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Development and Evaluation of a Framework for Semantic 

Validation of Performance Metrics for the IBM InfoSphere1 Optim2

Abstract. Validation is an important field in the software development process. It helps to 

increase the software quality but is also very expensive and time consuming. To decrease 

the costs approaches to automate the validation process are necessary. In this thesis a 

framework is developed, which does not need user interaction to validate the IBM 

InfoSphere Optim Performance Manager semantically. It is able to validate values of 

different behavioral patterns. It covers deterministic, semi-deterministic and non-

deterministic behavior. The thesis describes the process of the development of the 

framework. It introduces available approaches and examines them with regard to the 

suitability for the framework. The found solution is described in theory and a prototype is 

implemented to apply the solution to praxis. This prototype is evaluated on the latest 

version of the IBM InfoSphere Optim Performance Manager.  

 

Performance Manager 

                                            
1 Trademarks of IBM in USA and/or other countries 
2 Trademarks of IBM in USA and/or other countries 
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1 Introduction 

Since software systems become more and more complex, quality is one of the 

fundamental decision criterions for customers. Consequently the effort and the 

importance of software validation have increased over the years. Studies report that 

about 50 to 60 percent of software development cost is spent in the area of 

validation [1]. 

Besides the complexity of software, the nature of functions or values to be verified 

determines the difficulty of the validation process. Functions which compute 

foreseeable results are much easier to validate than functions computing values 

which cannot be predicted. So the effort of software validation depends not only on 

the size of software but also on the characteristics of its functions. 

The goal of this Diploma thesis is to develop and evaluate a Semantic Validation 

Framework for the IBM InfoSphere Optim Performance Manager (OPM), a 

performance analysis tool for DB23

The Semantic Validation Framework aims to provide an automatic correctness 

proving for all OPM metrics. This means that it makes assertions about the correct 

implementation of metrics without user interaction. This process differs depending on 

 databases. OPM supports database 

administrators in identifying, solving and preventing database performance issues. 

To this end it collects performance metrics of monitored database systems and 

displays them to the user via a web interface and offers the possibility to alert the 

user about up-coming problems. In this case, performance metrics include all kinds 

of data helping to make assertions about the health status of the database. For 

example, how many statements are processed, how often the requested data is 

located in the bufferpool or which statements caused a deadlock. Further these 

metrics are values of the underlying system for example the size of the memory or 

values of the connected clients as IP-addresses or types of used applications. This 

means, OPM provides performance metrics about the database, the system on 

which the database is located, and about the clients working on the database. 

                                            
3 Trademarks of IBM in USA and/or other countries 
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the nature of a metric. First steps of the thesis are to sort these metrics into 

categories according to the behavior of their values. This classification is a part of the 

framework and is used there for deriving correctness criteria to decide whether a 

metric is implemented correctly. Depending on the category there are different 

approaches for the validation. 

In the thesis, it is investigated if there are suitable approaches and correctness 

criteria available, which can be used for proving semantic correctness of the OPM 

performance metrics. The results of this investigation reveal that there are such 

approaches, fitting for the project and that these approaches have to be adapted to 

match the special requirements of the OPM environment.  

A prototype of the Semantic Validation Framework is developed and integrated 

into the existing test environment. This environment has been used so far to check 

the integrity of metrics shown in the web interface of OPM and is extended with the 

Semantic Validation Framework. It is also able to use an IBM internal tool to run 

workloads on databases.  

 

The document is structured as follows: 

 

• Chapter 2 provides a detailed insight into the OPM environment. This includes 

OPM itself, the test environment, and a workload tool. It is pointed out which 

components are already available and which have to be developed for semantic 

validation. Reasons and the motivation for the development of the Semantic 

Validation Framework are shown. Additionally, possible problems for semantic 

validation are described.  

• Chapter 3 begins with a definition for semantic validation. Approaches for 

software validation divided in the fields dynamic analysis and static analysis are 

discussed. Furthermore, methods and techniques for both approaches are 

described. 

• Chapter 4 describes the architecture of the Semantic Validation Framework. It 

includes the classification process and its results. For each metric category the 

semantic validation process is shown. 
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• Chapter 5 revisits the approaches introduced in Chapter 3. It is examined which 

of these approaches are suitable to validate metrics of the category non-

deterministic. The result of this process is presented and the solution is explained 

in detail. 

• Chapter 6 is the description of the prototype development and implementation. 

Correctness criteria for metrics are derived and validated using the solution found 

in Chapter 5. These criteria are integrated in the prototype. 

• Chapter 7 consists of the evaluation of the prototype and a discussion about the 

overall results of the thesis. The prototype is tested with a new version of OPM. 

Necessary adaptations are explained. 

• Chapter 8 concludes the document and possible future work is described.  
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2 OPM Environment and Problem Description 

The goal of this thesis is the development of a Semantic Validation Framework for 

the IBM InfoSphere Optim Performance Manager. The framework is used to check 

the correctness of OPM. This means, it validates the metrics computed by OPM.  

In this chapter the underlying project environment is introduced. It includes a 

description of the way OPM metrics are tested at the moment and reasons for the 

need of the Semantic Validation Framework. Known problems of semantic validation 

in case of OPM are discussed. In the last section the architecture of the framework is 

presented. 

2.1 The Project Environment 

The project environment consists of the IBM InfoSphere Optim Performance 

Manager itself, the test environment and an IBM internal tool for producing workload. 

2.1.1 The IBM InfoSphere Optim Performance Manager 
 

The IBM InfoSphere Optim Performance Manager is a performance analysis tool for 

DB2 databases on Linux4, UNIX5 and Windows6

The web interface serves as a tool for users to add and configure databases for 

monitoring, using predefined or custom monitoring profiles and also to administrate 

OPM in general. It contains different dashboards showing specific database 

contexts. There are dashboards including overall information about the health status 

of monitored databases. The so called inflight dashboards drill down to more detailed 

 systems. OPM is able to identify, 

diagnose, solve, and prevent problems on monitored databases. On that account 

OPM collects, aggregates, and calculates performance metrics of DB2 databases 

and visualizes this data in a web interface.  

                                            
4 Trademarks of Linus Torvalds in the United States, other countries or both 
5 Trademarks of The Open Group in the United States and other countries 
6 Trademarks of Microsoft Corporation in the United States, other countries, or both  
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information about potential performance issues. In this dashboard category users 

can see data about locking, logging, workload, etc. In Figure 2.1.1 the active SQL 

Dashboard is shown. This dashboard includes information about the active SQL 

statements. It provides, among others, the statements itself, runtime, caused 

overflows, and how many rows are read. Users are able to set timeframes for which 

they want to see data. It is possible to analyze what events are happening at the 

moment and also what events have happened in the past.  

 

 

Figure 2.1.1: Active SQL Dashboard [2] 

Furthermore, with the Extended Insight feature of OPM it is possible to monitor 

clients and applications (Java7, WebSphere8

                                            
7 Trademarks of Oracle and/or its affiliates 

 Application Server, DB2 Call Level 

Interface, etc.), which execute workload on monitored databases. In this case, the 

collected data is called end-to-end data. With Extended Insight the user has the 

opportunity to analyze, for example, the runtime of SQL queries of different clients 

8 Trademarks of IBM in USA and/or other countries 
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and is able to find out which clients or applications influence the performance of the 

whole database system. 

Beside the manual observation of the performance data by the user, OPM can 

alert users automatically, for example via email. The configuration of automatic 

notification is also done in the web interface. These automatic alerts reduce the 

response time of database administrators, thus issues can be detected and solved 

before they have big impact on the system. Additionally OPM provides reports for 

events which can be scheduled and are generated automatically. 

From the technical point of view OPM consists of three major components (see 

Figure 2.1.2). 

 

 

Figure 2.1.2: OPM Architecture (including Extended Insight)  

• The Repository Server which collects the performance data from monitored 

databases and applications, using snapshots and DB2 event monitors.  
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• The Performance Database contains the performance data collected by the 

Repository Server. 

• The Application Server which loads the performance data from the Performance 

Database into the web interface. 

 

Between the Performance Database and the Application Server there are data 

access functions to access the data. These functions, used by the Console Server, 

serve as backend for the web interface of OPM and consist of two parts: 

 

• The first part is used to set up and configure database monitoring. 

• The second part is used to retrieve data from the Performance Database for the 

OPM dashboards. Additionally it computes further metrics based on the data from 

the Performance Database. 

 

The procedures of OPM are as follows. After the configuration of monitoring, the 

Repository Server of OPM collects data from configured DB2 databases and/or 

database applications (for example SAP). Monitoring applications is only possible if 

Extended Insight is activated and the Extended Insight Client is installed on the 

application side. This data is stored in the OPM Performance Database and the 

Application Server accesses it using the functions mentioned above. Finally, the 

Application Server loads the data into the web interface where it is visible to the user. 

Now, the user is able to supervise the performance of his database systems and 

react when issues occur.  

In the next section the available test environment is introduced. Further, the terms 

run and iteration in case of the test environment are defined.  

2.1.2 The Test Environment 
 

The test environment is an in-house developed tool. During test phases of OPM (for 

instance function verification tests or regression tests) it is utilized to test the data 

access functions and to check the integrity of metrics. For example, it verifies that 
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metrics which constitute a value in percent are within the range 0 to 100. During the 

tests no user interaction is needed. 

The test environment is also able to run an IBM internal workload tool (see Section 

2.1.3) to automatically execute workloads on databases. Figure 2.1.3 pictures the 

OPM architecture including the test environment. The test environment replaces the 

Application Server and the web interface.  

 

 

Figure 2.1.3: Test Environment to classify the performance metrics 

It makes use of the data access functions in the same way as the Application 

Server of OPM. This includes adding databases to OPM, activating the monitoring, 

loading the performance data from the database, and computing it further. After the 

process of loading and computing, the data is the same as represented to the user in 
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the web interface and is stored in result files. With these tests various scenarios in 

the area of configuration and data retrieval can be validated. 

A run of the test environment consists of a number n of iterations defined by the 

user and ends with the automatic investigation of the result files. Figure 2.1.4 shows 

a run and the single steps in each iteration. 

 

 

Figure 2.1.4: One Dedicated Run of the Test Environment 

In each iteration a database for monitoring is added and configured. Then 

workload is generated on the monitored database using the workload tool. After the 

workload execution is finished and OPM has collected the performance data, the test 

environment stores the data in the result files for additional investigations.  

These results of a run of the test environment are Excel files containing the values 

for every metric, the formula how the metric is computed, and various other 

information about the metric. 

The test environment offers a simple first step to semantic validation. A function is 

available, which examines the result of a run and is able to classify every metric in 

one of the three categories deterministic, semi-deterministic or non-deterministic. 

This process is called classification. The idea is that further semantic validation 

differs depending on the behavior (the category) of a metric. This is explained in 
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more detail in Section 2.2.2. The classification provided by the test environment is 

based on the following decision process: 

 

• For every metric it is checked if all values of all iterations are the same. If this is 

the case, the metric is sorted into the category deterministic. 

• If a metric has different values for the iterations and these values are numbers 

only, the average value, the maximum value and the minimum value can be 

computed. If the maximum and the minimum value do not exceed a predefined 

deviation of the average value, the metric is categorized semi-deterministic.  

• All metrics which do not fit in the pattern above are classified non-deterministic. 

This means these metrics attain different values in the iterations and they exceed 

the range predefined by the user. Another possibility is that these metrics allocate 

values which are no numbers and differ in the iterations. For this kind of values 

no average value can be computed and so they are marked non-deterministic. 

 

At the end of this analysis, every metric is categorized exactly to one category. 

Though, this functionality is already available only few tests concerning the 

classification have been done before the thesis started. This means that the 

classification is an important step in this thesis for the development of the Semantic 

Validation Framework.  

As mentioned above, the test environment is able to run a workload tool to execute 

workloads on the monitored databases. To do a classification this workload has to 

meet several requirements. These requirements and the procedure of running 

workload are described in the next section.  

2.1.3 The Workload Tool and Workload Requirements 
 

The workload tool is used during the test phases of OPM to simulate different 

scenarios on monitored databases. Among others, this includes common data 

manipulation and retrieving but also deadlocks or sorts can be triggered to cause all 

kinds of events on the database. These events are monitored by OPM.  
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The workload tool uses so called workload scenarios. These scenarios are 

encoded in Extensible Markup Language (XML) and contain SQL statements which 

are executed on the monitored database. Workload scenarios consist of three 

phases: 

 

1. Preparation: Bufferpools, tablespaces and tables are created. Tables are filled 

with data. 

2. Execution: SQL statements are processed which perform different types of data 

manipulation on the created objects and data retrieval. 

3. Cleanup: All created objects are deleted. 

 

The used workload has to meet several requirements to be able to classify the 

performance metrics and serve as workload to derive correctness criteria as well. 

 

• It should run for a finite time period because the test environment is waiting until 

the workload tool has finished its execution before it proceeds. This guarantees 

comparable results for a specific workload since the performance data retrieval 

starts every time as soon as the execution of the workload is finished. The 

workload tool is also used outside of the test environment. In this case the 

workload is running in an infinite loop as long as the user does not stop it 

manually. This is not possible when using the test environment. 

• It should be easy to adjust a workload because it may be possible that metrics 

have a different behavior if the workload is increased or decreased. Increasing or 

decreasing a workload means that the number of statements and/or the data 

volume is changed. 

• It should cover as many metrics as possible. This means that the SQL statements 

executed by the workload create data, which should affect preferably all metrics. 

 

The first and the second requirement can be achieved without big effort. Using the 

workload scenarios has the advantage to benefit from structures provided by the 

XML schema of the workload tool, for example if-statements or loops. This makes it 
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possible to adjust the workload easily and limit the runtime. Furthermore variables 

can be used, for example for tables and inserted values.  

The third requirement is much harder to be accomplished and increases the 

probability to end up in more complex scenarios. This could mean that for these 

scenarios adjustments are more difficult to be implemented and the effect of 

adjustments are harder to recognize. To avoid this complexity several scenarios with 

different coverage are used in this thesis. These scenarios are developed during the 

classification process. 

One example of these scenarios is “Massive Objects”. It creates user defined 

bufferpools, tablespaces, and tables, and runs SQL statements, which cause activity 

on the created objects. This activity consists of SQL statements inserting data into 

the tables and updating this data. Further, the scenario executes statements, which 

select or delete data, for example. To make it easier to adjust the workload, the 

scenario has input parameters. The Figure 2.1.5 shows the input parameter for the 

number of tables which should be created during preparation phase. 

