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Abstract

Within the last few years mobile phones have evolved from traditional commu-
nication devices to powerful computational platforms that are equipped with
a variety of sensors. For instance, a modern phone comes with a barometer,
a light sensor, a magnetic field sensor and a microphone. These sensors turn
mobile phones into powerful networked sensor platforms that can be used for
capturing sensor data. The captured data can be aggregated and analyzed to
monitor environmental phenomena such as noise pollution, for instance. Using
mobile phones for sensing is termed in the literature as Public Sensing (PS) and
has recently attracted increasing interest in the research community.
One big challenge of PS is the high energy consumption that it imposes on

mobile devices. Running a PS system can quickly drain the battery of a device,
which is a major concern that prevents people from participating in PS. To
tackle this issue, this thesis provides energy efficiency algorithms for two of
the most energy-intensive operations in PS. First, it introduces a novel query
distribution approach that significantly reduces the communication energy of
a device when receiving queries for sensor data from the infrastructure. This
approach limits the set of devices that receive a sensing query, in contrast to
existing approaches, which distribute queries to all available devices. As part of
this contribution, a novel position update protocol is presented that increases
the efficiency of existing protocols by sending updates opportunistically together
with other messages. Secondly, this thesis presents an efficient position sensing
approach that controls the positioning system of a mobile device such that the
energy for positioning is minimized. While existing PS systems assume that a
device’s positioning system is always-on, this approach temporarily disables the
positioning system of a device without reducing its sensing effectiveness.
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Deutsche Zusammenfassung

Innerhalb der letzten Jahre haben sich herkömmliche Mobiltelefone zu leistungs-
starken Kleincomputern weiterentwickelt, die mit einer Vielzahl an Sensoren aus-
gestattet sind. Ein modernes Smartphone verfügt beispielsweise über einen Ba-
rometer, einen Helligkeits- und Beschleunigungssensor, einen Kompass, ein Mi-
krofon sowie ein Positionierungssystem. Darüber hinaus ermöglichen die zuneh-
mend steigenden Datenübertragungsraten in Mobilfunknetzwerken eine schnelle
und dauerhafte Datenverbindung in die Infrastruktur.
Diese technischen Voraussetzungen ermöglichen es, Mobilgeräte als mobile

Sensorknoten zu nutzen, welche Umgebungsdaten aufzeichnen und in die In-
frastruktur übertragen. Beispielsweise können Audiosignale von mehreren geo-
grafisch verteilten Smartphones aufgezeichnet und zentral analysiert werden, um
Lärmquellen in einer Stadt zu identifizieren. Die Idee bereits vorhandene Mo-
bilgeräte als mobile Sensorknoten zu nutzen wird in der Literatur als Public
Sensing (PS) bezeichnet und ist in den letzten Jahren auf wachsendes Interes-
se in der Wissenschaftsgemeinde gestoßen. So ermöglicht PS das Aufzeichnen
von Sensordaten ohne vorherige Investitionen und stellt daher eine interessante
Alternative zu klassischen Sensornetzwerken dar, speziell in dicht besiedelten Ge-
bieten wie in Stadtzentren. Um ein PS-System zu realisieren müssen zuvor eine
Reihe von Herausforderungen gelöst werden, welche über das Forschungsgebiet
der klassischen Sensornetzwerke hinausgehen. Besonders kritisch ist hierbei die
Benutzerakzeptanz. Um Sensordaten für das PS-System bereitzustellen, muss
der Besitzer eines Mobilgeräts seine knappen Geräteressourcen zur Verfügung
stellen, ohne dafür einen unmittelbaren Nutzen zu erhalten. So verbraucht ein
Mobilgerät in einem PS-System Energie für das Aufzeichnen von Sensordaten,
für die Positionierung und für die Kommunikation mit der Infrastruktur. Meh-



14 Deutsche Zusammenfassung

rere Studien belegen, dass die dauerhafte Ausführung dieser Operationen die
Akkulaufzeit eines Mobilgeräts enorm verkürzt. Folglich sind Algorithmen zur
energieschonenden Ausführung dieser Operationen eine der Hauptansatzpunkte
um die Benutzerakzeptanz von PS-Systemen zu erhöhen.
Während sich bisherige Forschungsarbeiten weitestgehend auf Ansätze zur

Effizienzsteigerung beim Aufzeichnen der Sensordaten beschränken, wurde die
Optimierung der Datenübertragung und der Positionierung in PS-Systemen bis-
her nicht umfassend untersucht. Existierende Ansätze nehmen beispielsweise an,
dass der in der Infrastruktur operierende PS-Server mit den Mobilgeräten mit
Hilfe eines Broadcast-Ansatzes kommuniziert. So wird eine Anfrage an das PS-
System, die Sensordaten von einem bestimmten Ort anfordert, immer an alle
Mobilgeräte gesendet, ohne die geografische Verteilung der Geräte zu berück-
sichtigen. Dieser Ansatz skaliert jedoch nicht in PS-Systemen, die aus mehreren
Millionen Mobilgeräten bestehen, da jede Kommunikation mit der Infrastruktur
Energie auf den Geräten verbraucht. Des Weiteren nehmen existierende PS-
Systeme an, dass Mobilgeräte zu jeder Zeit ihre aktuelle Position kennen, um
die aufgezeichneten Sensordaten zu georeferenzieren. Mehrere Untersuchungen
stimmen jedoch darüber ein, dass eine dauerhafte Positionierung die Akkulauf-
zeit eines Mobilgeräts auf wenige Stunden reduzieren kann.
Diese Dissertation erweitert den Stand der Wissenschaft in der PS-Forschung,

indem sie energieeffiziente Algorithmen für die folgenden offenen Probleme vor-
stellt: (1) Einen Ansatz zur effizienten Verteilung von Sensordatenanfragen an
Mobilgeräte. Dieser Ansatz identifiziert für jede Anfrage eine begrenzte Teilmen-
ge an Mobilgeräten, welche diese Anfrage erhalten. Im Vergleich zu existierenden
Verfahren kann somit bis zu 50% der Kommunikationsenergie auf Mobilgeräten
eingespart werden. Zudem wird im Rahmen dieses Ansatzes ein effizientes Po-
sitionsupdateprotokoll entwickelt, welches die Energieeffizienz bestehender Ver-
fahren um bis zu 70% steigert. (2) Einen adaptiven Positionierungsalgorithmus,
welcher die Positionierung eines Mobilgeräts so optimiert, dass die Positionie-
rungsenergie um bis zu 90% reduziert wird, ohne jedoch die Effektivität des
PS-System hinsichtlich der Menge der gesammelten Sensordaten zu reduzieren.
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1 Introduction

1.1 Motivation

Within the last few years mobile phones have evolved from traditional commu-
nication devices to powerful computational platforms that are equipped with
a variety of sensors. For instance, a modern phone comes with a positioning
sensor, a barometer, a light sensor, a magnetic field sensor and a microphone.
Moreover, fast communication technologies like 3G/4G networks together with
cheap flat rates are available, which has led to an “always-on” usage pattern
where mobile phones are constantly connected to the Internet. These trends ef-
fectively turn mobile phones into powerful networked sensor platforms in which
each device can act as a sensor node that reads sensor data. The captured data
can be aggregated and analyzed to monitor some environmental phenomenon,
just like in traditional sensor networks.
Using mobile phones for sensing is referred in literature as “Public Sensing”

(PS) [BWD+11; PDR11; BDR12a] and has attracted an increasing interest in
the research community within the last few years. The fact that PS can be used
on-demand to gather sensor data from large geographical areas without any
big upfront investments makes it an attractive alternative to classical sensor
networks. This is especially true in densely populated areas such as urban
centers, where typically a large number of mobile devices are available. The
general vision of PS is to be able to answer ad-hoc queries for sensor data – e.g.,
“what is the current noise level in front of the library” – in a timely, efficient
and accurate manner. To realize this vision, a number of challenges have to
be tackled that are beyond the scope of traditional sensor network research.
Obviously, the most critical requirement for a wide scale deployment of PS
systems is user acceptance. In order to contribute sensor data, a mobile device
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owner has to spend his scarce device energy without getting a direct benefit in
return. More precisely, a PS system typically requires a device not only to read
sensor data but also to run a positioning system to geo-reference the captured
data. Additionally, a device needs to communicate with the infrastructure in
order to receive queries for sensor data and to upload sensor data. Several
studies [BBV09; KLG+09] agree that these operations are very energy-intensive
and can significantly shorten a mobile device’s battery lifetime. Hence, a major
prerequisite for reaching user acceptance is that a PS system performs these
operations in an energy-efficient manner. If this prerequisite is not fulfilled, a
PS system lacks user support. As a result, the system has only very limited
geographical coverage.

