
Institut für Parallele und Verteilte Systeme

Abteilung Anwendersoftware

Universität Stuttgart

Universitätsstraße 38

D-70569 Stuttgart

Diplomarbeit Nr. 3243

 Development and Evaluation of a Framework for

 Semantic Validation of Performance Metrics for the

 IBM InfoSphere Optim Performance Manager

Moritz Semler

Studiengang: Informatik

Prüfer: PD Dr. Holger Schwarz

Betreuer: Dr. Ingo Hotz

begonnen am: 01.09.2011

beendet am: 27.03.2012

CR-Klassifikation: D.2.4

ii

Blocking Notice / Sperrvermerk

This Diploma thesis contains “IBM confidential” information. Until 27th of March,
2015 it is not allowed to grant access to a third party without written permission by
the IBM Deutschland Research & Development GmbH.

Diese Diplomarbeit enthält “IBM vertrauliche” Informationen und darf ohne

schriftliche Genehmigung der IBM Deutschland Research & Development GmbH bis

zum 27.03.2015 Dritten nicht zugänglich gemacht werden.

iii

Structure

Structure .. iii

List of Abbreviations ... v

List of Figures .. vi

List of Tables ... viii

Development and Evaluation of a Framework for Semantic Validation of

Performance Metrics for the IBM InfoSphere Optim Performance Manager 1

1 Introduction ... 2

2 OPM Environment and Problem Description .. 5

2.1 The Project Environment .. 5

2.1.1 The IBM InfoSphere Optim Performance Manager 5

2.1.2 The Test Environment ... 8

2.1.3 The Workload Tool and Workload Requirements 11

2.2 Problem Description ... 14

2.2.1 Motivation and Reasons for the Semantic Validation Framework 14

2.2.2 Problems of Semantic Validation ... 15

3 State of the Art .. 18

3.1 Definition of Semantic Validation ... 18

3.2 Static Analysis - Formal Methods ... 20

3.2.2 Model Checking ... 21

3.2.3 Theorem Proving ... 23

3.3 Dynamic Analysis ... 25

3.3.1 Testing ... 25

3.3.2 Runtime Assertion Checking ... 28

3.3.3 Conclusions ... 28

4 Semantic Validation Framework ... 30

4.1 Semantic Validation Framework Architecture .. 30

4.2 Classification Process and Enhancements of the Test Environment 32

4.2.1 Changes and Improvements of the Test Environment 33

iv

4.2.2 Workload used for the Classification Process 37

4.2.3 Classification ... 39

4.3 Process of Semantic Validation ... 41

4.3.1 Semantic Validation Process of Deterministic Metrics 41

4.3.2 Semantic Validation Process of Semi-Deterministic Metrics 42

4.3.3 Semantic Validation Process of Non-Deterministic Metrics 44

5 Validation Approach for Non-Deterministic Metrics .. 45

5.1 Approaches – Revisited ... 45

5.1.1 Static Analysis – Revisited ... 45

5.1.2 Dynamic Analysis – revisited ... 47

5.2 Chosen Solution – Testing ... 49

5.2.1 Statistical Hypothesis Testing .. 50

5.2.2 Metamorphic Testing ... 51

5.2.3 Statistical Metamorphic Testing ... 52

5.3 Statistical Metamorphic Testing in Case of OPM 54

6 Prototype for Statistical Metamorphic Testing .. 58

6.1 Statistical Metamorphic Testing transferred to the Praxis 58

6.1.1 Used Workload and Testing Process for both Metrics 59

6.1.2 Semantic Validation of DBSE427 .. 62

6.1.3 Semantic Validation of Sort Overflows .. 68

6.2 Prototype .. 76

7 Evaluation ... 79

7.1 Evaluation of the Prototype .. 79

7.2 Discussion .. 83

8 Conclusion and Future Work .. 88

References ... vii

v

List of Abbreviations

CTL Computation Tree Logic

LTL Linear Temporal Logic

ms milliseconds

OLAP Online Analytical Processing

OPM Optim Performance Manager

SQL Structured Query Language

SUT System Under Test

XML Extensible Markup Language

vi

List of Figures

Figure 2.1.1: Active SQL Dashboard [2] .. 6

Figure 2.1.2: OPM Architecture (including Extended Insight) 7

Figure 2.1.3: Test Environment to classify the performance metrics 9

Figure 2.1.4: One Dedicated Run of the Test Environment 10

Figure 2.1.5: Example for Input Parameters of Workload Scenarios 13

Figure 3.1.1: Semantic Correctness of Software ... 19

Figure 3.2.1: Model checking process ... 21

Figure 3.2.2: Example of a Finite State Machine .. 24

Figure 4.1.1: Semantic Validation Framework Architecture 31

Figure 4.2.1: Warm-up Time for Metric DBSE422 .. 34

Figure 4.2.2: Data before Normalization Process ... 36

Figure 4.2.3: Data after Normalization Process .. 36

Figure 4.2.4: Deviation of the Metrics of IO and Workload Dashboard 39

Figure 5.2.1: Example for Metamorphic Testing ... 51

Figure 5.3.1: Related Workload – Related Results ... 54

Figure 5.3.2: Setup for Semantic Validation .. 57

Figure 6.1.1: semantic_sort_ms Arguments .. 60

Figure 6.1.2: Main Loop of the semantic_sort_ms Performing the Sorts 60

Figure 6.1.3: Uncorrected, Corrected, and Expected Values for DBSE427 64

Figure 6.1.4: Upper Bound for DBSE427 .. 66

Figure 6.1.5: Results of Sort Overflows ... 69

Figure 6.1.6: Sort Overflows when increasing Sorts with no Overflows 70

Figure 6.1.7: Expected Behavior of Sort Overflows Changing Sort Heap Size 73

Figure 6.1.8: Real Behavior of Sort Overflows changing Sort Heap Size 74

Figure 6.2.1: Validation Process with the Prototype .. 76

Figure 6.2.2: Extract of the Reference File ... 77

Figure 7.1.1: Results of the First Test Run ... 79

Figure 7.1.2: Access Plans for the SELECT Statements 81

vii

Figure 7.1.3: Results of the Adapted Test Run ... 82

Figure 7.1.4: Validation Process of the Prototype Including Calibration 82

viii

 List of Tables

Table 4.3.1: Deterministic Metrics ... 42

Table 4.3.2: Semi-Deterministic Metrics .. 44

Table 5.1.1: Summary of the Evaluation of the Validation Approaches 49

Table 6.1.1: Expected Values and Deviation of DBSE427 67

Table 6.1.2: Expected Values and Deviation of Sort Overflows 72

Table 6.1.3: Summary of the Correctness Criteria .. 75

1

Development and Evaluation of a Framework for Semantic

Validation of Performance Metrics for the IBM InfoSphere1 Optim2

Abstract. Validation is an important field in the software development process. It helps to

increase the software quality but is also very expensive and time consuming. To decrease

the costs approaches to automate the validation process are necessary. In this thesis a

framework is developed, which does not need user interaction to validate the IBM

InfoSphere Optim Performance Manager semantically. It is able to validate values of

different behavioral patterns. It covers deterministic, semi-deterministic and non-

deterministic behavior. The thesis describes the process of the development of the

framework. It introduces available approaches and examines them with regard to the

suitability for the framework. The found solution is described in theory and a prototype is

implemented to apply the solution to praxis. This prototype is evaluated on the latest

version of the IBM InfoSphere Optim Performance Manager.

Performance Manager

1 Trademarks of IBM in USA and/or other countries
2 Trademarks of IBM in USA and/or other countries

2

1 Introduction

Since software systems become more and more complex, quality is one of the

fundamental decision criterions for customers. Consequently the effort and the

importance of software validation have increased over the years. Studies report that

about 50 to 60 percent of software development cost is spent in the area of

validation [1].

Besides the complexity of software, the nature of functions or values to be verified

determines the difficulty of the validation process. Functions which compute

foreseeable results are much easier to validate than functions computing values

which cannot be predicted. So the effort of software validation depends not only on

the size of software but also on the characteristics of its functions.

The goal of this Diploma thesis is to develop and evaluate a Semantic Validation

Framework for the IBM InfoSphere Optim Performance Manager (OPM), a

performance analysis tool for DB23

The Semantic Validation Framework aims to provide an automatic correctness

proving for all OPM metrics. This means that it makes assertions about the correct

implementation of metrics without user interaction. This process differs depending on

 databases. OPM supports database

administrators in identifying, solving and preventing database performance issues.

To this end it collects performance metrics of monitored database systems and

displays them to the user via a web interface and offers the possibility to alert the

user about up-coming problems. In this case, performance metrics include all kinds

of data helping to make assertions about the health status of the database. For

example, how many statements are processed, how often the requested data is

located in the bufferpool or which statements caused a deadlock. Further these

metrics are values of the underlying system for example the size of the memory or

values of the connected clients as IP-addresses or types of used applications. This

means, OPM provides performance metrics about the database, the system on

which the database is located, and about the clients working on the database.

3 Trademarks of IBM in USA and/or other countries

3

the nature of a metric. First steps of the thesis are to sort these metrics into

categories according to the behavior of their values. This classification is a part of the

framework and is used there for deriving correctness criteria to decide whether a

metric is implemented correctly. Depending on the category there are different

approaches for the validation.

In the thesis, it is investigated if there are suitable approaches and correctness

criteria available, which can be used for proving semantic correctness of the OPM

performance metrics. The results of this investigation reveal that there are such

approaches, fitting for the project and that these approaches have to be adapted to

match the special requirements of the OPM environment.

A prototype of the Semantic Validation Framework is developed and integrated

into the existing test environment. This environment has been used so far to check

the integrity of metrics shown in the web interface of OPM and is extended with the

Semantic Validation Framework. It is also able to use an IBM internal tool to run

workloads on databases.

The document is structured as follows:

• Chapter 2 provides a detailed insight into the OPM environment. This includes

OPM itself, the test environment, and a workload tool. It is pointed out which

components are already available and which have to be developed for semantic

validation. Reasons and the motivation for the development of the Semantic

Validation Framework are shown. Additionally, possible problems for semantic

validation are described.

• Chapter 3 begins with a definition for semantic validation. Approaches for

software validation divided in the fields dynamic analysis and static analysis are

discussed. Furthermore, methods and techniques for both approaches are

described.

• Chapter 4 describes the architecture of the Semantic Validation Framework. It

includes the classification process and its results. For each metric category the

semantic validation process is shown.

4

• Chapter 5 revisits the approaches introduced in Chapter 3. It is examined which

of these approaches are suitable to validate metrics of the category non-

deterministic. The result of this process is presented and the solution is explained

in detail.

• Chapter 6 is the description of the prototype development and implementation.

Correctness criteria for metrics are derived and validated using the solution found

in Chapter 5. These criteria are integrated in the prototype.

• Chapter 7 consists of the evaluation of the prototype and a discussion about the

overall results of the thesis. The prototype is tested with a new version of OPM.

Necessary adaptations are explained.

• Chapter 8 concludes the document and possible future work is described.

5

2 OPM Environment and Problem Description

The goal of this thesis is the development of a Semantic Validation Framework for

the IBM InfoSphere Optim Performance Manager. The framework is used to check

the correctness of OPM. This means, it validates the metrics computed by OPM.

In this chapter the underlying project environment is introduced. It includes a

description of the way OPM metrics are tested at the moment and reasons for the

need of the Semantic Validation Framework. Known problems of semantic validation

in case of OPM are discussed. In the last section the architecture of the framework is

presented.

2.1 The Project Environment

The project environment consists of the IBM InfoSphere Optim Performance

Manager itself, the test environment and an IBM internal tool for producing workload.

2.1.1 The IBM InfoSphere Optim Performance Manager

The IBM InfoSphere Optim Performance Manager is a performance analysis tool for

DB2 databases on Linux4, UNIX5 and Windows6

The web interface serves as a tool for users to add and configure databases for

monitoring, using predefined or custom monitoring profiles and also to administrate

OPM in general. It contains different dashboards showing specific database

contexts. There are dashboards including overall information about the health status

of monitored databases. The so called inflight dashboards drill down to more detailed

 systems. OPM is able to identify,

diagnose, solve, and prevent problems on monitored databases. On that account

OPM collects, aggregates, and calculates performance metrics of DB2 databases

and visualizes this data in a web interface.

4 Trademarks of Linus Torvalds in the United States, other countries or both
5 Trademarks of The Open Group in the United States and other countries
6 Trademarks of Microsoft Corporation in the United States, other countries, or both

6

information about potential performance issues. In this dashboard category users

can see data about locking, logging, workload, etc. In Figure 2.1.1 the active SQL

Dashboard is shown. This dashboard includes information about the active SQL

statements. It provides, among others, the statements itself, runtime, caused

overflows, and how many rows are read. Users are able to set timeframes for which

they want to see data. It is possible to analyze what events are happening at the

moment and also what events have happened in the past.

Figure 2.1.1: Active SQL Dashboard [2]

Furthermore, with the Extended Insight feature of OPM it is possible to monitor

clients and applications (Java7, WebSphere8

7 Trademarks of Oracle and/or its affiliates

 Application Server, DB2 Call Level

Interface, etc.), which execute workload on monitored databases. In this case, the

collected data is called end-to-end data. With Extended Insight the user has the

opportunity to analyze, for example, the runtime of SQL queries of different clients

8 Trademarks of IBM in USA and/or other countries

7

and is able to find out which clients or applications influence the performance of the

whole database system.

Beside the manual observation of the performance data by the user, OPM can

alert users automatically, for example via email. The configuration of automatic

notification is also done in the web interface. These automatic alerts reduce the

response time of database administrators, thus issues can be detected and solved

before they have big impact on the system. Additionally OPM provides reports for

events which can be scheduled and are generated automatically.

From the technical point of view OPM consists of three major components (see

Figure 2.1.2).

Figure 2.1.2: OPM Architecture (including Extended Insight)

• The Repository Server which collects the performance data from monitored

databases and applications, using snapshots and DB2 event monitors.

8

• The Performance Database contains the performance data collected by the

Repository Server.

• The Application Server which loads the performance data from the Performance

Database into the web interface.

Between the Performance Database and the Application Server there are data

access functions to access the data. These functions, used by the Console Server,

serve as backend for the web interface of OPM and consist of two parts:

• The first part is used to set up and configure database monitoring.

• The second part is used to retrieve data from the Performance Database for the

OPM dashboards. Additionally it computes further metrics based on the data from

the Performance Database.

The procedures of OPM are as follows. After the configuration of monitoring, the

Repository Server of OPM collects data from configured DB2 databases and/or

database applications (for example SAP). Monitoring applications is only possible if

Extended Insight is activated and the Extended Insight Client is installed on the

application side. This data is stored in the OPM Performance Database and the

Application Server accesses it using the functions mentioned above. Finally, the

Application Server loads the data into the web interface where it is visible to the user.

Now, the user is able to supervise the performance of his database systems and

react when issues occur.

In the next section the available test environment is introduced. Further, the terms

run and iteration in case of the test environment are defined.

2.1.2 The Test Environment

The test environment is an in-house developed tool. During test phases of OPM (for

instance function verification tests or regression tests) it is utilized to test the data

access functions and to check the integrity of metrics. For example, it verifies that

9

metrics which constitute a value in percent are within the range 0 to 100. During the

tests no user interaction is needed.

The test environment is also able to run an IBM internal workload tool (see Section

2.1.3) to automatically execute workloads on databases. Figure 2.1.3 pictures the

OPM architecture including the test environment. The test environment replaces the

Application Server and the web interface.