 

 

  

 

Figure 2.1.5: Example for Input Parameters of Workload Scenarios 

In this example, the workload can be modified by changing the value for the 

attribute “tbl”. This means, changing the number of tables, which are created and 

used during the execution of this scenario. Another possibility to change the 

workload is to increase the number of loops for the insert-, update-, select- and 

delete-statements. As a result more database accesses are performed. 

In the Section 2.2 the motivation and reasons for the need of the Semantic 

Validation Framework are described. Further, known problems and possible 

difficulties are pointed out. 

<arg default="10" description="The number of tables to create." 

key="tbl" type="int"/> 
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2.2 Problem Description 

The Semantic Validation Framework is meant to be an extension of the test 

environment. Its goal is to enlarge the testing capability of the environment and 

provide assertions about the correctness of metrics to the user. These assertions are 

created automatically without user interaction. As an extension of the test 

environment the Semantic Validation Framework is able to make use of its functions. 

This means, configuring the monitoring of OPM, running workload, data retrieval and 

saving of the data in result files is already available. 

This section explains why it is desirable to have such a framework for validating 

the OPM metrics. It shows the shortcomings of the actual testing approach and hints 

at the problems which may occur during the development. 

2.2.1 Motivation and Reasons for the Semantic Validation Framework 
 

The scope of the tests provided by the test environment is limited. It consists of 

finding exceptions during the invocation of the data access functions which retrieve 

the data and to provide simple means of data verification. For example, checking a 

percentage value as mentioned above. 

Currently the question if the retrieved values are correct cannot be answered in a 

simple way. Most of the data verification tests have to be done manually. It is very 

critical to proof data correctness during testing, as errors found on customer side can 

damage the trustworthiness of OPM to a high degree. The question for data 

correctness may sound simple but is very complex at the second glance. 

At the moment OPM is providing approximately 1000 different metrics. Manual 

tests in this case are very time consuming, expensive and error-prone because every 

metric has to be checked individually. Further, to be able to draw assertions about 

the correctness, it is necessary to understand the metric itself. This requires the skill 

set of an experienced database administrator.  

To prove the correctness of a metric, which is not computed further, the value in 

the Performance Database has to be compared with the actual result. For metrics 

which are computed of several values, all these values have to be verified in the 
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Performance Database, the computation has to be done manually and the results 

have to be compared. In practice this is impossible for this high number of metrics. 

Automating these comparisons of the values in the Performance Database with 

the actual results is not a solution either. During development the way metrics are 

computed changes. This includes changes in the schema of the Performance 

Database. For example, names of tables, attributes are adjusted or data is 

summarized in new tables. To prove correctness, all these changes have to be 

considered and implemented in the automatic tests. For every new version it has to 

be checked if adjustments of the tests have to be done. In development phase a new 

build for testing is published nearly every day, making this approach impractical. 

The goal of the Semantic Validation Framework is to provide a tool for automatic 

correctness proving, covering all metrics. No more user interaction after starting the 

test should be required. It has to avoid the problems mentioned above. This means 

changes in the Performance Database or in the data access functions should not 

influence the framework. The ongoing development of new versions of OPM makes it 

necessary for the framework to be adjustable in a simple way. For example adding 

new metrics or removing metrics which are not needed anymore. It should be 

possible to run these tests every day by different persons. This requires that the tests 

are fast, uncomplicated and the results are meaningful.  

The next section discusses the problems occurring for semantic validation in case 

of OPM and how the different behavior of the metrics influences the process of 

finding correctness criteria. 

2.2.2 Problems of Semantic Validation 
 

The basic problem of semantic validation (see Definition 3.1.2 in Section 3.1) is to 

find criteria which allow to draw conclusions about the correctness of the tested 

software. These criteria depend on the nature of the objects, which have to be 

validated (in this case the OPM performance metrics).  

There are different patterns of behavior concerning the assumed values of the 

metrics. The range which these values can attain depends on the workload on the 

monitored database and the nature of the metric. The values are influenced by the 
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system of the monitored database, for example, by the load factor or network speed. 

This means that for some metrics the monitored values differ when monitoring the 

same workload more than once. As a consequence, the criteria for the correctness of 

these metrics are different from the criteria for metrics which values do not deviate 

for the same monitored workload. 

There are three categories of OPM metrics (described in Section 2.1.2). Each 

category describes a certain behavior of the values a metric can attain (output) when 

the same workload is monitored under the same circumstances several times (input). 

The input consists of the workload and the parameters of the underlying system of 

the monitored database. These parameters include among others DB2 parameters, 

DB2 version and preferences of the server.  

This means that the category of the metrics affects the difficulty finding appropriate 

relations between the input and output values. It is considered that developing 

correctness criteria for deterministic and semi-deterministic metrics is easier than for 

non-deterministic metrics. Deterministic metrics follow explicit input-output rules 

which can be derived with little effort.  

Finding correctness criteria for semi-deterministic metrics is more complicated. 

The output values of metrics of this category can vary over a finite range for the 

same input. First problems occur when trying to define a range within all values 

should be located. For example consider a program running on a normal desktop 

computer, computing the duration of SQL queries. The found range in which the 

computation is still correct is for example 5% variance of the average value. If the 5% 

range is exceeded it would mean that a defect occurred in the function calculating 

the duration. The duration of queries depends among others on the hardware and 

processes, which are running on the computer while the queries are executed. So if 

running the same queries on a much more powerful system the 5% range could be 

too large and defects would not be found. So the metric is still semi-deterministic but 

the range has to be adjusted according to the environment. This could mean 

specifically for OPM that running the Semantic Validation Framework on different test 

machines leads to adjusting the ranges of correctness for each machine or accept 

fuzzy ranges.  
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For non-deterministic metrics the output for the same input can vary within an 

infinite range. Proving correctness for this kind of metrics needs different testing 

approaches compared to the other categories.  

In the next chapter, semantic validation and semantic correctness are defined. An 

overview about existing techniques and methods for software verification, which can 

be suitable for the framework, is provided. It includes two different strategies and the 

respective approaches. 
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3 State of the Art 

Approaches for software verification can be divided into two fields, dynamic analysis 

and static analysis. The difference between these verification techniques is the way 

how they deal with the software under test itself. In dynamic analysis the software is 

executed and the output is analyzed. Static analysis does not execute the software 

but analyzes the structure of the software by checking if certain conditions are 

fulfilled. Contrary to dynamic analysis, which checks individual runs only, static 

analysis is able to prove the absence of errors because it examines all states and 

paths of the software [3]. 

In order to be able to ponder if an approach is suitable for semantic validation in 

the case of the IBM InfoSphere Optim Performance Manager, first a definition for 

semantic validation for this thesis is given. Then the different techniques are 

introduced. 

3.1 Definition of Semantic Validation 

In general, semantics is the study of meaning [4]. More specifically, semantics deals 

with the relation between symbols in languages and their denotation in the 

nonlinguistic world. In contrary, syntax describes how expressions are formed with 

the symbols of the language [5]. In computer science semantics on the one hand is 

understood as a mathematical model for programming languages, which helps to 

understand the performance of programs. This semantics of programming languages 

or formal semantics consists of three types [6].  

 

• First, the operational semantics which describes the meaning of a programming 

language by transition-functions from one state to another state.  

• Second, the denotational semantics which is rather mathematical using partial 

orders, continuous functions and least fixed points.  

• Third, the axiomatic semantics which is making use of different assertions which 

have to be satisfied before and after the execution of a program or a function.  
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On the other hand, semantics deals with the meaning of symbols. If a human being 

has a description of a program in natural language telling what the program is 

supposed to do, he is able to understand the semantics of this program. For example 

if the description of a single function is “number of users” everyone understands that 

this function is counting the users.  

The mathematical models of formal semantics provide tools to reason if a program 

is implemented semantically correct. Semantically correct means that the results of 

the program are appropriate in their meaning, the general understanding of 

semantics. Referring to the example above the result for “number of users” can 

never be semantically correct if it is a negative value. Consequently semantic testing 

in terms of software is a methodology to verify the relationship between the data 

produced by this software and its semantic correctness. 

The data produced by the software depends on the data which has been used as 

input for the software. This means that the semantic correctness of software is also 

dependent on the input which is used. In more detail, the input can be considered as 

preconditions and the output as postconditions. Before a run of the software the 

preconditions have to be valid and after the run the postconditions have to be valid. 

This leads to the following definition of semantic correctness for this thesis.  

 

Definition 3.1.1 Semantic Correctness of Software 
 

Software is semantically correct if the postconditions according to the preconditions 

are fulfilled: 

 

 

Figure 3.1.1: Semantic Correctness of Software 

Where {PRE} is the set of preconditions, {POST} is the set of postconditions and SR 

symbolizes a run of the software. So if {PRE}SR{POST} is valid, meaning that {PRE} 
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is fulfilled before the run and {POST} is fulfilled after the run, the software is 

semantically correct.  

 

The definition of semantic correctness of software automatically leads to the 

definition of semantic validation. 

 

Definition 3.1.2 Semantic Validation in Terms of Software 
 

Assuming the definition of semantic correctness, semantic validation in terms of 

software is the process of verifying the set of postconditions according to the set of 

preconditions of the software. 

 

In Sections 3.2 and 3.3, methods will be introduced which are capable for semantic 

validation in terms of software. The first part will cover methods based on 

mathematics and formal semantics belonging to static analysis and the second part 

will contain empirical methods belonging to dynamic analysis.  

3.2 Static Analysis - Formal Methods 

Formal methods are a practice to specify a system and its desired properties, for 

example functional or temporal behavior, by languages and techniques which are 

based on mathematics. It is possible to express what a system should do in a 

mathematical way and then check automatically if the system is compliant within this 

specification. Formal methods serve to verify the relationship between the source 

code and the meaning of the implemented function. For example one approach to 

test this issue are assertions between input variables and system variables. These 

variables correlate before, during and after the execution of a program or single 

function and so have to fulfill certain constraints [7][8]. In the next section, model 

checking and theorem proving will be introduced, two approaches using formal 

methods to verify software systems.  
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3.2.2 Model Checking 
 

Model Checking is a technique to automatically achieve a formal verification that a 

system runs according to its specification. In Figure 3.2.1 an overview of the process 

of model checking is shown. The idea behind model checking is to map the original 

system under test to a model, which is able to serve as input for a model checker. 

This model has the same characteristics and behavior as the original system but it is 

represented with methods of mathematics or formal semantics. For example, 

systems can be modeled by finite state machines or transition systems. In these 

formal representations the nodes stand for the system states and the transitions 

between the nodes symbolize the possible state changes.  

 

 

Figure 3.2.1: Model checking process 
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To be able to check the model against the specification automatically, the 

specification has to be existent in a formal description as well. One common set of 

logics to formalize the specification of a system is the set of temporal logics. 

Temporal logic allows expressing properties in different instances of time using 

temporal operators [9]. For example, it is possible to specify that a property has 

always to be fulfilled, meaning in every state of the system, or a property has to be 

valid only in the next state. Especially linear temporal logic (LTL) and computation 

tree logic (CTL) or modified versions of LTL and CTL are common in the field of 

model checking.  

One big advantage of temporal logic is that formulas can be translated into 

automata. If the specification and the model are available as automata the process 

of checking that the model fulfills the specification is simplified to the comparison of 

two automata. This leads to efficient algorithms in model checking based on 

emptiness checks [10]. In short, the process of proving correctness starts with 

building the automata of the model and the negation of the specification which 

should be checked. The next step is to build the product of these two automata and 

test if the resulting automaton accepts any word. If it accepts a word, the actual 

property is not fulfilled. If it accepts no word, meaning that the language accepted by 

the automaton is empty, the property is valid in the system.  

After the specification and the system are available in some kind of formal 

description, they serve as input to model checkers. Model checkers prove for a given 

system and specification, whether the system runs accordingly to its specification or 

if there are violations. If violations are detected, a counterexample is provided to help 

finding the error in the real system. 

The common procedure of model checkers to verify systems is to check for every 

reachable state of the system model if the requirements are met. Reachable states 

are all states which are accessible through a sequence of state changes starting in 

the initial state. To make sure that the model checker does not test a state more than 

once, all states have to be kept in memory. This leads to the so called state space 

explosion problem and causes immense costs of memory [11]. 

However model checking does have a major advantage. Model checking verifies a 

large set of possible paths (test cases) in one run. In order to benefit of this 
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advantage many approaches to solve the state-space explosion problem have been 

presented in the last years. 

 

• For example it is possible to divide the state space and test the requirements 

against every state partition. So only one partition has to be kept in memory [12].  

• Another method to deal with the state space explosion is to store for every 

successor state the changes compared to its predecessor. This method promises 

a memory reduction of about 95% [11]. 

• A different procedure is implemented by the open-source model checker SPIN 

using on-the-fly verification [13]. Consequently SPIN mostly does not need to 

construct the whole state space because it constructs the next state only if 

needed. SPIN is available since 1991 and based on the automatic theoretic 

approach by Moshe Y. Vardi and Pierre Wolper saying that for every temporal 

formula (SPIN uses LTL) it is possible to construct a corresponding automaton 

which accepts exactly the language specified by this temporal formula [14]. This 

results in emptiness checks of two automata as described above.  

 

Theorem proving is another approach of static analysis. It does not need a model 

but it checks certain properties of the program, which have to be valid. This approach 

is introduced in the next section.  

3.2.3 Theorem Proving 
 

Theorem proving is a mathematical methodology to prove if a function matches its 

specification. The basic idea for theorem proving is to check that a specific property 

is satisfied before the execution of the program (precondition) and another specific 

property is satisfied after the run of the program is finished (postcondition). If the 

check is successful the correctness of the program is proved. Generally the 

properties can be seen as “if-then” statements. “If” certain conditions, for example 

input values or system states, are fulfilled, “then” after the computation the system 

will end in a corresponding state and has a corresponding output [15]. 
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Theorem provers, which check these kinds of assertions, are most of the time 

based on the calculus by Hoare providing axioms and inference rules to reason that 

a precondition implies a postcondition. Using axioms and inference rules to decide 

that a program is implemented correctly, leads to the big advantage compared to 

model checking: Theorem proving does not need to verify every possible state of a 

system, hence it is capable of dealing with an infinite state space [16].  

A slightly different idea but still based on logic is to use the rules provided by a 

calculus several times on the formula which has to be proved, until a valid formula is 

derived or no rules can be deployed anymore. If no more rules are valid to use, the 

formula is confuted [17].  

