressModeMirror will yield 0.77. This computation is performed at the addressing unit. filter-
ing unit computes interpolation of texture data. Linear, bilinear and trilinear hardware interpolation is
supported. Computations in texture units run parallel outside of kernel and so is offered at no extra cost
for the thread. Texture memory use 2D cache, enabling reading with 2 parameters without array address
computation.

To explain the spatial locality of constant memory, it should be mentioned that the texture cache is
shared by neighboring streaming multiprocessors. This means that it is more efficient when adjacent
blocks belong to adjacent streaming multiprocessors, since those blocks have similar access patterns to
texture memory. 3.9 left shows that block 3 and 4 belongs to cores wide apart. Considering probably
similar texture access of block 3 and 4, the chance to profit from the other blocks texture read is elimi-
nated because of cache miss. Therefore kernel launch adjusts block layout in reference to cores, in order
to better exploit L1 texture cache shared by adjacent blocks. This is laid out in the z-order curve 3.9.
Thus can the spatial locality of blocks take advantage of texture memory cache.

Figure 3.9: left: blocks are dynamically scaled to the numbers of cores. right: blocks are distributed so
that the block indexes are in z-curve order and then assigned to each core that stands for the column.
block 0,2,8,10 is in core 0, block 1,3,9,11 in core 1 and so on.

3.3.2.4 Shared Memory

Shared memory read and write is up to 10 times faster than global memory since it is located on chip.
Shared memory is devised to handle more arbitrary memory access than texture or constant memory,
thus reduced the need for caching. Threads may access to different locations at the same time. To cope
with this memory access, banks are introduced. Banks are access points for memory partitions with 4
bytes of size. A warp has 32 banks interleaved at 4 bytes distance. Which means bank 0 manages access
to 0x000, 0x080, 0x100 and so on, address 0x004, 0x084, 0x104 and so on belong to bank 1. When
kernel is launched, each bank serves one memory address pointing to 4 bytes, per clock cycle. So within
a block, which is the usage range of shared memory, only 32 (that is the number of banks) accesses
can be served in parallel. If more than one shared memory access fall onto the same bank, the access
gets undesirably serialized and this coincidence is called bank conflict. To list a few general strategy to
avoid bank conflict, do not condense data so closely that they are less than 4 bytes apart. In this case
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two or more accesses grab to the exact same bank adress. Second, if the data is bigger than 4 bytes,
do not save it in a contiuous shared memory range, but divide them in 4 byte snippets and save them in
evenly separated addresses which is accessed by the same bank. Turning array of structures(AoS) into
structures of arrays serves the same purpose. If a structure has a size of a multiple of a even number
of 4 bytes, chances are high that bank conflicts will occur. In this case, padding the structure in order
to allocate it a size of a multiple of a odd number of 4 bytes removes the problem. An example of this
fix is to alter a structure of 8 bytes into a structure of 12 bytes by padding 4 bytes. The thinkably worst
case of all threads accessing on one bank though, is handled by reading once and broadcasting it to all
threads in the warp. In this case read is performed optimally, as fast as when there is no bank conflict.
Shared memory access costs as much time as the maximum number of serialized accesses to a bank. In
the example of a random access it takes 5 read cycles for the bank number 5.

3.3.2.5 Registers

Registers are another high speed on-chip memory. Physically, registers exist per SM. When a cuda
kernel launches, they are dynamically assigned to threads and cannot be accessed by other threads.
Locally declared device variables use registers. Register memory cannot be indexed, so local array
variables must be stored in local memory. Registers are already a scarce resource though(64 K of regs
(16384 32-bit regs) per MP on GTX 200), often resulting in lack.

3.3.2.6 Local Memory

When the register memory is full, local memory in global memory area is used instead. Like register
memory, local memory is exclusively assigned to each thread.

For detailed memory specification of the hardware used in this work, see listing 5.1.
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Chapter 4

Acceleration Method and its
Implementation

The purpose of space partitioning trees can be diverse. For this work, empty space skipping and adaptive
sampling are relevant, of which empty space skipping is implemented. This chapter will show the design
of construction algorithm in CUDA. Performance is the measure of success of this work, so algorithms
implemented will be evaluated and analyzed. Therefore performance factors mentioned in section 3.3
will be considered in implementation.

Principally 3 phases each including one or more kernel calls constitute tree construction and render-
ing. First phase is setting grid emptiness. In the case of an octree, the size and structure of tree is known
prior to construction. Therefore construction can be included in this phase. Second phase is construct-
ing hierarchical structure. This phase is the most performance demanding and thus deserves thorough
inspection. Third phase is traversing and rendering, where tree construction should pay off in perfor-
mance. For time-dependent data, these 3 phases must be executed for each time instance. Alteration to
the second phase in order to exploit the properties of time dependency is the central part of this work.

4.1 Grid Emptyness Scan

To reduce the costs of emptiness scan while tree construction a regular grid is laid on the volume and
each grid cell is scanned to record its emptiness information of full or empty. Number of data points
per axis can be referred to to decide upon the dimension of grid. Tree construction is based on this grid.
The construction kernel does not read from texture, but only from grid array. Therefore, granularity
of tree-node splits depend on the fineness of the grid. Split planes of kd-tree are set only on grid cell
boundary. Thus split planes can have discrete values, and can be saved in an integer or a character.