So far, first approaches exist that optimize the energy efficiency of PS systems
by decreasing the energy for reading sensor data. For this purpose, they provide
algorithms to coordinate sensing operations [WDR10; PDR11; STZ12], which
try to avoid redundant sensor readings. While these approaches focus on sens-
ing efficiency, the optimization of two other energy consuming operations have
been neglected in existing PS systems, namely query distribution and device po-
sitioning. On the one hand, existing solutions assume that the PS server, which
coordinates the sensing process, communicates with the devices in a broadcast
fashion. As a result, sensing queries that contain sensing instructions for mobile
devices are sent to all devices, not taking into account if a device is actually
well suited to collect data for a given query. Considering that a PS system may
contain several million devices, this approach does not scale and generates a big
energy overhead on devices when receiving queries. On the other hand, existing
solutions assume that mobile phones continuously fix their position, e.g., with
the Global Positioning System (GPS), to geo-reference the sensed data. How-
ever, it has been shown that this approach drains a device’s battery very quickly
[KLG+09].

This thesis advances the current state of the art in PS research by provid-
ing energy efficiency algorithms for query distribution and device positioning.
Hence, the contribution of this thesis is twofold: First, it provides an efficient
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query distribution algorithm that identifies for a given sensing query a limited
target set of mobile devices that should receive this query. One part of this ap-
proach is a novel position update protocol that increases the efficiency of existing
protocols by sending updates opportunistically together with other messages.
Secondly, this thesis introduces an efficient position sensing algorithm that

controls the positioning system of mobile devices such that positioning energy
is reduced significantly while not decreasing the effectiveness of sensing.

1.2 Background on Public Sensing

To get a thorough understanding of the technical contributions of this thesis,
which are elaborated in the next section in detail, it is necessary to be famil-
iar with the general idea of PS and the research that has been done in that
area. For this purpose, Section 1.2.1 gives a short overview of PS in general,
before Section 1.2.2 introduces some concrete examples of PS systems that have
been already deployed. Since the contributions of this thesis are agnostic of
any specific sensing application, Section 1.2.3 introduces the vision of a generic
PS system, which follows the idea to have a single PS system that can be used
to collect any kind of sensor data. Subsequently, Section 1.2.4 introduces the
opportunities and the challenges that arise with PS, which lead to the central
research goal of the thesis, which is energy efficiency in PS. To this end, Sec-
tion 1.2.5 gives an overview of energy consuming operations in PS and how they
were addressed by researchers so far.

1.2.1 Overview

The basic idea of PS is to opportunistically collect sensor data from mobile de-
vices that are carried around by people on their daily routines. Considering
the fact that nowadays almost every person carries a mobile device, PS enables
a cheap and fast way to acquire environmental data from a large geographical
area without requiring any deployment and maintenance of sensor nodes. The
enabler for this new paradigm is the technical improvement in the hardware of
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mobile phones, which are nowadays equipped with a large variety of sensors that
can be used for data collection. For instance, Apple’s iPhone 6 is equipped with
an ambient light sensor, a proximity sensor, dual cameras, a GPS sensor, an ac-
celerometer, a microphone, a barometer and a gyroscope [App14]. Additionally,
external sensors can be attached that further increase the number of available
sensors on a device [BSC+12], while new devices like tablets or wearables (e.g.,
smart watches or glasses) enjoy increasing popularity and also come with inte-
grated sensors that can be used in PS systems.1 Hence, the number of devices
that can be used to collect data for PS continues to increase.
The opportunities and challenges that arise from PS were first characterized

by Abdelzaher et al. in their visionary paper “Mobiscopes for Human Spaces”
[AAB+07] in 2007. Since then, a large number of research papers have been
published around this idea, which has been termed “Public Sensing” [BWD+11;
PDR11; BDR12a], “Public Urban Sensing” [CHK08] or “Mobile Phone Sens-
ing” [LML+10]. Soon after identifying the opportunities and challenges of PS
[CHK08; CEL+08], first real-world prototypes began to show its practical feasi-
bility [ELK+08; TRL+09]. Within only a few years, a large number of different
PS applications were deployed (see the next section for an overview).
The general idea of using mobile devices to capture sensor data comes in

two different flavors which are opportunistic sensing [CEL+06] and participatory
sensing [BEH+06]. The opportunistic approach is based on the idea to collect
sensor data in the background without requiring any interaction by the device
owner. For instance, a microphone sample is automatically recorded by a device
when it passes a certain location without the device owner even noticing that
data was captured. In contrast, the participatory approach prompts the user
for interaction during the data collection. For instance, the PS system could
ask the user to take a picture when reaching a certain place. This thesis only
considers opportunistic sensing. Hence, when using the term PS in the following,
we consider systems that do not require any interaction from the user.

1For simplicity, all devices that are suitable for PS will be referred for the rest of this thesis
by the general term mobile devices.
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1.2.2 Applications of Public Sensing

In general, the concept of PS can be applied in many different areas. To get
an idea of these application domains, the following list gives an overview of PS
systems that were presented in the literature so far. However, this is not a
complete list of all deployed PS systems since the number of such systems is
large and is still increasing. A more detailed overview of existing PS systems is
given by Lane et al. [LML+10] or by Khan et al. [KXA+13].

Environmental Monitoring. The PS systems in this category use sensors of
mobile devices to observe and analyze environmental phenomena. One of the
most prominent examples in this area is the idea of using PS to create noise maps
[RCK+10; DSJ13]. For instance, the EarPhone system [RCK+10] collects noise
pollution readings from mobile devices to construct a noise map for a predefined
urban area. While these approaches utilize the built-in microphone on a mobile
device, other phenomena can only be observed by attaching external sensors
to the device. The GasMobile system [HSS+12] creates ozone pollution maps
by using external ozone sensors that are attached to HTC Hero devices. The
Sundroid system [FKS+11] measures UV radiation with a dedicated sensor unit
that is connected to a smartphone. The collected data can be aggregated for
research studies or to warn the user if a critical amount of radiation for his body
has been reached.
Apart from using mobile phones for sensing, other approaches use dedicated

mobile sensing platforms for data reading. For instance, MAQS [JLT+11] uses a
hardware system that includes a temperature, CO2, humidity and a light sensor.
This system is carried around by people in order to collect indoor environmental
quality data. In contrast, Hasenfratz et al. [HSW+14] use mobile sensor nodes
that are installed on top of public transport vehicles in order to collect data
about ultrafine particles in the air.

Traffic Analysis. One other domain in which many PS systems have already
been successfully deployed is the area of traffic analysis. The approaches in
this field can be summarized as follows: Mobile devices that are inside vehicles
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record trace data with the help of a positioning system such as GPS. This data
is uploaded to a central server where it is analyzed and information about the
current traffic state is inferred.
For instance, the VTrack system [TRL+09] estimates the travel time of a

vehicle by aggregating position data from multiple devices. To calculate the
travel time, it tries to estimate which road segments on the future route are
delay-prone and accordingly adjusts the estimated travel time. Quite similar,
Zhou et al. [ZZL12] propose a system that predicts bus arrival times. Rather
than using dedicated hardware, they only utilize the bus passengers’ mobile
phones for analyzing bus travel times, which turned out to result in very accurate
estimations for the arrival times. Instead of only observing traffic, other systems
use the built-in sensors of a mobile device to monitor road surface conditions.
The Nericell system [MPR08], for instance, uses the sensors of a mobile phone to
detect potholes, bumps, braking and honking while driving. The Pothole Patrol
[EGH+08] uses deployed hardware in cars that form a mobile sensing system.
This system detects potholes and uploads the data to a central server, where
the found data is clustered in order to reliably identify potholes. In contrast,
the GasStation approach [ZWZ+13] tackles a quite different challenge. Using
reported trajectories from GPS-equipped taxicabs, the approach detects visits
to gas stations and uses this data to predict waiting times at gas stations.