Another way to implement theorem proving is to model the system as a finite state 

machine and the theorem as input values and an actual state, leading to an output 

value or a sequence of output values and a successor state. To prove the theorem it 

has to be checked if the finite state machine gives the desired output and stops in 

the desired state [15]. The difference to model checking in this case is that theorem 

provers again do not check every possible state. 

 

 

Figure 3.2.2: Example of a Finite State Machine  

An example for this way to prove a theorem can be seen in Figure 3.2.2. The finite 

state machine ends in state 3 and outputs “t” if A and B are both true else it ends in 

state 4 and outputs “f”. A suitable theorem is the following: ((S(1), {true, true})  

(S(3), t)) where the set {true, true} is the input and “t” is the output. A theorem prover 
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now checks what happens when the input is {true, true} and the system is in state 1 

and compares these results with the right side of the theorem.  

3.3 Dynamic Analysis 

Unlike static analysis, which has been introduced in the previous section in terms of 

formal methods, dynamic analysis is rather based on empirical methods and 

statistics than on mathematics or formal semantics. Dynamic analysis tries to verify 

software by executing instead of looking at the structure only. For example there are 

methods which check certain conditions during runtime or techniques comparing the 

results of runs with the input or with results of previous runs. The following sections 

describe some of the existing dynamic analysis methods.  

3.3.1 Testing 
 

In the field of software, testing is the execution of the software under certain 

circumstances to prove correctness and completeness. These circumstances are 

called test cases and often refer to the input data. Depending on what kind of 

software or which components are tested, test cases can be sequences of user 

interactions or well-defined steps to be executed, for example the testing of user 

interfaces. In the following section, test cases always have the meaning of input 

values. Test cases allow to draw conclusions whether the software is implemented 

correctly according to its specification [18]. To do this an oracle has to exist.  

An oracle can be understood as a method to decide whether a test case 

succeeded or not, by comparing the connection between input and output. Today in 

industrial practice most of the time these oracles are humans, checking the output 

manually. Because of the possible very wide range of output values, generating 

oracles for automatic verification is the big challenge beside the choice of test cases 

in software testing [19].  
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In the following, existing testing techniques are introduced. The single test 

methodologies can be distinguished by how they deal with the actual code of the 

software.  

 

• Black box testing is a method which does not consider the code but only the 

input and output values.  

• White box testing takes a closer look at the code itself, checking also paths and 

states of the system. Therefore, detailed knowledge about the implementation of 

the system under test is required. 

• Grey Box testing combines these two methods and makes it possible to analyze 

values during computation [18].  

 

In addition, software testing techniques differ in how they choose test cases. 

Unlike methods of static analysis, testing in general is neither able to check every 

state of software systems nor every possible path. In testing, the chosen test cases 

affect which states and paths are checked. The strategy to derive test cases has a 

big impact on what defects can be found and in which area of the tested systems the 

defects will be detected. Two possible techniques to choose test cases are 

introduced here: 

 

• Random Testing: One strategy to select test cases is choosing the test cases 

randomly from the input domain. This strategy can be very helpful if there is no 

information about how to contain the input. Furthermore, since no human 

interaction is needed for building test cases, nobody intended or accidently can 

falsify the input. In addition, random testing due to the wide range of output 

values, needs an automatic oracle to test if the system behaves properly [19] 

[20]. To make sure that the testing covers as much code as possible random 

testing has to be adjusted, leading to more predetermined strategies of choosing 

test cases. 
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• Sub-domain Testing: In sub-domain testing, the input domain is divided in sets 

of values which are considered to be related in some way. For example one way 

to identify sub-domains is to deduce them directly from the software specification. 

Sub-domain testing belongs to the systematic testing techniques but it still has 

random elements. In fact the test cases are chosen from each sub-domain to 

achieve wide coverage but the selection in a sub-domain is done randomly. 

There are some modifications for sub-domain testing, e.g., trying to maximize the 

distance between the input values or keeping the distance at the same level with 

the goal to cover a preferably wide range. Other approaches propose to choose 

the values in a way they will be used in reality [21].  

 

Beside the way test cases are chosen, testing methods can be distinguished by 

foreknowledge about the output values. The methodology is depending on the 

knowledge of the output behavior. 

 

• Statistical Testing: Statistical testing is used if the output of the software under 

test is stochastic. This means that for the same input different output values are 

possible. In this case, statistical testing is a possibility to determine that the 

behavior of software is correct, at least with a certain probability. Testing still 

refers to comparing input values to output values, but in this case deriving an 

exact oracle is impossible because of the stochastic distribution of the output. 

Having test cases with known correct output a probabilistic distribution can be 

calculated from these values. Otherwise, reference values can be derived from 

running test cases and proving manually if the results are valid. Based on these 

reference values the expected distribution can be established [22]. This allows to 

compute the probability that the output of test cases is correct.  

 

• Deterministic Testing: In contrast to statistical testing the expected output in 

deterministic testing is known. This means for every input or test case the 

corresponding output can be determined according to the specification [23]. As a 

consequence it is possible to make exact statements about the correctness for 
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the test input and deriving an oracle can be done with less effort compared to the 

case of random output values.  

 

Beside the method of software verification with the help of test cases, there are 

various other approaches in the field of dynamic analysis. For example, runtime 

assertion checking.  

3.3.2 Runtime Assertion Checking 
 

Runtime assertion checking is another technique which is verifying software during 

execution. Assertions are requirements for individual system states and are checked 

automatically when the system is running. Possible assertions are pre- and 

postconditions or invariants, for example. Preconditions have to be fulfilled before 

the execution of the program or single function, and postconditions after the 

execution. Invariants are requirements which have to be valid throughout the whole 

run. Assertions can be built from Boolean expressions and constraints and because 

they are checked during runtime, the location of an error is known immediately [24].  

Verifying software by checking assertions is also done by theorem proving. 

Theorem proving is using inference rules or calculus to prove the correctness of the 

system under test mathematically, instead of executing the program. So in fact 

theorem proving covers all possible states of the system but assertions which are 

checked during runtime can be directly implemented in the code. This makes runtime 

assertion checking easier to understand and to develop than theorem proving.  

3.3.3 Conclusions 
 

In addition to the described approaches, there are ideas to merge static and dynamic 

analysis to combine the advantages of both approaches and reduce limitations. In 

static analysis the whole state space gets explored, including possible paths which 

never occur during runtime. Consequentially, defects are detected which do not 

affect the software quality and are time consuming to fix. In dynamic analysis 

coverage is a big limitation. Having an infinite state space it is impossible to check 
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every path and even if the state space is finite, huge amount of test cases have to be 

provided to achieve a sufficient coverage.  

One possibility to combine both, static and dynamic analysis is that static analysis 

discovers potential problems which are then verified using dynamic analysis methods 

[25]. 

Further, there are approaches which compute semantic relations between graph-

like structures. They can be used to compare different inputs (for example database 

schemas) according to their semantics. One of these approaches is S-Match which 

calculates semantic relations between nodes of two trees which serve as input [26]. 

The results are the strongest relations between any pair of nodes of the input tress.  

The next chapter describes the architecture of the Semantic Validation Framework. 

Furthermore, it contains the classification of the metrics and the enhancements of 

the test environment, which have to be done before the classification can be 

performed. The last part is the process of semantic validation for each metric 

category. 
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4 Semantic Validation Framework 

Chapter 4 is divided in three parts. Part one explains the architecture of the Semantic 

Validation Framework. In part two the classification process and the results of the 

classification are described. Before the classification can be accomplished the test 

environment is enhanced to provide all necessary functionality. The available basic 

function for classification described in Section 2.1.2 is not sufficient. Part three 

provides the process of semantic validation in the framework for each category  

4.1 Semantic Validation Framework Architecture 

The Semantic Validation Framework is considered to draw assertions about the 

correct implementation of a metric. These assertions are presented to the tester. 

Figure 4.1.1 shows the architecture of the framework. The components marked in 

green are developed during this thesis. The OPM Environment in the figure consists 

of OPM, the database management system DB2 and the monitored database. In the 

figure it is assumed that the classification of the metrics has been accomplished. 

Every metric which is validated has been categorized in exactly one category. 

The whole validation process of the OPM performance metrics is as follows: First, 

workload is executed on the monitored database. The created data is monitored by 

OPM. As soon as the execution of the workload is finished the test environment 

retrieves the data and stores it in result files. This procedure can be done several 

times to receive more data. 
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Figure 4.1.1: Semantic Validation Framework Architecture 

After all tests are executed and the data is saved, the semantic validation starts. 

The first part of the validation is not affected by the metric category. For example the 

checking whether the actual category fits to the reference category is the same for 

every metric. The next part of the validation is based on the results of the 

classification. There is an individual validation process for every category. The 

results of these validation processes are decisions about the correctness for each 

metric. These decisions are presented to the user in a new result file.  

The details of the classification process, the used workload and which changes, 

and improvements of the test environment have to be done, are explained in the 

following section. 
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4.2 Classification Process and Enhancements of the Test Environment 

OPM collects a large number of performance metrics. In this thesis it is not possible 

to handle all of these metrics. Hence, the classification is done exemplarily for the 

workload dashboard. This dashboard contains 40 different metrics, including metrics 

about the system of the monitored database and metrics about various health 

indicators as failing transactions or sort performance. This means that all future 

validation in this thesis is done with metrics of the workload dashboard. 

The classification of the metrics is the basis for the development of the Semantic 

Validation Framework. First, the test environment has to be extended and adjusted 

because it does not provide all needed functionality. The workload scenarios which 

are used to create the workload on monitored databases for every run of the test 

environment have to be developed and verified.  

The workload should affect as many metrics as possible. If a metric is not affected, 

incorrect results will be retrieved for this metric. For example a metric which is not 

influenced by the executed workload has “0.0” values only. Theoretically this metric 

is categorized as deterministic. In the case of validation it will always be marked as 

correct when comparing reference values with actual values. If using a workload, 

which creates data for this metric, it may be classified as non-deterministic or semi-

deterministic and a proper validation is possible.  

In order to simplify the validation it is preferable to have as many metrics as 

possible in the categories deterministic and semi-deterministic. For these categories 

the validation process is simpler and more precise than for non-deterministic metrics.  

To achieve this, a deeper understanding of every metric is required. This is needed 

to build the proper workload and to adjust the test environment. Experiments with 

different configurations of workload led to first insights and changes in the test 

environment. These are explained in the next section. 
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4.2.1 Changes and Improvements of the Test Environment 
 

During first test runs it became clear that the existing version of the test environment 

does not contain all logics needed for the classification. The following adjustments 

had to be implemented: 

 

1. Improved handling of “TIME_SERIES” 

2. Implementation of parameter “lastMinutes” 

3. Normalization of “TIME_SERIES” 

4. Information added to the result files 

 

There are two different aggregation types for metrics in OPM. For a selected 

timeframe metrics of the type “SINGLE_METRIC” have only one value. This 

timeframe can be chosen by the user and has to be at least one minute. Metrics of 

the type “TIME_SERIES” have a value for each one minute time interval because 

OPM collects data every minute. For example, if the timeframe is ten minutes, these 

metrics have ten values. 

Metrics of the type “TIME_SERIES” have more than one value for each iteration of 

the test environment, depending of the duration of the workload. If the workload is 

running for 15 minutes, the metric has 15 values. For these metrics the classification 

process has been very simple so far. Up to this point a “TIME_SERIES” metric has 

been classified as deterministic if all values for every time interval and each iteration 

have been the same. Otherwise it has been categorized as non-deterministic. 

For improving the classification of “TIME_SERIES” metrics they are now handled 

similar to the type “SINGLE_METRICS”. If the metric is not deterministic and 

consists of numeric values, the average value and the maximum deviation are 

computed for every time interval. The metric is classified semi-deterministic if all 

deviations are within the predefined range. In every other case it is classified non-

deterministic.  

Changing the intensity of workload it turned out that some metrics need a kind of 

“warm-up” time to reach a stable or nearly stable state. In this case, a stable state 

means that the value of the metric does not change anymore over the time if the 
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workload executes the same statements in each time interval. Several factors may 

lead to such a behavior. One possible explanation is that it takes a certain amount of 

time until the bufferpools of DB2 are filled with the proper data requested by the 

workload scenarios. Further, the preparation phase of the workload is monitored. 

This means that the data retrieved in the beginning differs from the data during the 

actual workload execution.  

One example of such a metric is shown in Figure 4.2.1, which is the number of all 

statements processed per minute. It can be seen that the values of this metric 

approach around 6000 when increasing the runtime of workload. The values on the 

x-axes are the number of loops of the workload scenario and in this case are 

corresponding to the runtime. In every loop different SQL statements e.g. SELECT- 

or INSERT statements are processed. Increasing the number of loops means higher 

workload. Without changing other parameters it ends up in a longer runtime because 

the number of loops processed each minute remains the same.  

 

 

Figure 4.2.1: Warm-up Time for Metric DBSE422 

It can be seen in the diagram that the runtime of a small workload is too short to 

reach a stable phase. A stable phase can be understood in the way that once 

reached a certain point in time of the workload execution the metric is mainly 

influenced by the actual workload. The bufferpools are filled and the preparation 

phase of the workload scenario is not monitored anymore.  
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In order to deal with this behavior a new parameter “lastMinutes” is implemented. 

This parameter allows the user to set the time period for which he wants to collect 

data with the test environment. For example setting “lastMinutes” to 10 means that 

data monitored by OPM of the last ten minutes will be fetched and analyzed. Using 

the parameter “lastMinutes” for “TIME_SERIES” means to have exactly the same 

number of values for each iteration.  

In some cases OPM does not receive data for a single time interval and returns the 

value “N/P”. The expected data is received a time interval later and causes this 

iteration to have one more value because all following values are also received a 

time interval later.  

An example can be seen in Figure 4.2.2. It shows an extract of the result file of the 

workload dashboard. The pictured metric is counting the number of rows which have 

been read each minute. These values are in the columns B to K, respectively L for 

the red marked rows. In column A the number of the iteration is saved. The two rows 

which are marked red contain one “N/P” value each.  

This occurrence leads to errors in the classification process. To avoid this, the data 

is normalized. If there is an “N/P” value for an iteration, this value is deleted and the 

remaining values are shifted. This results in equal numbers of values for each 

iteration. Figure 4.2.3 pictures the same metric after the normalization process. The 

rows which are marked green have been normalized. 
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Figure 4.2.2: Data before Normalization Process 

 

Figure 4.2.3: Data after Normalization Process 
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The result files of the test environment are considered to be analyzed further for 

deriving correctness criteria. To have more information available for evaluation the 

result files are enhanced. Additional values are automatically computed and added 

to the result files, including the maximum deviation and the aggregation type of the 

metrics.  