4.1.1 Octree Emptyness Scan

Octrees have predefined box boundary, hence a computation of split plane is not needed and the con-
struction kernel can be skipped. The information each node contains is whether it is empty, full or
neither of them. To create an octree with depth d, an array of length 8d + 8d−1 + ...+ 8 + 1 is allocated.
First kernel scans the cell boxes and records whether empty or not. The next kernel collects the cell
emptiness of the 8 volume boxes of underlying depth. If all sub-volumes uniformly empty or full, its
own box information is set as such. This procedure of collecting the sub-volume continues upwards
until the root node is reached. Synchronization between the depths is provided between kernel calls.
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4.2 KD-Tree Construction

Kd-node computation relies on emptiness grid recorded in the earlier phase. For each node, construction
scans through its volume and decides if it is an inner node or a leaf node. If it is an inner node, split
plane must be computed. For leaf nodes the type of node, empty or full, is set.

In this implementation, nodes are assigned to threads in one-to-one correspondence. Being hierarchi-
cal, node volume can only be defined after computation of its parent node. Construction kernel for one
tree depth is launched after construction kernel for its parents’ tree depth. In the code below (listing 4.1),
kernel function construct depth iterates through the tree depth and thereby the sequence of construction
is guaranteed. Line for line, cudaMalloc, computation kernel and cudaMemcpyToSymbol is executed.
cudaMemcpyToSymbol, called with argument cudaMemcpyDeviceToDevice, performs memory copy
within device(between global memory and register memory).

void construct_kd_tree_initialize(int maxTreeDepth){

int maxLeafArrayLength = std::pow(2, maxTreeDepth);

for(int depthLine = 1;
depthLine < maxLeafArrayLength +1;
depthLine *=2){

kd_node* kd_nodes_temp_array = 0;

int num_bytes = 3* depthLine * sizeof(kd_node);

cudaMalloc((void**)&kd_nodes_temp_array, num_bytes);

construct_depth<<<gridSize, blockSize>>>
(kd_nodes_temp_array, depthLine);

cudaMemcpyToSymbol( kd_tree, kd_nodes_temp_array, num_bytes,
(depthLine -1) * sizeof(kd_node), cudaMemcpyDeviceToDevice );

cudaFree(kd_nodes_temp_array);
}

}

Listing 4.1: construct kd tree initialize

kd-tree is saved in an array of nodes in top-down and left-to-right sequence. Nodes in the same depth
are contiguous and listed from left to right (see fig. 4.1). If the algorithm is at depth 3, depthLine is 4 and
an temporary array of length 4×3 is created. This array consists of parent line(4 elements) plus children
line(4×2 elements). As many threads as the length of parent line is launched, with the temporary array as
argument. Each thread is responsible for the parent node and two children nodes. Each thread computes
the split plane of parent node and initializes children nodes. After each computation of depthLine,
temporary node is copied to the tree, at the right position.
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Figure 4.1: The number for a node is the global array index at which the node is recorded. temporary
array launches 4 threads writing to 12 nodes. the next kernel launch involves 8 threads writing to 24
nodes.

void construct_depth(kd_node* kdn_temp_array, int depthLine){

kd_node parent;
parent.init_copy(kd_tree[kd_index]);

if (BOX_IS_EMPTY==parent.splitDim)||(BOX_IS_FULL==parent.splitDim)
return;

compute_maxEmptySlabs(parent, EmptySlabsMin, EmptySlabsMax);

if emptyOrFull(EmptySlabsMin, EmptySlabsMax){
parent.splitDim = BOX_IS_EMPTY_OR_FULL;
return;

else
uchar splitPlane =

chooseSplitPlane(parent, EmptySlabsMin, EmptySlabsMax);
setChildren(kd_index, splitPlane);

}

Listing 4.2: construct depth

In function construct depth (listing 4.2), leaf nodes are ruled out from further process and terminate
early. For inner nodes, function compute maxEmptySlabs is called. The function searches the thickest
contiguous empty slabs (further refer to as ’slabs’) in along all 3 axis and returns its starting and ending
positions in EmptySlabsMin, EmptySlabsMax. Using these parameter, function chooseSplitPlane in
listing 4.2 actually decides split axis and split plane. All cells being full or empty is a trivial case for
which split plane is meaningless. For the rest of the cases, setting the actual split plane using these
empty slabs positions is done in a scheme depicted in fig. 4.2. Still one case is not covered where there
is no empty slab, but not all cells are full. This example is illustrated in fig. 4.3, on the right.

An aspect regarding the quality of tree can be mentioned, doubting the ’thickest slab’ principle. In
fig. 4.3 a, the vertical slabs are thicker than the horizontal ones, so the node will set the split plane
at the boundary of the vertical slabs. Yet a split plane dividing the horizontal slabs first could result
in a tree of better quality, since by geometry it has a higher chance to be hit by a ray. This idea can
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Figure 4.2: 4 possible positions of empty slabs(marked red) Of EmptySlabsMin and EmptySlabsMax,
the nearer one to node center(marked white) becomes the split plane(dashed line).
a) EmptySlabsMax is the nearer one.
b) EmptySlabsMin is the nearer one.
EmptySlabsMax is equal to box boundary, hence set right child to BOX IS EMPTY.
c) EmptySlabsMin becomes split plane.
d) EmptySlabsMin becomes split plane, set split axis of left child BOX IS EMPTY.

be formulated with SAH in sectin 3.2.3. The horizontal slabs have a greater surface area, thus greater
chance of traversal. Thus setting this part of sub-tree to a leaf node reduces the cost-function for this
node, if the cost-function from SAH can be adopted to volume rendering.