Figure 2.1.3: Test Environment to classify the performance metrics

It makes use of the data access functions in the same way as the Application

Server of OPM. This includes adding databases to OPM, activating the monitoring,

loading the performance data from the database, and computing it further. After the

process of loading and computing, the data is the same as represented to the user in

10

the web interface and is stored in result files. With these tests various scenarios in

the area of configuration and data retrieval can be validated.

A run of the test environment consists of a number n of iterations defined by the

user and ends with the automatic investigation of the result files. Figure 2.1.4 shows

a run and the single steps in each iteration.

Figure 2.1.4: One Dedicated Run of the Test Environment

In each iteration a database for monitoring is added and configured. Then

workload is generated on the monitored database using the workload tool. After the

workload execution is finished and OPM has collected the performance data, the test

environment stores the data in the result files for additional investigations.

These results of a run of the test environment are Excel files containing the values

for every metric, the formula how the metric is computed, and various other

information about the metric.

The test environment offers a simple first step to semantic validation. A function is

available, which examines the result of a run and is able to classify every metric in

one of the three categories deterministic, semi-deterministic or non-deterministic.

This process is called classification. The idea is that further semantic validation

differs depending on the behavior (the category) of a metric. This is explained in

11

more detail in Section 2.2.2. The classification provided by the test environment is

based on the following decision process:

• For every metric it is checked if all values of all iterations are the same. If this is

the case, the metric is sorted into the category deterministic.

• If a metric has different values for the iterations and these values are numbers

only, the average value, the maximum value and the minimum value can be

computed. If the maximum and the minimum value do not exceed a predefined

deviation of the average value, the metric is categorized semi-deterministic.

• All metrics which do not fit in the pattern above are classified non-deterministic.

This means these metrics attain different values in the iterations and they exceed

the range predefined by the user. Another possibility is that these metrics allocate

values which are no numbers and differ in the iterations. For this kind of values

no average value can be computed and so they are marked non-deterministic.

At the end of this analysis, every metric is categorized exactly to one category.

Though, this functionality is already available only few tests concerning the

classification have been done before the thesis started. This means that the

classification is an important step in this thesis for the development of the Semantic

Validation Framework.

As mentioned above, the test environment is able to run a workload tool to execute

workloads on the monitored databases. To do a classification this workload has to

meet several requirements. These requirements and the procedure of running

workload are described in the next section.

2.1.3 The Workload Tool and Workload Requirements

The workload tool is used during the test phases of OPM to simulate different

scenarios on monitored databases. Among others, this includes common data

manipulation and retrieving but also deadlocks or sorts can be triggered to cause all

kinds of events on the database. These events are monitored by OPM.

12

The workload tool uses so called workload scenarios. These scenarios are

encoded in Extensible Markup Language (XML) and contain SQL statements which

are executed on the monitored database. Workload scenarios consist of three

phases:

1. Preparation: Bufferpools, tablespaces and tables are created. Tables are filled

with data.

2. Execution: SQL statements are processed which perform different types of data

manipulation on the created objects and data retrieval.

3. Cleanup: All created objects are deleted.

The used workload has to meet several requirements to be able to classify the

performance metrics and serve as workload to derive correctness criteria as well.

• It should run for a finite time period because the test environment is waiting until

the workload tool has finished its execution before it proceeds. This guarantees

comparable results for a specific workload since the performance data retrieval

starts every time as soon as the execution of the workload is finished. The

workload tool is also used outside of the test environment. In this case the

workload is running in an infinite loop as long as the user does not stop it

manually. This is not possible when using the test environment.

• It should be easy to adjust a workload because it may be possible that metrics

have a different behavior if the workload is increased or decreased. Increasing or

decreasing a workload means that the number of statements and/or the data

volume is changed.

• It should cover as many metrics as possible. This means that the SQL statements

executed by the workload create data, which should affect preferably all metrics.

The first and the second requirement can be achieved without big effort. Using the

workload scenarios has the advantage to benefit from structures provided by the

XML schema of the workload tool, for example if-statements or loops. This makes it

13

possible to adjust the workload easily and limit the runtime. Furthermore variables

can be used, for example for tables and inserted values.

The third requirement is much harder to be accomplished and increases the

probability to end up in more complex scenarios. This could mean that for these

scenarios adjustments are more difficult to be implemented and the effect of

adjustments are harder to recognize. To avoid this complexity several scenarios with

different coverage are used in this thesis. These scenarios are developed during the

classification process.

One example of these scenarios is “Massive Objects”. It creates user defined

bufferpools, tablespaces, and tables, and runs SQL statements, which cause activity

on the created objects. This activity consists of SQL statements inserting data into

the tables and updating this data. Further, the scenario executes statements, which

select or delete data, for example. To make it easier to adjust the workload, the

scenario has input parameters. The Figure 2.1.5 shows the input parameter for the

number of tables which should be created during preparation phase.

Figure 2.1.5: Example for Input Parameters of Workload Scenarios

In this example, the workload can be modified by changing the value for the

attribute “tbl”. This means, changing the number of tables, which are created and

used during the execution of this scenario. Another possibility to change the

workload is to increase the number of loops for the insert-, update-, select- and

delete-statements. As a result more database accesses are performed.

In the Section 2.2 the motivation and reasons for the need of the Semantic

Validation Framework are described. Further, known problems and possible

difficulties are pointed out.

<arg default="10" description="The number of tables to create."

key="tbl" type="int"/>

14

2.2 Problem Description

The Semantic Validation Framework is meant to be an extension of the test

environment. Its goal is to enlarge the testing capability of the environment and

provide assertions about the correctness of metrics to the user. These assertions are

created automatically without user interaction. As an extension of the test

environment the Semantic Validation Framework is able to make use of its functions.

This means, configuring the monitoring of OPM, running workload, data retrieval and

saving of the data in result files is already available.

This section explains why it is desirable to have such a framework for validating

the OPM metrics. It shows the shortcomings of the actual testing approach and hints

at the problems which may occur during the development.

2.2.1 Motivation and Reasons for the Semantic Validation Framework

The scope of the tests provided by the test environment is limited. It consists of

finding exceptions during the invocation of the data access functions which retrieve

the data and to provide simple means of data verification. For example, checking a

percentage value as mentioned above.

Currently the question if the retrieved values are correct cannot be answered in a

simple way. Most of the data verification tests have to be done manually. It is very

critical to proof data correctness during testing, as errors found on customer side can

damage the trustworthiness of OPM to a high degree. The question for data

correctness may sound simple but is very complex at the second glance.

At the moment OPM is providing approximately 1000 different metrics. Manual

tests in this case are very time consuming, expensive and error-prone because every

metric has to be checked individually. Further, to be able to draw assertions about

the correctness, it is necessary to understand the metric itself. This requires the skill

set of an experienced database administrator.

To prove the correctness of a metric, which is not computed further, the value in

the Performance Database has to be compared with the actual result. For metrics

which are computed of several values, all these values have to be verified in the

15

Performance Database, the computation has to be done manually and the results

have to be compared. In practice this is impossible for this high number of metrics.

Automating these comparisons of the values in the Performance Database with

the actual results is not a solution either. During development the way metrics are

computed changes. This includes changes in the schema of the Performance

Database. For example, names of tables, attributes are adjusted or data is

summarized in new tables. To prove correctness, all these changes have to be

considered and implemented in the automatic tests. For every new version it has to

be checked if adjustments of the tests have to be done. In development phase a new

build for testing is published nearly every day, making this approach impractical.

The goal of the Semantic Validation Framework is to provide a tool for automatic

correctness proving, covering all metrics. No more user interaction after starting the

test should be required. It has to avoid the problems mentioned above. This means

changes in the Performance Database or in the data access functions should not

influence the framework. The ongoing development of new versions of OPM makes it

necessary for the framework to be adjustable in a simple way. For example adding

new metrics or removing metrics which are not needed anymore. It should be

possible to run these tests every day by different persons. This requires that the tests

are fast, uncomplicated and the results are meaningful.

The next section discusses the problems occurring for semantic validation in case

of OPM and how the different behavior of the metrics influences the process of

finding correctness criteria.

2.2.2 Problems of Semantic Validation

The basic problem of semantic validation (see Definition 3.1.2 in Section 3.1) is to

find criteria which allow to draw conclusions about the correctness of the tested

software. These criteria depend on the nature of the objects, which have to be

validated (in this case the OPM performance metrics).

There are different patterns of behavior concerning the assumed values of the

metrics. The range which these values can attain depends on the workload on the

monitored database and the nature of the metric. The values are influenced by the

16

system of the monitored database, for example, by the load factor or network speed.

This means that for some metrics the monitored values differ when monitoring the

same workload more than once. As a consequence, the criteria for the correctness of

these metrics are different from the criteria for metrics which values do not deviate

for the same monitored workload.

There are three categories of OPM metrics (described in Section 2.1.2). Each

category describes a certain behavior of the values a metric can attain (output) when

the same workload is monitored under the same circumstances several times (input).

The input consists of the workload and the parameters of the underlying system of

the monitored database. These parameters include among others DB2 parameters,

DB2 version and preferences of the server.

This means that the category of the metrics affects the difficulty finding appropriate

relations between the input and output values. It is considered that developing

correctness criteria for deterministic and semi-deterministic metrics is easier than for

non-deterministic metrics. Deterministic metrics follow explicit input-output rules

which can be derived with little effort.

Finding correctness criteria for semi-deterministic metrics is more complicated.

The output values of metrics of this category can vary over a finite range for the

same input. First problems occur when trying to define a range within all values

should be located. For example consider a program running on a normal desktop

computer, computing the duration of SQL queries. The found range in which the

computation is still correct is for example 5% variance of the average value. If the 5%

range is exceeded it would mean that a defect occurred in the function calculating

the duration. The duration of queries depends among others on the hardware and

processes, which are running on the computer while the queries are executed. So if

running the same queries on a much more powerful system the 5% range could be

too large and defects would not be found. So the metric is still semi-deterministic but

the range has to be adjusted according to the environment. This could mean

specifically for OPM that running the Semantic Validation Framework on different test

machines leads to adjusting the ranges of correctness for each machine or accept

fuzzy ranges.

17

For non-deterministic metrics the output for the same input can vary within an

infinite range. Proving correctness for this kind of metrics needs different testing

approaches compared to the other categories.

In the next chapter, semantic validation and semantic correctness are defined. An

overview about existing techniques and methods for software verification, which can

be suitable for the framework, is provided. It includes two different strategies and the

respective approaches.

18

3 State of the Art

Approaches for software verification can be divided into two fields, dynamic analysis

and static analysis. The difference between these verification techniques is the way

how they deal with the software under test itself. In dynamic analysis the software is

executed and the output is analyzed. Static analysis does not execute the software

but analyzes the structure of the software by checking if certain conditions are

fulfilled. Contrary to dynamic analysis, which checks individual runs only, static

analysis is able to prove the absence of errors because it examines all states and

paths of the software [3].

In order to be able to ponder if an approach is suitable for semantic validation in

the case of the IBM InfoSphere Optim Performance Manager, first a definition for

semantic validation for this thesis is given. Then the different techniques are

introduced.

3.1 Definition of Semantic Validation

In general, semantics is the study of meaning [4]. More specifically, semantics deals

with the relation between symbols in languages and their denotation in the

nonlinguistic world. In contrary, syntax describes how expressions are formed with

the symbols of the language [5]. In computer science semantics on the one hand is

understood as a mathematical model for programming languages, which helps to

understand the performance of programs. This semantics of programming languages

or formal semantics consists of three types [6].

• First, the operational semantics which describes the meaning of a programming

language by transition-functions from one state to another state.

• Second, the denotational semantics which is rather mathematical using partial

orders, continuous functions and least fixed points.

• Third, the axiomatic semantics which is making use of different assertions which

have to be satisfied before and after the execution of a program or a function.

19

On the other hand, semantics deals with the meaning of symbols. If a human being

has a description of a program in natural language telling what the program is

supposed to do, he is able to understand the semantics of this program. For example

if the description of a single function is “number of users” everyone understands that

this function is counting the users.

The mathematical models of formal semantics provide tools to reason if a program

is implemented semantically correct. Semantically correct means that the results of

the program are appropriate in their meaning, the general understanding of

semantics. Referring to the example above the result for “number of users” can

never be semantically correct if it is a negative value. Consequently semantic testing

in terms of software is a methodology to verify the relationship between the data

produced by this software and its semantic correctness.

The data produced by the software depends on the data which has been used as

input for the software. This means that the semantic correctness of software is also

dependent on the input which is used. In more detail, the input can be considered as

preconditions and the output as postconditions. Before a run of the software the

preconditions have to be valid and after the run the postconditions have to be valid.

This leads to the following definition of semantic correctness for this thesis.

Definition 3.1.1 Semantic Correctness of Software

Software is semantically correct if the postconditions according to the preconditions

are fulfilled:

Figure 3.1.1: Semantic Correctness of Software

Where {PRE} is the set of preconditions, {POST} is the set of postconditions and SR

symbolizes a run of the software. So if {PRE}SR{POST} is valid, meaning that {PRE}

20

is fulfilled before the run and {POST} is fulfilled after the run, the software is

semantically correct.

The definition of semantic correctness of software automatically leads to the

definition of semantic validation.

Definition 3.1.2 Semantic Validation in Terms of Software

Assuming the definition of semantic correctness, semantic validation in terms of

software is the process of verifying the set of postconditions according to the set of

preconditions of the software.

In Sections 3.2 and 3.3, methods will be introduced which are capable for semantic

validation in terms of software. The first part will cover methods based on

mathematics and formal semantics belonging to static analysis and the second part

will contain empirical methods belonging to dynamic analysis.

3.2 Static Analysis - Formal Methods

Formal methods are a practice to specify a system and its desired properties, for

example functional or temporal behavior, by languages and techniques which are

based on mathematics. It is possible to express what a system should do in a

mathematical way and then check automatically if the system is compliant within this

specification. Formal methods serve to verify the relationship between the source

code and the meaning of the implemented function. For example one approach to

test this issue are assertions between input variables and system variables. These

variables correlate before, during and after the execution of a program or single

function and so have to fulfill certain constraints [7][8]. In the next section, model

checking and theorem proving will be introduced, two approaches using formal

methods to verify software systems.

21

3.2.2 Model Checking

Model Checking is a technique to automatically achieve a formal verification that a

system runs according to its specification. In Figure 3.2.1 an overview of the process

of model checking is shown. The idea behind model checking is to map the original

system under test to a model, which is able to serve as input for a model checker.

This model has the same characteristics and behavior as the original system but it is

represented with methods of mathematics or formal semantics. For example,

systems can be modeled by finite state machines or transition systems. In these

formal representations the nodes stand for the system states and the transitions

between the nodes symbolize the possible state changes.

Figure 3.2.1: Model checking process

22

To be able to check the model against the specification automatically, the

specification has to be existent in a formal description as well. One common set of

logics to formalize the specification of a system is the set of temporal logics.

Temporal logic allows expressing properties in different instances of time using

temporal operators [9]. For example, it is possible to specify that a property has

always to be fulfilled, meaning in every state of the system, or a property has to be

valid only in the next state. Especially linear temporal logic (LTL) and computation

tree logic (CTL) or modified versions of LTL and CTL are common in the field of

model checking.

One big advantage of temporal logic is that formulas can be translated into

automata. If the specification and the model are available as automata the process

of checking that the model fulfills the specification is simplified to the comparison of

two automata. This leads to efficient algorithms in model checking based on

emptiness checks [10]. In short, the process of proving correctness starts with

building the automata of the model and the negation of the specification which

should be checked. The next step is to build the product of these two automata and

test if the resulting automaton accepts any word. If it accepts a word, the actual

property is not fulfilled. If it accepts no word, meaning that the language accepted by

the automaton is empty, the property is valid in the system.