The next section contains the approaches and the performed tests to build the 

workload used for the classification process. This workload serves as a basis for the 

workload of the Semantic Validation Framework. 

4.2.2 Workload used for the Classification Process 
 

The workload used for classification has to meet several requirements. These 

requirements are described in Section 2.1.3. The implementation of the limited 

runtime can be done without problems. Though, easy adjustment and covering as 

many metrics as possible contradict. To find suitable workload, experiments with 

different scenarios are accomplished.  

Tests with one scenario covering all metrics of the workload dashboard result in 

values which are not comprehensible. This is caused by the many different actions 

performed by the scenario. It includes deadlocks, hash joins, insert-, select-, update- 

and delete-statements as well as sorts and online analytical processing (OLAP) 

activities. The random factor in the order of execution ends in different values for 

different iterations. A comparison of different runs does not have a high significance.  

This single but large scenario does not meet the requirement of easy adjustment. 

To change the amount of workload all types of activity have to be considered. It is 

hard to predict the impact of changes in the scenario because increasing the number 

of loops or changing the size of a table affects many metrics at a time.  

Further testing is done with very easy adjustable scenarios. These scenarios 

execute only a single select-statement or causing one deadlock on the monitored 

database. In this case the impact of adjustments is predictable. For example 

increasing the loop by one should end up in two select-statements.  

The coverage of these scenarios is very small. This means that for affecting all 

metrics many scenarios are needed. All of them are easy to adjust but only cover a 
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special type of metrics. To have the same coverage as one run of the scenario for all 

metrics, a run of the test environment is needed for every easy adjustable scenario. 

OPM itself causes activity on the database. It creates tables for all possible events. 

These tables are filled by the DB2 event monitors, which write data into the tables as 

soon as events occur. The created types of event monitors depend on the monitoring 

profile set by the user. Further, OPM executes SQL statements against the 

monitored database periodically. It uses DB2 facilities such as administrative views 

or table functions to retrieve the metrics and stores the values in the created tables. 

OPM reads across all tables every minute and stores the new data in its 

Performance Database. After the data is saved on the OPM side, it is deleted in the 

tables on the monitored database.  

The amount of the activity caused by OPM is not negligible when validating the 

metrics. The count of read rows is between 1300 and 1600 rows per minute. There 

are 17 metrics on the workload dashboard affected by OPM. These metrics have 

values deviating around their average value. This means the impact of OPM could 

cause these metrics to be semi-deterministic or non-deterministic indifferent which 

workload is used.  

These circumstances make easy adjustable scenarios mentioned above useless. 

The little amount of workload does not affect the metrics. Changes in this dimension 

are not visible because of the high activity of OPM. Workload with a certain intensity 

has to be executed to lower the impact of OPM and to be able to see results of the 

actual workload.  

The most promising tests are done with two scenarios. Together these scenarios 

cover all metrics of the workload dashboard. The first scenario olap_deadlock 

executes OLAP functions and causes deadlocks. The second scenario sort_hash 

performs hash joins and sorts. These scenarios are chosen for the classification 

because the results are very stable. This means that very few metrics are changing 

their categories in different runs. Further, these scenarios can be adjusted with a 

manageable effort and the impacts of changes can be predicted with appropriate 

accuracy.  

In the next section the range for semi-deterministic metrics is determined and the 

results of the classification using these scenarios are described.  
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4.2.3 Classification 
 

Before the classification can be done, the range for semi-deterministic metrics is 

determined. Based on discussions and an analysis of the range distribution of 

metrics (IO dashboard and workload dashboard), the semi-deterministic range is set 

to 10%. A big part of the metrics which are not deterministic deviates up to 10% of 

their average value for every test run. There are less metrics deviating between 10% 

and 60%. The biggest part of the metrics has a deviation for more than 70%. In 

Figure 4.2.4 this behavior is pictured. If the value of the deviation is more than 100% 

it has been set to 100% automatically. The metrics are numbered consecutively. 

Every data point in the diagram is one metric. The y-axis stands for the deviation of 

the metric of its average value. 

 

 

Figure 4.2.4: Deviation of the Metrics of IO and Workload Dashboard 
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If the semi-deterministic range is set to a higher value only few more metrics 

become semi-deterministic. For these metrics the correctness proving becomes 

imprecise because semi-deterministic metrics are validated different than non-

deterministic metrics. Their validation is not suitable for highly deviating values. This 

means that the advantages of easier testing for semi-deterministic metrics do not 

prevail the disadvantages of the impreciseness of the semantic validation caused by 

increasing the semi-deterministic range. 

For the classification each scenario, sort_hash and olap_deadlock, is used in 

seven runs with 30 iterations. 30 iterations are chosen because it is a “common rule 

of thumb” to lower the impact of possible outliers [27]. One run takes about 12 hours 

and is executed on a server during the night to decrease the influence of other 

people working on the same machine.  

In these seven runs of each scenario only two metrics of the workload dashboard 

changed their category. All other metrics are classified in the same category for 

every run.  

One of the metrics, which are changing categories, is counting the maximum 

number of coordinator agents working at the same time. A coordinator agent is 

requested if an application is connecting to a database or instance [28]. This metric 

is classified either deterministic or semi-deterministic. Based on discussions with the 

team, which is responsible for the testing of OPM, this metric is classified manually 

as semi-deterministic. The main reason for this decision is the easier correctness 

proving. Changing the category from semi-deterministic to deterministic is easier to 

validate. If a semi-deterministic metric becomes deterministic in a test, it is not 

marked as wrong automatically. Its values are all the same and the deviation of the 

expected value is 0. This deviation is surely within the semi-deterministic range. 

The second metric which is changing categories during the different runs is ratio of 

the created agents vs. the assigned agents from the pool. An agent is a process 

which is responsible to execute the request of a client application. In contrast to the 

metric counting the number of coordinator agent this metric is regarding all types of 

agents (coordinator agents, subagents, associated agents, primed agents). The 

number of created agents is determined by the parameters of the DB2 instance [29]. 

This metric is switching categories between semi-deterministic and non-deterministic. 
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The same argument as mentioned above is true for this metric. It is easier to validate 

the metric if it is categorized as non-deterministic. If the metric would be classified as 

semi-deterministic it is marked as incorrect in every case the values are deviating 

more than the predefined range.  

The classification of the metrics of the workload dashboard resulted in six 

deterministic metrics, two semi-deterministic metrics and 32 non-deterministic 

metrics. The next section describes the different processes of semantic validation for 

each metric category.  

4.3 Process of Semantic Validation 

In this section the semantic validation process is described. As mentioned above this 

process differs depending on the classification of the metric. The procedure for each 

metric category is explained in the following.  

4.3.1 Semantic Validation Process of Deterministic Metrics 
 

The semantic validation of deterministic metrics consists of two major steps. First it is 

checked if the category matches. This means that the result of the test run for each 

iteration has to be the same – the category has to be deterministic. The next step is 

to verify constraints. For example it is checked if DB2 parameters are within the 

allowed range. Further, there are values which indicate that there could be a defect 

in OPM. These values are “NULL”, “NOT_RETURNED”, “N/P” and in some cases 

“0”. Their occurrence has to be caught and reported to the user.  

The following table contains all deterministic metrics of the workload dashboard. It 

further includes a description and the constraints of each metric. 
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Metric Description Constraints 

DBC6 

Maximum number of concurrent 

applications connected to the 

database 

- 

max_connections 

Maximum number of 

applications allowed to connect 

to the database 

1 – 64 000 

sortheap 

Maximum number of pages of 

the private / shared memory 

available for private / shared 

sorts (4 KB per page) 

16 – 4 194 303 

sheapthres_shr 

Threshold for the size of the 

shared database memory used 

for sorts (4 KB per page) 

250 – 2 147 483 647 

sheapthres 

Soft limit for the amount of 

memory used for private sorts 

(after this limit the provided 

memory for sorts is reduced) 

0, 250 – 2 147 483 647 

DBMC501 
Maximum number of 

coordinator agents 
0 – 64 000 

 

Table 4.3.1: Deterministic Metrics 

Some of the DB2 parameter, which influence these metrics, can be set to 

“automatic” and DB2 is looking for the best value. To improve and to facilitate the 

validation process the tester should set those parameters to a stable value manually. 

In this way assertions about the correctness can be drawn definitely. The value of 

the parameter is saved in the framework together with the corresponding metric and 

is compared to the actual result of the test run.  

4.3.2 Semantic Validation Process of Semi-Deterministic Metrics 
 

The validation process for metrics of the category semi-deterministic starts with the 

category verification. If a semi-deterministic classified metric becomes non-
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deterministic in the test run it is considered to be incorrect and the user is notified. 

There is the possibility that the metric becomes deterministic and can be considered 

as correct.  

The difference between deterministic metrics and semi-deterministic metrics is the 

size of the deviation of the average value. For deterministic metrics this deviation is 

0% and for semi-deterministic it is within 10%. This means that metrics which have 

been classified semi-deterministic during the classification process can have 

deterministic values for test runs and still be correct because a deviation of 0% does 

not contradict the rules for semi-determinism in this case a priori. 

For example, during classification some metrics switched between the categories 

deterministic and semi-deterministic for different runs of the test environment. These 

metrics have been classified as semi-deterministic because they did not have the 

same values for each run and each iteration which is the main characteristic of 

deterministic metrics.  

In case the resulting category of the tested metric is deterministic, the framework 

checks if the values themselves do indicate an OPM defect. These values are the 

same as for the deterministic metrics: “NULL”, “NOT_RETURNED”, “N/P” and for 

some metrics “0”. Depending on the workload scenario, the result of metrics which 

are not affected can adopt those values. These metrics are ignored for validation in 

this run and a different scenario has to be used. After the metrics passed this test all 

constraints are verified. For example, these can be thresholds derived from previous 

testing or DB2 parameters.  

The Table 4.3.2 contains the two semi-deterministic metrics of the workload 

dashboard, the description of the metrics and the constraints set by the DB2 

database system.  
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Metric Description Constraints 

DB2390 

Number of registered 

coordinator agents and 

subagents in the database 

manager instance 

defined by parameter 

“maxagents” 

coord_agents_top 
Maximum Number of 

concurrent coordinator agents 

defined by parameter 

“max_coordagents” 

 

Table 4.3.2: Semi-Deterministic Metrics 

4.3.3 Semantic Validation Process of Non-Deterministic Metrics 
 

In the first step of the Semantic Validation of non-deterministic metrics it is checked if 

the category determined in the test run is non-deterministic or semi-deterministic. If 

the metric is categorized deterministic, this may indicate an error and further 

investigation has to be done. The next step is to verify the constraints for every 

metric. Equal to the other metrics categories these constraints can be affiliated to 

DB2 limitations in most of the cases.  

The constraints checked in step two are vague. For example, within a range of 250 

to 2 147 483 647 many wrong values or patterns can occur. This means that for non-

deterministic metrics further validation has to be done to prove the correctness. It is 

not sufficient that the values of the metric are within the range allowed by DB2 and 

that the metric is categorized as non-deterministic. 

In the next chapter, the approaches introduced in Chapter 3 are revisited. It is 

checked whether they fit to prove the semantic correctness of non-deterministic 

metrics. Further, it is evaluated whether they are applicable under the given 

circumstances.  



45 

 

5 Validation Approach for Non-Deterministic Metrics 

In the first part of this chapter the approaches of Chapter 3 are revisited. They are 

examined considering the criteria for the Semantic Validation Framework. It is 

checked which approaches are suitable for semantic validation in case of non-

deterministic OPM metrics. The second part of the chapter describes the chosen 

solution in more detail. In the third part the chosen solution is transferred to OPM. 

5.1 Approaches – Revisited 

In this section approaches and techniques introduced in Chapter 3 are examined to 

evaluate if they would be suitable to be implemented in the Semantic Validation 

Framework. The result of the evaluation for each approach depends on several 

criteria. 

 

• Realization: The approach has to be realizable using the available test 

environment. It has to be possible to build a prototype in the given timeframe.  

• Automation: The approach should not require user interaction after starting the 

test. 

• Maintenance: The approach has to be maintainable in an easy way. This 

includes adding new metrics and discarding unused metrics. 

• Robustness / Solidity: The approach should be robust against changes made in 

OPM during development. This includes changes in the Repository Server, the 

Performance Database and the function accessing the data. 

 

The next sections describe how far the approaches meet these requirements. 

5.1.1 Static Analysis – Revisited  
 

In Chapter 3 two different techniques of static analysis are introduced, model 

checking and theorem proving. In model checking a model of the system under test 
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is built. The specification has to be formalized into properties, which the model has to 

fulfill. A model checker verifies whether the model conforms to its specification. 

 Model checking validates a very large set of possible execution paths of the 

software and it gives a counter example for every defect found. These are two great 

benefits of model checking. One of the disadvantages is the state space explosion 

problem.  

Choosing model checking for the Semantic Validation Framework provides large 

coverage and automatic defect localization. Automation of the testing is possible. 

However, modeling OPM to a formal description is not practicable in a short time 

period. The model has to be built from scratch, examining hundreds of thousands of 

lines of code.  

For every new metric or old metric, which is not used anymore, the model and the 

properties have to be adjusted. The same is true for changes in other parts of OPM. 

This leads to a complicated and time consuming adjustment process, every time 

changes are performed. These adjustments should be prevented in the Semantic 

Validation Framework (Section 2.2.1). 

Theorem proving is a method based on mathematics to check if functions are 

corresponding to their specification. It is tested if certain preconditions and 

postconditions are fulfilled. During this test the software is not executed but axioms 

and inference rules according to the behavior of the software are used to derive 

results. 

Automation is possible in case of theorem proving. The implementation has to 

choose the fitting rules or axioms and use them on detected preconditions. If the 

results are the corresponding postconditions the function is correct. The handling of 

new and old metrics is practicable. For new metrics conditions to check have to be 

found. For old metrics the testing is not done anymore.  

Changes in OPM influence theorem proving. The inference rules have to be 

checked if they are still valid and maybe new rules have to be developed. Similar to 

model checking this means that for every new version of OPM the framework has to 

be validated and adjusted again. 

To use theorem proving proper pre- and postconditions have to be figured out. 

There is an infinite number of possible inputs and parameters for OPM. For example, 
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every different workload combined with database settings, as the size of sort heaps. 

Everything has to be considered when evolving these conditions. In this case, 

achieving exact pairs of pre- and postconditions is not practicable. These 

shortcomings mean that theorem proving is not suitable for this project.  