Figure 4.3: In a, sub-tree quality with vertical slabs and horizontal slabs is compared using surface area
heuristics from section 3.2.3. In b, when a node has no empty slabs but empty cells, it is devided in the
center of its longest axis.

4.2.1 Node Structure

Two possible node structures are implemented. One is to record volume boundary for every each node.
The memory costs are high for this method, whereby the advantage is that there is no need to compute
the volume while traversing down the tree and while construction. Otherwise if only split axis and
split plane is saved, splitting of temporary volume must be applied on every traversal step. While
construction, the node for which the split plane is to be computed has to compute its own volume first.

In listing 4.3, when splitDim (split axis) and splitPlane packed into uchar4(splitDim + kdBoxMinDis-
crete to uchar4 and splitPlane + kdBoxMaxDiscrete to uchar4), each node takes 8 bytes. splitDim holds
split axis for inner nodes and emptyness or fullness information for leaf nodes. splitDim BOX IS CELL
means the leaf is a grid cell and cannot be divided anymore so is treated as a full node. splitDim
BOX IS CELL and BOX IS FULL together make atomicBoundingBox in listing 4.6.

struct kd_node{
uchar splitDim;
uchar splitPlane;



4.2. KD-TREE CONSTRUCTION 23

uchar3 kdBoxMinDiscrete;
uchar3 kdBoxMaxDiscrete;

__host__ __device__ void init_node(uint sD, uint sP,
uchar3 kdBMinDiscrete,
uchar3 kdBMaxDiscrete){

splitDim = sD;
splitPlane = sP;
kdBoxMinDiscrete = kdBMinDiscrete;
kdBoxMaxDiscrete = kdBMaxDiscrete;

}

__host__ __device__ void init_copy(const kd_node& kdN){
splitDim = kdN.splitDim;
splitPlane = kdN.splitPlane;
kdBoxMinDiscrete = kdN.kdBoxMinDiscrete;
kdBoxMaxDiscrete = kdN.kdBoxMaxDiscrete;

}
};

Listing 4.3: node structure with box position

struct kd_node{
uchar splitDim;
uchar splitPlane;

__host__ __device__ void init_node(uchar sD, uchar sP){
splitDim = sD;
splitPlane = sP;

}

__host__ __device__ void init_copy(const kd_node& kdN){
splitDim = kdN.splitDim;
splitPlane = kdN.splitPlane;

}
};

Listing 4.4: compact node structure without box position

Listing 4.4 shows node structure with only split axis and split plane. Summing up to 2bytes per
node, significantly saves memory. The drawback is, a box computation must be performed anywhere
the application needs the box position. This can be done by using tree index to travel down to the node
for which the volume is demanded. At every depth, applying a mask on the tree index will decode if the
node belongs to the left or right. Reading the split plane information on each depth, the temporary box
is cut to fit to the box of current node.
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4.3 Tree Traversal

Rendering kernel, which includes tree traversal is briefly shown in listing 4.5. Rendering is assigns
values parallel to each pixel. As many threads as pixels of the application window are created. In render
kernel ray for each thread is created and passed to the traverse function. In the traverse function, volume
box for leaf node is read or computed according to various traversal method and node structure. Finally,
pixel drawing function is called in case of a non-empty leaf volume.

In render kernel function, the ray is tested if it intersects the volume of the root node. If it passes the
test, ray travels and intersects with successive leaf volume boxes. Tree traversal is all about finding the
next leaf volume box.

render_kernel{
ray_generation(threadidx);
traverse(transfer_parameters, ray, tree_size);
}

traverse{
box_computation(node);
drawBox(ray, boxMin, boxMax);

}

drawBox{
while(inside_box){

scan_and_alpha_blend(position);
stride();

}
}

Listing 4.5: simplified render kernel scheme

4.3.1 KD-Restart

As the name suggests, for each inquiry of next volume box kd-restart starts from the root. At every inner
node, the algorithm decides to traverse to the left or right node by means of parameterized ray position.
The implementation is shown in linsting 4.6. The outer while loop runs over the successive leaf volume
boxes. indexRun is the node index, set to 0(root) for every new box computation. The inner while
loop traverses down to the next volume box. For a inner node, intersectBoxKdRestart compares the ray
parameter position with split plane and returns 1 for left sub-box, 2 for right sub-box. then, drawBox is
called if the leaf volume is full. Ray parameter tRun is proceeded to the position where the ray exits the
current volume.