After the specification and the system are available in some kind of formal

description, they serve as input to model checkers. Model checkers prove for a given

system and specification, whether the system runs accordingly to its specification or

if there are violations. If violations are detected, a counterexample is provided to help

finding the error in the real system.

The common procedure of model checkers to verify systems is to check for every

reachable state of the system model if the requirements are met. Reachable states

are all states which are accessible through a sequence of state changes starting in

the initial state. To make sure that the model checker does not test a state more than

once, all states have to be kept in memory. This leads to the so called state space

explosion problem and causes immense costs of memory [11].

However model checking does have a major advantage. Model checking verifies a

large set of possible paths (test cases) in one run. In order to benefit of this

23

advantage many approaches to solve the state-space explosion problem have been

presented in the last years.

• For example it is possible to divide the state space and test the requirements

against every state partition. So only one partition has to be kept in memory [12].

• Another method to deal with the state space explosion is to store for every

successor state the changes compared to its predecessor. This method promises

a memory reduction of about 95% [11].

• A different procedure is implemented by the open-source model checker SPIN

using on-the-fly verification [13]. Consequently SPIN mostly does not need to

construct the whole state space because it constructs the next state only if

needed. SPIN is available since 1991 and based on the automatic theoretic

approach by Moshe Y. Vardi and Pierre Wolper saying that for every temporal

formula (SPIN uses LTL) it is possible to construct a corresponding automaton

which accepts exactly the language specified by this temporal formula [14]. This

results in emptiness checks of two automata as described above.

Theorem proving is another approach of static analysis. It does not need a model

but it checks certain properties of the program, which have to be valid. This approach

is introduced in the next section.

3.2.3 Theorem Proving

Theorem proving is a mathematical methodology to prove if a function matches its

specification. The basic idea for theorem proving is to check that a specific property

is satisfied before the execution of the program (precondition) and another specific

property is satisfied after the run of the program is finished (postcondition). If the

check is successful the correctness of the program is proved. Generally the

properties can be seen as “if-then” statements. “If” certain conditions, for example

input values or system states, are fulfilled, “then” after the computation the system

will end in a corresponding state and has a corresponding output [15].

24

Theorem provers, which check these kinds of assertions, are most of the time

based on the calculus by Hoare providing axioms and inference rules to reason that

a precondition implies a postcondition. Using axioms and inference rules to decide

that a program is implemented correctly, leads to the big advantage compared to

model checking: Theorem proving does not need to verify every possible state of a

system, hence it is capable of dealing with an infinite state space [16].

A slightly different idea but still based on logic is to use the rules provided by a

calculus several times on the formula which has to be proved, until a valid formula is

derived or no rules can be deployed anymore. If no more rules are valid to use, the

formula is confuted [17].

Another way to implement theorem proving is to model the system as a finite state

machine and the theorem as input values and an actual state, leading to an output

value or a sequence of output values and a successor state. To prove the theorem it

has to be checked if the finite state machine gives the desired output and stops in

the desired state [15]. The difference to model checking in this case is that theorem

provers again do not check every possible state.

Figure 3.2.2: Example of a Finite State Machine

An example for this way to prove a theorem can be seen in Figure 3.2.2. The finite

state machine ends in state 3 and outputs “t” if A and B are both true else it ends in

state 4 and outputs “f”. A suitable theorem is the following: ((S(1), {true, true})

(S(3), t)) where the set {true, true} is the input and “t” is the output. A theorem prover

25

now checks what happens when the input is {true, true} and the system is in state 1

and compares these results with the right side of the theorem.

3.3 Dynamic Analysis

Unlike static analysis, which has been introduced in the previous section in terms of

formal methods, dynamic analysis is rather based on empirical methods and

statistics than on mathematics or formal semantics. Dynamic analysis tries to verify

software by executing instead of looking at the structure only. For example there are

methods which check certain conditions during runtime or techniques comparing the

results of runs with the input or with results of previous runs. The following sections

describe some of the existing dynamic analysis methods.

3.3.1 Testing

In the field of software, testing is the execution of the software under certain

circumstances to prove correctness and completeness. These circumstances are

called test cases and often refer to the input data. Depending on what kind of

software or which components are tested, test cases can be sequences of user

interactions or well-defined steps to be executed, for example the testing of user

interfaces. In the following section, test cases always have the meaning of input

values. Test cases allow to draw conclusions whether the software is implemented

correctly according to its specification [18]. To do this an oracle has to exist.

An oracle can be understood as a method to decide whether a test case

succeeded or not, by comparing the connection between input and output. Today in

industrial practice most of the time these oracles are humans, checking the output

manually. Because of the possible very wide range of output values, generating

oracles for automatic verification is the big challenge beside the choice of test cases

in software testing [19].

26

In the following, existing testing techniques are introduced. The single test

methodologies can be distinguished by how they deal with the actual code of the

software.

• Black box testing is a method which does not consider the code but only the

input and output values.

• White box testing takes a closer look at the code itself, checking also paths and

states of the system. Therefore, detailed knowledge about the implementation of

the system under test is required.

• Grey Box testing combines these two methods and makes it possible to analyze

values during computation [18].

In addition, software testing techniques differ in how they choose test cases.

Unlike methods of static analysis, testing in general is neither able to check every

state of software systems nor every possible path. In testing, the chosen test cases

affect which states and paths are checked. The strategy to derive test cases has a

big impact on what defects can be found and in which area of the tested systems the

defects will be detected. Two possible techniques to choose test cases are

introduced here:

• Random Testing: One strategy to select test cases is choosing the test cases

randomly from the input domain. This strategy can be very helpful if there is no

information about how to contain the input. Furthermore, since no human

interaction is needed for building test cases, nobody intended or accidently can

falsify the input. In addition, random testing due to the wide range of output

values, needs an automatic oracle to test if the system behaves properly [19]

[20]. To make sure that the testing covers as much code as possible random

testing has to be adjusted, leading to more predetermined strategies of choosing

test cases.

27

• Sub-domain Testing: In sub-domain testing, the input domain is divided in sets

of values which are considered to be related in some way. For example one way

to identify sub-domains is to deduce them directly from the software specification.

Sub-domain testing belongs to the systematic testing techniques but it still has

random elements. In fact the test cases are chosen from each sub-domain to

achieve wide coverage but the selection in a sub-domain is done randomly.

There are some modifications for sub-domain testing, e.g., trying to maximize the

distance between the input values or keeping the distance at the same level with

the goal to cover a preferably wide range. Other approaches propose to choose

the values in a way they will be used in reality [21].

Beside the way test cases are chosen, testing methods can be distinguished by

foreknowledge about the output values. The methodology is depending on the

knowledge of the output behavior.

• Statistical Testing: Statistical testing is used if the output of the software under

test is stochastic. This means that for the same input different output values are

possible. In this case, statistical testing is a possibility to determine that the

behavior of software is correct, at least with a certain probability. Testing still

refers to comparing input values to output values, but in this case deriving an

exact oracle is impossible because of the stochastic distribution of the output.

Having test cases with known correct output a probabilistic distribution can be

calculated from these values. Otherwise, reference values can be derived from

running test cases and proving manually if the results are valid. Based on these

reference values the expected distribution can be established [22]. This allows to

compute the probability that the output of test cases is correct.

• Deterministic Testing: In contrast to statistical testing the expected output in

deterministic testing is known. This means for every input or test case the

corresponding output can be determined according to the specification [23]. As a

consequence it is possible to make exact statements about the correctness for

28

the test input and deriving an oracle can be done with less effort compared to the

case of random output values.

Beside the method of software verification with the help of test cases, there are

various other approaches in the field of dynamic analysis. For example, runtime

assertion checking.

3.3.2 Runtime Assertion Checking

Runtime assertion checking is another technique which is verifying software during

execution. Assertions are requirements for individual system states and are checked

automatically when the system is running. Possible assertions are pre- and

postconditions or invariants, for example. Preconditions have to be fulfilled before

the execution of the program or single function, and postconditions after the

execution. Invariants are requirements which have to be valid throughout the whole

run. Assertions can be built from Boolean expressions and constraints and because

they are checked during runtime, the location of an error is known immediately [24].

Verifying software by checking assertions is also done by theorem proving.

Theorem proving is using inference rules or calculus to prove the correctness of the

system under test mathematically, instead of executing the program. So in fact

theorem proving covers all possible states of the system but assertions which are

checked during runtime can be directly implemented in the code. This makes runtime

assertion checking easier to understand and to develop than theorem proving.

3.3.3 Conclusions

In addition to the described approaches, there are ideas to merge static and dynamic

analysis to combine the advantages of both approaches and reduce limitations. In

static analysis the whole state space gets explored, including possible paths which

never occur during runtime. Consequentially, defects are detected which do not

affect the software quality and are time consuming to fix. In dynamic analysis

coverage is a big limitation. Having an infinite state space it is impossible to check

29

every path and even if the state space is finite, huge amount of test cases have to be

provided to achieve a sufficient coverage.

One possibility to combine both, static and dynamic analysis is that static analysis

discovers potential problems which are then verified using dynamic analysis methods

[25].

Further, there are approaches which compute semantic relations between graph-

like structures. They can be used to compare different inputs (for example database

schemas) according to their semantics. One of these approaches is S-Match which

calculates semantic relations between nodes of two trees which serve as input [26].

The results are the strongest relations between any pair of nodes of the input tress.

The next chapter describes the architecture of the Semantic Validation Framework.

Furthermore, it contains the classification of the metrics and the enhancements of

the test environment, which have to be done before the classification can be

performed. The last part is the process of semantic validation for each metric

category.

30

4 Semantic Validation Framework

Chapter 4 is divided in three parts. Part one explains the architecture of the Semantic

Validation Framework. In part two the classification process and the results of the

classification are described. Before the classification can be accomplished the test

environment is enhanced to provide all necessary functionality. The available basic

function for classification described in Section 2.1.2 is not sufficient. Part three

provides the process of semantic validation in the framework for each category

4.1 Semantic Validation Framework Architecture

The Semantic Validation Framework is considered to draw assertions about the

correct implementation of a metric. These assertions are presented to the tester.

Figure 4.1.1 shows the architecture of the framework. The components marked in

green are developed during this thesis. The OPM Environment in the figure consists

of OPM, the database management system DB2 and the monitored database. In the

figure it is assumed that the classification of the metrics has been accomplished.

Every metric which is validated has been categorized in exactly one category.

The whole validation process of the OPM performance metrics is as follows: First,

workload is executed on the monitored database. The created data is monitored by

OPM. As soon as the execution of the workload is finished the test environment

retrieves the data and stores it in result files. This procedure can be done several

times to receive more data.

31

Figure 4.1.1: Semantic Validation Framework Architecture

After all tests are executed and the data is saved, the semantic validation starts.

The first part of the validation is not affected by the metric category. For example the

checking whether the actual category fits to the reference category is the same for

every metric. The next part of the validation is based on the results of the

classification. There is an individual validation process for every category. The

results of these validation processes are decisions about the correctness for each

metric. These decisions are presented to the user in a new result file.

The details of the classification process, the used workload and which changes,

and improvements of the test environment have to be done, are explained in the

following section.

32

4.2 Classification Process and Enhancements of the Test Environment

OPM collects a large number of performance metrics. In this thesis it is not possible

to handle all of these metrics. Hence, the classification is done exemplarily for the

workload dashboard. This dashboard contains 40 different metrics, including metrics

about the system of the monitored database and metrics about various health

indicators as failing transactions or sort performance. This means that all future

validation in this thesis is done with metrics of the workload dashboard.

The classification of the metrics is the basis for the development of the Semantic

Validation Framework. First, the test environment has to be extended and adjusted

because it does not provide all needed functionality. The workload scenarios which

are used to create the workload on monitored databases for every run of the test

environment have to be developed and verified.

The workload should affect as many metrics as possible. If a metric is not affected,

incorrect results will be retrieved for this metric. For example a metric which is not

influenced by the executed workload has “0.0” values only. Theoretically this metric

is categorized as deterministic. In the case of validation it will always be marked as

correct when comparing reference values with actual values. If using a workload,

which creates data for this metric, it may be classified as non-deterministic or semi-

deterministic and a proper validation is possible.

In order to simplify the validation it is preferable to have as many metrics as

possible in the categories deterministic and semi-deterministic. For these categories

the validation process is simpler and more precise than for non-deterministic metrics.

To achieve this, a deeper understanding of every metric is required. This is needed

to build the proper workload and to adjust the test environment. Experiments with

different configurations of workload led to first insights and changes in the test

environment. These are explained in the next section.

33

4.2.1 Changes and Improvements of the Test Environment

During first test runs it became clear that the existing version of the test environment

does not contain all logics needed for the classification. The following adjustments

had to be implemented:

1. Improved handling of “TIME_SERIES”

2. Implementation of parameter “lastMinutes”

3. Normalization of “TIME_SERIES”

4. Information added to the result files

There are two different aggregation types for metrics in OPM. For a selected

timeframe metrics of the type “SINGLE_METRIC” have only one value. This

timeframe can be chosen by the user and has to be at least one minute. Metrics of

the type “TIME_SERIES” have a value for each one minute time interval because

OPM collects data every minute. For example, if the timeframe is ten minutes, these

metrics have ten values.

Metrics of the type “TIME_SERIES” have more than one value for each iteration of

the test environment, depending of the duration of the workload. If the workload is

running for 15 minutes, the metric has 15 values. For these metrics the classification

process has been very simple so far. Up to this point a “TIME_SERIES” metric has

been classified as deterministic if all values for every time interval and each iteration

have been the same. Otherwise it has been categorized as non-deterministic.

For improving the classification of “TIME_SERIES” metrics they are now handled

similar to the type “SINGLE_METRICS”. If the metric is not deterministic and

consists of numeric values, the average value and the maximum deviation are

computed for every time interval. The metric is classified semi-deterministic if all

deviations are within the predefined range. In every other case it is classified non-

deterministic.

Changing the intensity of workload it turned out that some metrics need a kind of

“warm-up” time to reach a stable or nearly stable state. In this case, a stable state

means that the value of the metric does not change anymore over the time if the

34

workload executes the same statements in each time interval. Several factors may

lead to such a behavior. One possible explanation is that it takes a certain amount of

time until the bufferpools of DB2 are filled with the proper data requested by the

workload scenarios. Further, the preparation phase of the workload is monitored.

This means that the data retrieved in the beginning differs from the data during the

actual workload execution.

One example of such a metric is shown in Figure 4.2.1, which is the number of all

statements processed per minute. It can be seen that the values of this metric

approach around 6000 when increasing the runtime of workload. The values on the

x-axes are the number of loops of the workload scenario and in this case are

corresponding to the runtime. In every loop different SQL statements e.g. SELECT-

or INSERT statements are processed. Increasing the number of loops means higher

workload. Without changing other parameters it ends up in a longer runtime because

the number of loops processed each minute remains the same.

Figure 4.2.1: Warm-up Time for Metric DBSE422

It can be seen in the diagram that the runtime of a small workload is too short to

reach a stable phase. A stable phase can be understood in the way that once

reached a certain point in time of the workload execution the metric is mainly

influenced by the actual workload. The bufferpools are filled and the preparation

phase of the workload scenario is not monitored anymore.

35

In order to deal with this behavior a new parameter “lastMinutes” is implemented.