User-centric Sensing. Apart from PS systems that observe phenomena over a
large geographical area, there is a large number of sensing approaches that only
monitor data that is concerned with the mobile device’s owner. For instance,
the StressSense system [LFR+12] recognizes stress from human voices with the
help of microphones that are embedded in smartphones. Quite similar, the
EmotionSense system [RMM+10] uses mobile phone sensors to sense individual
emotions and activities. The goal of this platform is to easily support social and
psychological experiments. Other systems in this area provide sleep monitoring
[CLC+13] by analyzing smartphone usage and sensors, or they assists elderly
people by implementing a fall detection system [DBY+10] that is based on mobile
phone sensor data.
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Indoor Mapping. While location-based applications like restaurant finders are
already popular in outdoor scenarios, one problem that prevents the deployment
of such applications for indoor scenarios is the lack of publicly available indoor
floor plans. In general, the creation of indoor floor plans is a manual and labor
intensive task. Therefore, several PS-based systems were proposed that auto-
matically derive indoor floor plans from pedestrian traces that were captured
and uploaded by mobile devices. These approaches either differ by the type of
positioning system that is used on the device [SCC12; JXP+13] or by the floor
plan derivation algorithm that is used for creating the map [AR12; PBD+14]. A
concrete example of such system is given in Section 1.4, when we have a closer
look at the ComNSense project, in which the work of this thesis is embedded.

1.2.3 Generic Public Sensing Systems

The systems introduced in Section 1.2.2 all have one thing in common: They
were built for only one specific sensing application. For instance, the noise
mapping system provides algorithms to extract audio signals from mobile devices
but is not applicable for air quality monitoring. Hence, if a mobile device should
take part in more than one sensing campaign, this would require that it runs
an individual sensing application for each sensing system. Furthermore, each
sensing application would communicate with its individual PS server in the
infrastructure. Given the large variety of PS applications, this is obviously not
a scalable solution. Moreover, device users are in general rather reluctant to
host a large number of different PS applications on their devices.
To overcome this issue, several approaches [WDR09; TKT+10; ABC+13;

CFB+13] propose to have only one PS system that comes with a generic query
interface. In such a system, only one sensing application runs on the device and
is responsible for reading all kind of different sensor data. Sensor data applica-
tions like air quality monitoring can then be developed on top of this system and
can query the generic PS system for the required sensor data. The architecture
of such a system is as follows (see Figure 1.1): A server in the infrastructure
takes sensing queries from sensor data applications, which it then distributes to
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Figure 1.1: Architecture of a generic Public Sensing system.

mobile devices. If a device has successfully captured the queried data, it sends
the sensor data back to the PS server where it is returned to the sensor data
application.
The concepts that are introduced in this thesis follow the idea of such a generic

PS system. This has the advantage that they can be applied in a large number
of sensing scenarios and not just in a specific system. Hence, we will have a
more detailed look on the concepts of such a system in the system overview that
is given in Chapter 2.

1.2.4 Opportunities and Challenges

Soon after the idea of collecting sensor data with mobile devices was proposed,
researchers started to realize that this new way of acquiring sensor data not
only brings opportunities but also raises many challenges. In the following, we
will first analyze the advantages of PS over traditional sensor networks and then
have an overview of the challenges that PS imposes.
The traditional way of collecting environmental data is the deployment of a

sensor network consisting of sensor nodes. Although there is a large body of
research on this topic (see [ASS+02] and [RM04] for an overview), there are still
several challenges that need to be tackled: Initially, sensor nodes have to be
deployed, which requires substantial manual effort. Furthermore, sensor nodes
have to be maintained. For instance, sensor nodes are typically powered by
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batteries, which have to be replaced manually. Finally, the sensor nodes’ limited
communication range imposes geographical constraints on the deployment of the
nodes, since data is typically communicated to a sink node via ad-hoc forwarding
between the nodes [AK04].
In comparison, PS inherently overcomes many of these limitations. Leveraging

existing mobile devices avoids the deployment of sensor nodes, since mobile de-
vices are already available in the general public, especially in densely populated
areas such as urban centers. Hence, no big upfront investments are necessary to
deploy a PS system as devices are maintained by their owners. Furthermore, a
mobile device typically comes with a fast communication uplink, which enables
the upload of sensor data from almost everywhere.
The aforementioned characteristics of PS show that the deployment of a large-

scale PS system is a very promising solution to foster the collection of environ-
mental data. However, so far no PS system is available that has enough partic-
ipating devices to reach high geographical coverage. This can be attributed to
the fact that there are still many open problems that discourage people to run
a PS application on their devices. The following list details three of the major
concerns that are still open research questions:

• The privacy aspect is inherent in PS systems. Uploading geo-referenced
sensor data to a PS server also means that sensitive location information
of a user is revealed. First solutions to tackle this problem are already
available [CRK+11; DS13; AK14; GGP14], while research on finding an
easy to deploy solution is still ongoing work.

• Giving up privacy is usually a restriction that people do not accept, un-
less they get something in return [KH08]. However, in PS systems a user
typically does not receive a direct benefit for contributing the resources
of his device to the data collection process. Hence, incentive mechanisms
are needed in order to convince people to participate. For instance, the
collected sensor data can be made accessible to the people who collected
the data. Projects like OpenStreetMap [OSM] show that many people are
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willing to voluntarily contribute data to support a public project. However,
the number of such contributors is small and not sufficient to run a large-
scale PS system. Finding a more general incentive mechanism for PS is still
ongoing work, though a number of papers have already proposed first ap-
proaches towards reaching this goal [YXF+12; LC13; AKS+13; TTO+14].

• Another open problem in PS is energy efficiency. The price for the versa-
tility of modern mobile devices is their high energy demand, i.e., a typical
smartphone runs out of battery within a few days. Very energy-intensive
applications can exhaust the battery even within a few hours. As result, a
user is typically aware of energy-draining applications and naturally tries to
avoid them. Energy efficiency is therefore a prerequisite for the deployment
of PS systems, otherwise device owners are not willing to participate.

This thesis focuses on the last of these research questions by providing algorithms
and concepts to increase energy efficiency in PS systems. To have a deeper
understanding of the different aspects that are related to energy efficiency, we
elaborately look in the following section on different approaches for achieving
energy efficiency in PS.

1.2.5 Energy Efficiency

To increase energy efficiency in PS systems, the research community is focusing
on the design of energy-efficient algorithms for all tasks a mobile device has to
execute in a PS system. The following list addresses each of these tasks in detail
and shortly describes the solutions that were proposed so far.
Data Sensing. One central task that a mobile device has to execute in PS is the
reading of sensor data. Depending on the sensor that the device uses for reading
sensor data, this can be very energy consuming. So far, several approaches have
been proposed to reduce the energy spent for data sensing. To begin with, Lane
et al. propose to delay data sensing until the device wakes up from sleep mode
triggered by some other process [LCZ+13]. This reduces energy consumption
since a device does not need to wake up from sleep mode to read sensor data.
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Another set of approaches enables energy savings by completely avoiding the
sensing operation. This can be achieved by offloading the sensing to fixed sensors
that are embedded in the environment [REL+14], or by coordinating the mobile
devices to avoid sensing redundant data [WDR10; PDR11; STZ12]. While all
of these approaches do not require any changes on a device’s hardware, it has
been shown that the use of a dedicated low-power processor is another way to
significantly increase energy efficiency of sensing [PLL10; RPK+12].

Data Uploading. After successfully reading sensor data, a mobile device has to
make the data available by uploading it to the PS server that is deployed in the
infrastructure. The size of this data can range from a single temperature value
to a high resolution image. Hence, energy-efficient sensor data upload strategies
are an important aspect to increase overall energy efficiency. For uploading big
amounts of sensor data, it has been shown that waiting for the availability of
a WiFi connection can be much more energy-efficient than uploading the data
immediately via the 3G network [LHZ+13]. Furthermore, the upload of sensor
data can be fostered by providing rewards to people, which need to sacrifice
their device energy for uploading [CHH14]. Other research tackles the question,
when sensor data should be uploaded to let the PS server track the changes
of a certain phenomena (e.g., only upload sensor data if the local temperature
changes). For instance, energy efficiency can be increased by scheduling the
sending of update messages for sensor data with distance-based or prediction-
based update algorithms [LR01; MPF+10; FHR12].

Query Distribution. To know where to read sensor data and which sensor
should be used for reading the data, a mobile device needs to be aware of the
sensing queries that are currently present in the PS system. As we have seen
in Figure 1.1, such a query is issued from a sensor data application to the PS
server, which then distributes it to the mobile devices. The receiving of a query
forces a device to power up its communication interface. However, it has been
shown that receiving data consumes a significant amount of energy on a device,
even if the payload of the data packet is very small [BBV09].
Most existing PS systems perform query distribution by simply broadcasting
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a sensing query to all devices that participate in the PS system. Obviously,
this simple strategy wastes energy for devices that are not needed for sensing,
for instance, due to their geographic distance to the sensing range of the query.
This is especially in large-scale PS systems a problem, which may receive several
sensing queries per second. In such a system, the battery of a mobile device
would quickly drain because the device is kept busy receiving sensing queries.