__device__ void traverse_KD-Restart (const Ray eyeRay, float4 &sum,
float tSceneStart, float tSceneEnd, int treeSize){

const float opacityThreshold = 0.95;
const float epsilon = 0.0001;
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float tRun = tSceneStart;

while (sum.w<opacityThreshold) && (tRun<tSceneEnd-epsilon){

int indexRun = 0;
kd_node tempN;
bool atomicBoundingBox, emptyBoundingBox = false;

while ( (indexRun < treeSize) &&
!atomicBoundingBox &&
!emptyBoundingBox ){

tempN.init_copy(kd_tree[indexRun]);

if (BOX_IS_CELL_OR_FULL==tempN.splitDim)
atomicBoundingBox = true;

else{
if (BOX_IS_EMPTY==tempN.splitDim)

emptyBoundingBox = true;
else{

int i = intersectBoxKdRestart(eyeRay, tempN, tRun);
indexRun = indexRun *2 +i;

}
}

}

if(!atomicBoundingBox && !emptyBoundingBox)
tempN.init_copy(kd_tree[indexRun]);

float3 boxmin, boxmax;
if(emptyBoundingBox){

boxDiscreteToContinuous(tempN, boxmin, boxmax);
}
else{

drawBox(eyeRay, sum, boxmin, boxmax);
}
proceedRayParam(boxmin, boxmax, tRun);
/*kdUpTraversal(indexRun, tRun); for kd-backtrack*/

}
}

Listing 4.6: kd-restart

In kd-restart algorithm, frequent execution of intersectBoxKdRestart is distinctive. In this function,
ray position is determined through ray parameter. then the ray position is compared with split plane.
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This intersection test contains less operations than other traversal algorithms but a better performance
cannot be guaranteed since kd-restart invokes far more traversal, thus far more intersection tests.

4.3.2 KD-Backtrack

Another traversal method with reduced traversal steps is the kd-backtrack. After handling a leaf node,
it travels the tree upwards in search of the nearest parent that includes the ray position. If such parent
is found, the algorithm can continue the down-travel searching the next leaf node. This procedure can
be embedded into kd-restart algorithm (position highlighted in listing 4.6). In kdUpTraversal function
(see listing 4.7), function tRunInside is called to decide if ray position is inside the current parent node.
Up-traversal is continued until this condition is met or root node is reached.

__device__ void kdUpTraversal (int& indexRun, float tRun){

kd_node kdParent;
moveToParent(indexRun);
bool tRunPosInsideParent =false;

while ((indexRun > 0) && !tRunPosInsideParent) {

kdParent.init_copy(kd_tree_new[indexRun]);

if tRunInside(tRun, kdParent)
tRunPosInsideParent = true;

else
moveToParent(indexRun);

}
}

Listing 4.7: kdUpTraversal

Number of tRunInside function call and subsequent down-travel continued in listing 4.6 will decide
the performance of kd-backtrack.

Using kd-node structure that does not contain the volume box information in listing 4.3, code to find
the volume box of the parent must be implemented additionally to kdUpTraversal. This will be explained
with fig. 4.4. The ray has intersected node C and handled its volume box. Through kdUpTraversal node
B will be retrieved. The volume box must be fit to this Node. But the information needed to expand the
volume box is not recorded in node B, so further inquiry upwards must be made. Information to expand
box C to box B is recorded in node A.

4.3.3 Kd-tree Stack Traversal

Stack traversal for kd-tree distinguishes from kd-restart only in where the intersection method is called.
For kd-tree the stack needs to record only node indexes, that is one uchar. kdLRintersection intersects
left and right boxes with the eyeRay and returns code according to whether the ray intersects none of
them, only the left node, only the right node, left node first then the right node, or right node first and then
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Figure 4.4: shows a box expansion to retrieve the box of the parent node in kdUpTraversal algorithm, a
part of kd-backtrack. After ray handled the box C, the parent box is B, but the box information of B is
in node A.

the left node. Listing 4.8 shows the stack operations. The intersection method here, kdLRintersection
performs 2 box-ray intersections.

if(!atomicBoundingBox && !emptyBoundingBox){

int LRi = kdLRintersection(eyeRay, lNode, rNode);
if ((ONLY_L == LRi) || (R_THEN_L == LRi)){

StackPtr->push(LNindex);
if (R_THEN_L == LRi)

myStackPtr->push(RNindex);
}
if ((ONLY_R == LRi) || (L_THEN_R == LRi)){

StackPtr->push(RNindex);
if (L_THEN_R == LRi)

StackPtr->push(LNindex);
}

}

Listing 4.8: kd-tree stack travesal
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4.3.4 Octree Restart Traversal

Restart method used in section 4.3.1 can be used with an alteration to the function which computes the
next array index. computeSubboxAndIndex in listing 4.9 adjusts the volume to the next sub-box and
returns the sub-box index, according to ray parameter tRun. Unlike intersection test intersectBoxK-
dRestart for kd-tree restart traversal (listing 4.6), computeSubboxAndIndex has to compare ray position
with 3 axis.

while ((sum.w < opacityThreshold) && (tRun < tSceneEnd -epsilon)){

bool leafFound = false;
int i = 0;

while( i < octreeDepth && !leaffound ){
index[i] = computeSubboxAndIndex(boxMin, boxMax, tRun);
if(BOX_IS_FULL == readOctree(index)){

drawBox(boxMin, boxMax, sum, tRun);
leafFound = true;

}
if(BOX_IS_Empty == readOctree(index)){

leafFound = true;
proceedRayParam(boxMin, boxMax, tRun);

}
i++;