This parameter allows the user to set the time period for which he wants to collect

data with the test environment. For example setting “lastMinutes” to 10 means that

data monitored by OPM of the last ten minutes will be fetched and analyzed. Using

the parameter “lastMinutes” for “TIME_SERIES” means to have exactly the same

number of values for each iteration.

In some cases OPM does not receive data for a single time interval and returns the

value “N/P”. The expected data is received a time interval later and causes this

iteration to have one more value because all following values are also received a

time interval later.

An example can be seen in Figure 4.2.2. It shows an extract of the result file of the

workload dashboard. The pictured metric is counting the number of rows which have

been read each minute. These values are in the columns B to K, respectively L for

the red marked rows. In column A the number of the iteration is saved. The two rows

which are marked red contain one “N/P” value each.

This occurrence leads to errors in the classification process. To avoid this, the data

is normalized. If there is an “N/P” value for an iteration, this value is deleted and the

remaining values are shifted. This results in equal numbers of values for each

iteration. Figure 4.2.3 pictures the same metric after the normalization process. The

rows which are marked green have been normalized.

36

Figure 4.2.2: Data before Normalization Process

Figure 4.2.3: Data after Normalization Process

37

The result files of the test environment are considered to be analyzed further for

deriving correctness criteria. To have more information available for evaluation the

result files are enhanced. Additional values are automatically computed and added

to the result files, including the maximum deviation and the aggregation type of the

metrics.

The next section contains the approaches and the performed tests to build the

workload used for the classification process. This workload serves as a basis for the

workload of the Semantic Validation Framework.

4.2.2 Workload used for the Classification Process

The workload used for classification has to meet several requirements. These

requirements are described in Section 2.1.3. The implementation of the limited

runtime can be done without problems. Though, easy adjustment and covering as

many metrics as possible contradict. To find suitable workload, experiments with

different scenarios are accomplished.

Tests with one scenario covering all metrics of the workload dashboard result in

values which are not comprehensible. This is caused by the many different actions

performed by the scenario. It includes deadlocks, hash joins, insert-, select-, update-

and delete-statements as well as sorts and online analytical processing (OLAP)

activities. The random factor in the order of execution ends in different values for

different iterations. A comparison of different runs does not have a high significance.

This single but large scenario does not meet the requirement of easy adjustment.

To change the amount of workload all types of activity have to be considered. It is

hard to predict the impact of changes in the scenario because increasing the number

of loops or changing the size of a table affects many metrics at a time.

Further testing is done with very easy adjustable scenarios. These scenarios

execute only a single select-statement or causing one deadlock on the monitored

database. In this case the impact of adjustments is predictable. For example

increasing the loop by one should end up in two select-statements.

The coverage of these scenarios is very small. This means that for affecting all

metrics many scenarios are needed. All of them are easy to adjust but only cover a

38

special type of metrics. To have the same coverage as one run of the scenario for all

metrics, a run of the test environment is needed for every easy adjustable scenario.

OPM itself causes activity on the database. It creates tables for all possible events.

These tables are filled by the DB2 event monitors, which write data into the tables as

soon as events occur. The created types of event monitors depend on the monitoring

profile set by the user. Further, OPM executes SQL statements against the

monitored database periodically. It uses DB2 facilities such as administrative views

or table functions to retrieve the metrics and stores the values in the created tables.

OPM reads across all tables every minute and stores the new data in its

Performance Database. After the data is saved on the OPM side, it is deleted in the

tables on the monitored database.

The amount of the activity caused by OPM is not negligible when validating the

metrics. The count of read rows is between 1300 and 1600 rows per minute. There

are 17 metrics on the workload dashboard affected by OPM. These metrics have

values deviating around their average value. This means the impact of OPM could

cause these metrics to be semi-deterministic or non-deterministic indifferent which

workload is used.

These circumstances make easy adjustable scenarios mentioned above useless.

The little amount of workload does not affect the metrics. Changes in this dimension

are not visible because of the high activity of OPM. Workload with a certain intensity

has to be executed to lower the impact of OPM and to be able to see results of the

actual workload.

The most promising tests are done with two scenarios. Together these scenarios

cover all metrics of the workload dashboard. The first scenario olap_deadlock

executes OLAP functions and causes deadlocks. The second scenario sort_hash

performs hash joins and sorts. These scenarios are chosen for the classification

because the results are very stable. This means that very few metrics are changing

their categories in different runs. Further, these scenarios can be adjusted with a

manageable effort and the impacts of changes can be predicted with appropriate

accuracy.

In the next section the range for semi-deterministic metrics is determined and the

results of the classification using these scenarios are described.

39

4.2.3 Classification

Before the classification can be done, the range for semi-deterministic metrics is

determined. Based on discussions and an analysis of the range distribution of

metrics (IO dashboard and workload dashboard), the semi-deterministic range is set

to 10%. A big part of the metrics which are not deterministic deviates up to 10% of

their average value for every test run. There are less metrics deviating between 10%

and 60%. The biggest part of the metrics has a deviation for more than 70%. In

Figure 4.2.4 this behavior is pictured. If the value of the deviation is more than 100%

it has been set to 100% automatically. The metrics are numbered consecutively.

Every data point in the diagram is one metric. The y-axis stands for the deviation of

the metric of its average value.

Figure 4.2.4: Deviation of the Metrics of IO and Workload Dashboard

40

If the semi-deterministic range is set to a higher value only few more metrics

become semi-deterministic. For these metrics the correctness proving becomes

imprecise because semi-deterministic metrics are validated different than non-

deterministic metrics. Their validation is not suitable for highly deviating values. This

means that the advantages of easier testing for semi-deterministic metrics do not

prevail the disadvantages of the impreciseness of the semantic validation caused by

increasing the semi-deterministic range.

For the classification each scenario, sort_hash and olap_deadlock, is used in

seven runs with 30 iterations. 30 iterations are chosen because it is a “common rule

of thumb” to lower the impact of possible outliers [27]. One run takes about 12 hours

and is executed on a server during the night to decrease the influence of other

people working on the same machine.

In these seven runs of each scenario only two metrics of the workload dashboard

changed their category. All other metrics are classified in the same category for

every run.

One of the metrics, which are changing categories, is counting the maximum

number of coordinator agents working at the same time. A coordinator agent is

requested if an application is connecting to a database or instance [28]. This metric

is classified either deterministic or semi-deterministic. Based on discussions with the

team, which is responsible for the testing of OPM, this metric is classified manually

as semi-deterministic. The main reason for this decision is the easier correctness

proving. Changing the category from semi-deterministic to deterministic is easier to

validate. If a semi-deterministic metric becomes deterministic in a test, it is not

marked as wrong automatically. Its values are all the same and the deviation of the

expected value is 0. This deviation is surely within the semi-deterministic range.

The second metric which is changing categories during the different runs is ratio of

the created agents vs. the assigned agents from the pool. An agent is a process

which is responsible to execute the request of a client application. In contrast to the

metric counting the number of coordinator agent this metric is regarding all types of

agents (coordinator agents, subagents, associated agents, primed agents). The

number of created agents is determined by the parameters of the DB2 instance [29].

This metric is switching categories between semi-deterministic and non-deterministic.

41

The same argument as mentioned above is true for this metric. It is easier to validate

the metric if it is categorized as non-deterministic. If the metric would be classified as

semi-deterministic it is marked as incorrect in every case the values are deviating

more than the predefined range.

The classification of the metrics of the workload dashboard resulted in six

deterministic metrics, two semi-deterministic metrics and 32 non-deterministic

metrics. The next section describes the different processes of semantic validation for

each metric category.

4.3 Process of Semantic Validation

In this section the semantic validation process is described. As mentioned above this

process differs depending on the classification of the metric. The procedure for each

metric category is explained in the following.

4.3.1 Semantic Validation Process of Deterministic Metrics

The semantic validation of deterministic metrics consists of two major steps. First it is

checked if the category matches. This means that the result of the test run for each

iteration has to be the same – the category has to be deterministic. The next step is

to verify constraints. For example it is checked if DB2 parameters are within the

allowed range. Further, there are values which indicate that there could be a defect

in OPM. These values are “NULL”, “NOT_RETURNED”, “N/P” and in some cases

“0”. Their occurrence has to be caught and reported to the user.

The following table contains all deterministic metrics of the workload dashboard. It

further includes a description and the constraints of each metric.

42

Metric Description Constraints

DBC6

Maximum number of concurrent

applications connected to the

database

-

max_connections

Maximum number of

applications allowed to connect

to the database

1 – 64 000

sortheap

Maximum number of pages of

the private / shared memory

available for private / shared

sorts (4 KB per page)

16 – 4 194 303

sheapthres_shr

Threshold for the size of the

shared database memory used

for sorts (4 KB per page)

250 – 2 147 483 647

sheapthres

Soft limit for the amount of

memory used for private sorts

(after this limit the provided

memory for sorts is reduced)

0, 250 – 2 147 483 647

DBMC501
Maximum number of

coordinator agents
0 – 64 000

Table 4.3.1: Deterministic Metrics

Some of the DB2 parameter, which influence these metrics, can be set to

“automatic” and DB2 is looking for the best value. To improve and to facilitate the

validation process the tester should set those parameters to a stable value manually.

In this way assertions about the correctness can be drawn definitely. The value of

the parameter is saved in the framework together with the corresponding metric and

is compared to the actual result of the test run.

4.3.2 Semantic Validation Process of Semi-Deterministic Metrics

The validation process for metrics of the category semi-deterministic starts with the

category verification. If a semi-deterministic classified metric becomes non-

43

deterministic in the test run it is considered to be incorrect and the user is notified.

There is the possibility that the metric becomes deterministic and can be considered

as correct.

The difference between deterministic metrics and semi-deterministic metrics is the

size of the deviation of the average value. For deterministic metrics this deviation is

0% and for semi-deterministic it is within 10%. This means that metrics which have

been classified semi-deterministic during the classification process can have

deterministic values for test runs and still be correct because a deviation of 0% does

not contradict the rules for semi-determinism in this case a priori.

For example, during classification some metrics switched between the categories

deterministic and semi-deterministic for different runs of the test environment. These

metrics have been classified as semi-deterministic because they did not have the

same values for each run and each iteration which is the main characteristic of

deterministic metrics.

In case the resulting category of the tested metric is deterministic, the framework

checks if the values themselves do indicate an OPM defect. These values are the

same as for the deterministic metrics: “NULL”, “NOT_RETURNED”, “N/P” and for

some metrics “0”. Depending on the workload scenario, the result of metrics which

are not affected can adopt those values. These metrics are ignored for validation in

this run and a different scenario has to be used. After the metrics passed this test all

constraints are verified. For example, these can be thresholds derived from previous

testing or DB2 parameters.

The Table 4.3.2 contains the two semi-deterministic metrics of the workload

dashboard, the description of the metrics and the constraints set by the DB2

database system.

44

Metric Description Constraints

DB2390

Number of registered

coordinator agents and

subagents in the database

manager instance

defined by parameter

“maxagents”

coord_agents_top
Maximum Number of

concurrent coordinator agents

defined by parameter

“max_coordagents”

Table 4.3.2: Semi-Deterministic Metrics

4.3.3 Semantic Validation Process of Non-Deterministic Metrics

In the first step of the Semantic Validation of non-deterministic metrics it is checked if

the category determined in the test run is non-deterministic or semi-deterministic. If

the metric is categorized deterministic, this may indicate an error and further

investigation has to be done. The next step is to verify the constraints for every

metric. Equal to the other metrics categories these constraints can be affiliated to

DB2 limitations in most of the cases.

The constraints checked in step two are vague. For example, within a range of 250

to 2 147 483 647 many wrong values or patterns can occur. This means that for non-

deterministic metrics further validation has to be done to prove the correctness. It is

not sufficient that the values of the metric are within the range allowed by DB2 and

that the metric is categorized as non-deterministic.

In the next chapter, the approaches introduced in Chapter 3 are revisited. It is

checked whether they fit to prove the semantic correctness of non-deterministic

metrics. Further, it is evaluated whether they are applicable under the given

circumstances.

45

5 Validation Approach for Non-Deterministic Metrics

In the first part of this chapter the approaches of Chapter 3 are revisited. They are

examined considering the criteria for the Semantic Validation Framework. It is

checked which approaches are suitable for semantic validation in case of non-

deterministic OPM metrics. The second part of the chapter describes the chosen

solution in more detail. In the third part the chosen solution is transferred to OPM.

5.1 Approaches – Revisited

In this section approaches and techniques introduced in Chapter 3 are examined to

evaluate if they would be suitable to be implemented in the Semantic Validation

Framework. The result of the evaluation for each approach depends on several

criteria.

• Realization: The approach has to be realizable using the available test

environment. It has to be possible to build a prototype in the given timeframe.

• Automation: The approach should not require user interaction after starting the

test.

• Maintenance: The approach has to be maintainable in an easy way. This

includes adding new metrics and discarding unused metrics.

• Robustness / Solidity: The approach should be robust against changes made in

OPM during development. This includes changes in the Repository Server, the

Performance Database and the function accessing the data.

The next sections describe how far the approaches meet these requirements.

5.1.1 Static Analysis – Revisited

In Chapter 3 two different techniques of static analysis are introduced, model

checking and theorem proving. In model checking a model of the system under test

46

is built. The specification has to be formalized into properties, which the model has to

fulfill. A model checker verifies whether the model conforms to its specification.

 Model checking validates a very large set of possible execution paths of the

software and it gives a counter example for every defect found. These are two great

benefits of model checking. One of the disadvantages is the state space explosion

problem.

Choosing model checking for the Semantic Validation Framework provides large

coverage and automatic defect localization. Automation of the testing is possible.

However, modeling OPM to a formal description is not practicable in a short time

period. The model has to be built from scratch, examining hundreds of thousands of

lines of code.

For every new metric or old metric, which is not used anymore, the model and the

properties have to be adjusted. The same is true for changes in other parts of OPM.

This leads to a complicated and time consuming adjustment process, every time

changes are performed. These adjustments should be prevented in the Semantic

Validation Framework (Section 2.2.1).

Theorem proving is a method based on mathematics to check if functions are

corresponding to their specification. It is tested if certain preconditions and

postconditions are fulfilled. During this test the software is not executed but axioms

and inference rules according to the behavior of the software are used to derive

results.

Automation is possible in case of theorem proving. The implementation has to

choose the fitting rules or axioms and use them on detected preconditions. If the

results are the corresponding postconditions the function is correct. The handling of

new and old metrics is practicable. For new metrics conditions to check have to be

found. For old metrics the testing is not done anymore.

Changes in OPM influence theorem proving. The inference rules have to be

checked if they are still valid and maybe new rules have to be developed. Similar to

model checking this means that for every new version of OPM the framework has to

be validated and adjusted again.

To use theorem proving proper pre- and postconditions have to be figured out.

There is an infinite number of possible inputs and parameters for OPM. For example,

47

every different workload combined with database settings, as the size of sort heaps.

Everything has to be considered when evolving these conditions. In this case,

achieving exact pairs of pre- and postconditions is not practicable. These

shortcomings mean that theorem proving is not suitable for this project.

Both static analysis techniques suffer from the large effort they cause if changes in

the software under test are done. Even if using these techniques makes the results

more meaningful, they are not fitting in this case.

5.1.2 Dynamic Analysis – revisited

Runtime assertion checking and testing are described in Chapter 3 as two different

approaches of dynamic analysis methods. In runtime assertion checking

requirements of system states are checked during runtime. These requirements can

be Boolean expressions or constraints. A function is correct if all assertions are

fulfilled. It is possible to implement runtime assertion checking directly in the code,

which makes it easier to detect the location of errors.