First solutions try to tackle this problem [RES10; RNL11; CFB+13] by ana-
lyzing historic information about a user’s movement pattern in order to extract
places were users regularly reside. Knowing where users spent most of their
time can help to infer which devices are likely to capture data for a sensor query
that requires data from a certain location. However, these approaches require
that a user agrees to store a privacy critical user profile of its movement history.
Furthermore, they do not consider the energy that is needed on the devices to
generate these profiles and to keep them up-to-date on the PS server. To over-
come these drawbacks, one contribution of this thesis is an approach for the
efficient distribution of sensing queries. This approach works without the need
for analyzing regularly visited places and includes a dedicated position update
protocol. This protocol is designed such that the energy for providing position
information from devices to the PS server is minimized. Rather than going into
detail about this contribution at this place, we have a detailed look on it in the
next section.

Device Positioning. Mobile devices require a positioning system to geo-
reference sensor data and to check if sensor data is queried at a device’s current
position. Existing PS systems assume that a device constantly compares its cur-
rent position with the locations from which sensor data is queried. If the device
comes close enough to one of these locations, it reads data for that query. These
approaches require continuous positioning, which is a energy consuming opera-
tion [KLG+09] that can exhaust a device’s battery within a few hours. Hence,
device positioning is an open problem which will be tackled by this thesis, as we
will see next.
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1.3 Contributions

The main contribution of this thesis is to provide energy-efficient optimizations
for two of the above identified open problems, namely query distribution and
device positioning. As we will see later on, one prerequisite to implement an
algorithm for efficient query distribution is to know the spatial distribution of
the mobile devices. For this purpose, a device can run a position update protocol
that periodically sends position updates to the PS server. However, existing
position update protocols consume too much energy for sending these updates.
To tackle this issue, one further contribution of this thesis is an opportunistic
position update protocol that increases the energy efficiency of prevailing position
update protocols.
In the following, all contributions of this thesis are described in more detail.

1. Opportunistic Position Update Protocol. This thesis advances the
state of the art in position update protocols by introducing an opportunistic
extension to existing update protocols, which reduces the energy consumption
of these protocols significantly. This approach is motivated by the fact that the
cellular network interface of a mobile device has a non-linear power characteris-
tic, i.e., the power states of the mobile network interface have certain transition
delays that impact the energy consumption of individual messages. For instance,
sending two messages directly after each other is more efficient than sending the
second message one minute after the first message. Existing update protocols are
optimized under the assumption that the energy consumption for different po-
sition update messages is equivalent. In contrast, the presented approach takes
the energy characteristics of the mobile network interface into account which
allows for an energy-aware scheduling of position updates. This thesis shows
that the energy consumption on the mobile device can be reduced significantly
using an opportunistic update strategy, which sends position updates together
with messages of other applications. In order to develop this protocol, the fol-
lowing contributions are made: (1) An empirical study is conducted that shows
that communication patterns of mobile devices are in general well-suited for an
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opportunistic update strategy. (2) A Markov decision process is presented that
determines the optimal time to schedule the transmission of position updates.
(3) The evaluation results show that this opportunistic protocol improves the
energy efficiency by up to 70% in comparison to existing update protocols. Main
parts of this contribution have been published before in [BDR13b].

2. Efficient Query Distribution. This thesis introduces an efficient sensing
query distribution algorithm that forwards a given sensing query to only those
devices that are likely to actually sense data for that query. This reduces the
overall energy consumption of the PS system significantly, since the communica-
tion overhead is reduced for all devices that do not receive the query. In contrast,
existing approaches broadcast sensing queries to all devices in the system and,
hence, impose energy overhead on every device. For instance, consider a query
for sensing the temperature and noise level at the Big Ben in London within
the next ten minutes. Broadcasting this query to all mobile devices in London
certainly involves many devices which cannot reach Big Ben within the given
deadline and, hence, waste energy resources on these devices.
To avoid this waste of energy, the proposed approach utilizes the information

that is provided by the opportunistic position update protocol. Having access
to location information of the mobile devices, the PS server can choose a subset
of devices that are well-suited for receiving a given sensing query. However, this
selection is non-trivial because the server does not know the future movement
paths of the devices. Hence, the server cannot be perfectly sure that a device
actually comes close enough to sense data for a query. To tackle this issue, the
query distribution algorithm utilizes a probabilistic sensing model. This model
estimates the sensing success of each device by taking into account all possible
movement paths of a device. Based on this model, the presented algorithm
selects a minimum set of devices that should receive a given query such that
the chances of sensing data for this query are not decreased. The evaluations
show that this optimization reduces the energy consumption on mobile devices
by up to 50% compared to an implementation that broadcasts a given sensing
query to all available mobile devices. Main parts of this contribution have been
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published before in [BDR13a].

3. Efficient Outdoor Position Sensing. In existing PS systems, devices
continuously track their position to know when to start sensing. Hence, a device
has to continuously query its GPS sensor when moving outdoors, which is not
acceptable in terms of energy consumption. This thesis proposes an efficient
positioning approach that significantly reduces positioning energy by only selec-
tively turning on the GPS sensor. For this purpose, it calculates the points in
time when the GPS sensor should be queried for a new position. The challenge
is to preserve the sensing effectiveness of the PS system since the reduced num-
ber of position fixes might result in less data readings. The evaluation of the
approach shows that it reduces GPS positioning energy by up to 90% without
any reduction in sensing effectiveness. Main parts of this contribution have been
published before in [BWD11], [BWD+11] and [BDR12a].

4. Efficient Indoor Position Sensing. For indoor positioning, devices typi-
cally rely on an inertial positioning system (IPS), as GPS is indoors not available
and infrastructure-based positioning methods are deployed only very scarcely.
However, running an IPS is highly energy consuming and drains a mobile device
battery quickly. In contrast to a GPS sensor, an IPS cannot be easily temporar-
ily disabled, since it requires an absolute position every time it is started. To
increase the energy efficiency of positioning also indoors, this thesis proposes
an approach that overcomes this restriction. More precisely, it introduces an
indoor repositioning algorithm that allows to temporarily turn off the IPS. This
is enabled by so-called WiFi anchor points that help to reactivate the IPS by
providing new initial positions. The evaluation shows that this approach reduces
the energy for indoor positioning by up to 25% compared to a naive position-
ing system that only relies on continuous IPS positioning. Main parts of this
contribution have been published before in [BPD+14].
Note that for all above listed publications, the idea, the concept and the

implementation were developed by the author of this thesis. Moreover, large
parts of the papers were written by the author, while Frank Dürr and Kurt
Rothermel contributed to the refinement and presentation of the concepts.
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Figure 1.2: Derivation of an indoor floor plan from indoor pedestrian traces.

1.4 The ComNSense Project

Most of the contributions of this thesis where motivated by the ComNSense2

research project, which is funded by the German Research Foundation (DFG).
To give some background information on this project, this sections introduces
the project in more detail.
The goal of ComNSense is to develop a universal method for the automated

generation of interior models with the help of mobile devices. The basic idea
is to opportunistically collect indoor traces from devices that are carried and
owned by the general public to automatically derive indoor floor plans. Since
these traces are in general noisy and drift-based, an indoor grammar for building
interiors is used to increase robustness of the data acquisition and to improve
the resulting floor plan in terms of completeness and accuracy. The MapGE-
NIE approach [PBD+14] shows how this idea enhances the indoor mapping pro-
cess significantly, i.e., produces detailed indoor floor plans from only a small
set of traces. Figure 1.2 shows the derivation of an indoor floor plan in two
different versions: Only relying on information that is provided by trace data
(Figure 1.2a) and using the information that is stored in the indoor grammar
to enhance the floor plan generation (Figure 1.2b). The figure shows that the

2http://www.comnsense.de

http://www.comnsense.de
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indoor grammar obviously enhances the generated floor plan significantly. In
numbers, the grammar-based approach identifies up to four times more rooms
in a building than the purely trace-based approach, while at the same time it
achieves a consistently lower error in the size of detected rooms.
Another goal of ComNSense is the energy-efficient collection of the indoor

traces that are needed for deriving the indoor floor plan. As in a general PS
approach, ComNSense relies on the acceptance of the device owners, who are
otherwise unwilling to contribute indoor traces to the system. Based on this
motivation, significant parts of this thesis were developed. However, the contri-
butions of this thesis are not specific to indoor mapping. Only the proposed in-
door positioning approach is evaluated with the help of the ComNSense system.
All other contributions were developed independently of the indoor mapping
scenario.