Both static analysis techniques suffer from the large effort they cause if changes in 

the software under test are done. Even if using these techniques makes the results 

more meaningful, they are not fitting in this case.  

5.1.2 Dynamic Analysis – revisited  
 

Runtime assertion checking and testing are described in Chapter 3 as two different 

approaches of dynamic analysis methods. In runtime assertion checking 

requirements of system states are checked during runtime. These requirements can 

be Boolean expressions or constraints. A function is correct if all assertions are 

fulfilled. It is possible to implement runtime assertion checking directly in the code, 

which makes it easier to detect the location of errors.  

It is possible to automate runtime assertion checking. During execution of the 

software it is checked automatically if the actual state satisfies the given assertions. 

The results are messages which assertions are fulfilled and which are violated.  

Related to both approaches of static analysis the realization is very time 

consuming. The specification and the code have to be examined to derive valid 

assertions. Further, for every change in the code it has to be checked if assertions 

have been affected. For adding new metrics the examination has to be done again. 

This leads to a large effort in maintaining the framework. These are characteristics, 

which are not suitable for the Semantic Validation Framework.  

The second approach is testing. Testing is the execution of the software under test 

under certain circumstances. These circumstances are called test cases. To verify if 

the software is implemented correctly an oracle has to exist. An oracle is a method to 

decide whether a test case succeeded or not. Testing methods differ by the way they 

deal with the code, how test cases are chosen and what foreknowledge of the output 

is available.  



48 

 

It is possible to realize testing when considering the available environment. Test 

cases consist of workload and the environment of the monitored database and OPM. 

The results can be processed further with the test environment. Logics which store 

this data in result files are implemented already in the test environment. To evaluate 

these results, functions which check if correctness criteria are fulfilled have to be 

developed.  

Once, the test is started the test environment does not require user interaction 

anymore. The handling of new metrics can be done more easily than with static 

methods or runtime assertion checking. Corresponding workload and correctness 

criteria have to be developed, without having to examine the code of OPM.  

The same is true for changes in other parts of OPM. Using black box testing the 

code itself is not taken into account. This means that no adjustments have to be 

done if the way metrics are computed has changed for example. The results of the 

tests are not affected because they consider the input and the output. These 

properties of testing allow to maintain the Semantic Validation Framework with 

reasonable effort.  

Further approaches, for example the S-Match algorithm [26], which compute 

semantic relations are not suitable for the framework. They are able to check if two 

inputs correspond semantically to each other but they cannot test the correctness of 

the inputs. 

Table 5.1.1 contains the summary of the revision of the approaches. For every 

approach it is marked with “+” that it meets the criterion or with “-“ that it does not 

meet the criterion.  
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Approach Realization Automation Maintenance 
Robustness / 

Solidity 

Model Checking - + - - 

Theorem Proving - + + - 

Runtime 

Assertion 

Checking 

- + - - 

Testing + + + + 

Table 5.1.1: Summary of the Evaluation of the Validation Approaches 

Automation is possible for every approach but only theorem proving and testing 

are maintainable with affordable effort. The requirements for the Semantic Validation 

Framework and the feasibility of the approaches mentioned above lead to the 

conclusion that testing is the most suitable approach. This approach is the only one 

which is realizable and robust in the case of the given circumstances. The next 

section contains detailed information about the testing approaches used for the 

framework. 

5.2 Chosen Solution – Testing 

The complexity of correctness criteria for testing ranges from simple for deterministic 

metrics to very complicated for non-deterministic metrics. For metrics of the category 

deterministic few more knowledge is needed. For example the number of processed 

statements cannot be negative or a percentage value has to be in the range between 

0 and 100. The appropriate function is considered to be correct if the value of the 

metric fulfills these criteria and is the same for each iteration of the framework. This 

can be checked in an easy way by comparing the values.  

Metrics of the category semi-deterministic are handled in a similar way. The 

difference between the two validation processes is that these metrics do not have the 

same value for each iteration. The values are located within a certain deviation of the 

average value. This correctness criterion can be validated by computing the average 

and comparing it with every value. 
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For non-deterministic metrics none of these correctness criteria is suitable. This 

means that more complex test cases and criteria for correctness have to be 

developed. For these metrics of OPM a variation of statistical testing is used. In the 

following sections the basic theory is explained because the simple approach of 

statistical testing described in Chapter 3 has to be adapted to fit for OPM.  

5.2.1 Statistical Hypothesis Testing 
 

The problem of testing randomized software (in this case non-deterministic metrics) 

is that for the same input different output is produced. Thus testing if the values for a 

specific input are the same or are within a certain range for each iteration is not 

possible. However, an oracle to test if an output is correct for the given input is 

needed to draw conclusions about the correctness of the software.  

Statistical hypothesis testing is based on checking the distribution of the output 

values. There are different methods to verify the output depending on the 

environment.  

 

• If theoretical output values are known the expected distribution can be computed 

and the real output is checked against this distribution. 

• If there is a reference implementation available it is possible to verify against the 

corresponding output of this reference. 

• If neither theoretical values nor references exist, an expected distribution can be 

derived based on the central limit theorem. It implies that if stochastic variables 

are independent, the variance of their distribution is finite, and the sample size is 

high enough, the centered and scaled mean is normally distributed. In this case, 

two more parameters are needed to center and scale the mean - the true mean 

and the true standard deviation [27]. These parameters are not known in most 

cases and have to be estimated. 

 

Statistical hypothesis testing provides a technique to verify randomized software to 

a certain probability. It is not possible to make sure that there are no more defects. It 
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may happen that correct values are recognized as wrong and wrong values as 

correct because the correctness criteria are not exact [22] [23].  

5.2.2 Metamorphic Testing 
 

First, metamorphic testing is a technique to build so called “follow-up” test cases 

based on previous successful test cases. A test case is considered to be successful 

if the output is correct. In some cases this criterion can be softened if the follow-up 

test cases can prove the correctness of the output of the successful test case. Here 

successful means that at least an output is available. The idea is that these follow-up 

test cases are related to the successful ones. This leads to a relation between the 

results and this relation can be checked without having an exact oracle [23].  

An extension of metamorphic testing is to use the meaning of the functions under 

test to find correctness criteria. From the meaning characteristics are deduced which 

are necessary for the correctness of the functions. Considering these characteristics, 

related test cases can be derived and their results can be compared [30].  

A very simple example for the extension of metamorphic testing can be seen in 

Figure 5.2.1. A function computing the product of two numbers is tested. The first 

test case T1 consists of the numbers 2 and 3 and the result is 6. At this point of time 

the correctness of the result is unknown. The second test case T2 is the result of T1 

and 1/3 which is the inverse of the second number of T1. The expected result is the 

first number of the first test case 2.  

 

 

Figure 5.2.1: Example for Metamorphic Testing 
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Knowing about the mathematical relations between these three numbers does not 

require to know that 6 is the correct result of the first test case. In this example, 

metamorphic testing allows to draw conclusions about the correctness of functions at 

least for the given test cases. To gain more confidence about the correctness more 

test cases and the corresponding follow-up test cases have to be verified.  

In the same way as other testing methods, metamorphic testing is only able to 

detect errors but not able to prove the absence of errors. Requirement for 

metamorphic testing is the knowledge of metamorphic properties of the tested 

software. In the example in Figure 5.2.1 the mathematical relation is the 

metamorphic property. In case of OPM, the metamorphic properties are the different 

behaviors of metrics when changing workload. These properties can be derived from 

the specification of the metrics. To derive meaningful properties expert knowledge 

about DB2 is essential.  

5.2.3 Statistical Metamorphic Testing 
 

Applying statistical hypothesis tests requires at least some knowledge about the 

distribution of the output or a reference to check against. This reference and 

knowledge are often not available, especially in the case of OPM. Using 

metamorphic testing leads to similar test cases and coverage is a problem. For OPM 

it is hard to find suitable metamorphic properties to derive follow-up test cases.  

A solution for these shortcomings is statistical metamorphic testing, a combination 

of the two approaches mentioned above [31]. In statistical metamorphic testing the 

software is executed several times with different input parameters. This input is 

correlated among each other. For example, the input can vary over the number of 

executed statements. This means, that the different workloads distinguish in the 

number of statements which are executed during the runtime. The idea is that if 

there is a relation between the input, there should be a relation between the output.  

The output relation can be derived from the relation of the input. This makes it 

possible to verify the different outputs by checking if they fulfill the derived relation. In 

other words, this allows to perform statistical hypothesis tests because a theoretical 

distribution based on the input is available.  
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The whole process of statistical metamorphic testing is as follows: 

 

1. A suitable relation has to be found and corresponding input has to be created. 

2. The software has to be executed using the input of step one. 

3. For the output generated in step two statistical hypothesis tests have to be 

performed to check if the relation is fulfilled. 

 

To gain more confidence and to minimize the influence of the environment, step 

two and three are performed several times. The software is considered to be correct 

if it passes the majority of the statistical hypothesis tests in step three. 

For statistical metamorphic testing knowledge about the meaning of the tested 

functions should be available to be able to find suitable input. Besides that, there are 

no more requirements. The correctness criteria are deduced from the meaning of the 

function and the different inputs.  

Transferred to OPM the input are the SQL statements executed by the workload 

tool. The execution of OPM is done by the test environment. The number of 

executions can be defined by the user. Proper relations of the metrics are deduced 

from the semantic of each metric and the used workload. Statistical hypothesis tests 

check the values of metrics whether they fulfill the deduced relations.  

This approach allows to build a reference for faster and easier tests. Once a metric 

is verified, the produced output or derived patterns can be used to check newer 

versions. Under the same preconditions, including environment and workload, the 

metric should have nearly the same output values as the reference.  

Considering influences, for example, different load factor of the server, and the 

random character of the metrics it is impossible to receive exactly the same values. 

In case of reference the correctness criterion is not equality. A metric can be 

considered as correct if the majority of the output values is within a determined 

maximum deviation of the reference. 

In Section 5.3 statistical metamorphic testing is transferred to OPM. It is described 

how correctness criteria are derived, considering the workload and the values of the 

metrics.  
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5.3 Statistical Metamorphic Testing in Case of OPM 

To be able to draw conclusions about the semantic correctness of metrics statistical 

metamorphic testing has to be adapted to OPM. For OPM, the process of semantic 

validation of the non-deterministic metrics includes the following steps: 

 

1. Workload is created and correctness criteria are derived concerning the 

workload, the output and the semantic of the metrics. 

2. OPM is executed using the input / workload of step one. 

3. For the output generated in step two, statistical hypothesis tests have to be 

performed to check if the correctness criteria are fulfilled. 

 

The first step for statistical metamorphic testing is creating workload. This 

workload has to be customizable to allow the user to create different test runs using 

different but related workload. The related workload is used to derive relations 

between the results themselves and between the workload and the results. These 

relations serve as correctness criteria for the statistical hypothesis tests. A theoretical 

example of possible relations between the workload and the resulting values can be 

seen in Figure 5.3.1. 

 

 

Figure 5.3.1: Related Workload – Related Results 
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The “OPM Environment” consists of OPM, DB2 and the monitored database. 

During the first test run workload x is executed on the monitored database. The 

result of this run is z. In the second run workload yx is performed on the database. 

Workload yx means that there has been a modification y to the first run. Accordingly, 

2yx means that the modification is done twice. This modification can include changes 

in the amount of the workload or changes in the performed SQL statements. Further 

it is possible to make modifications in the workload preparation phase, for example 

changing the size of tables. Another option is to modify DB2 parameters.  

The resulting values of the second test run are expected to be related to the 

results of the first run. This is illustrated by the v in “Result vz”. This expectation is 

based on the fact that both workloads are related and this should lead to related 

results.  

For each test run, workload is built by making changes to the workload of another 

run. Every workload can be built from every other workload by modifying certain 

parameters. This leads to the conclusion that every result can be computed by using 

any other result and modifying it with the right parameters. For example, result 2vz 

can be computed by doing the modification which has been done to derive result vz 

from result z twice.  

To be able to draw conclusions about the correct behavior of the output values, a 

validation of the derived relations is done. For this validation two things have to be 

considered. The first is the semantics of the tested metric. The second is the relation 

between the several inputs.  

Knowing about the meaning of the metrics, it is possible to predict the behavior of 

its values for different workload. This prediction is limited. With the knowledge of the 

meaning it is only possible to make assumption about how the values will change. 

Additionally, knowing about the relation between the workloads, predictions can be 

made more precisely. This means that it is possible to make assumptions about the 

proportion the values will change.  

The following example is based on a metric which is counting the number of 

processed SQL statements. Increasing the number of statements in the workload 

means a higher value for this metric. This is the assertion which can be drawn when 

knowing the semantics. If the quantity x of the number of statements the workload 
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has been increased is known, drawing more detailed conclusions about the behavior 

of this metric is possible. Its value increases at least for the quantity x. Remark that 

the influences of the environment do not allow to predict the exact results computed 

by OPM. 

A validated relation is required to predict results for every input which are correct to 

a certain degree. This is a precondition for step three where the results generated by 

running the tests on OPM are examined. It is checked if the derived correctness 

criteria of the metrics are true for the output values.  

Step two is to run tests with the workload created in the previous step. For one 

complete validation the tests are performed on the same environment. The 

environment influences the results of OPM. The database system DB2 and OPM 

itself are executing SQL statements and are making adaptations and improvements 

during the test runs. These events are monitored by OPM in many cases and flow in 

the result values. Performing each test run under the same conditions makes it 

easier to predict the behavior of the environment. This allows to filter out the actions 

of DB2 and OPM to a certain degree.  

Filtering out all environmental influences is not possible. All non-deterministic 

metrics of the workload dashboard are TIME_SERIES. This means that for every 

minute OPM collects one value. Since, the actions of the environment are not the 

same for each one minute time interval these values contain different amount of 

“environmental workload”. 

In step three the results generated in step two are examined. It is checked if these 

results fulfill the criteria developed in step one. The setup for the semantic validation 

process is shown in Figure 5.3.2. 
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Figure 5.3.2: Setup for Semantic Validation 

Several tests with related workload are executed on the monitored database. OPM 

and DB2 influence the created data, which is collected and stored by OPM. The test 

environment retrieves this data and creates result files to save it. These files are 

evaluated using the derived and validated relations between the results themselves 

and between the results and the workload. Each test in Figure 5.3.2 ends in one 

result. For each result statistical hypothesis tests are performed. A metric is 

considered to be correct if it passes the majority of these tests. The result of this 

process is a statement about the correctness for each tested metric.  