It is possible to automate runtime assertion checking. During execution of the

software it is checked automatically if the actual state satisfies the given assertions.

The results are messages which assertions are fulfilled and which are violated.

Related to both approaches of static analysis the realization is very time

consuming. The specification and the code have to be examined to derive valid

assertions. Further, for every change in the code it has to be checked if assertions

have been affected. For adding new metrics the examination has to be done again.

This leads to a large effort in maintaining the framework. These are characteristics,

which are not suitable for the Semantic Validation Framework.

The second approach is testing. Testing is the execution of the software under test

under certain circumstances. These circumstances are called test cases. To verify if

the software is implemented correctly an oracle has to exist. An oracle is a method to

decide whether a test case succeeded or not. Testing methods differ by the way they

deal with the code, how test cases are chosen and what foreknowledge of the output

is available.

48

It is possible to realize testing when considering the available environment. Test

cases consist of workload and the environment of the monitored database and OPM.

The results can be processed further with the test environment. Logics which store

this data in result files are implemented already in the test environment. To evaluate

these results, functions which check if correctness criteria are fulfilled have to be

developed.

Once, the test is started the test environment does not require user interaction

anymore. The handling of new metrics can be done more easily than with static

methods or runtime assertion checking. Corresponding workload and correctness

criteria have to be developed, without having to examine the code of OPM.

The same is true for changes in other parts of OPM. Using black box testing the

code itself is not taken into account. This means that no adjustments have to be

done if the way metrics are computed has changed for example. The results of the

tests are not affected because they consider the input and the output. These

properties of testing allow to maintain the Semantic Validation Framework with

reasonable effort.

Further approaches, for example the S-Match algorithm [26], which compute

semantic relations are not suitable for the framework. They are able to check if two

inputs correspond semantically to each other but they cannot test the correctness of

the inputs.

Table 5.1.1 contains the summary of the revision of the approaches. For every

approach it is marked with “+” that it meets the criterion or with “-“ that it does not

meet the criterion.

49

Approach Realization Automation Maintenance
Robustness /

Solidity

Model Checking - + - -

Theorem Proving - + + -

Runtime

Assertion

Checking

- + - -

Testing + + + +

Table 5.1.1: Summary of the Evaluation of the Validation Approaches

Automation is possible for every approach but only theorem proving and testing

are maintainable with affordable effort. The requirements for the Semantic Validation

Framework and the feasibility of the approaches mentioned above lead to the

conclusion that testing is the most suitable approach. This approach is the only one

which is realizable and robust in the case of the given circumstances. The next

section contains detailed information about the testing approaches used for the

framework.

5.2 Chosen Solution – Testing

The complexity of correctness criteria for testing ranges from simple for deterministic

metrics to very complicated for non-deterministic metrics. For metrics of the category

deterministic few more knowledge is needed. For example the number of processed

statements cannot be negative or a percentage value has to be in the range between

0 and 100. The appropriate function is considered to be correct if the value of the

metric fulfills these criteria and is the same for each iteration of the framework. This

can be checked in an easy way by comparing the values.

Metrics of the category semi-deterministic are handled in a similar way. The

difference between the two validation processes is that these metrics do not have the

same value for each iteration. The values are located within a certain deviation of the

average value. This correctness criterion can be validated by computing the average

and comparing it with every value.

50

For non-deterministic metrics none of these correctness criteria is suitable. This

means that more complex test cases and criteria for correctness have to be

developed. For these metrics of OPM a variation of statistical testing is used. In the

following sections the basic theory is explained because the simple approach of

statistical testing described in Chapter 3 has to be adapted to fit for OPM.

5.2.1 Statistical Hypothesis Testing

The problem of testing randomized software (in this case non-deterministic metrics)

is that for the same input different output is produced. Thus testing if the values for a

specific input are the same or are within a certain range for each iteration is not

possible. However, an oracle to test if an output is correct for the given input is

needed to draw conclusions about the correctness of the software.

Statistical hypothesis testing is based on checking the distribution of the output

values. There are different methods to verify the output depending on the

environment.

• If theoretical output values are known the expected distribution can be computed

and the real output is checked against this distribution.

• If there is a reference implementation available it is possible to verify against the

corresponding output of this reference.

• If neither theoretical values nor references exist, an expected distribution can be

derived based on the central limit theorem. It implies that if stochastic variables

are independent, the variance of their distribution is finite, and the sample size is

high enough, the centered and scaled mean is normally distributed. In this case,

two more parameters are needed to center and scale the mean - the true mean

and the true standard deviation [27]. These parameters are not known in most

cases and have to be estimated.

Statistical hypothesis testing provides a technique to verify randomized software to

a certain probability. It is not possible to make sure that there are no more defects. It

51

may happen that correct values are recognized as wrong and wrong values as

correct because the correctness criteria are not exact [22] [23].

5.2.2 Metamorphic Testing

First, metamorphic testing is a technique to build so called “follow-up” test cases

based on previous successful test cases. A test case is considered to be successful

if the output is correct. In some cases this criterion can be softened if the follow-up

test cases can prove the correctness of the output of the successful test case. Here

successful means that at least an output is available. The idea is that these follow-up

test cases are related to the successful ones. This leads to a relation between the

results and this relation can be checked without having an exact oracle [23].

An extension of metamorphic testing is to use the meaning of the functions under

test to find correctness criteria. From the meaning characteristics are deduced which

are necessary for the correctness of the functions. Considering these characteristics,

related test cases can be derived and their results can be compared [30].

A very simple example for the extension of metamorphic testing can be seen in

Figure 5.2.1. A function computing the product of two numbers is tested. The first

test case T1 consists of the numbers 2 and 3 and the result is 6. At this point of time

the correctness of the result is unknown. The second test case T2 is the result of T1

and 1/3 which is the inverse of the second number of T1. The expected result is the

first number of the first test case 2.

Figure 5.2.1: Example for Metamorphic Testing

52

Knowing about the mathematical relations between these three numbers does not

require to know that 6 is the correct result of the first test case. In this example,

metamorphic testing allows to draw conclusions about the correctness of functions at

least for the given test cases. To gain more confidence about the correctness more

test cases and the corresponding follow-up test cases have to be verified.

In the same way as other testing methods, metamorphic testing is only able to

detect errors but not able to prove the absence of errors. Requirement for

metamorphic testing is the knowledge of metamorphic properties of the tested

software. In the example in Figure 5.2.1 the mathematical relation is the

metamorphic property. In case of OPM, the metamorphic properties are the different

behaviors of metrics when changing workload. These properties can be derived from

the specification of the metrics. To derive meaningful properties expert knowledge

about DB2 is essential.

5.2.3 Statistical Metamorphic Testing

Applying statistical hypothesis tests requires at least some knowledge about the

distribution of the output or a reference to check against. This reference and

knowledge are often not available, especially in the case of OPM. Using

metamorphic testing leads to similar test cases and coverage is a problem. For OPM

it is hard to find suitable metamorphic properties to derive follow-up test cases.

A solution for these shortcomings is statistical metamorphic testing, a combination

of the two approaches mentioned above [31]. In statistical metamorphic testing the

software is executed several times with different input parameters. This input is

correlated among each other. For example, the input can vary over the number of

executed statements. This means, that the different workloads distinguish in the

number of statements which are executed during the runtime. The idea is that if

there is a relation between the input, there should be a relation between the output.

The output relation can be derived from the relation of the input. This makes it

possible to verify the different outputs by checking if they fulfill the derived relation. In

other words, this allows to perform statistical hypothesis tests because a theoretical

distribution based on the input is available.

53

The whole process of statistical metamorphic testing is as follows:

1. A suitable relation has to be found and corresponding input has to be created.

2. The software has to be executed using the input of step one.

3. For the output generated in step two statistical hypothesis tests have to be

performed to check if the relation is fulfilled.

To gain more confidence and to minimize the influence of the environment, step

two and three are performed several times. The software is considered to be correct

if it passes the majority of the statistical hypothesis tests in step three.

For statistical metamorphic testing knowledge about the meaning of the tested

functions should be available to be able to find suitable input. Besides that, there are

no more requirements. The correctness criteria are deduced from the meaning of the

function and the different inputs.

Transferred to OPM the input are the SQL statements executed by the workload

tool. The execution of OPM is done by the test environment. The number of

executions can be defined by the user. Proper relations of the metrics are deduced

from the semantic of each metric and the used workload. Statistical hypothesis tests

check the values of metrics whether they fulfill the deduced relations.

This approach allows to build a reference for faster and easier tests. Once a metric

is verified, the produced output or derived patterns can be used to check newer

versions. Under the same preconditions, including environment and workload, the

metric should have nearly the same output values as the reference.

Considering influences, for example, different load factor of the server, and the

random character of the metrics it is impossible to receive exactly the same values.

In case of reference the correctness criterion is not equality. A metric can be

considered as correct if the majority of the output values is within a determined

maximum deviation of the reference.

In Section 5.3 statistical metamorphic testing is transferred to OPM. It is described

how correctness criteria are derived, considering the workload and the values of the

metrics.

54

5.3 Statistical Metamorphic Testing in Case of OPM

To be able to draw conclusions about the semantic correctness of metrics statistical

metamorphic testing has to be adapted to OPM. For OPM, the process of semantic

validation of the non-deterministic metrics includes the following steps:

1. Workload is created and correctness criteria are derived concerning the

workload, the output and the semantic of the metrics.

2. OPM is executed using the input / workload of step one.

3. For the output generated in step two, statistical hypothesis tests have to be

performed to check if the correctness criteria are fulfilled.

The first step for statistical metamorphic testing is creating workload. This

workload has to be customizable to allow the user to create different test runs using

different but related workload. The related workload is used to derive relations

between the results themselves and between the workload and the results. These

relations serve as correctness criteria for the statistical hypothesis tests. A theoretical

example of possible relations between the workload and the resulting values can be

seen in Figure 5.3.1.

Figure 5.3.1: Related Workload – Related Results

55

The “OPM Environment” consists of OPM, DB2 and the monitored database.

During the first test run workload x is executed on the monitored database. The

result of this run is z. In the second run workload yx is performed on the database.

Workload yx means that there has been a modification y to the first run. Accordingly,

2yx means that the modification is done twice. This modification can include changes

in the amount of the workload or changes in the performed SQL statements. Further

it is possible to make modifications in the workload preparation phase, for example

changing the size of tables. Another option is to modify DB2 parameters.

The resulting values of the second test run are expected to be related to the

results of the first run. This is illustrated by the v in “Result vz”. This expectation is

based on the fact that both workloads are related and this should lead to related

results.

For each test run, workload is built by making changes to the workload of another

run. Every workload can be built from every other workload by modifying certain

parameters. This leads to the conclusion that every result can be computed by using

any other result and modifying it with the right parameters. For example, result 2vz

can be computed by doing the modification which has been done to derive result vz

from result z twice.

To be able to draw conclusions about the correct behavior of the output values, a

validation of the derived relations is done. For this validation two things have to be

considered. The first is the semantics of the tested metric. The second is the relation

between the several inputs.

Knowing about the meaning of the metrics, it is possible to predict the behavior of

its values for different workload. This prediction is limited. With the knowledge of the

meaning it is only possible to make assumption about how the values will change.

Additionally, knowing about the relation between the workloads, predictions can be

made more precisely. This means that it is possible to make assumptions about the

proportion the values will change.

The following example is based on a metric which is counting the number of

processed SQL statements. Increasing the number of statements in the workload

means a higher value for this metric. This is the assertion which can be drawn when

knowing the semantics. If the quantity x of the number of statements the workload

56

has been increased is known, drawing more detailed conclusions about the behavior

of this metric is possible. Its value increases at least for the quantity x. Remark that

the influences of the environment do not allow to predict the exact results computed

by OPM.

A validated relation is required to predict results for every input which are correct to

a certain degree. This is a precondition for step three where the results generated by

running the tests on OPM are examined. It is checked if the derived correctness

criteria of the metrics are true for the output values.

Step two is to run tests with the workload created in the previous step. For one

complete validation the tests are performed on the same environment. The

environment influences the results of OPM. The database system DB2 and OPM

itself are executing SQL statements and are making adaptations and improvements

during the test runs. These events are monitored by OPM in many cases and flow in

the result values. Performing each test run under the same conditions makes it

easier to predict the behavior of the environment. This allows to filter out the actions

of DB2 and OPM to a certain degree.

Filtering out all environmental influences is not possible. All non-deterministic

metrics of the workload dashboard are TIME_SERIES. This means that for every

minute OPM collects one value. Since, the actions of the environment are not the

same for each one minute time interval these values contain different amount of

“environmental workload”.

In step three the results generated in step two are examined. It is checked if these

results fulfill the criteria developed in step one. The setup for the semantic validation

process is shown in Figure 5.3.2.

57

Figure 5.3.2: Setup for Semantic Validation

Several tests with related workload are executed on the monitored database. OPM

and DB2 influence the created data, which is collected and stored by OPM. The test

environment retrieves this data and creates result files to save it. These files are

evaluated using the derived and validated relations between the results themselves

and between the results and the workload. Each test in Figure 5.3.2 ends in one

result. For each result statistical hypothesis tests are performed. A metric is

considered to be correct if it passes the majority of these tests. The result of this

process is a statement about the correctness for each tested metric.

In Chapter 6 the theory of statistical metamorphic testing of the non-deterministic

metrics is transferred to the praxis. For two metrics the whole validation process is

performed. The derived correctness criteria are implemented in a prototype, which is

able to validate these metrics in future testing.

58

6 Prototype for Statistical Metamorphic Testing

The semantic validation of the OPM metrics differs depending on the metric

category. For non-deterministic metrics statistical metamorphic testing is used. The

goal of this chapter is to introduce a prototype, which validates two performance

metrics of the workload dashboard. Before the prototype can be implemented in the

test environment, correctness criteria for both metrics have to be derived and

validated. This is done in Section 6.1. Section 6.2 contains the prototype.

6.1 Statistical Metamorphic Testing transferred to the Praxis

This section explains the procedure of semantic validation of OPM based on two

metrics. Steps one to three of Section 5.3 are performed: workload is created,

correctness criteria are derived and validated and statistical hypothesis tests are

done. The goal is to develop criteria, which are always valid if the metric is

semantically correct.

The metrics for which the semantic validation process is described are the metric

DBSE427 and the metric sort overflows. The metric DBSE427 is the total number of

processed sorts. The metric sort overflows is providing the ratio of sorts which

caused overflows to the total number of sorts. This metric is a percentage value.

Both metrics are of the type “TIME_SERIES”, which means that they have values for

every one minute time interval.

DBSE427 is chosen because it is possible to predict the number of sorts

performed by the used workload scenario very exactly. Further, the behavior of

DBSE427 influences many metrics of the workload dashboard. This means that if

this metric is correct, the validation of the influenced metrics can be done on a strong

basis. One of these metrics is sort overflows. Sort overflows is validated using

DBSE427 after it is proved that its behavior is semantically correct.

The section is divided in three parts. In part one, the parameters which influence

the metrics, the used workload and the general testing process are described. Parts

two and three explain the details for each metric.

59

6.1.1 Used Workload and Testing Process for both Metrics

To build proper workload, which creates data for both metrics, it is necessary to know

how to manipulate their values. DBSE427 is only influenced by the number of sorts

executed per minute. The metric sort overflows depends on the total number of

sorts, sorts which causes overflows, and indirectly on the size of the sort heap. The

size of the sort heap determines the memory which is available for each sort. This

means, there are two possibilities for the sorts. Either the provided memory is

enough for the sort which does not cause overflows or the memory is too small and

the same sort causes an overflow every time.