}
}

Listing 4.9: octree restart traversal

4.3.5 Octree Stack Traversal

Stack for an octree item works as follows: A stack item saves a space code that codes the current
volume box. It is an integer with the i-th digit indicating the sub-box index of depth i. Stack traversal
pops an item from the stack and if the item is not a leaf, computes which sub-boxes intersect with the
ray, sorts the sub-boxes according to the sequence of being hit by the ray, pushes the sub-boxes onto
the stack. Temporary array ’subBoxes’ in listing 4.10 for saving the sub-box index has length 4.1 in
computeSubOctBoxes (bottom function in listing 4.10), makeSubBoxAndTest is executed and subBoxes
must then be sorted in reference to eyeRay. 5 comparisons suffice for sorting 4 elements. The operations
in makeSubBoxAndTest require 8 intersection tests beside sub-box generation. compareAndSwap is
relatively costly, too.

void octStackTraverse(stack* stackPtr){

1It can be proved that the maximum number of intersecting sub-box is 4. If there is n axis-cutting plane, every additional
plane enables an additional intersection. Thereby maximum number of intersecting sub-volume is n+1.
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stackItem tempItem;
stackItem subBoxes[4];

while (!(myStackPtr->stackEmpty())){

myStackPtr->pop(tempItem);

if (BOX_IS_FULL == readOctree(tempItem))
drawBox();

else if (BOX_IS_EMPTY == readOctree(tempItem))
proceedRayParam();

else {
computeSubOctBoxes(tempItem, subBoxes);
stackPtr->push(subBoxes);

}
}

}

void computeSubOctBoxes(stackItem tempItem, stackItem* subBoxes, ray eyeRay){

for(int i = 0; i < 8; i++){
if(makeSubBoxAndTest(i), eyeRay)

queueSubBox(tempItem, subBoxes, i);
}

compareAndSwap(eyeRay, subBoxes, 0,1);
compareAndSwap(eyeRay, subBoxes, 2,3);

compareAndSwap(eyeRay, subBoxes, 0,2);
compareAndSwap(eyeRay, subBoxes, 1,3);

compareAndSwap(eyeRay, subBoxes, 1,2);
}

Listing 4.10: octree stack traverse

4.4 KD-Tree Adaptation

Time-dependent data sets show limited change between successive time instances. If each time instance
is newly constructed, successive trees will show similarity also in their structure. The adaptation method
exploits the information of previous time instance through recycling the tree. A node in the old tree is
read by the new tree node with the same tree index. Split axis and split plane of the old node is used as a
base with which a new split plane is computed.2 fig. 4.5 shows an old sub-tree a and the corresponding

2The algorithm for split computation, compute maxEmptySlabs from listing 4.2 is replaced by compute newSplit.
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new sub-tree b. Fig 4.5 a + b shows their relative location in data grid, overlapped. Node a1 and b1 are

Figure 4.5: a is the old tree, b is the new tree that is being adapted to the old. a + b shows relative
position in the grid, overlapped.

reasonably similar, but their sub-trees are less similar. In nodes b1 and b3, a new split plane is found.
Whereby in b5, old split plane is positioned outside of the box. In this case, the guess is that the new
volume is too far drifted from the old one. Thus the algorithm gives up scanning and sets split axis to
BOX IS FULL.

The algorithm compute newSplit, scans only a defined range about the old split plane(see fig.4.5 top
right). The volume might have a proper split plane outside of this range, but the algorithm spares effort
of searching beyond the scan range.

Not to mention, Search for a new split must consider the context of child nodes. But when both
children of old node are inner nodes, scanning is meaningless since the old split plane is not produced
by scanning. In this case the old split plane is simply copied, in the expectation of sub-trees still making
use of the old tree. The number of nodes for the new tree only drops, because there are inner nodes in
the old tree out of which a leaf node is produced.

In this algorithm, If old split axis value holds X AXIS, Y AXIS, or Z AXIS, the new split axis does
not change to another one of these 3 values, but either keep the value or change to BOX IS EMPTY
or BOX IS FULL. This precaution is to lessen the number of excessive scanning, because changing the
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axis will require a complete scan along an axis, for which there is no information where to start the scan
from.

4.4.1 Local Rebuild

As explained in section 4.4, with only Adaptation a degradation of tree for each following time instance
is unavoidable. Adapted trees are more coarse, but the existing nodes are correct and optimal in itself.
The idea for improvement is to locally re-build the subtrees of these nodes in the same manner as the
initial construction.

Conditions to initiate a local re-build is that the split computation in adaptation mode yields a full node
that is ’too big’ and not really full(explanation for inexactly setting a node as full: in section 4.4). after
computing the split plane, the transition to local re-build mode must be marked in node information.
otherwise the algorithm computes for the child node falsely in adapt-mode, where the probability of
having the old split plane in the own volume is low.

4.5 Adaptive Scan

adaptive scan implemented in this work is simple, it runs without a tree specially generated for adaptive
sampling. This stride-skipping algorithm keeps track of old scan values from previous stride, and if the
new scan is identical with the old one, ray stride is doubled. This doubling continues up to a predefined
maximum. When a newly scanned value is different from the old one, the scan is discarded, the ray
retreated to the old position and ray stride reduced in half. When alpha-blending the scanned value
while ray stride is greater than 1, alpha-blending must be repeated in a loop. Stride-skipping is used
together with empty space skipping.