In Chapter 6 the theory of statistical metamorphic testing of the non-deterministic 

metrics is transferred to the praxis. For two metrics the whole validation process is 

performed. The derived correctness criteria are implemented in a prototype, which is 

able to validate these metrics in future testing. 
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6 Prototype for Statistical Metamorphic Testing 

The semantic validation of the OPM metrics differs depending on the metric 

category. For non-deterministic metrics statistical metamorphic testing is used. The 

goal of this chapter is to introduce a prototype, which validates two performance 

metrics of the workload dashboard. Before the prototype can be implemented in the 

test environment, correctness criteria for both metrics have to be derived and 

validated. This is done in Section 6.1. Section 6.2 contains the prototype.  

6.1 Statistical Metamorphic Testing transferred to the Praxis 

This section explains the procedure of semantic validation of OPM based on two 

metrics. Steps one to three of Section 5.3 are performed: workload is created, 

correctness criteria are derived and validated and statistical hypothesis tests are 

done. The goal is to develop criteria, which are always valid if the metric is 

semantically correct.  

The metrics for which the semantic validation process is described are the metric 

DBSE427 and the metric sort overflows. The metric DBSE427 is the total number of 

processed sorts. The metric sort overflows is providing the ratio of sorts which 

caused overflows to the total number of sorts. This metric is a percentage value. 

Both metrics are of the type “TIME_SERIES”, which means that they have values for 

every one minute time interval.  

DBSE427 is chosen because it is possible to predict the number of sorts 

performed by the used workload scenario very exactly. Further, the behavior of 

DBSE427 influences many metrics of the workload dashboard. This means that if 

this metric is correct, the validation of the influenced metrics can be done on a strong 

basis. One of these metrics is sort overflows. Sort overflows is validated using 

DBSE427 after it is proved that its behavior is semantically correct.  

The section is divided in three parts. In part one, the parameters which influence 

the metrics, the used workload and the general testing process are described. Parts 

two and three explain the details for each metric.  
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6.1.1 Used Workload and Testing Process for both Metrics 
 

To build proper workload, which creates data for both metrics, it is necessary to know 

how to manipulate their values. DBSE427 is only influenced by the number of sorts 

executed per minute. The metric sort overflows depends on the total number of 

sorts, sorts which causes overflows, and indirectly on the size of the sort heap. The 

size of the sort heap determines the memory which is available for each sort. This 

means, there are two possibilities for the sorts. Either the provided memory is 

enough for the sort which does not cause overflows or the memory is too small and 

the same sort causes an overflow every time.  

To influence the behavior of these two metrics the number of sorts per minute can 

be varied. Further, the size of the sorts can be modified to have different numbers of 

sorts which cause overflows and which do not cause overflows. This includes the 

size of the tables from which the data for the sorts is selected. If there is less data to 

sort less memory is needed. Changing the DB2 parameter sortheap in the monitored 

database configuration is another possibility to influence sort overflows.  

The execution time for one test run is between 12 and 15 hours. For each 

modification several test runs are performed to reduce the influence of outliers. This 

means, for this thesis there is not enough time to run tests for all possible 

parameters. For the validating DBSE427 the number of sorts per minute is modified. 

For sort overflows, additionally, the size of the parameter sortheap is changed and 

different kinds of sorts are used. 

To be able to draw assertions about the correctness of DBSE427 as exact as 

possible the used workload scenario semantic_sort_ms creates a predictable 

number of sorts per minute. This leads to the possibility to make assumptions about 

the behavior of other metrics influenced by the number of sorts based on very exact 

values. To allow the user to adjust the workload, the scenario provides two integer 

parameters as scenario arguments to modify the number of sorts per minute. These 

arguments can be seen in Figure 6.1.1.  
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Figure 6.1.1: semantic_sort_ms Arguments  

The first one is the number of loops. The loop contains the SQL statements which 

select data from the monitored database and sort this data (see Figure 6.1.2). The 

second parameter is the waiting time which allows the user to adjust the runtime of 

one loop. This is needed to control how many sorts are performed during a one 

minute time interval. To validate sort overflows the scenario is adapted which is 

explained in Section 6.1.3.  

 

 

Figure 6.1.2: Main Loop of the semantic_sort_ms Performing the Sorts 

To be able to compare different output it is necessary to change the workload 

activity per minute because both metrics are TIME_SERIES. This is not possible by 

modifying only one parameter.  

<loop cycles="int:use:scenarg:loops"> 

 <echo message="int:use:var:loop_count"/> 

<!-- performing joins --> 

<sql> 

<string value="SELECT h1, h11 from table1 INNER JOIN table2 

ON table1.h11 = table2.h21 ORDER BY h11, h1 ASC"/> 

</sql> 

<sql> 

<string value="SELECT h2, h21 from table2 INNER JOIN table1 

ON table2.h21 = table1.h11 ORDER BY h21, h2 ASC"/> 

</sql> 

<waittime millis="int:use:scenarg:loopwaittime"/> 

<setvar key="loop_count" value="int:plus:1"/> 

</loop> 

<requiredargs> 

<arg default="350" description="Number of loops" key="loops" 

type="int"/> 

<arg default="2500" description="Waiting time in each loop" 

key="loopwaittime" type="int"/> 

</requiredargs> 
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For example, if the number of loops is increased but the waiting time is retained 

the overall runtime of the workload is increased, too. The number of sorts per minute 

stays the same because the runtime of one loop does not change. Only a certain 

number of loops can be processed each minute based on the runtime of one loop.  

Every test run consists of 30 iterations using the scenario semantic_sort_ms. The 

runtime of this scenario is about 15 minutes. After the scenario is finished, the test 

environment captures the data for the last ten minutes. In this case the data of the 

preparation phase is not collected. There is enough time for the warm-up phase 

which is not included in the last ten minutes. This process produces result files with 

300 values for both metrics, ten for each iteration. 

It is necessary to run a sufficient number of tests to be able to draw correct 

assertions about the behavior of metrics. This number differs depending on the 

metric and has to be determined for each case. If the number of test runs is too small 

the possibility exists that the behavior is interpreted wrongly or patterns such as 

asymptotic properties or bounds are missed.  

In the following, every workload used for test runs is based on the “basic 

workload”. This basic workload has 350 loops and 2500ms waiting time. Related 

workload is computed by using these parameters as a basis. For example, “50% 

workload” means 175 loops and 5000ms waiting time. This allows to compute a 

relation between each workload, which is essential to conclude to the behavior of the 

output. 

The DB2 parameter “sortheap” is set to its minimum 16. This means there is 

memory of 64kb (16 * 4kb) available for every sort. Using the basic workload, 24 

loops are performed during one minute. In each loop two SELECT statements are 

executed. Each statement triggers two sorts. The first one during the inner join, 

because DB2 is using a merge scan join, which requires sorted input [32]. The 

second sort is done to sort the selected values. This results in approximately 96 sorts 

per minute for the basic workload. The sort heap size is not sufficient for the sorts. 

Each sort of the scenario is causing an overflow.  

This allows the user to determine the total number of sorts which are performed 

per minute. The knowledge about this number is used to validate the correctness of 

both metrics. DBSE427 can be checked directly. For sort overflows proper 
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correctness criteria are developed regarding DBSE427 and further parameters which 

have influence on its behavior. 

To simplify the validation, the average values of the 300 values for each run are 

computed and used for further investigation. This is possible because the average 

value is a sufficient approximation of the real behavior of the metric. To prove this 

assumption a frequency analysis is done for both metrics. The deviation in percent of 

the average value is computed for a sample size. Based on these values it is 

counted how many values are within a certain range around the average.  

For the metric DBSE427 about 70% of all values are within 4% and 95% are within 

8% deviation of the average value. Only 4% deviate for more than 10%. For sort 

overflows 77% of all values are within a 4% deviation of the average value. Around 

19% deviate between 10% and 14%. The results of the frequency analysis reveal 

that the average value is proper to use. A high majority of the values are within 4% 

deviation.  

In the next section, the metric DBSE427 is validated. Correctness criteria are 

derived and it is checked whether they are fulfilled.  

6.1.2 Semantic Validation of DBSE427 
 

To check the correctness of the metric DBSE427, the number of sorts performed by 

the workload scenario every minute is computed. As described above, the value for 

the basic workload should be around 96. This does not include sorts done by OPM. 

DBSE427 counts all sorts on the monitored database. The observed value is 20 

sorts higher than it should be for the workload scenario.  

To find out if this is caused by OPM another workload scenario just_wait_ms is 

executed and the results are examined. The scenario runs for 15 minutes and does 

not execute statements. The results of these test runs are the activity of OPM when 

there is no workload running on the monitored database. This analysis reveals that 

OPM is doing around 20 sorts per minute. 

Owing to exterior influence of DB2, OPM, and the environment including the server 

among others, it is impossible to execute exactly the same number of sorts each 

minute. The expected value for DBSE427 is the number of sorts of the workload 
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scenario plus the 20 sorts of OPM. The real values differ most often between 0 and 3 

sorts of this expected value up to 200% workload.  

This inaccuracy is most probably caused by the environment. For example, the 

runtime of the loops can deviate by some milliseconds. Added up for all loops, this 

results in some seconds postponement of the workload in every minute. This means 

that the workload does change considering a one minute time interval.  

For a higher intensity of workload per minute the resulting values for DBSE427 do 

not fit. They are much smaller than expected. In these regions the execution time of 

the statements, which contain the sorts has an increasing impact on the overall 

runtime. For the basic workload, the overall statement execution time is about 10 

seconds. For 400% workload it is 42 seconds and for 800% 84 seconds. The high 

intensity workloads execute much more statements per minute. The statement 

execution time, which also means the sort time, has a much higher impact on the 

overall runtime than for the low intensity workloads.  

This means that for these workloads fewer statements are performed per minute 

as supposed to, which results in fewer sorts as predicted. This fact has to be 

considered when adjusting the waiting time. In the waiting time the longer overall 

execution time has to flow in.  

To correct these values for higher amount of workload, reruns for the tests are 

done. The additional runtime is split to every loop and subtracted from the waiting 

time. For the workload with a lower number of performed statements it is not 

necessary to redo the tests because the overall impact of the statement execution 

time is small.  

The new results are more exact but for 400% and 800% the values differ for more 

than 8 of the expectation. The main reason is the execution time of the sorts. This 

time changes in every test run. The 800% workload performs 5600 loops and in this 

case even a few milliseconds difference per loop have a high impact on the workload 

per minute. This non-deterministic behavior makes it impossible to compute the 

correct waiting time and this results in values which deviate from the expected ones.  

These deliberations lead to the conclusion that there is an upper bound for the 

number of sorts. For example, if four sorts need 30ms time to be finished, it is not 
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possible to process more than 8000 sorts (2000 loops) per minute. This bound does 

depend on the system and on the sorts but there has always to be an upper bound.  

The expected behavior of DBSE427 is linear until the upper bound is reached. 

Increasing the number of sorts in the workload scenario should increase the number 

of sorts computed by OPM for the same amount. As soon as the upper bound is 

reached the number of sorts should remain constant and changes in the scenario 

which aim to execute more sorts per minute do not have effects.  

In Figure 6.1.3 the results of the test runs up to 800% workload are pictured in a 

diagram. The x-axis is the workload in percent and the y-axis is the number of sorts 

per minute. The uncorrected values are black, the corrected values are green, and 

the expected values are red.   

 

 

Figure 6.1.3: Uncorrected, Corrected, and Expected Values for DBSE427 

For the low intensity workloads the values of the tests are very close to the 

expected values. In the higher regions there is a gap between the expected and real 

values. As mentioned above, this can be explained by the changing sort runtime. To 

close this gap it would be necessary to know the exact execution time of a sort 
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before it is performed and adjust the waiting time according to this. This is not 

practicable.  

It can be seen that the results meet the expectation. There are inaccuracies for 

tests with 75% and 80% workload. These values are slightly higher than expected. 

Reruns of these tests showed that the values pictured in the diagram are outliers 

probably caused by environmental impact. 

During tests to find the upper bound for the number of sorts per minute it became 

apparent that the runtime is also depending on the DB2 instance. The used 

instances are located on the same server and are the same DB2 version. The 

execution time for one loop differs between the instances partly for more than 25ms. 

Taking this into account the tests are done to prove that there is an upper bound but 

this upper bound is not exactly determinable.  

Workload is executed with 35000 loops and 40000 loops and zero milliseconds 

waiting time. On the used instance one loop lasts about 30ms. Each minute 2000 

loops which means 8000 sorts should be performed. For 35000 loops OPM monitors 

about 7600 sorts. This value can be explained by looking at the loop runtime which 

differs slightly. This runtime can be seen in the log files of the workload tool. Some 

loops need 31ms or 32ms, which leads to the awareness that even for one instance 

the upper bound is not exactly determinable. Figure 6.1.4 shows the extended linear 

function for the number of sorts. The two green data points are the actual values for 

35000 loops and 40000 loops. 
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Figure 6.1.4: Upper Bound for DBSE427 

The result for 40000 loops is the same as for 35000 loops. OPM monitors again 

around 7600 sorts per minute. The overall runtime is longer for this workload but the 

values of the metric remain the same.  

The overall result of the semantic validation of the metric DBSE427 is that this 

metric is considered to be implemented correctly in the tested OPM version. The 

expected linear behavior can be seen in the diagram and the predicted upper bound 

exists. Still, the actual values deviate from the expected values. This can be seen in 

Table 6.1.1. The large majority of the deviations are within 0% and 5%. Only one 

value exceeds the 5%.  

This means, that although the metric DBSE427 is considered to be implemented 

correctly the real values deviate from the expected values. Transferred to future 

validation of new OPM versions, this results in the insight that for correct 

implementations of DBSE427 there is an allowed deviation of 5%. When validating 

DBSE427, this deviation has to be satisfied by the majority of the computed values to 

draw the assumption that the metric is implemented correctly. 
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Workload in Percent 
Expected Value for 

DBSE427 

Deviation of the 

Expected Value in % 

800 786.68 2.31 

400 404.00 1.97 

250 260.00 0.25 

200 212.00 0.00 

150 164.06 2.27 

100 116.00 1.43 

90 105.71 1.18 

80 97.42 4.34 

75 95.00 1.65 

65 82.34 3.30 

60 77.14 3.85 

50 68.00 2.65 

40 58.40 3.66 

35 48.92 5.29 

25 44.00 3.61 

10 29.60 1.32 

5 24.90 4.98 

Table 6.1.1: Expected Values and Deviation of DBSE427 

In the very low and very high regions of the workload it can happen that this 5% is 

exceeded although the metric is correct. This is caused by the different impact of the 

runtime of the sorts. Exceeding of the 5% does not always mean that a defect 

occurred. Especially, for low exceeding it has to be checked if the workload causes 

this deviation.  