To influence the behavior of these two metrics the number of sorts per minute can

be varied. Further, the size of the sorts can be modified to have different numbers of

sorts which cause overflows and which do not cause overflows. This includes the

size of the tables from which the data for the sorts is selected. If there is less data to

sort less memory is needed. Changing the DB2 parameter sortheap in the monitored

database configuration is another possibility to influence sort overflows.

The execution time for one test run is between 12 and 15 hours. For each

modification several test runs are performed to reduce the influence of outliers. This

means, for this thesis there is not enough time to run tests for all possible

parameters. For the validating DBSE427 the number of sorts per minute is modified.

For sort overflows, additionally, the size of the parameter sortheap is changed and

different kinds of sorts are used.

To be able to draw assertions about the correctness of DBSE427 as exact as

possible the used workload scenario semantic_sort_ms creates a predictable

number of sorts per minute. This leads to the possibility to make assumptions about

the behavior of other metrics influenced by the number of sorts based on very exact

values. To allow the user to adjust the workload, the scenario provides two integer

parameters as scenario arguments to modify the number of sorts per minute. These

arguments can be seen in Figure 6.1.1.

60

Figure 6.1.1: semantic_sort_ms Arguments

The first one is the number of loops. The loop contains the SQL statements which

select data from the monitored database and sort this data (see Figure 6.1.2). The

second parameter is the waiting time which allows the user to adjust the runtime of

one loop. This is needed to control how many sorts are performed during a one

minute time interval. To validate sort overflows the scenario is adapted which is

explained in Section 6.1.3.

Figure 6.1.2: Main Loop of the semantic_sort_ms Performing the Sorts

To be able to compare different output it is necessary to change the workload

activity per minute because both metrics are TIME_SERIES. This is not possible by

modifying only one parameter.

<loop cycles="int:use:scenarg:loops">

 <echo message="int:use:var:loop_count"/>

<!-- performing joins -->

<sql>

<string value="SELECT h1, h11 from table1 INNER JOIN table2

ON table1.h11 = table2.h21 ORDER BY h11, h1 ASC"/>

</sql>

<sql>

<string value="SELECT h2, h21 from table2 INNER JOIN table1

ON table2.h21 = table1.h11 ORDER BY h21, h2 ASC"/>

</sql>

<waittime millis="int:use:scenarg:loopwaittime"/>

<setvar key="loop_count" value="int:plus:1"/>

</loop>

<requiredargs>

<arg default="350" description="Number of loops" key="loops"

type="int"/>

<arg default="2500" description="Waiting time in each loop"

key="loopwaittime" type="int"/>

</requiredargs>

61

For example, if the number of loops is increased but the waiting time is retained

the overall runtime of the workload is increased, too. The number of sorts per minute

stays the same because the runtime of one loop does not change. Only a certain

number of loops can be processed each minute based on the runtime of one loop.

Every test run consists of 30 iterations using the scenario semantic_sort_ms. The

runtime of this scenario is about 15 minutes. After the scenario is finished, the test

environment captures the data for the last ten minutes. In this case the data of the

preparation phase is not collected. There is enough time for the warm-up phase

which is not included in the last ten minutes. This process produces result files with

300 values for both metrics, ten for each iteration.

It is necessary to run a sufficient number of tests to be able to draw correct

assertions about the behavior of metrics. This number differs depending on the

metric and has to be determined for each case. If the number of test runs is too small

the possibility exists that the behavior is interpreted wrongly or patterns such as

asymptotic properties or bounds are missed.

In the following, every workload used for test runs is based on the “basic

workload”. This basic workload has 350 loops and 2500ms waiting time. Related

workload is computed by using these parameters as a basis. For example, “50%

workload” means 175 loops and 5000ms waiting time. This allows to compute a

relation between each workload, which is essential to conclude to the behavior of the

output.

The DB2 parameter “sortheap” is set to its minimum 16. This means there is

memory of 64kb (16 * 4kb) available for every sort. Using the basic workload, 24

loops are performed during one minute. In each loop two SELECT statements are

executed. Each statement triggers two sorts. The first one during the inner join,

because DB2 is using a merge scan join, which requires sorted input [32]. The

second sort is done to sort the selected values. This results in approximately 96 sorts

per minute for the basic workload. The sort heap size is not sufficient for the sorts.

Each sort of the scenario is causing an overflow.

This allows the user to determine the total number of sorts which are performed

per minute. The knowledge about this number is used to validate the correctness of

both metrics. DBSE427 can be checked directly. For sort overflows proper

62

correctness criteria are developed regarding DBSE427 and further parameters which

have influence on its behavior.

To simplify the validation, the average values of the 300 values for each run are

computed and used for further investigation. This is possible because the average

value is a sufficient approximation of the real behavior of the metric. To prove this

assumption a frequency analysis is done for both metrics. The deviation in percent of

the average value is computed for a sample size. Based on these values it is

counted how many values are within a certain range around the average.

For the metric DBSE427 about 70% of all values are within 4% and 95% are within

8% deviation of the average value. Only 4% deviate for more than 10%. For sort

overflows 77% of all values are within a 4% deviation of the average value. Around

19% deviate between 10% and 14%. The results of the frequency analysis reveal

that the average value is proper to use. A high majority of the values are within 4%

deviation.

In the next section, the metric DBSE427 is validated. Correctness criteria are

derived and it is checked whether they are fulfilled.

6.1.2 Semantic Validation of DBSE427

To check the correctness of the metric DBSE427, the number of sorts performed by

the workload scenario every minute is computed. As described above, the value for

the basic workload should be around 96. This does not include sorts done by OPM.

DBSE427 counts all sorts on the monitored database. The observed value is 20

sorts higher than it should be for the workload scenario.

To find out if this is caused by OPM another workload scenario just_wait_ms is

executed and the results are examined. The scenario runs for 15 minutes and does

not execute statements. The results of these test runs are the activity of OPM when

there is no workload running on the monitored database. This analysis reveals that

OPM is doing around 20 sorts per minute.

Owing to exterior influence of DB2, OPM, and the environment including the server

among others, it is impossible to execute exactly the same number of sorts each

minute. The expected value for DBSE427 is the number of sorts of the workload

63

scenario plus the 20 sorts of OPM. The real values differ most often between 0 and 3

sorts of this expected value up to 200% workload.

This inaccuracy is most probably caused by the environment. For example, the

runtime of the loops can deviate by some milliseconds. Added up for all loops, this

results in some seconds postponement of the workload in every minute. This means

that the workload does change considering a one minute time interval.

For a higher intensity of workload per minute the resulting values for DBSE427 do

not fit. They are much smaller than expected. In these regions the execution time of

the statements, which contain the sorts has an increasing impact on the overall

runtime. For the basic workload, the overall statement execution time is about 10

seconds. For 400% workload it is 42 seconds and for 800% 84 seconds. The high

intensity workloads execute much more statements per minute. The statement

execution time, which also means the sort time, has a much higher impact on the

overall runtime than for the low intensity workloads.

This means that for these workloads fewer statements are performed per minute

as supposed to, which results in fewer sorts as predicted. This fact has to be

considered when adjusting the waiting time. In the waiting time the longer overall

execution time has to flow in.

To correct these values for higher amount of workload, reruns for the tests are

done. The additional runtime is split to every loop and subtracted from the waiting

time. For the workload with a lower number of performed statements it is not

necessary to redo the tests because the overall impact of the statement execution

time is small.

The new results are more exact but for 400% and 800% the values differ for more

than 8 of the expectation. The main reason is the execution time of the sorts. This

time changes in every test run. The 800% workload performs 5600 loops and in this

case even a few milliseconds difference per loop have a high impact on the workload

per minute. This non-deterministic behavior makes it impossible to compute the

correct waiting time and this results in values which deviate from the expected ones.

These deliberations lead to the conclusion that there is an upper bound for the

number of sorts. For example, if four sorts need 30ms time to be finished, it is not

64

possible to process more than 8000 sorts (2000 loops) per minute. This bound does

depend on the system and on the sorts but there has always to be an upper bound.

The expected behavior of DBSE427 is linear until the upper bound is reached.

Increasing the number of sorts in the workload scenario should increase the number

of sorts computed by OPM for the same amount. As soon as the upper bound is

reached the number of sorts should remain constant and changes in the scenario

which aim to execute more sorts per minute do not have effects.

In Figure 6.1.3 the results of the test runs up to 800% workload are pictured in a

diagram. The x-axis is the workload in percent and the y-axis is the number of sorts

per minute. The uncorrected values are black, the corrected values are green, and

the expected values are red.

Figure 6.1.3: Uncorrected, Corrected, and Expected Values for DBSE427

For the low intensity workloads the values of the tests are very close to the

expected values. In the higher regions there is a gap between the expected and real

values. As mentioned above, this can be explained by the changing sort runtime. To

close this gap it would be necessary to know the exact execution time of a sort

65

before it is performed and adjust the waiting time according to this. This is not

practicable.

It can be seen that the results meet the expectation. There are inaccuracies for

tests with 75% and 80% workload. These values are slightly higher than expected.

Reruns of these tests showed that the values pictured in the diagram are outliers

probably caused by environmental impact.

During tests to find the upper bound for the number of sorts per minute it became

apparent that the runtime is also depending on the DB2 instance. The used

instances are located on the same server and are the same DB2 version. The

execution time for one loop differs between the instances partly for more than 25ms.

Taking this into account the tests are done to prove that there is an upper bound but

this upper bound is not exactly determinable.

Workload is executed with 35000 loops and 40000 loops and zero milliseconds

waiting time. On the used instance one loop lasts about 30ms. Each minute 2000

loops which means 8000 sorts should be performed. For 35000 loops OPM monitors

about 7600 sorts. This value can be explained by looking at the loop runtime which

differs slightly. This runtime can be seen in the log files of the workload tool. Some

loops need 31ms or 32ms, which leads to the awareness that even for one instance

the upper bound is not exactly determinable. Figure 6.1.4 shows the extended linear

function for the number of sorts. The two green data points are the actual values for

35000 loops and 40000 loops.

66

Figure 6.1.4: Upper Bound for DBSE427

The result for 40000 loops is the same as for 35000 loops. OPM monitors again

around 7600 sorts per minute. The overall runtime is longer for this workload but the

values of the metric remain the same.

The overall result of the semantic validation of the metric DBSE427 is that this

metric is considered to be implemented correctly in the tested OPM version. The

expected linear behavior can be seen in the diagram and the predicted upper bound

exists. Still, the actual values deviate from the expected values. This can be seen in

Table 6.1.1. The large majority of the deviations are within 0% and 5%. Only one

value exceeds the 5%.

This means, that although the metric DBSE427 is considered to be implemented

correctly the real values deviate from the expected values. Transferred to future

validation of new OPM versions, this results in the insight that for correct

implementations of DBSE427 there is an allowed deviation of 5%. When validating

DBSE427, this deviation has to be satisfied by the majority of the computed values to

draw the assumption that the metric is implemented correctly.

67

Workload in Percent
Expected Value for

DBSE427

Deviation of the

Expected Value in %

800 786.68 2.31

400 404.00 1.97

250 260.00 0.25

200 212.00 0.00

150 164.06 2.27

100 116.00 1.43

90 105.71 1.18

80 97.42 4.34

75 95.00 1.65

65 82.34 3.30

60 77.14 3.85

50 68.00 2.65

40 58.40 3.66

35 48.92 5.29

25 44.00 3.61

10 29.60 1.32

5 24.90 4.98

Table 6.1.1: Expected Values and Deviation of DBSE427

In the very low and very high regions of the workload it can happen that this 5% is

exceeded although the metric is correct. This is caused by the different impact of the

runtime of the sorts. Exceeding of the 5% does not always mean that a defect

occurred. Especially, for low exceeding it has to be checked if the workload causes

this deviation.

This deviation is used as a reference point to validate DBSE427 in future testing.

Depending on the system on which the tests are performed this deviation might have

to be adjusted. For example, if the difference between the runtime of sorts is very

large.

In the next section the metric sort overflows is validated. Correctness criteria are

derived and tests to check whether they are fulfilled are performed.

68

6.1.3 Semantic Validation of Sort Overflows

The ratio of sort overflows depends on several parameters. It is influenced by the

number of total sorts, by the number of sorts causing overflows and this number

depends on the size of the sort heap.

The correct implementation of DBSE427 is the basis for the semantic validation of

sort overflows. Further, different preferences of all parameters are tested and the

results are used to describe the correct behavior.

The same test runs for validating DBSE427 are used for the first test of sort

overflows. Every sort of the workload scenario is causing an overflow. There is

enough memory available for the sorts of OPM. Otherwise the percent value of sort

overflows would be 100.

The expected behavior for this test is a nearly linear growth for the lower amount of

workload. If a workload of low amount is increased the enhancement of the total

number of sorts is big compared to the overall number of sorts. Enhancing a higher

amount of workload does not have the same impact to the overall sorts. This

expectation can be explained with the following example. The total number of sorts

of the 10% workload are increased by about 48% for the 25% workload. For the 10%

workload 29.60 sorts are expected, for the 25% workload 44.00 sorts are expected.

This is an increase of 14.4 sorts, which are 48% of 29.60 sorts. Changing the 75%

workload to the 90% workload is an enhancement of the total number of sorts by

about 12%.

This fact leads to the assumption that increasing the workload more and more the

values should follow an asymptotic function. They should approximate 100% but

never reach it because there are sorts of OPM which do not cause overflows. In

Figure 6.1.5 the black line pictures the result values. The red line is the expected

asymptotic function.

69

Figure 6.1.5: Results of Sort Overflows

The graph reflects the expected behavior. For low numbers of sorts there is a

nearly linear growth and for increasing numbers of sorts the function approaches

100. The lowest number of possible sorts is 20. These are performed by OPM itself.

For 20 sorts there would be no overflows because the size of the sort heap is

sufficient. The expected function can be computed exactly.

The metric sort overflows is the ratio of sorts causing overflows to the total number

of sorts. In this case the total number of sorts is x and the number of sorts causing

overflows is x-20 because the 20 sorts executed by OPM do not cause overflows.

The ratio is ((x - 20) / x) and because the value is in percent the results have to be

multiplied by 100. This leads to the exact function f(x) = ((x – 20) / x) * 100.

This correctness criterion is globally valid and not depending on a specific

workload. If different workloads and different environments are used, it has to be

checked if OPM still executes 20 sorts. There is the possibility that this value

changes if the data OPM is monitoring increases. In this case, the expected function

has to be adapted. This does not influence the correctness criterion in general.

Increasing the sorts causing overflows always results in an asymptotic behavior if the

number of sorts which do not cause overflows remains the same.

70

The next criterion which is proved is the behavior of sort overflows when increasing

the number of sorts which do not cause overflows. The workload scenario for the

basic workload of the earlier tests is modified. In the preparation phase of the

scenario a new table is created including two rows and a new SQL statement is

added to the main loop. It performs one simple sort, which does not cause an

overflow. This statement is surrounded by a parameterized loop to be able to change

the count of executions.

The expected values follow a function which is the opposite of the one pictured in

Figure 6.1.5. It starts with a high ratio of overflows and approaches to the x-axis for

incremented numbers of sorts. For a low number of total sorts the proportion of big

sorts causing overflows is high. During enhancement of the number of sorts, which

do not need too much memory this proportion becomes less. The values will never

reach the x-axis because there are always sorts causing overflows. In Figure 6.1.6,

the graph of the result values is shown. The red line is the expected asymptotic

function.