1.5 Structure of the Thesis

The remainder of the thesis is as follows: Chapter 2 gives a detailed description
of the system architecture upon which the technical parts of this thesis built.
This also includes a system model, which defines the assumptions that are made
about each component of the system. Chapter 3 contains the definition of a
basic sensing system, which serves as reference system for evaluating the ef-
ficiency of the contributions. Chapter 4 introduces an opportunistic position
update protocol, which is a prerequisite for the efficient query distribution that
is subsequently presented in Chapter 5. Chapter 6 introduces an efficient posi-
tion sensing approach for outdoor scenarios, before Chapter 7 shows how this
approach can also be applied in indoor scenarios. Finally, Chapter 8 concludes
this thesis and gives an outlook on future work.
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2 System Overview

The goal of this chapter is to give an overview of the system model and the
architecture of the PS system. It starts with the presentation of the system
model in Section 2.1 and the definition of the query semantics in Section 2.2.
Subsequently, Section 2.3 outlines the architecture of the PS system, which
includes all components that are presented in this thesis and their relations with
each other.

2.1 System Model

To define the system model on which the contributions of this thesis rely, this
section includes all assumptions that are valid throughout the rest of this thesis.
The system model includes three components:

1. A set of mobile devices, which read sensor data.

2. The PS service that coordinates the sensing process and communicates
with the devices.

3. A mobile communication network, which allows the devices and the PS
service to communicate with each other.

In the following, we have a detailed look on the assumptions that are made
about each of these components.

2.1.1 Mobile Devices

Mobile devices are the key enabler for every PS system, since they collect sensor
data and provide this data to the system. In general, a mobile device is carried
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by its owner, who is moving with the device along the routes of his daily routine.
Neither the speed nor the direction of this movement can be influenced by the
system. In general, the movement of people is constrained by an underlying
spatial structure. Depending on whether the device owner is outdoors or indoors,
the movement path of a device is either restricted by a road graph or by an
indoor floor plan. We assume that both are known by the PS system, as will be
described later on in more detail.
A mobile device runs the PS application that executes sensor readings and

communicates with the infrastructure. This application runs as a background
process on the device and does not require any user interaction. For collecting
sensor data, we assume that a device is equipped with a set of sensors, for
instance, a microphone, a thermometer or a barometer. Each sensor can only
read a certain type of sensor data.
For positioning, we differentiate between the cases when the device is moving

outdoors or indoors. For outdoor positioning, we assume that a mobile device
is equipped with a GPS sensor, which is currently the most accurate outdoor
positioning system available in mobile devices. The position information that
a device obtains from the GPS sensor is referred to as position fix. In general,
a position fix is subject to a location error, which is around 8m [Zan09]. This
accuracy would be sufficient considering most PS scenarios. To simplify matters,
the position error of GPS is neglected in the description of the technical concepts
of this thesis. Nevertheless, all concepts in this thesis could be extended to
take the GPS error into account by modeling a device position as a probabilistic
uncertainty area, for instance with the help of a Gaussian distribution [LWG+09].
For indoor positioning, we assume that a device uses an inertial positioning

system (IPS) to track its position indoors. Since inertial positioning in general
suffers from drift errors that accumulate over time, we assume to availability
of a foot-mounted inertial measurement unit that detects steps with the help
of a Zero-Velocity-Update protocol [Fox05]. Furthermore, knowledge about the
outline of the building exterior is available that can be used to align IPS traces
[PBD+14]. Moreover, we require that a device has a WiFi interface to measure
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the signal strength of WiFi signals.

2.1.2 PS Service

The PS service operates in the infrastructure and runs distributed over several
PS servers that are connected via a wired network. Each PS server is responsible
for the mobile devices in a certain geographical area, which is referred to as the
server’s service area. To get a better idea of such a service area, we could think of
a PS server whose service area covers the inner city of Stuttgart, which roughly
has an area of 15 km2. Since geographical load balancing is not subject of this
work and has been investigated intensely in other works [XEC+07], we make no
assumptions about the geographical partitioning of the service areas of different
PS servers. To simplify the description of the concepts of this thesis, we follow
the approach of other authors [WDR10; PSA+13] and describe the concepts in
this thesis when only considering one PS server. Hence, we assume that all
mobile devices move within the service area of this server and that all sensing
queries are inside of this service area.
To communicate with the mobile devices in the service area, a PS server uses

a mobile communication network, which is described next.

2.1.3 Mobile Communication Network

In order to exchange control and sensor data between the PS server and the
mobile devices, a PS system requires a wireless communication network. How-
ever, it cannot be assumed that the entire service area is covered by accessible
WiFi networks. Hence, to ensure high network coverage and availability, we
assume that the server and devices communicate via a cellular mobile network
like UMTS or LTE.
Sending and receiving data consumes energy on the mobile device. To char-

acterize a device’s energy consumption for mobile communication, we follow the
empirical results given in [BBV09; LZZ11; DB12]. They show that the energy for
transferring small pieces of data is negligibly small in comparison to the energy
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overhead that is needed to power up and down the communication interface.
The details of this energy model are not explained at this point, since they are
introduced along with the position update protocol in Chapter 4.

2.2 Query Semantics

This section describes the query semantics that are valid for all the approaches
presented in this thesis. A sensing query q is described by the parameters q =
〈p, range, type, td, σ〉. Throughout this thesis, we use a dot to separate a query
and its parameters, e.g., q.range denotes the range parameter of query q.
The semantics of the parameters are as follows:

• A query has a sensing range that describes the area from where sensor data
should be read. This sensing range is defined by a geographical center point
p and a radius range that defines a circular area that surrounds p. The
geographical reference system to describe the coordinates of point p is not
important for the concepts introduced in this thesis. Hence, we assume p
to be given by absolute 2D coordinates with respect to a predefined origin.

• Each query is associated with a certain type of sensor data. This data can
only be captured by a certain sensor type, referred to as type. For instance,
this could be the microphone when a sound sample should be recorded or
the thermometer for reading temperature data.

• To define the temporal requirements of a query, each query defines a sensing
deadline, referred to as td. This value depicts the time until when the sensor
data must have been captured. The value of td is given as an absolute point
in time. After td the sensing query is considered as failed, if not at least
one device captured data for the query.

• Optionally, a quality parameter σ ∈ (0, 1] can be provided with a query.
The issuer of the query can specify this value in order to define the amount
of system resources the PS system can utilize to answer its query. In



2.2 Query Semantics 37

a real deployment this value could be related to a payment system, for
instance. The higher the value σ, the more likely it is that the PS system
can successfully answer the query. We will see in Chapter 5 how parameter
σ influences the semantics of the system. If this parameter is not specified,
it is set to σ = 1 by default. This means that the PS system utilizes all
available resources to answer the query.

A mobile device m can read data for a query q that it has received from the
PS service at time tq, if the two following conditions are fulfilled:

1. ∃t ∈ [tq, q.td] : dEucl(q.p, pm(t)) ≤ q.range, where dEucl(·, ·) denotes the
Euclidean distance and pm(t) the position of m at time t.

2. q.type ∈ m.types, where m.types denotes the set of sensors that are avail-
able on m.

We define a query q to be satisfied as soon as there is one device that has
read data for q. In contrast to other approaches [WDR09; WDR10] which
require more than one sensor reading to satisfy a query, we explicitly limit our
considerations to the case when one sensor reading is sufficient. Hence, we only
capture one reading and leave it up to the issuer of the query to decide if the
quality of the retained sensor reading is sufficiently high. If this is not the case,
the system can be queried again to get more sensor data.

To simplify matters, we consider for the rest of this thesis only the case in
which sensor data for a certain sensor type is queried. The set of all mobile
devices in the PS system that are equipped with this sensor is denoted as M .
Note that the algorithms that are presented in this thesis also work for the
general case when various kinds of sensor data are queried. In this case, all
concepts can be extended by defining individual sets of devices Mt for each
sensor type t, on which the later on presented algorithms are then applied.
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Figure 2.1: Overview of the architecture of the Public Sensing system.