This deviation is used as a reference point to validate DBSE427 in future testing. 

Depending on the system on which the tests are performed this deviation might have 

to be adjusted. For example, if the difference between the runtime of sorts is very 

large.  

In the next section the metric sort overflows is validated. Correctness criteria are 

derived and tests to check whether they are fulfilled are performed.  
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6.1.3 Semantic Validation of Sort Overflows 

 
The ratio of sort overflows depends on several parameters. It is influenced by the 

number of total sorts, by the number of sorts causing overflows and this number 

depends on the size of the sort heap.  

The correct implementation of DBSE427 is the basis for the semantic validation of 

sort overflows. Further, different preferences of all parameters are tested and the 

results are used to describe the correct behavior. 

The same test runs for validating DBSE427 are used for the first test of sort 

overflows. Every sort of the workload scenario is causing an overflow. There is 

enough memory available for the sorts of OPM. Otherwise the percent value of sort 

overflows would be 100. 

The expected behavior for this test is a nearly linear growth for the lower amount of 

workload. If a workload of low amount is increased the enhancement of the total 

number of sorts is big compared to the overall number of sorts. Enhancing a higher 

amount of workload does not have the same impact to the overall sorts. This 

expectation can be explained with the following example. The total number of sorts 

of the 10% workload are increased by about 48% for the 25% workload. For the 10% 

workload 29.60 sorts are expected, for the 25% workload 44.00 sorts are expected. 

This is an increase of 14.4 sorts, which are 48% of 29.60 sorts. Changing the 75% 

workload to the 90% workload is an enhancement of the total number of sorts by 

about 12%. 

This fact leads to the assumption that increasing the workload more and more the 

values should follow an asymptotic function. They should approximate 100% but 

never reach it because there are sorts of OPM which do not cause overflows. In 

Figure 6.1.5 the black line pictures the result values. The red line is the expected 

asymptotic function. 
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Figure 6.1.5: Results of Sort Overflows 

The graph reflects the expected behavior. For low numbers of sorts there is a 

nearly linear growth and for increasing numbers of sorts the function approaches 

100. The lowest number of possible sorts is 20. These are performed by OPM itself. 

For 20 sorts there would be no overflows because the size of the sort heap is 

sufficient. The expected function can be computed exactly.  

The metric sort overflows is the ratio of sorts causing overflows to the total number 

of sorts. In this case the total number of sorts is x and the number of sorts causing 

overflows is x-20 because the 20 sorts executed by OPM do not cause overflows. 

The ratio is ((x - 20) / x) and because the value is in percent the results have to be 

multiplied by 100. This leads to the exact function f(x) = ((x – 20) / x) * 100.  

This correctness criterion is globally valid and not depending on a specific 

workload. If different workloads and different environments are used, it has to be 

checked if OPM still executes 20 sorts. There is the possibility that this value 

changes if the data OPM is monitoring increases. In this case, the expected function 

has to be adapted. This does not influence the correctness criterion in general. 

Increasing the sorts causing overflows always results in an asymptotic behavior if the 

number of sorts which do not cause overflows remains the same.  
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The next criterion which is proved is the behavior of sort overflows when increasing 

the number of sorts which do not cause overflows. The workload scenario for the 

basic workload of the earlier tests is modified. In the preparation phase of the 

scenario a new table is created including two rows and a new SQL statement is 

added to the main loop. It performs one simple sort, which does not cause an 

overflow. This statement is surrounded by a parameterized loop to be able to change 

the count of executions.  

The expected values follow a function which is the opposite of the one pictured in 

Figure 6.1.5. It starts with a high ratio of overflows and approaches to the x-axis for 

incremented numbers of sorts. For a low number of total sorts the proportion of big 

sorts causing overflows is high. During enhancement of the number of sorts, which 

do not need too much memory this proportion becomes less. The values will never 

reach the x-axis because there are always sorts causing overflows. In Figure 6.1.6, 

the graph of the result values is shown. The red line is the expected asymptotic 

function.  

 

 

Figure 6.1.6: Sort Overflows when increasing Sorts with no Overflows 
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The computed values follow the expected behavior. The asymptote is 0 which will 

never be reached because the used workload scenario performs sorts which cause 

overflows. For low values of DBSE427 the ratio of overflows declines nearly linear.  

The slope is depending on the sorts which need more memory than the sort heap 

offers. These sorts are needed otherwise there would be no sort overflows and the 

metric returns 0 for all values of DBSE427. This means that this correctness criterion 

can only be used if there are sorts causing overflows. In this case, the result values 

always follow an asymptotic function, which slope is depending on the workload 

scenario.  

For every workload scenario, which is used for this test, the expected function can 

be computed exactly. The argumentation is the same as for the function computed in 

the previous section. The difference is that the number of sorts causing overflows is 

constant and the number of sorts which do not cause overflows is changed. This 

lead to the function f(x) = (a/x)*100 where a is the number of sorts causing overflows. 

In Figure 6.1.5 a equals 96 because the basic workload scenario is used.  

For both asymptotic behaviors the allowed deviation of the expected value for 

future validation is set to 7%. The argumentation is the same as for the 5% deviation 

of DBSE427. The metric sort overflows is considered to be implemented correctly 

because of the results of previous tests. The expected values and the deviation of 

the actual values of the deviation are computed and shown in Table 6.1.2.  

The large majority of the values deviates between 0% and 7%. There are only 

three values which exceed the range of 7%. For future validation this means, that if 

the metric sort overflows is correctly implemented, the majority of the values is 

deviating up to 7% of the expected value. Otherwise the assumption has to be drawn 

that the metric is incorrect.  
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Workload in Percent 
Expected Values of Sort 

Overflows 

Deviation of the 

Expected Value in % 

800 97.40 0.00 

400 94.95 0.73 

250 92.29 1.31 

200 90.56 2.69 

150 87.53 2.47 

100 83.00 3.23 

90 81.29 3.65 

80 80.32 6.16 

75 79.29 4.06 

65 74.88 1.44 

60 73.03 1.59 

50 69.79 2.03 

40 64.45 2.36 

35 61.17 9.73 

25 52.84 4.09 

10 31.53 9.17 

5 16.60 16.71 

Table 6.1.2: Expected Values and Deviation of Sort Overflows 

The third correctness criterion for sort overflows deals with the sort heap size. The 

size of the sort heap declares the size of the memory useable for each sort. If this 

size is too small an overflow is caused. The expected value distribution is illustrated 

in Figure 6.1.7. 

 



73 

 

 

Figure 6.1.7: Expected Behavior of Sort Overflows Changing Sort Heap Size 

The expected behavior is a constant sort overflow value until a certain size of the 

sort heap is reached (in this designed example 200). Before this size the memory is 

too small for the executed sorts. 100% overflows are not reached because of the 

sorts executed by OPM itself. As soon as the sort heap exceeds this size it is always 

big enough and the sorts do not cause overflows. The percent of overflows is 

expected to drop to 0. 

The real behavior of the sort overflow values are pictured in the graph of Figure 

6.1.8. It can be seen that the values follow the expected distribution for most sizes of 

the sort heap. In the part marked red there are some values which behave not as 

predicted. The overflows in this part increase to about 20% although the sort heap 

size is big enough to provide sufficient memory. 
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Figure 6.1.8: Real Behavior of Sort Overflows changing Sort Heap Size 

At the moment there is no real explanation for this behavior. It is most probably 

caused by DB2 because for this size of the sort heap the workload does not execute 

sorts which cause overflows. The sorts of OPM do not cause overflows either. To be 

able to use this validation test the behavior shown in Figure 6.2.8 has to be 

explainable.  

For this correctness criterion there two allowed deviations of the result values of 

the expected values. The first is set to 7% for the sizes of the sort heap which cause 

overflows. In this case, the values of the metric behave in the same way as for the 

correctness criteria before. The second deviation is 0% for the sizes of the sort heap 

when no overflows are caused. In this value range the behavior of the metric sort 

overflows is deterministic. This means that a behavior as seen in Figure 6.1.7 needs 

to be investigated. In Table 6.1.3 the correctness criteria for the metrics DBSE427 

and sort overflows when using statistical metamorphic testing are listed.  
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 Metric Workload SMT Criteria 

DBSE427 

1. Changing number of 

sorts 
1. Linear growth 

2. Changing number of 

sorts 
2. Upper bound 

Sort Overflows 

1. Increasing number of 

overflows 

1. Asymptotic growth (asymptote = 

100), f(x) = ((x-20)/x)*100 

2. Increasing number of 

sorts (no overflows) 

2. Asymptotic growth (asymptote = 

0), f(x) = (a/x)*100 

3. Increasing size of sort 

heap 

3. Constant overflows until sort 

heap size big enough, then 

constant 0 

Table 6.1.3: Summary of the Correctness Criteria 

The allowed range for the metrics is determined based on the assumption that the 

computed values are correct. Although, these values are considered to be correct, 

there is a deviation of 5% respectively 7% of the expected values. This leads to the 

conclusion that the values of the metrics in future validation have to be within these 

ranges, to consider the metrics as correct.  

Within the allowed range there are possible wrong values. If the metric is 

considered to be correct there is no guarantee that it is implemented correctly. As 

discussed in Chapter 3 and Section 5.2.2 testing in case of software cannot ensure 

the absence of defects. It is not able to validate every possible state of the software. 

The coverage is limited by the used test cases. However, if a test failed, the 

probability that a defect occurred is very high. 

According to the definition of statistical metamorphic testing (see Section 5.2.3), a 

metric is considered to be correct if it passes the majority of the statistical hypothesis 

tests. There is the possibility that it passed the majority of the tests, but for the failed 

tests the values have a very high deviation of the expected values. In this case, the 

metric passed the validation but further action may be required. The framework has 

to indicate the user to this behavior.  
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The next section describes the implementation of the prototype. The available test 

environment provides the functions for accessing and configuring OPM and storing 

the test results. 

6.2 Prototype 

The prototype of the Semantic Validation Framework is integrated into the test 

environment. For the prototype a new test scenario is built. A test scenario is 

represented by an XML file containing all the tasks which are performed. To start the 

semantic validation this scenario has to be started. Figure 6.2.1 shows the procedure 

of the prototype. 

 

 

Figure 6.2.1: Validation Process with the Prototype 

After the test scenario SemanticValidation.xml is started, it executes all the 

necessary tasks. These tasks include a preparation phase where the database is 

added and the monitoring profile is configured. The workload is started as well as 

data retrieval after the workload is finished. Additionally, the tasks contain the 

handling of the result files and the semantic validation. 

After the workload is finished and the data is stored in the result files, 

CheckCategory.java is executed. This java class is responsible to classify the actual 

values and compare the computed category with the reference category. The 

reference category is stored in the Reference File. This is an Excel file including all 

metrics, the reference class from the earlier classification, and correctness criteria for 

statistical metamorphic testing. Since, the result files of the test environment are 

Excel files, the functions to handle these files can be used for the reference file as 
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well. Further, changes in the reference file, for example, adding new correctness 

criteria, can be done with little effort. In Figure 6.2.2 an extract of this file can be 

seen. 

 

 

Figure 6.2.2: Extract of the Reference File 

For sort overflows in row 3 and DBSE427 in row 5 correctness criteria for statistical 

metamorphic testing are available. Criterion 1 for sort overflows is the behavior when 

the number of sorts causing overflows is increased. Criterion 2 are the values when 

the number of sorts causing no overflows is increased. The criterion of the metric 

when changing the size of the sort heap size is not saved in the Reference File at the 

moment because there is no explanation for the behavior (see Section 6.1.3). The 

only criterion in the file for DBSE427 are the values when changing the number of 

sorts. The upper bound is checked automatically within the prototype.  

The different values of the correctness criteria are separated by comma. For 

criterion 1 these values are the expected output for 50%, 75%, 100%, 150%, and 

200% workload, which have been computed in Sections 6.1.2 and 6.1.3. Criterion 2 

are the expected values for 0, 8, 16, 24, and 32 sorts, which are causing no 

overflows executed together with the basic workload. The process of validation using 

criterion 2 is explained in Section 6.1.3. The number of values is not limited to 5 

values per criterion. If more workload is executed, the expected values can be 

inserted in the corresponding cells at the right place. The values are sorted from low 

intense to high intense workload. The actual workload for the prototype is chosen to 

cover low and high intensity. 

Since the Reference File is used for all metrics to check the category, there are 

two more metrics in the figure. Both are not non-deterministic and they have no 

statistical metamorphic criteria. At the moment the prototype is only used to validate 

the metrics sort overflows and DBSE427. 
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If the metric passed the category check, the class SMT.java is called and the 

statistical hypothesis tests are performed. The criteria are read from the Reference 

File and split into the single values. These values are tested against the actual 

values received from OPM. If the majority of the actual values does not deviate for 

more than the allowed range (5% for DBSE427 and 7% for sort overflows) of the 

reference values, the metric passed the test (see Section 5.2.3). If it passes all tests, 

it is considered to be implemented correctly.  

For every tested metric an entry in the Semantic Validation Result File is created. It 

includes the overall result whether the metric is semantically correct. Further, it 

contains the results of the category check and of each statistical hypothesis tests. If 

a metric did not pass, the user can see which tests failed. Additionally the largest 

deviation of the expected value is stored and there is information about how many 

tests failed.  

In Chapter 7 the prototype is tested with a new version of OPM and the results of 

the thesis are discussed.  
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7 Evaluation 

The first part of Chapter 7 consists of the evaluation of the prototype, which is 

introduced in Section 6.2. The prototype is used to validate the metrics DBSE427 

and sort overflows for the latest version of OPM, which has been recently shipped to 

the customer. The results are investigated and necessary adaptations are presented. 

The second part is a discussion of the overall results of the thesis. The benefits and 

shortcomings of the chosen approach are pointed out and it is shown how the 

framework changes the testing process of OPM. 

7.1 Evaluation of the Prototype 

The prototype is tested on a new version of OPM. This new version is installed on 

the same server as the version used for deriving the correctness criteria. The version 

of the underlying DB2 system is the same but the version of the fix pack and the 

used instance differ. This setup is chosen to investigate how the prototype of the 

framework is behaving in a different environment. The test is used to check if the 

assumptions made for the framework are valid when the preconditions (OPM 

version, DB2 instance, DB2 fix pack version) change.  