Figure 6.1.6: Sort Overflows when increasing Sorts with no Overflows

71

The computed values follow the expected behavior. The asymptote is 0 which will

never be reached because the used workload scenario performs sorts which cause

overflows. For low values of DBSE427 the ratio of overflows declines nearly linear.

The slope is depending on the sorts which need more memory than the sort heap

offers. These sorts are needed otherwise there would be no sort overflows and the

metric returns 0 for all values of DBSE427. This means that this correctness criterion

can only be used if there are sorts causing overflows. In this case, the result values

always follow an asymptotic function, which slope is depending on the workload

scenario.

For every workload scenario, which is used for this test, the expected function can

be computed exactly. The argumentation is the same as for the function computed in

the previous section. The difference is that the number of sorts causing overflows is

constant and the number of sorts which do not cause overflows is changed. This

lead to the function f(x) = (a/x)*100 where a is the number of sorts causing overflows.

In Figure 6.1.5 a equals 96 because the basic workload scenario is used.

For both asymptotic behaviors the allowed deviation of the expected value for

future validation is set to 7%. The argumentation is the same as for the 5% deviation

of DBSE427. The metric sort overflows is considered to be implemented correctly

because of the results of previous tests. The expected values and the deviation of

the actual values of the deviation are computed and shown in Table 6.1.2.

The large majority of the values deviates between 0% and 7%. There are only

three values which exceed the range of 7%. For future validation this means, that if

the metric sort overflows is correctly implemented, the majority of the values is

deviating up to 7% of the expected value. Otherwise the assumption has to be drawn

that the metric is incorrect.

72

Workload in Percent
Expected Values of Sort

Overflows

Deviation of the

Expected Value in %

800 97.40 0.00

400 94.95 0.73

250 92.29 1.31

200 90.56 2.69

150 87.53 2.47

100 83.00 3.23

90 81.29 3.65

80 80.32 6.16

75 79.29 4.06

65 74.88 1.44

60 73.03 1.59

50 69.79 2.03

40 64.45 2.36

35 61.17 9.73

25 52.84 4.09

10 31.53 9.17

5 16.60 16.71

Table 6.1.2: Expected Values and Deviation of Sort Overflows

The third correctness criterion for sort overflows deals with the sort heap size. The

size of the sort heap declares the size of the memory useable for each sort. If this

size is too small an overflow is caused. The expected value distribution is illustrated

in Figure 6.1.7.

73

Figure 6.1.7: Expected Behavior of Sort Overflows Changing Sort Heap Size

The expected behavior is a constant sort overflow value until a certain size of the

sort heap is reached (in this designed example 200). Before this size the memory is

too small for the executed sorts. 100% overflows are not reached because of the

sorts executed by OPM itself. As soon as the sort heap exceeds this size it is always

big enough and the sorts do not cause overflows. The percent of overflows is

expected to drop to 0.

The real behavior of the sort overflow values are pictured in the graph of Figure

6.1.8. It can be seen that the values follow the expected distribution for most sizes of

the sort heap. In the part marked red there are some values which behave not as

predicted. The overflows in this part increase to about 20% although the sort heap

size is big enough to provide sufficient memory.

74

Figure 6.1.8: Real Behavior of Sort Overflows changing Sort Heap Size

At the moment there is no real explanation for this behavior. It is most probably

caused by DB2 because for this size of the sort heap the workload does not execute

sorts which cause overflows. The sorts of OPM do not cause overflows either. To be

able to use this validation test the behavior shown in Figure 6.2.8 has to be

explainable.

For this correctness criterion there two allowed deviations of the result values of

the expected values. The first is set to 7% for the sizes of the sort heap which cause

overflows. In this case, the values of the metric behave in the same way as for the

correctness criteria before. The second deviation is 0% for the sizes of the sort heap

when no overflows are caused. In this value range the behavior of the metric sort

overflows is deterministic. This means that a behavior as seen in Figure 6.1.7 needs

to be investigated. In Table 6.1.3 the correctness criteria for the metrics DBSE427

and sort overflows when using statistical metamorphic testing are listed.

75

 Metric Workload SMT Criteria

DBSE427

1. Changing number of

sorts
1. Linear growth

2. Changing number of

sorts
2. Upper bound

Sort Overflows

1. Increasing number of

overflows

1. Asymptotic growth (asymptote =

100), f(x) = ((x-20)/x)*100

2. Increasing number of

sorts (no overflows)

2. Asymptotic growth (asymptote =

0), f(x) = (a/x)*100

3. Increasing size of sort

heap

3. Constant overflows until sort

heap size big enough, then

constant 0

Table 6.1.3: Summary of the Correctness Criteria

The allowed range for the metrics is determined based on the assumption that the

computed values are correct. Although, these values are considered to be correct,

there is a deviation of 5% respectively 7% of the expected values. This leads to the

conclusion that the values of the metrics in future validation have to be within these

ranges, to consider the metrics as correct.

Within the allowed range there are possible wrong values. If the metric is

considered to be correct there is no guarantee that it is implemented correctly. As

discussed in Chapter 3 and Section 5.2.2 testing in case of software cannot ensure

the absence of defects. It is not able to validate every possible state of the software.

The coverage is limited by the used test cases. However, if a test failed, the

probability that a defect occurred is very high.

According to the definition of statistical metamorphic testing (see Section 5.2.3), a

metric is considered to be correct if it passes the majority of the statistical hypothesis

tests. There is the possibility that it passed the majority of the tests, but for the failed

tests the values have a very high deviation of the expected values. In this case, the

metric passed the validation but further action may be required. The framework has

to indicate the user to this behavior.

76

The next section describes the implementation of the prototype. The available test

environment provides the functions for accessing and configuring OPM and storing

the test results.

6.2 Prototype

The prototype of the Semantic Validation Framework is integrated into the test

environment. For the prototype a new test scenario is built. A test scenario is

represented by an XML file containing all the tasks which are performed. To start the

semantic validation this scenario has to be started. Figure 6.2.1 shows the procedure

of the prototype.

Figure 6.2.1: Validation Process with the Prototype

After the test scenario SemanticValidation.xml is started, it executes all the

necessary tasks. These tasks include a preparation phase where the database is

added and the monitoring profile is configured. The workload is started as well as

data retrieval after the workload is finished. Additionally, the tasks contain the

handling of the result files and the semantic validation.

After the workload is finished and the data is stored in the result files,

CheckCategory.java is executed. This java class is responsible to classify the actual

values and compare the computed category with the reference category. The

reference category is stored in the Reference File. This is an Excel file including all

metrics, the reference class from the earlier classification, and correctness criteria for

statistical metamorphic testing. Since, the result files of the test environment are

Excel files, the functions to handle these files can be used for the reference file as

77

well. Further, changes in the reference file, for example, adding new correctness

criteria, can be done with little effort. In Figure 6.2.2 an extract of this file can be

seen.

Figure 6.2.2: Extract of the Reference File

For sort overflows in row 3 and DBSE427 in row 5 correctness criteria for statistical

metamorphic testing are available. Criterion 1 for sort overflows is the behavior when

the number of sorts causing overflows is increased. Criterion 2 are the values when

the number of sorts causing no overflows is increased. The criterion of the metric

when changing the size of the sort heap size is not saved in the Reference File at the

moment because there is no explanation for the behavior (see Section 6.1.3). The

only criterion in the file for DBSE427 are the values when changing the number of

sorts. The upper bound is checked automatically within the prototype.

The different values of the correctness criteria are separated by comma. For

criterion 1 these values are the expected output for 50%, 75%, 100%, 150%, and

200% workload, which have been computed in Sections 6.1.2 and 6.1.3. Criterion 2

are the expected values for 0, 8, 16, 24, and 32 sorts, which are causing no

overflows executed together with the basic workload. The process of validation using

criterion 2 is explained in Section 6.1.3. The number of values is not limited to 5

values per criterion. If more workload is executed, the expected values can be

inserted in the corresponding cells at the right place. The values are sorted from low

intense to high intense workload. The actual workload for the prototype is chosen to

cover low and high intensity.

Since the Reference File is used for all metrics to check the category, there are

two more metrics in the figure. Both are not non-deterministic and they have no

statistical metamorphic criteria. At the moment the prototype is only used to validate

the metrics sort overflows and DBSE427.

78

If the metric passed the category check, the class SMT.java is called and the

statistical hypothesis tests are performed. The criteria are read from the Reference

File and split into the single values. These values are tested against the actual

values received from OPM. If the majority of the actual values does not deviate for

more than the allowed range (5% for DBSE427 and 7% for sort overflows) of the

reference values, the metric passed the test (see Section 5.2.3). If it passes all tests,

it is considered to be implemented correctly.

For every tested metric an entry in the Semantic Validation Result File is created. It

includes the overall result whether the metric is semantically correct. Further, it

contains the results of the category check and of each statistical hypothesis tests. If

a metric did not pass, the user can see which tests failed. Additionally the largest

deviation of the expected value is stored and there is information about how many

tests failed.

In Chapter 7 the prototype is tested with a new version of OPM and the results of

the thesis are discussed.

79

7 Evaluation

The first part of Chapter 7 consists of the evaluation of the prototype, which is

introduced in Section 6.2. The prototype is used to validate the metrics DBSE427

and sort overflows for the latest version of OPM, which has been recently shipped to

the customer. The results are investigated and necessary adaptations are presented.

The second part is a discussion of the overall results of the thesis. The benefits and

shortcomings of the chosen approach are pointed out and it is shown how the

framework changes the testing process of OPM.

7.1 Evaluation of the Prototype

The prototype is tested on a new version of OPM. This new version is installed on

the same server as the version used for deriving the correctness criteria. The version

of the underlying DB2 system is the same but the version of the fix pack and the

used instance differ. This setup is chosen to investigate how the prototype of the

framework is behaving in a different environment. The test is used to check if the

assumptions made for the framework are valid when the preconditions (OPM

version, DB2 instance, DB2 fix pack version) change.

The prototype executes the scenario semantic_sort_ms with 12 different

parameter combinations. Each combination is run for 3 times to receive 30 values.

According to the “rule of thumbs” mentioned earlier in Section 4.2.3, 30 values are

enough to reduce the influence of outliers. This ends in 36 workload executions. One

complete run of the prototype takes about 18 hours. With the created data it is

possible to validate the correctness criteria for DBSE427 and sort overflows. Figure

7.1.1 shows an extract of the result file for the semantic validation of the first test run.

Figure 7.1.1: Results of the First Test Run

80

It can be seen that both metrics pass the category check but fail in each statistical

hypothesis test. The maximum deviations of the expected values are about 47% for

sort overflows and about 85% for DBSE427. This very high deviation indicates a

defect in OPM, errors in the prototype, or wrong assumptions.

For further investigations the data received from OPM is checked. The values in

the result files do not fit to the expected values in the Reference File. All of the

values, which do not fit are too small. This means that the overall result of the

prototype, the metrics did not pass the tests, is correct for now. The values computed

by OPM do not fulfill the correctness criteria developed in Chapter 6. Either there are

defects in OPM or wrong assumptions have been made.

To find out what causes the actual values to have this large deviation, further test

runs are performed. These test runs are done to figure out how the system and the

OPM version behave in the new environment. In this case, two different runs are

accomplished.

The first one executes the workload scenario just_wait_ms to find out what activity

is caused by the new OPM. The result of this run is that instead of around 20 sorts

per minute, OPM is performing only 16 sorts per minute.

The second run executes the basic workload. This is done to see how many sorts

per minute the system is doing for this workload. The result of this run serves as a

basis to compute the expected values for the other workloads. As discussed in

Chapter 6 the runtime of one loop of the scenario semantic_sort_ms differs between

different DB2 instances. With the insights of the additional test runs these

differences can be considered for the expected values.

To find out the number of sorts per minute, the log file of the workload tool is

checked. The log reveals 24 loops per minute. This means that around 112 sorts per

minute should be monitored by OPM (24 loops multiplied by 4 sorts plus 16 sorts of

OPM). The actual values are most of the time the half of the expected values. There

are few which are exactly as expected.

The sorts executed by the workload scenario are the same for every one minute

time interval. This leads to the conclusion that the two sorts done by DB2 during the

inner join are not performed in each loop. To prove this the two statements

containing the inner join (see Figure 6.1.2) are replaced with four new statements,

81

which select two values from a table without joining tables and sort these values. For

these statements DB2 does not perform any additional sorts.

The result of this test is a stable distribution of the number of sorts per minute

around the expected value of 112 sorts. It seems that the newer fix pack of the

database system DB2 leads to different decisions about the execution process of

inner joins.

To confirm this assumption, the access plans for both instances of the SELECT

statements, which are executing the inner joins, are examined. On the DB2 instance

with the older fix pack version, the optimizer is using a merge scan join, which

requires sorted input. This results in two sorts per statement, as described in Section

6.1.1. On the instance with the newer fix pack version, the optimizer is choosing a

nested loop join. This join does not require sorted input but there is the possibility

that the data is sorted. This decision is done by the optimizer [32]. In Figure 7.1.2 the

access plans are shown.

Figure 7.1.2: Access Plans for the SELECT Statements

82

The sort operations are marked red. The access plan for the old version is on the

left and contains two sorts. On the right is the access plan for the new version. In this

case, the nested loop join has been chosen and no additional sorting has been done.

This results in only one sort operation.

The workload scenario has to be adapted to this new behavior. For further testing

the scenario with the two replaced statements containing the inner joins is used to be

independent on the database system. The correctness criteria are not influenced by

this decision. Nevertheless, the changed number of sorts done by OPM itself has to

be considered and the values in the reference files have to be adjusted.

The prototype is tested again using the adapted workload scenario and the

updated Reference File. Both metrics passed all tests. This means, they are

considered to be implemented correctly in the new version of OPM. In Figure 7.1.3

an extract of the semantic validation result file of this test is shown.

Figure 7.1.3: Results of the Adapted Test Run

The evaluation reveals that it is necessary to perform the additional test runs to

calibrate the framework whenever a new OPM version is tested or a different

environment is used. If these calibration runs are not done there is a high probability

that the framework computes wrong results. The updated validation process with the

prototype including the calibration can be seen in Figure 7.1.4.

Figure 7.1.4: Validation Process of the Prototype Including Calibration

83

The calibration includes the two test runs mentioned above. One run to determine

the action performed by OPM and the other run to find out how the workload

behaves on the monitored DB2 instance. Based on the result of these test runs, the

expected values are computed using the correctness criteria developed in Chapter 6

and saved in the Reference File

For example, if OPM is performing 10 sorts per minute and the test with the basic

workload results in 100 sorts per minute, the correctness criterion for DBSE427 can

be computed as follows: The expected value for the 50% workload is 100 sorts per

minute divided by 2, because the workload is only half as intense as the basic

workload, plus 10 sorts per minute done by OPM. The result of this computation is

60 sorts per minute. Further values can be determined accordingly. At the moment

the calibration is done manually and takes about one hour.

The next section contains a discussion about the results of the thesis. It is

demonstrated which goals have been achieved and where problems are present.

7.2 Discussion

The goal of this thesis is to develop a framework to automatically perform a semantic

validation of the OPM performance metrics. The framework needs to be robust

against changes in OPM. This means updates in the code should not affect the

semantic validation process. No user interaction during the tests and a simple way to

add and remove metrics for semantic validation are desired properties. Additionally,

the tests have to be fast to be able to execute them on a regular basis, the results

have to be meaningful and simple interpretable and it has to be possible to execute

the semantic validation without much foreknowledge.