2.3 System Architecture

This section gives an architectural overview of the components of the PS system
that are presented in this thesis. Each component executes a certain task and
provides an interface for interacting with other components. Figure 2.1 gives an
overview of these components. Each component either runs on the mobile device
or on the PS server in the infrastructure. The following sections briefly summa-
rize the function of each component and its interaction with other components.



2.3 System Architecture 39

2.3.1 Basic Sensing System, Query Interface and Sensors

The basic sensing system consists of two subcomponents, one running on the PS
server and the other running on the mobile device. On the server, it implements
the query manager, which is responsible for coordinating the execution of sensing
queries. On the mobile device, it consists of the query listener and the sensing
engine, which are responsible for the interaction with the server and for reading
sensor data, respectively. This basic sensing system is the common foundation
of all the optimizations that are introduced in this thesis. Note that it also
defines a very basic algorithm for query distribution and position sensing that
are replaced by the optimized versions of these operations in the course of this
thesis (see the following subsections 2.3.3 and 2.3.4).
The query manager of the basic sensing system is directly connected to the

query interface, which receives sensing queries from clients. The query interface
is publicly accessible, for instance, it could be deployed as a web service. A
client can request sensor data for a certain location by sending a sensing query
to the query interface.
A client is an external entity that queries the PS system for sensor data. For

instance, a client can be a human user or an application that processes sensor
data. A client query is forwarded by the query interface to the query manager
that is responsible for managing the execution of the query. On a device, the
sensing engine is responsible for reading sensor data by accessing the device’s
sensors.

2.3.2 Location Server and Update Protocol

The position update protocol runs on the device on top of the basic sensing system
and sends position update messages to the location server that is deployed on
the PS server. Position updates are sent to inform the PS server where the
device is currently located. For deciding when a position update should be sent,
the update protocol uses position information that the basic sensing system
provides by querying the device’s positioning sensor. On the server side, the
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location server provides the position information that is needed by the efficient
query distribution component that is introduced next.

2.3.3 Query Distribution

The query distribution component is responsible for identifying a subset of de-
vices that should receive a given sensing query. This decision is based on the
information about devices’ positions that is provided by the location server. The
component is invoked by the basic sensing system whenever a new sensing query
needs to be distributed. It then returns the set of devices that should receive
this query.

2.3.4 Position Sensing

The position sensing component schedules the operations for sensing the device’s
position in indoor and outdoor scenarios. In outdoor scenarios, it provides the
basic systems with timeout intervals by which the next GPS position fix can be
delayed. In indoor scenarios, it controls positioning by providing an approach
that relies on WiFi anchor points to temporarily disable energy consuming IPS
positioning.
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3 Basic Sensing System

This chapter presents the details of the basic sensing system, which is a fully
self-contained PS system that uses no optimizations considering sensing query
distribution and position sensing. More precisely, it implements a simple query
distribution on the server and continuous positioning on the devices. This sys-
tem will be extended in the course of this thesis by integrating the optimization
algorithms that are introduced in subsequent chapters. Since this system reflects
the basic assumptions that are implemented in existing PS systems, it serves as
reference system for evaluating the energy efficiency of the optimization algo-
rithms that are presented in this thesis.

As mentioned earlier, the design of the basic sensing system follows a generic
PS system that is not restricted to a specific application scenario and can there-
fore serve all kind of sensor queries. The generic PS systems that were envisioned
before by other authors [WDR09; TKT+10; ABC+13; CFB+13] propose similar
architectures and sensing models. Hence, the optimizations that are introduced
in this thesis are applicable to a large number of PS systems. To better under-
stand the relation to the following chapters, a hint will be given that indicates
at which place the later presented optimization can be plugged into the basic
system.

As shown in Figure 2.1, the basic system consists of two parts: One part is
running on the PS server, while the other part runs on the mobile device. The
following details the execution steps of both parts separately.
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3.1 Algorithm PS Server

Every time a sensing query is issued by a client to the query interface, the basic
sensing system spawns a new instance of the query manager which is shown in
Algorithm 1. Hence, many instances of this algorithm run on the PS server
in parallel, if more than one query is processed at a time. One instance of
the query manager is responsible for coordinating the processing of only one
particular query. When the query result is received from a mobile device, the
instance returns the sensing result back to the client and terminates.

Algorithm 1 Query manager for coordinating the processing of a query.
1: procedure QueryManager(q)
2: R←M . Modified in optimized approach
3: for all m ∈ R do
4: sendQuery(m, q)
5: end for
6: result← 0
7: while (tnow < q.td) ∧ (result = 0) do
8: result,mr ← receiveResult()
9: end while
10: if result = 0 then
11: return error
12: end if
13: for all m ∈ R\{mr} do
14: stopQueryMsg(m, q)
15: end for
16: return result
17: end procedure

After receiving query q, the query manager sends q to every mobile device
m ∈ M , i.e., to every device that is located in the service area (Algorithm 1,
lines 2–5). Next, the query manager waits until it receives the result of the
query from at least one device, while constantly checking whether the sensing
deadline has expired (lines 6–9). If the server does not receive any result before
the sensing deadline td, the sensing query fails and the server returns an error
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message to the query interface, which in turn informs the client (lines 10–12).
As soon as the query manager receives sensor data from some mobile device,
it sends a message to all devices that initially received q to stop the execution
of the query. This avoids energy consuming redundant sensor readings in case
other devices could afterwards also capture data for that query (lines 13–15).
Subsequently, the received sensor data is returned back to the query interface,
which forwards the query result to the client (line 16).
Note that the query manager distributes q to all m ∈ M . To optimize this

simple distribution strategy, the efficient query distribution reduces R to only a
subset of M that includes only those devices that promise high sensing success.
The detailed description of the efficient query distribution is given in Chapter 5.

3.2 Algorithm Mobile Devices

For communicating with the PS server, each device runs the query listener that
processes all messages that are received from the PS server. The processing
steps of the query listener are shown in Algorithm 2.

Algorithm 2 Query listener for processing server messages.
1: procedure QueryListener
2: while TRUE do
3: msg ← receive() . Blocking call
4: if msg instanceOf(queryMsg) then
5: Q← Q ∪ {msg.q}
6: else if msg instanceOf(stopQueryMsg) then
7: Q← Q\{msg.q}
8: end if
9: end while

10: end procedure

To wait for an incoming message, the query listener executes a blocking call
that returns a message once data is delivered to its process by the communication
interface of the device (line 3). The query listener then identifies the type of the
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message and adds the query that is contained in the message to the set of all
known queries Q (lines 4–5) if the message is a query message. In contrast, if
the message is a stop query message, it removes the query from Q (lines 6–7).
In parallel to the query listener, a device runs the sensing engine that is

responsible for reading sensor data (see Algorithm 3). First, the device fixes its

Algorithm 3 Sensing engine for reading sensor data.
1: procedure SensingEngine
2: while TRUE do
3: posInterval← cp . Modified in optimized approach
4: sleep(posInterval)
5: p← getPosition()
6: for all q ∈ Q do
7: if euclDist(p, q.p)≤ q.range then
8: data← readData()
9: sendToServer(data)
10: Q← Q\{q}
11: end if
12: end for
13: end while
14: end procedure

position by requesting data from the positioning sensor after having waited for
time cp (lines 3–5). Depending on whether the device moves outdoors or indoors
this position is provided by the GPS sensor or an IPS, respectively. The value
of cp is technology dependent and is the minimum time frame for a sensor to
provide a fresh position. For instance, GPS sensors can provide a new position
every second [KLG+09], which is sufficiently accurate to not miss a sensing query
when considering the typical movement speed of pedestrians. With this fresh
position, the device checks if it is currently located in the sensing range of one
of the queries in Q (lines 6–7). If that is true for a query q, the device reads
data for q and uploads the data to the PS server (lines 8–9). Finally, it removes
q from Q (line 10).
In this algorithm, a device periodically fixes its position (line 3). To reduce the
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energy overhead for positioning, the efficient position sensing component changes
this assignment to an individual time frame depending on the distance to the
closest location where data is queried. A detailed description of the efficient
positioning approach is given in Chapter 6 and Chapter 7.
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4 Opportunistic Position Update Protocol