4.6 Data Dependencies

Flower data (see chapter 5 for data information) is densely packed with 1024 data points per axis. So
the grid for emptiness scan is adjusted as to contain 8 data points per axis per cell, yielding 128 cells
per axis. This standard of 8 data points is maintained across data sets. Flower data additionally has
an overall clear distinction between data-filled area and empty area. Thus the advantages of a deeper
tree construction will pay off. An octree of depth 7 has equivalent granularity to the underlying grid of
128 cells per axis. The lambda data also shows a high spatial variation. In order to ensure rendering
performance, kd-tree for lambda data is also built with a maximum depth to match the granularity of
the grid. For time-dependent data it will show that the tree quality(tree depth) can be traded off against
construction time, as long as rendering performance is within acceptable range of interactivity. The ray
step size must be also adapted to data specification.
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Chapter 5

Results

All results are produced on Geforce GTX TITAN. below are hardware specifications in listing 5.1).

Major revision number: 3
Minor revision number: 5
Total global memory: 6441730048
Total shared memory per block: 49152
Total registers per block: 65536
Warp size: 32
Maximum memory pitch: 2147483647
Maximum threads per block: 1024
Maximum dimension 0 of block: 1024
Maximum dimension 1 of block: 1024
Maximum dimension 2 of block: 64
Maximum dimension 0 of grid: 2147483647
Maximum dimension 1 of grid: 65535
Maximum dimension 2 of grid: 65535
Clock rate: 875500
Total constant memory: 65536
Texture alignment: 512
Concurrent copy and execution: Yes
Number of multiprocessors: 14
Kernel execution timeout: Yes

Listing 5.1: GTX TITAN memory specification

There are some parameters for volume rendering to mention. For ray step that is added onto ray
parameter, data range/(5×data points per axis) is selected. All data rendered are cubic except for
Rayleigh-Taylor, for which performance data is not analyzed in this work. Early ray termination with
opacity 0.95 is applied.

Specifications and acknowledgements of Provided data-sets for this work:

Flower:
A microCT scan of a dried flower (leucadendron rubrum)
Data resolution: 1024× 1024× 1024
Time steps: 1
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Acquired using a Faro Focus 3D laser range scanner by the Visualization and MultiMedia Lab (VMML)
at two locations of the University of Zürich (UZH Nord and Irchel campuses) and one of ETH Zürich
(Zentrum campus)

Lambda2:
Data resolution: 529× 529× 529
Time steps: 80
Temporal development of the vortex cascade, visualized with the λ2 criterion

Supernova:
Data resolution: 432× 432× 432
Time steps: 50
Dr. John Blondin at North Carolina State University through US Department of Energy’s SciDAC
Institute for Ultrascale Visuaization

Rayleigh-Taylor instability dataset:
Data resolution: 128× 128× 256
Time steps: 25
Verena Krupp (Simulation Techniques Scientific Computing, University of Siegen)

5.1 Static Data

As expected in section 4.1.1, octree build-up takes insignificant time(4.6 ms scan time for flower data
set). Non-hierarchical grid scan, as needed in prior to kd-tree construction, takes less than this and is
assumably negligible. Stack traversal on octree takes 198ms compared to 225.5 ms naive rendering, so
the performance gain is marginal. Otree-restart algorithm takes 153.3 ms for rendering, showing the
advantage of space skipping.

Kd-tree construction for tree depth 24, the tree depicted in figure 5.1 right, takes 9947 ms. High
construction cost is due to the fine grid. But for static data this is not an issue and can be supported by
a render performance of 18 ms. Aiming a faster construction though, render performance degrades to
25.4 ms for a kd-tree with depth 18.

For kd-tree traversal, kd-backtrack method shows slight degradation in performance over kd-restart
method. Traversing on stack severely worsens rendering performance, from 25 ms for kd-restart to 64
ms. If not otherwise noted, only results with kd-restart method is presented from now on with tree depth
24, at 64 cells per axis, using lambda data.

5.2 Kd-Tree Adaptation

Cost for a complete new construction of kd-tree is high at 487 to 622 ms throughout the data-set. The
number of grid cells that has to be read is decisive. compute maxEmptySlabs function in section 4.2
scans volume size x × y × z cells when the box is empty or full, that is only the best case. Worst case
is to scan the volume in every axis, performing 3 × x × y × z reads. When a box has no empty slab,
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Figure 5.1: On the left is the redering of flower data, in the center is the octree with depth 7 for it(the
pixels blend with red color component when intersecting an empty box, with blue-green component
when intersecting a full box). On the right is the Kd-tree with depth 24.

but one or more empty cell, the outer loop will run through 3 axis in vain. The average cost is maybe
(3 × x × y × z)/2 for finding empty slabs while scannig along the second axis, but this is dependent
to data. When objects are scattered and well distributed like lambda data (especially true for later time
instances), it will approach (3×x×y×z). When objects are forming handful of dense clusters, x×y×z
or less scans are enough to decide the split plane (supernova data in figure 5.2 is an extreme example).
The scan algorithm can be altered to scan only in the apparently longer axis. Smaller slabs are more
probable to be empty, yet it is shown in fig. 4.3 that this might not always build a better tree.

So box adaptation uses the old tree information (old node, since the information in the same node
index is taken) and tries to decide the split plane with the least scans. This method is only valid for
datasets whos difference between time steps is not great as it is with lambda data. In fig.5.3, change
in the data between consecutive time instances (between 25 and 26, between 60 and 61) are barely
discernible. Between greater time steps(between 25 and 60), the change is is apparent.