The developed framework is able to validate the OPM performance metrics

semantically. The result of the prototype evaluation shows that it is possible to

receive assertions about the semantic correctness without user interaction during the

validation. Manual steps are only necessary for the calibration runs. To start the

semantic validation the according test environment scenario is launched. This can be

done by inexperienced users. After the test run is finished the user checks the result

file. This file offers assertions about the correctness for each tested metric. There are

84

information about the number of failed tests and the largest deviation of the expected

value. If a metric did not pass, a description is provided, telling the user which test

failed.

The framework handles the whole OPM environment as a black box. Changes in

the code of OPM do not influence the semantic validation in the large majority of the

cases. Updates of OPM, altering the activity, which OPM is causing on the monitored

instance, may lead to necessary adaptations of the reference values. As described in

the section of the prototype evaluation, the number of sorts performed by OPM

decreased to 16. In this case, the reference values have to be updated.

To notice such changes, calibration runs are necessary when validating a new

version of OPM or testing in a different environment, including DB2 version, DB2

instance, server, etc.. The runtime of these calibration runs averages about one

hour. If no calibration is done, it is more likely to receive wrong results which may

lead to a large effort spent on diagnostics.

At the moment, a run of the prototype takes about 18 hours to be finished. It is

possible to perform the validation on a regular basis. Though, the prototype validates

only two metrics at the moment, the workload which is executed can be used for

more metrics without raising the runtime. The workload scenario semantic_sort_ms

creates data for more than 25 metrics of the workload dashboard. Additionally, it

covers many metrics of other dashboards. To validate these metrics correctness

criteria have to be derived and the metrics have to be added to semantic validation.

New metrics are added to semantic validation by creating a new entry in the

Reference File. An entry consists of the name of the metric, the reference category,

and correctness criteria. The reference categories are available for all metrics of the

workload dashboard. For every other dashboard a classification of the metrics has to

be done.

To derive the correctness criteria profound knowledge of DB2 and the semantic of

the metric is needed. The behavior of the metric for different workloads has to be

predicted and this behavior has to be validated. This process requires experienced

users but once an entry in the Reference File for a new metric exists, the validation

can be done with little foreknowledge.

85

The framework is able to make assertions about the correctness of metrics. This is

done with the method statistical metamorphic testing. In common, testing can

indicate the user to defects. It is not able to prove the absence of them. If the

framework detects wrong values the user has to do further investigations. The

framework gives answers which metrics did not pass and which of the tests failed.

Using static methods, introduced in Chapter 3, would lead to more detailed

information about the detected defects than statistical metamorphic testing. Static

methods make assertions for functions or for a model of the system and prove them

to validate it. For this correctness proving no test run of the system has to be done.

Contrary to testing, static methods are able to check every possible path through

the system under test. To implement these methods detailed knowledge about the

code is essential. For the static method model checking, a model of the system has

to be built, which requires expert knowledge about the system. Changes in the code

directly influence static methods. It is necessary to check whether their

implementation is still valid, every time changes have been done.

Another approach introduced in Chapter 3, which would provide more information

about a found defect, is runtime assertion checking. For runtime assertion checking,

assertions are implemented directly in the code and validated during runtime. This

means that if a defect is detected it can be said exactly where this defect occurred.

Its implementation needs a deep understanding of the code and how to derive

assertions, which can prove the absence of errors. Another problem of directly

implementing the assertions in the code appears when the code is modified. In this

case, the assertions have to be modified and adapted to the new code. This cannot

be done by inexperienced users.

Using statistical metamorphic testing in the framework offers the possibility to

perform semantic validation with little adaption effort when testing new versions of

OPM. It is able to detect the existence of defects. It provides fast, uncomplicated and

profound testing based on validated correctness criteria. These criteria contain the

semantic of the metrics, the input, and the output.

For deterministic metrics, which are DB2 parameters or values of the system, it is

possible to decide exactly whether the metric is implemented correctly. Therefore, it

is necessary that the user sets the parameter on the monitored DB2 instance to a

86

concrete value. This value and the system values are stored in the Reference File. If

the stored value is not received by the test environment there is a defect in the

computation of the metric.

There are two shortcomings of statistical metamorphic testing. First, if a metric did

not pass the tests it is necessary to do further investigations to find out what caused

the metric to fail the tests. Second, if a metric passed all tests there is no certainty

that there are no defects in the implementation of this metric.

For the second shortcoming the framework offers information to the user, which

helps to realize that the behavior of the metric might be wrong. It computes the

largest deviation of the expected values for every metric. If this deviation is very large

although, the metric passed the semantic validation (the majority of the tests have

been successful), it is recommended to investigate further. The size of the deviation,

which may indicate a defect, cannot be determined in general. It depends on the

metric and on the used environment.

Besides that, the framework is a significant improvement of the actual testing

process of OPM. Without the framework, every test case to check if the received

values are reasonable has to be done manually. It is impossible to achieve this for

every metric and hence not done at the moment. Each workload has to be started

and the right values have to be verified in the web interface. This process is time

consuming and error-prone. The coverage of manual tests is very small compared to

the possible number of metrics, which can be validated in one run of the framework.

The former automated testing was limited to simple range checking of percentage

values and detecting exceptions invoked by the data access functions. The

framework extends this former testing to validate the values computed by OPM for

every metric. OPM has to be tested on different platforms. Using the framework all of

these tests can be done simultaneously. There are scripts available, which

automatically install and configure OPM on servers. It is possible to implement a

function in these scripts to start the semantic validation. This would lead to very little

user interaction for validating OPM metrics.

Overall, the framework improves the testing process for OPM. There is very few

manual work needed to increase the number of test cases and tested metrics. It is

87

possible to run additional tests, which have not been executed earlier due to lack of

time.

The next chapter concludes this document. Further, it contains suggestions for

possible future work.

88

8 Conclusion and Future Work

Validation is an important part in the field of software development. Validation is

necessary to develop software, which is reliable and successful. It is time consuming

and occupies many resources, but it saves costs by detecting defects before the

software is shipped to the customer. To reduce the impact of validation to the total

costs of software development a fast and automatic validation process is required.

The developed Semantic Validation Framework serves as tool for automatically

validating the OPM performance metrics. It offers the possibility to validate these

metrics without user interaction and provides understandable and meaningful results.

The probability of finding defects is higher compared to the former validation process

because the coverage of the metrics is much larger than with manual testing. More

test cases can be done in the same amount of time. It is possible to run the

framework on many servers at once.

To be able to use the validation framework in praxis, the prototype has to be

extended. Functions to validate the deterministic metrics and semi-deterministic

metrics are needed. The test environment provides the functionality to execute

commands on servers. This allows to automatically set DB2 parameters for the

deterministic metrics. If these parameters are set to a certain value, the framework is

able to determine with certainty whether the corresponding metric is correctly

implemented.

 It is possible to automatically make calibration runs and insert the reference

values in the Reference File. Therefore, one run of the workload and one run to find

out the activity caused by OPM have to be executed and the values of the metrics

have to be received. Based on these values, the remaining values for the

correctness criteria can be computed and stored in the Reference File.

As mentioned in Chapter 7, there are scripts available to perform OPM installations

and configurations automatically. The test environment offers commands to start its

scenario from the command line. These commands can be integrated in the scripts.

89

This would mean that there is a way to fully automatically install, configure and

validate OPM on several systems in parallel.

The most important part to be able to use the framework on a daily basis is the

development of correctness criteria for further OPM metrics. The first step to derive

these criteria is the classification of the metrics of the remaining dashboards.

Corresponding workload is needed to classify the metrics and to serve as input for

the validation. The derived correctness criteria have to be validated and saved in the

Reference File.

Additional correctness criteria for DBSE427 and sort overflows can be derived to

achieve more confidence about the correctness. In this thesis, only the intensity of

the workload and one DB2 parameter are adjusted and used for validation. There

are other possibilities. For example, changing the data in the used tables or

combining different workload parameters.

Overall, the framework is a powerful tool to detect defects in OPM. It supports the

test team in increasing the quality of OPM by covering much more metrics and test

cases than it is possible with manual testing. The used method testing is able to

validate all categories of metrics. For deterministic metrics an assertion about the

correctness can be drawn with guarantee. In particular, statistical metamorphic

testing is capable to handle non-deterministic behavior. This is important because

the large part of the OPM metrics behaves non-deterministic and this behavioral

pattern is very difficult to validate manually.

vii

References

1. Papadakis, M., Malevris, N., et al.: Towards automating the generation of mutation tests. Proceedings of the

5th Workshop of Automation of Software Test (2010), p. 111-118

2. Chen, W.-J., et al.: IBM Optim Performance Manager for DB2 for Linux, UNIX, and Windows. International

Business Machines Corporation (2011)

3. Osterweil, L., et al.: Strategic Directions on Software Quality. ACM Computing Surveys (CSUR) – Special

ACM 50th-anniversary issue: strategic discussions in computing research (2006), p. 738-750

4. Lyons, J.: Linguistic Semantics: An introduction. Cambridge University Press (1995)

5. Fodor, J.: Semantics: an interview with Jerry Fodor, Revista Virtual de Estudos da Linguagem - ReVEL.

Volume. 5, n. 8, 2007

6. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction. The MIT Press,

Cambridge, Massachusetts, London, England (2003)

7. Clarke, E.M., Wing, J.M., et al.: Formal Methods: State of the Art and Future Directions. ACM Computing

Surveys (CSUR) – Special ACM 50th-anniversary issue: strategic directions on computing research. Volume

28 Issue 4 (1996), p. 626-643

8. Woodcock, J., Larsen, P.G., et al.: Formal Methods: Practice and Experience. ACM Computing Surveys

(CSUR). Volume 41, Issue 4 (2009), Article 19

9. Fujita, M.: Model Checking: Its Basics and Reality. Design Automation Conference 1998. Proceeding of the

ASP-DAC ’98. Asia and South Pacific (2002), p. 217-222

10. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. Logics for Concurrency. Springer

Berlin / Heidelberg (1996), p. 238-266

11. Mukherjee, A., Tari, Z., et al.: Memory Efficient State-Space Analysis in Software Model Checking.

Proceedings of the Thirty-Third Australasian Conference on Computer Science – Volume 102 (2010), p. 23-

32

12. Julliand, J., Masson, P.-A., et al.: Partitioned PLTL model-checking for refined transition systems.

Information and Computation, Volume 207 Issue 6 (2009), p. 682-698

13. Model Checker SPIN. http://spinroot.com/spin/whatispin.html (2011)

14. Vardi, M.Y., Wolper, P.: An Automata-Theoretic Approach to Automatic Program Verification. Proc. 1st

Symp. on Logic in Computer Science (1986), p. 332-344

15. Popovic, M., Kovacevic, V., et al.: A Formal Software Verification Concept Based on Automated Theorem

Proving and Reverse Engineering. Engineering of Computer-Based Systems (2002), p. 59-66

16. Ouimet, M.: Formal Software Verification: Model Checking and Theorem Proving, Embedded Systems

Laboratory Technical Report ESL-TIK-00214, Cambridge USA

17. Schumann, J.M.: Automated theorem proving in software engineering. Springer-Verlag Berlin, Heidelberg,

New York (2001)

18. Parveen, T., Tilley, S., et al.: A Case Study in Test Management. ACM-SE 45 Proceedings of the 45th

annual southeast regional conference (2007), p. 82-87

http://spinroot.com/spin/whatispin.html�

viii

19. Bertolina, A.: Software Testing Research: Achievements, Challenges, Dreams. FOSE ’07 Future of Software

Engineering (2007), p. 85-103

20. Ciupa, I., Leitner, A., et al.: Experimental Assessment of Random Testing for Object-Oriented Software.

Proceedings of the 2007 international symposium on Software testing and analysis (2007), p. 84-94

21. Gerlich, Rainer, Gerlich, Ralf, et al.: Random Testing: From the Classical Approach to a Global View and

Full Test Automation. Proceedings of the Second International Workshop on Random Testing (2007), p. 30-

37

22. Ševčíková, H., Bleek, W.-G., et al.: Automated Testing of Stochastic Systems: A Statistically Grounded

Approach. Proceedings of the 2006 international symposium on Software testing and analysis (2006), p.

215-224

23. Guderlei, R., Mayer, J., et al.: Testing randomized software by means of statistical hypothesis tests. Fourth

international workshop on Software quality assurance: in conjunction with the 6th ESEC/FSE joint meeting

(2007), p. 46-54

24. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion checking in software

development. ACM SIGSOFT Software Engineering Notes (2006), p. 25-37

25. Chen, J., MacDonald, S.: Towards a better collaboration of static and dynamic analyses for testing

concurrent programs. PADTAD ’08 Proceedings of the 6th workshop on Parallel and distributed systems:

testing, analysis, and debugging (2008), Article No. 8

26. Giunchiglia, F., Shvaiko, P., et al.: S-Match: an algorithm and an implementation of semantic matching.

Proceedings of ESWS (2004), p. 61-75

27. Mayer, J., Guderlei, R.: Test Oracles Using Statistical Methods. Proceedings of the First International

Workshop on Software Quality, Lecture Notes in Informatics P-58, Köllen Druck+Verlag GmbH (2004), p.

179-189

28. Information / Explanation of metric maximum coordinating agents.

http://publib.boulder.ibm.com/infocenter/tivihelp/v24r1/index.jsp?topic=%2Fcom.ibm.itcama.doc_6.2.3%2Fitc

am_db2622126.htm (21.12.2011)

29. Information / Explanation of different DB2 agents.

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/r0001208.h

tm (21.12.2011)

30. Zhou, Z.Q., Huang, D.H., et al.: Metamorphic Testing and Its Applications. Proceedings of the 8th

International Symposium on Future Software Technology (ISFST 2004)
31. Guderlei, R., Mayer, J.: Statistical Metamorphic Testing – Testing Programs with Random Output by Means

of Statistical Hypothesis Tests and Metamorphic Testing. Quality Software, 2007. QSIC ’07. Seventh

International Conference on Quality Software (2007), p. 404-409

32. Join Methods (DB2).

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.perf.doc%

2Fdoc%2Fc0005311.html (22.03.2012)

http://dl.acm.org/author_page.cfm?id=81100521298&coll=DL&dl=ACM&trk=0&cfid=36214187&cftoken=74837033�
http://publib.boulder.ibm.com/infocenter/tivihelp/v24r1/index.jsp?topic=%2Fcom.ibm.itcama.doc_6.2.3%2Fitcam_db2622126.htm�
http://publib.boulder.ibm.com/infocenter/tivihelp/v24r1/index.jsp?topic=%2Fcom.ibm.itcama.doc_6.2.3%2Fitcam_db2622126.htm�
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/r0001208.htm�
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/r0001208.htm�
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.perf.doc%2Fdoc%2Fc0005311.html�
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.perf.doc%2Fdoc%2Fc0005311.html�

ix

Acknowledgements

I would like to thank the IBM Deutschland Research & Development GmbH in

Böblingen for giving me the opportunity to write my Diploma thesis about a very

interesting topic. In particular Ingo Hotz PhD, Andrea Kapahnke, Joanna Janusz, and

Pawel Koperek who have been supporting me during the whole time of the thesis.

I also would like to thank Holger Schwarz PhD of the University of Stuttgart for his

support and very good and constructive comments.

x

Erklärung / Statement

Ich versichere, dass ich diese Diplomarbeit selbständig verfasst und nur die

angegebenen Hilfsmittel verwendet habe.

I assure that I have written this Diploma thesis by myself and I have only used the

specified tools.

Moritz Semler

	1 Introduction