One major prerequisite to efficiently distribute sensing queries is that the PS
server has knowledge about the geographical distribution of the mobile devices
in its service area. Only with knowledge about this distribution, the server
can estimate the sensing success of individual devices and decide which ones
are promising candidates for receiving a given sensing query. To provide this
information, this chapter introduces a position update protocol that runs on
mobile devices and sends position information in an energy-efficient way to the
PS server. In contrast to existing update protocols (see Leonhardi et al. [LR01]
for an overview), this update protocol relies on so-called opportunistic posi-
tion updates. To reduce energy overhead, these updates are sent together with
other mobile device traffic back-to-back. The proposed approach significantly
improves the energy efficiency compared to existing protocols and is therefore
especially beneficial in PS systems.
In general, the application scope of the proposed position update protocol is

not limited to a PS scenario. In fact, it can be applied to all scenarios in which
a remote server keeps track of the positions of mobile objects. Typical examples
are geo-social networks showing the current positions of friends or navigation
services tracking smartphones to detect traffic conditions. To account for this
fact, the proposed update protocol is described in this chapter in an application
agnostic way. The connection between this update protocol and the other parts
of the PS system is described in Chapter 5 in more detail.
The structure of this chapter is as follows: Section 4.1 contains a general

motivation and overview, which points out the benefits and requirements for
a position update protocol. Furthermore, it introduces the idea of using op-
portunistic updates. Section 4.2 introduces a detailed energy model for mobile
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communication that will be used as reference model for measuring communica-
tion energy throughout this thesis. Next, the problem statement in Section 4.3
formalizes the goal of the update protocol, before the results of a communica-
tion study are discussed in Section 4.4. The goal of this study is to show the
feasibility of the opportunistic approach by analyzing communication events in
everyday smartphone usage. Section 4.5 presents the design and implementa-
tion of the opportunistic position update protocol that is based on a Markov
decision process. To show the efficiency of this protocol, the evaluation results
are presented in Section 4.6. Finally, we have a look on related work in position
update protocols in Section 4.7 before this chapter is concluded in Section 4.8.

4.1 Motivation and Overview

Tracking the positions of mobile objects by a remote server is a problem that is
relevant in many applications. For instance, consider a friend finder that lists
all friends of a user who are within a certain distance. Apparently, the posi-
tions of all friends must be known to the system in order to determine which
friends are close to the user. One other example is a fleet management system
in which a control system tracks and visualizes the movement of vehicles. In
order to implement such location-based applications (LBAs) efficiently, location
servers (LS) are used that manage mobile object positions and are deployed
in the infrastructure (see Figure 4.1). Typical examples for such systems are
Google Latitude [Inc] or Trace4You [Gmb]. The basic principle is straightfor-
ward: Instead of sending its position to each LBA individually, the mobile object
updates its position on the remote LS. This server provides LBAs with mobile
object positions by implementing spatial query and eventing functionalities. For
instance, the friend finder only needs to query the LS for the positions of the
friends instead of querying the device of each friend individually for its position.
Hence, a LS relieves a mobile object from sending the same position to different
LBAs multiple times and is therefore also a prerequisite for advanced LBAs that
need to access positions from many mobile objects.
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Figure 4.1: Location-based applications querying position data that is provided
by a location server.

One big concern in tracking mobile objects is the energy that is required by
a device for sending its positions to the LS, since mobile data communication
typically induces a substantial energy overhead [SSM09; BDR12b]. Obviously,
this severely impacts the user’s acceptance to use such LBAs. Therefore, several
position update protocols have been investigated in the literature [LR01] that try
to minimize the communication overhead while guaranteeing a certain quality
of position information (e.g., accuracy) managed by the LS. Typical strategies
include time-based update protocols that restrict the update rate, distance-based
protocols sending an update whenever the mobile object has moved a certain
distance, or dead reckoning using movement prediction functions at the mobile
object and LS to only send updates whenever the predictions deviate by more
than a given accuracy threshold.
Although these are effective strategies in general, these protocols have one

major shortcoming: They abstract away from the properties of the network
interface by assuming that every position update message consumes the same
amount of energy. However, as recent studies have shown, this assumption
does not hold true for the cellular network interfaces of current mobile devices
[BBV09; LZZ11; DB12]. Typically, these interfaces implement their own power
management which interferes with the update protocol. In more detail, after
sending a message, the network interface is not immediately going into power-
save mode again but rather stays in high-power mode for a certain time span
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called tail time, waiting for further messages to be sent. Therefore, sending
messages in batches is more energy efficient since the energy that is spent in the
tail time is minimized.
Obviously, these specific characteristics of cellular network interfaces have to

be taken into account in the design of position update protocols. To this end,
the proposed update protocol introduces an extension to existing position up-
date protocols—namely time-based, distance-based, and dead reckoning—that
schedule the transmission of position updates to minimize the energy of commu-
nication. The basic idea is to send position updates in an opportunistic manner,
i.e., position updates are sent “back-to-back” after messages from other appli-
cations to minimize the overall tail time. However, it would be inefficient to
send a position update with every outgoing message since this might increase
the number of update messages beyond the necessary limit required to guaran-
tee a certain position quality at the LS. Therefore, this chapter introduces an
algorithm that tries to find both, the optimal time to send an update as well
as the minimal number of update messages under the constraint that a certain
quality of position information has to be achieved. Obviously, this requires an
online optimization strategy since the points in time when messages from other
applications will be sent are unknown a priori. To this end, a Markov decision
process is used to estimate the amount of energy that can be saved by send-
ing an update together with another message under the current communication
pattern.

4.2 Energy Model for Mobile Communication

In general, the LS and mobile devices communicate via a cellular network. To
evaluate the energy consumption of an update protocol on the mobile device,
the energy profile of the device’s cellular communication interface is character-
ized by following the empirical results given in [BBV09; LZZ11; DB12]. These
studies agree that the consumed energy for sending messages does not only de-
pend on the size of the messages but also on the time that passes between the
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Figure 4.2: Energy characteristics of the cellular communication: (a) The power
states of the interface. (b) Power consumption for a data transfer
over time.

transmissions of messages. The reason for this non-linear energy characteristic
is that a cellular network interface has different power states with different state
transition times. As a result, the time the interface stays in a certain state de-
pends on the temporal pattern of the send and receive events of the device. In
the following, these states and their transitions are briefly introduced.

A cellular network interface has an idle state (IDLE) and two operating states
(DCH and FACH ) (see Figure 4.2a [QWG+10a; LZZ11]). The interface switches
from IDLE to the high power state DCH once data is transmitted. When
the transmission is finished, the interface does not immediately switch back to
IDLE (see Figure 4.2b). Instead, it switches after some seconds to the slightly
less power consuming FACH state and stays there for some additional seconds,
before it switches to the power saving IDLE state again. As a result, after
a transmission is finished the interface stays in high-power mode (DCH and
FACH ) for some additional time (around 10 s). This time is referred to as tail
time and the energy that is consumed in this time frame is referred to as tail
energy. The purpose of the tail time is to keep the interface powered up for
some time to avoid that it has to be powered up again for each consecutive data
transfer, which would cause an energy overhead and additional delay. However,
this behavior implies that even small data transfers consume a significant amount
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of energy, since the interface stays powered up for the tail time.
For the rest of this chapter, we denote the sending of a position update mes-

sage at time t as ut. The energy consumed on the mobile device for sending a
message ut is denoted as E(ut). The energy measurement shown in Figure 4.2b
indicates that sending a position update right after another transmission can be
beneficial in terms of energy. In contrast, if we look at position updates in an
isolated fashion, the given energy characteristic is disadvantageous. Since the
size of a position update message is typically only a few kilobytes including the
protocol overhead, most of the energy for sending such a message is consumed as
tail energy. Therefore, substantial energy savings can be achieved if a position
update is sent “back-to-back” right after the start of the tail time of another
transmission on the device.

4.3 Problem Statement

The problem that needs to be tackled for implementing an opportunistic update
protocol can be defined as a constrained optimization problem: The energy spent
for position updates should be minimized while guaranteeing a certain quality of
the mobile object position stored on the remote LS. Here, the quality is defined
by the quality constraint of the position update protocol. For instance, a time-
based update protocol requires that the position stored on the LS must not be
older than a certain maximum age. More formally, for two consecutive position
updates at times ti and ti+1, respectively, ti+1 − ti must be less than or at most
equal to the threshold δT . For a distance-based update protocol, the distance
between the position stored on the LS and the current mobile object position
must be at most a given maximum distance δD.
As apparent from the description of the communication energy model, the

energy overhead for sending update messages depends on the time when the
updates are sent in relation to the time when other messages are sent. Let
T = (t1, . . . , tn) be the sequence of timestamps when position updates are sent.
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Then the constrained optimization problem can be formulated as follows:

minimize
∑
ti∈T

E(uti)

subject to: Quality constraint fulfilled
variables: T = (t1, . . . , tn)

That is, the goal is to find an optimal sequence of update times that leads to
minimal energy consumption under the constraint that the quality constraint of
the update protocol must not be violated.