Performance of tree construction with adaptation algorithm is shown in fig. 5.4. Construction takes
almost constant time as the algorithm steps through time instance. This is because at deeper depth,
many nodes are assigned no volume to scan. As explained in section 4.4, the tree can be trimmed at
earlier depth by setting inner nodes as full. This leaves no workload for the kernels responsible for the
nodes with greater depth. The nodes at the top of tree cannot fasely be set to a full node though. This
accounts for the constancy of adaptation algorithm. Visible in fig. 5.4, new construction cost increases
for later time sequences. The lambda data-set gradually expands in space. (see fig. 5.3) As time instance
increases the data gets more dispersed and the nodes get bigger. It leads to more cells to scan.

The Tree stepping through time steps using adaptation algorithm degrades quickly. The degradation
during 4 time sequences is shown in fig. 5.5. This degradation of tree is caused by setting a node as a
full node.

In fig. 5.6, render performance of adaptation is presented. The blue bar shows rendering performance
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Figure 5.2: Supernova data from time instance 2 - 5. Top row shows kd-tree. Supernova data remains
a chunk and therefore sequential adjustments of only one single box is needed, so adaptation without
local re-build suffices. for building one box, tree depth of 5 is enough. around 10ms of adaptation
time(because tree depth only 5) and up to 50% saving in rendering.

Figure 5.3: lambda data at time instances 25-26 and 60-61. Data-set is only gradually changing.

with for each step newly constructed tree, which is the fastest. The orange bar, render time with adapted
tree, grows constantly as the tree degrades. (see fig. 5.5) The gray bar adds construction time and render
time together. The time needed to construct and render approaches to naive rendering time, without data
structure.

Fig. how often the pixels have sampled the texture data. Each pixel has a different sampling frequency
along the ray. In this mode of rendering, Sampling frequency is mapped to monochrome color density of
each pixel. The color density is additionally proportional to number of boxes the ray intersects, in order
to mimic the traversal cost. In this way, time for render kernel is expected to be proportional to the most
dense pixel of each time instance. The top row shows the sampling frequency with degrading tree, the
bottom row the frequency with new trees for every time instance. The pixels are getting brighter in the
top row, which accords with performance degradation in fig. 5.6 right. (Render time for adaptation is
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Figure 5.4: Performance of kd-tree construction using adaptation in ms. Tree for lambda data is initially
constructed at time instance 25, stepping up to time instance 43.

Figure 5.5: kd-tree is initially built for time instance 0. For each following time instances degradation is
clearly visible.

increasing) The bottom row shows no apparent difference in brightness between time instances, which
can be also approved in fig. 5.6 right.(Render time for new construction is nearly constant)

5.3 kd-tree local rebuild

local re-build method from section 4.4.1 yields good results. In fig. 5.8, a comparison with adaptation
method is shown. although additional local re-build means more computation, the amount of time added
is marginal. (shown in fig.5.8 left) On the other side the advantages while rendering is unmatched. (see
fig.5.8 left) This rendering performance is mostly the same as the performance with new trees.

These results of local re-build are well supported by the quality of trees shown in fig. 5.9. each tree is
qualitatively not distinguishable from newly built tree for that time instance.

The reason why local re-build can be executed so fast lies in the size of volume a node in local re-
build mode has to process. As discussed in section 5.2, the cost of a full scan of a volume reaches from
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Figure 5.6: Rendering time for lambda data, from time instance 25 on. with different trees. Only the
gray bar shows construction time and rendering time added up, the other 3 refer only to render time.
The orange bar value for rendering with adapted tree is included in the gray bar value. For adapted tree,
the rendering gets slower and gets almost as slow as the naive rendering.

x × y × z to 3 × x × y × z. In the first time step after a new tree is constructed, the nodes for wich
local re-build is called lies deeper in the tree, meaning that their volume is small. So the x,y,z values
are small, resulting in a much smaller cost. If in that way a tree with an equivalent quality to the newly
created follows, every next step needs to peform only a little amount of additional computation.

So far local rebuild greatly improves only adaptation. greater tree depth is in favor of rendering
performance and at the cost of construction performance. But the time for construction and rendering
together is still not interactive for some time instances. In that case the tree depth dropped. lower tree
quality can be backed by enhancement in construction performance. Fig. 5.10 show two sequences of
progression, starting from time instance 25 at the left, and at the right side starting from time instance
60. For this tree, tree depth 14 is used instead of 24. the sequence at the left side drops instantly and
construction + rendering can be done in almost interactive time. While for a later time instance 60, it
needs far more steps to be dropped under the naive rendering time.

Initial construction of time instance 25 yields 3237 nodes. This number slightly increases for a few
number of time instances, but on the whole decreases to 2325 nodes at time instance 60, however with
visibly greater box sizes. The reason for the bigger box sizes might be the dissipation of data in as time
passes, thereby widening the boxes without empty slabs, which raises the call to local re-build function.
In any case, it sees that bigger box sizes have greater effect on performance of local re-build than the
total number of nodes in the tree.

The advantages of adaptation and local re-build method is shown until now, but there are some data-
sets with properties that pose a problem to this method. When an object divides, local re-build is able to
keep track of it and to render two separated masses correctly and also to use the space between divided
objects to skip correctly. On the other side, when an object emerges in an previously empty space(for
such an occurence see fig. 5.11), adaptation and local re-build method is unable to correctly render this
change. The space containing the new object will be skipped as an empty space.