The prototype executes the scenario semantic_sort_ms with 12 different 

parameter combinations. Each combination is run for 3 times to receive 30 values. 

According to the “rule of thumbs” mentioned earlier in Section 4.2.3, 30 values are 

enough to reduce the influence of outliers. This ends in 36 workload executions. One 

complete run of the prototype takes about 18 hours. With the created data it is 

possible to validate the correctness criteria for DBSE427 and sort overflows. Figure 

7.1.1 shows an extract of the result file for the semantic validation of the first test run. 

 

 

Figure 7.1.1: Results of the First Test Run 
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It can be seen that both metrics pass the category check but fail in each statistical 

hypothesis test. The maximum deviations of the expected values are about 47% for 

sort overflows and about 85% for DBSE427. This very high deviation indicates a 

defect in OPM, errors in the prototype, or wrong assumptions.  

For further investigations the data received from OPM is checked. The values in 

the result files do not fit to the expected values in the Reference File. All of the 

values, which do not fit are too small. This means that the overall result of the 

prototype, the metrics did not pass the tests, is correct for now. The values computed 

by OPM do not fulfill the correctness criteria developed in Chapter 6. Either there are 

defects in OPM or wrong assumptions have been made.  

To find out what causes the actual values to have this large deviation, further test 

runs are performed. These test runs are done to figure out how the system and the 

OPM version behave in the new environment. In this case, two different runs are 

accomplished.  

The first one executes the workload scenario just_wait_ms to find out what activity 

is caused by the new OPM. The result of this run is that instead of around 20 sorts 

per minute, OPM is performing only 16 sorts per minute. 

The second run executes the basic workload. This is done to see how many sorts 

per minute the system is doing for this workload. The result of this run serves as a 

basis to compute the expected values for the other workloads. As discussed in 

Chapter 6 the runtime of one loop of the scenario semantic_sort_ms differs between 

different DB2 instances. With the insights of the additional test runs these 

differences can be considered for the expected values. 

To find out the number of sorts per minute, the log file of the workload tool is 

checked. The log reveals 24 loops per minute. This means that around 112 sorts per 

minute should be monitored by OPM (24 loops multiplied by 4 sorts plus 16 sorts of 

OPM). The actual values are most of the time the half of the expected values. There 

are few which are exactly as expected.  

The sorts executed by the workload scenario are the same for every one minute 

time interval. This leads to the conclusion that the two sorts done by DB2 during the 

inner join are not performed in each loop. To prove this the two statements 

containing the inner join (see Figure 6.1.2) are replaced with four new statements, 
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which select two values from a table without joining tables and sort these values. For 

these statements DB2 does not perform any additional sorts.  

The result of this test is a stable distribution of the number of sorts per minute 

around the expected value of 112 sorts. It seems that the newer fix pack of the 

database system DB2 leads to different decisions about the execution process of 

inner joins.  

To confirm this assumption, the access plans for both instances of the SELECT 

statements, which are executing the inner joins, are examined. On the DB2 instance 

with the older fix pack version, the optimizer is using a merge scan join, which 

requires sorted input. This results in two sorts per statement, as described in Section 

6.1.1. On the instance with the newer fix pack version, the optimizer is choosing a 

nested loop join. This join does not require sorted input but there is the possibility 

that the data is sorted. This decision is done by the optimizer [32]. In Figure 7.1.2 the 

access plans are shown.  

 

 

Figure 7.1.2: Access Plans for the SELECT Statements 
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The sort operations are marked red. The access plan for the old version is on the 

left and contains two sorts. On the right is the access plan for the new version. In this 

case, the nested loop join has been chosen and no additional sorting has been done. 

This results in only one sort operation. 

The workload scenario has to be adapted to this new behavior. For further testing 

the scenario with the two replaced statements containing the inner joins is used to be 

independent on the database system. The correctness criteria are not influenced by 

this decision. Nevertheless, the changed number of sorts done by OPM itself has to 

be considered and the values in the reference files have to be adjusted.  

The prototype is tested again using the adapted workload scenario and the 

updated Reference File. Both metrics passed all tests. This means, they are 

considered to be implemented correctly in the new version of OPM. In Figure 7.1.3 

an extract of the semantic validation result file of this test is shown.  

 

 

Figure 7.1.3: Results of the Adapted Test Run 

The evaluation reveals that it is necessary to perform the additional test runs to 

calibrate the framework whenever a new OPM version is tested or a different 

environment is used. If these calibration runs are not done there is a high probability 

that the framework computes wrong results. The updated validation process with the 

prototype including the calibration can be seen in Figure 7.1.4. 

 

 

Figure 7.1.4: Validation Process of the Prototype Including Calibration 
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The calibration includes the two test runs mentioned above. One run to determine 

the action performed by OPM and the other run to find out how the workload 

behaves on the monitored DB2 instance. Based on the result of these test runs, the 

expected values are computed using the correctness criteria developed in Chapter 6 

and saved in the Reference File  

For example, if OPM is performing 10 sorts per minute and the test with the basic 

workload results in 100 sorts per minute, the correctness criterion for DBSE427 can 

be computed as follows: The expected value for the 50% workload is 100 sorts per 

minute divided by 2, because the workload is only half as intense as the basic 

workload, plus 10 sorts per minute done by OPM. The result of this computation is 

60 sorts per minute. Further values can be determined accordingly. At the moment 

the calibration is done manually and takes about one hour.  

The next section contains a discussion about the results of the thesis. It is 

demonstrated which goals have been achieved and where problems are present.  

7.2 Discussion 

The goal of this thesis is to develop a framework to automatically perform a semantic 

validation of the OPM performance metrics. The framework needs to be robust 

against changes in OPM. This means updates in the code should not affect the 

semantic validation process. No user interaction during the tests and a simple way to 

add and remove metrics for semantic validation are desired properties. Additionally, 

the tests have to be fast to be able to execute them on a regular basis, the results 

have to be meaningful and simple interpretable and it has to be possible to execute 

the semantic validation without much foreknowledge.  

The developed framework is able to validate the OPM performance metrics 

semantically. The result of the prototype evaluation shows that it is possible to 

receive assertions about the semantic correctness without user interaction during the 

validation. Manual steps are only necessary for the calibration runs. To start the 

semantic validation the according test environment scenario is launched. This can be 

done by inexperienced users. After the test run is finished the user checks the result 

file. This file offers assertions about the correctness for each tested metric. There are 
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information about the number of failed tests and the largest deviation of the expected 

value. If a metric did not pass, a description is provided, telling the user which test 

failed.  

The framework handles the whole OPM environment as a black box. Changes in 

the code of OPM do not influence the semantic validation in the large majority of the 

cases. Updates of OPM, altering the activity, which OPM is causing on the monitored 

instance, may lead to necessary adaptations of the reference values. As described in 

the section of the prototype evaluation, the number of sorts performed by OPM 

decreased to 16. In this case, the reference values have to be updated.  

To notice such changes, calibration runs are necessary when validating a new 

version of OPM or testing in a different environment, including DB2 version, DB2 

instance, server, etc.. The runtime of these calibration runs averages about one 

hour. If no calibration is done, it is more likely to receive wrong results which may 

lead to a large effort spent on diagnostics.  

At the moment, a run of the prototype takes about 18 hours to be finished. It is 

possible to perform the validation on a regular basis. Though, the prototype validates 

only two metrics at the moment, the workload which is executed can be used for 

more metrics without raising the runtime. The workload scenario semantic_sort_ms 

creates data for more than 25 metrics of the workload dashboard. Additionally, it 

covers many metrics of other dashboards. To validate these metrics correctness 

criteria have to be derived and the metrics have to be added to semantic validation.  

New metrics are added to semantic validation by creating a new entry in the 

Reference File. An entry consists of the name of the metric, the reference category, 

and correctness criteria. The reference categories are available for all metrics of the 

workload dashboard. For every other dashboard a classification of the metrics has to 

be done.  

To derive the correctness criteria profound knowledge of DB2 and the semantic of 

the metric is needed. The behavior of the metric for different workloads has to be 

predicted and this behavior has to be validated. This process requires experienced 

users but once an entry in the Reference File for a new metric exists, the validation 

can be done with little foreknowledge. 
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The framework is able to make assertions about the correctness of metrics. This is 

done with the method statistical metamorphic testing. In common, testing can 

indicate the user to defects. It is not able to prove the absence of them. If the 

framework detects wrong values the user has to do further investigations. The 

framework gives answers which metrics did not pass and which of the tests failed.  

Using static methods, introduced in Chapter 3, would lead to more detailed 

information about the detected defects than statistical metamorphic testing. Static 

methods make assertions for functions or for a model of the system and prove them 

to validate it. For this correctness proving no test run of the system has to be done. 

Contrary to testing, static methods are able to check every possible path through 

the system under test. To implement these methods detailed knowledge about the 

code is essential. For the static method model checking, a model of the system has 

to be built, which requires expert knowledge about the system. Changes in the code 

directly influence static methods. It is necessary to check whether their 

implementation is still valid, every time changes have been done.  

Another approach introduced in Chapter 3, which would provide more information 

about a found defect, is runtime assertion checking. For runtime assertion checking, 

assertions are implemented directly in the code and validated during runtime. This 

means that if a defect is detected it can be said exactly where this defect occurred.  

Its implementation needs a deep understanding of the code and how to derive 

assertions, which can prove the absence of errors. Another problem of directly 

implementing the assertions in the code appears when the code is modified. In this 

case, the assertions have to be modified and adapted to the new code. This cannot 

be done by inexperienced users. 

Using statistical metamorphic testing in the framework offers the possibility to 

perform semantic validation with little adaption effort when testing new versions of 

OPM. It is able to detect the existence of defects. It provides fast, uncomplicated and 

profound testing based on validated correctness criteria. These criteria contain the 

semantic of the metrics, the input, and the output.  

For deterministic metrics, which are DB2 parameters or values of the system, it is 

possible to decide exactly whether the metric is implemented correctly. Therefore, it 

is necessary that the user sets the parameter on the monitored DB2 instance to a 
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concrete value. This value and the system values are stored in the Reference File. If 

the stored value is not received by the test environment there is a defect in the 

computation of the metric.  

There are two shortcomings of statistical metamorphic testing. First, if a metric did 

not pass the tests it is necessary to do further investigations to find out what caused 

the metric to fail the tests. Second, if a metric passed all tests there is no certainty 

that there are no defects in the implementation of this metric.  

For the second shortcoming the framework offers information to the user, which 

helps to realize that the behavior of the metric might be wrong. It computes the 

largest deviation of the expected values for every metric. If this deviation is very large 

although, the metric passed the semantic validation (the majority of the tests have 

been successful), it is recommended to investigate further. The size of the deviation, 

which may indicate a defect, cannot be determined in general. It depends on the 

metric and on the used environment.  

Besides that, the framework is a significant improvement of the actual testing 

process of OPM. Without the framework, every test case to check if the received 

values are reasonable has to be done manually. It is impossible to achieve this for 

every metric and hence not done at the moment. Each workload has to be started 

and the right values have to be verified in the web interface. This process is time 

consuming and error-prone. The coverage of manual tests is very small compared to 

the possible number of metrics, which can be validated in one run of the framework. 

The former automated testing was limited to simple range checking of percentage 

values and detecting exceptions invoked by the data access functions. The 

framework extends this former testing to validate the values computed by OPM for 

every metric. OPM has to be tested on different platforms. Using the framework all of 

these tests can be done simultaneously. There are scripts available, which 

automatically install and configure OPM on servers. It is possible to implement a 

function in these scripts to start the semantic validation. This would lead to very little 

user interaction for validating OPM metrics.  

Overall, the framework improves the testing process for OPM. There is very few 

manual work needed to increase the number of test cases and tested metrics. It is 
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possible to run additional tests, which have not been executed earlier due to lack of 

time.  

The next chapter concludes this document. Further, it contains suggestions for 

possible future work. 
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8 Conclusion and Future Work 

Validation is an important part in the field of software development. Validation is 

necessary to develop software, which is reliable and successful. It is time consuming 

and occupies many resources, but it saves costs by detecting defects before the 

software is shipped to the customer. To reduce the impact of validation to the total 

costs of software development a fast and automatic validation process is required.  

The developed Semantic Validation Framework serves as tool for automatically 

validating the OPM performance metrics. It offers the possibility to validate these 

metrics without user interaction and provides understandable and meaningful results. 

The probability of finding defects is higher compared to the former validation process 

because the coverage of the metrics is much larger than with manual testing. More 

test cases can be done in the same amount of time. It is possible to run the 

framework on many servers at once.  

To be able to use the validation framework in praxis, the prototype has to be 

extended. Functions to validate the deterministic metrics and semi-deterministic 

metrics are needed. The test environment provides the functionality to execute 

commands on servers. This allows to automatically set DB2 parameters for the 

deterministic metrics. If these parameters are set to a certain value, the framework is 

able to determine with certainty whether the corresponding metric is correctly 

implemented. 

 It is possible to automatically make calibration runs and insert the reference 

values in the Reference File. Therefore, one run of the workload and one run to find 

out the activity caused by OPM have to be executed and the values of the metrics 

have to be received. Based on these values, the remaining values for the 

correctness criteria can be computed and stored in the Reference File. 

As mentioned in Chapter 7, there are scripts available to perform OPM installations 

and configurations automatically. The test environment offers commands to start its 

scenario from the command line. These commands can be integrated in the scripts. 
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This would mean that there is a way to fully automatically install, configure and 

validate OPM on several systems in parallel.  

The most important part to be able to use the framework on a daily basis is the 

development of correctness criteria for further OPM metrics. The first step to derive 

these criteria is the classification of the metrics of the remaining dashboards. 

Corresponding workload is needed to classify the metrics and to serve as input for 

the validation. The derived correctness criteria have to be validated and saved in the 

Reference File.  

Additional correctness criteria for DBSE427 and sort overflows can be derived to 

achieve more confidence about the correctness. In this thesis, only the intensity of 

the workload and one DB2 parameter are adjusted and used for validation. There 

are other possibilities. For example, changing the data in the used tables or 

combining different workload parameters.  

Overall, the framework is a powerful tool to detect defects in OPM. It supports the 

test team in increasing the quality of OPM by covering much more metrics and test 

cases than it is possible with manual testing. The used method testing is able to 

validate all categories of metrics. For deterministic metrics an assertion about the 

correctness can be drawn with guarantee. In particular, statistical metamorphic 

testing is capable to handle non-deterministic behavior. This is important because 

the large part of the OPM metrics behaves non-deterministic and this behavioral 

pattern is very difficult to validate manually.  
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