5.3. KD-TREE LOCAL REBUILD 39

Figure 5.7: lambda data is shown for time instance 25, 26, 29, 33. Starting from time instance 25 and
stepping through the time steps. In the upper row using adapted tree, boxes are expanded and the ray
has more distance to scan. In the bottom row, new trees for each time instance is used. The more often
a ray executes sampling, the brighter is the resulting pixel in these images. Thus these images intend to
show the frequency of scan.

Figure 5.8: local re-build is compared with adaptation method. tree launched at time instance 25, for
lambda data.
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Figure 5.9: Kd-trees built with local re-build method. No degradation in tree quality is visible over
14 time instances. The rendering results approve this in fig. 5.8. The tree at specific time instance
shown here has a quality equivalent to the one newly constructed at that time instance, but cannot be the
identical tree.

Figure 5.10: Two sequences of local re-build performance, construction plus rendering. drop of kernel
duration between 63-64 and 66-67 is data specific. There is less change in the data compared to other
time intervals. Note that tree depth 14 is used for data sequence starting at time instance 60.

5.4 Adaptive Scan

Adaptive scan applied for lambda data results in about the same performance like the non-adaptive scan.
This is caused by high variation in the data, thus letting the ray stride grow does not mean an advantage.
In fig. right, ray leaping through successive empty scan positions easily skips a thin data object, resulting
in a artifact contrasted by neighboring ray that did not skip this object. compared with the center image
rendered with non-adaptive scan, artifacts are apparent.

As fig. 5.2 shows, the supernova data remains a chunk and when the ray once enters there is no
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Figure 5.11: 3 time squences of Rayleigh-Taylor data shows that an object unconnected to the previously
existing bulk has emerged. Adaptation and local re-build method can neither merge an existing box with
a volume including this object nor detect and construct a new volume box for this object.

Figure 5.12: left is lambda data-set at time instance 25, with close up area marked. in the center is the
normal sampled image, in the right sampled with adaptive scan.

empty space between objects. Therefore adaptive scanning is expected to work without artifacts seen
in fig. 5.12. It indeed yields an improvement from 17 to 6 ms with favorable transfer function setting.
Rendered image is shown in fig. 5.13, left. In fig. 5.13 right, transfer scale is raised 16% to give more
distiction. Density is set set only at 10% of the left image, which allowes the ray to proceed farther into
the mass without the opacity getting saturated and thereby terminating too early to look into the mass.



Figure 5.13: Two adaptive scans for supernova at the same time instance, with identical transfer function
but different transfer function parameters. In the left, adaptive scan yields performance improvement(6
ms) over non-adaptive scan(17 ms). Homogenous areas are visible, from which adaptive scanning can
take advantage. In the right, adaptive scan yields no performance improvement due to high variation. In
both cases, adaptive and non-adaptive scan yields no visible difference in rendered image.
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Conclusion

Octrees perform fast construction, but its traversal requires higher cost than kd-tree. This comes mainly
from more complicated intersection test while traversal. If Octree or kd-tree, traversal using stack is
extremely slow although it is implemented on shared memory.

The main focus of this work, Kd-tree construction for time-dependent data, has greatly profited from
local rebuild method. This method adds a marginally low additional cost to adaptation method(see fig.
5.8). Nonetheless the result is a tree of quality equal to a new construction tree(see fig. 5.9. For the
most cases it was possible to get construction + render performance in interactive range, even for a high
quality tree like the one in lambda, earlier time sequence(see fig. 5.10 left).

User may decide where the focus is, faster rendering or faster overall performance. Dynamic load-
balancing of construction and rendering while stepping through time instances could be thinkable, For
different time instances may require different tree quality for optimal performance.

A negative point is that initial construction cost is high(see fig. 5.10). This could amongst others come
from iteration over tree depth. To reduce kernel-call iteration, standard non-parallel top-down method
could be mixed with parallel method.

Adaptive scan can lead to degradation in render quality, so data must be examined for suitability.
Applied on supernova data it did show a performance enhancement (see fig. 5.13).

For future works, Packet traversal and global illumination can be mentioned. Packet traversal is
aiming a better performance, whereby global illumination is to render a scene with a different lighting
model.

Having a tree for empty space skipping, adaptive skipping can be applied on the full nodes. Full nodes
are leaf nodes and subtree can be attached easily.

Packet traversal groups rays in a packet. Sampling and computation of volume-local summand to the
final pixel can be substituted by a single representative ray. Moreover, the computation of ray traversal
uniformity can be reduced for some rays in the packet. This could be done by bundling the packet in a
way that the peripherial rays completely surround the center rays. If the rays at the periphery agree on
traversal, rays in the center are to follow the same path.

For more photorealism, abandon the emission absorption model in 3.1 and go for global illumination
model. In ideal global illumination, for every data sampling, the light falling on this data position must
be computed. Correct method to compute this would be to scan along the shadow ray heading toward the
light source. This is correct in the sense of not only opacity, but also in the sense of color of the arriving
light. As the primary ray travels forth, this tracking of shadows rays must be performed at multiple
positions along the ray, which will burden the application enormously. Instead, as a heuristic, summing
only the scan distances along the ray can be implemented similarly to 5.7. Change of light color along
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the shadow ray is not considered in this heuristic though. Navigation in space with nebulae-surrounded
stars can be a good use-scenario of this technique.
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