Note that in the sequence (t1, . . . , tn) the point in time ti of each update
message uti, as well as the number n of update messages, are variables. The
number of update messages increases by sending updates earlier than actually
required by the quality constraint to utilize the uptime of the network interface
caused by other messages. Such an early update is called opportunistic update,
since the opportunity is taken to send a position update right after another
message. In contrast, forced updates are updates that are required to fulfill the
quality constraint, for instance, in periods when no other messages are sent by
other applications. Sending opportunistic updates with every other message and
sending only forced updates are two extremes in a spectrum of possibly update
sequences. Also note that this optimization problem has to be solved online
without knowing the transmission times of future messages.

To illustrate this problem, consider the following scenario: The communication
profile of a device is given in Figure 4.3a. This profile shows a filled rectangle
that indicates a transmission and a dotted box that represents the tail time
until the interface powers down. In this scenario, a device executes a time-based
position update protocol which requires that the next position update is sent not
later than time tu. At time t1, some application on the mobile device transmits
data over the network interface (transmission T1). Sending the position update
opportunistically right after T1 is more efficient than sending the update at time
tu, since the tail energy can be reduced by almost 50% (see Figure 4.3b).
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Figure 4.3: Sending a position update: Scenario 1.
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Figure 4.4: Sending a position update: Scenario 2.

However, the scenario depicted in Figure 4.4 shows that sending opportunistic
updates with every outgoing message might be less energy efficient than sending
forced updates. In this scenario, three transmissions T1, T2 and T3 take place
before the position update is due. In this case, sending the position update after
T3 would be the best solution, since T3 is closest to tu. However, at time t1
it is not clear whether another transmission will take place before the quality
constraint is violated at time tu.

These examples illustrate the challenge to find the optimal update sequence,
which in general corresponds to a mixture of opportunistic and forced updates,
without knowing transmission times a priori.

Before we look at the actual approach to tackle this online optimization prob-
lem, the next section shows that realistic communication patterns are suitable
for opportunistic updates. This is done by presenting the results of a communi-
cation study that was conducted in the context of this thesis.
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4.4 Communication Study

A necessary prerequisite for the opportunistic update approach is that a device
communicates frequently in order to provide opportunities to send opportunistic
position updates. For instance, if a device communicates only once every hour,
it would have to send mostly forced updates when using a time-based protocol
with δT < 1 h. Hence, to show that this approach is feasible for the typical
communication pattern of a mobile device, we have a look on the results of an
empirical study that was conducted in the context of this work.1

For this study, an Android application was developed that tracks the time
between two consecutive transmissions on a mobile device. To this end, the
application monitors the cellular network interface with a sampling interval of
1ms and checks whether data has been sent or received (using the TrafficStats
class of the Android API). The time intervals between two consecutive trans-
mission events (denoted as traffic interarrival times) are logged to the SD-card
to be analyzed offline. For this study, traffic traces from 12 different users were
collected that executed this application in the background while using their An-
droid phone in their everyday lives. Most of these smartphones run typical
applications that are installed on the majority of modern smartphones, such as
a mail client, a web browser, or an instant messenger (but no position update
protocol). In total, the traces included over 500 hours of smartphone traffic.
To average these results over all users, two days of the communication trace

from each user were extracted, which is the length of the shortest trace that was
collected. Figure 4.5a shows the scatter plot of all traffic interarrival times that
were obtained by this study with their respective length on the y-axis. It shows
that the vast majority of the interarrival times are not longer than a few sec-
onds. Except for some outliers, all interarrival times are smaller than 2000 s. To
visualize the frequency of different interarrival times, they were classified with a
histogram of bucket size of 0.1 s (see Figure 4.5b). Obviously, the distribution of

1The communication traces obtained by this study are available on the website:
http://www.comnsense.de/downloads/

http://www.comnsense.de/downloads/
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Figure 4.5: Result of the study to measure traffic interarrival times.
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the interarrival times follows an exponential distribution, i.e., short interarrival
times occur very frequently. For instance, the interarrival times that are smaller
than one second account for more than 89% of all interarrival times. This can be
attributed to the fact that an interaction between a mobile device and a remote
server is in most cases characterized by many interactions which are temporally
close, like downloading a web page.
Although larger interarrival times are unlikely, their occurrence would mean

that there is no possibility to send opportunistic updates. Therefore, it would
be interesting to check what fraction of the time these devices spend in large
interarrival times. To this end, the interarrival times were categorized according
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to their length in bins of size 10 minutes. For every interval [10i; 10(i+ 1)[ with
i ≥ 0 the sum of all interarrival times that lie in this interval was calculated.
Figure 4.6 shows a plot of the fraction of this sum with respect to the total sum
of all interarrival times in a histogram. The results show that in 51% of the
time the interarrival time was smaller than 10 minutes. Moreover, in 92% of
the time the interarrival time was smaller than 40 minutes.
This study concludes that it is very likely that a device communicates within

a time frame of 40 minutes at least once. Moreover, in more than half of the
cases, the time gap between two consecutive transmissions is smaller than 10
minutes. Hence, it is very likely that an opportunistic update can be sent at
least every 10 minutes.

4.5 Opportunistic Update Protocols

This section presents the opportunistic extensions for position update protocols.
It starts by providing an overview that shows how the opportunistic update strat-
egy can be integrated with existing position update protocols. Subsequently, a
Markov decision process is introduced that decides online for a given transmis-
sion whether an opportunistic position update should be sent by the mobile
device. Finally, it is shown how to integrate three existing update protocols
with the opportunistic approach, namely, time-based, distance-based, and dead
reckoning protocols.

4.5.1 Overview

The basic idea of integrating opportunistic updates into existing position update
protocols is as follows: Two algorithms run in parallel on the mobile device. On
the one hand, the device executes the basic (original) position update protocol
(see Algorithm 4) that ensures that the quality constraint of the update protocol
is not violated. More precisely, whenever the protocol specific update condition
is fulfilled, the basic update protocol sends a forced update to guarantee the
quality of position information managed by the remote LS. The update condition
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is derived by the given quality constraint and will be explicitly defined later on.

Algorithm 4 Basic version of the position update protocol.
1: procedure basicUpdateProtocol
2: while true do
3: p← getPosition()
4: if checkUpdateCondition() then
5: sendPositionUpdate(p)
6: end if
7: end while
8: end procedure

On the other hand, the device executes the opportunistic update protocol
which sends opportunistic updates together with other messages (see Algo-
rithm 5). In order to minimize the energy consumption, this protocol decides
if it is beneficial to send an opportunistic update whenever another message is
transmitted by the device (line 5). The basic difficulty is to estimate online
whether another transmission will take place before the time when an position
update has to be sent according to the quality constraint of the protocol. In
this case, the position update should be deferred at least until the next trans-
mission, otherwise, the update should be sent with the current transmission. In
the next section, a Markov decision process is described that decides whether it
is beneficial to send an opportunistic update based on the prediction of message
transmissions.

Algorithm 5 Opportunistic extension of the position update protocol.
1: procedure updateProtocolExtension
2: while true do
3: waitForNextTransmission()
4: p← getPosition()
5: if checkOpportunisticUpdate() then
6: sendPositionUpdate(p)
7: end if
8: end while
9: end procedure
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4.5.2 Markov Decision Process

To decide whether an opportunistic position update should be sent with the
current transmission or not, a Markov decision process (MDP) [Bel57] is used.
An MDP is an extension of a Markov chain that additionally incorporates ac-
tions that can be executed in states and costs (or rewards) that are associated
with state transitions. Given a concrete implementation of an MDP, one ac-
tion can be determined for each state that minimizes the sum of the expected
costs. Including transition costs and uncertainty about future states, an MDP
incorporates all aspects of our decision problem.
In the following, the basic states of the MDP are introduced, before the tran-

sition probabilities between these states are defined. To complete the definition
of the model, transition costs are assigned that reflect the energy consumption
of a mobile device. Finally, it will be shown how the MDP can be used to decide
whether an opportunistic update should be send.

4.5.2.1 Structure of the MDP

To map the aforementioned problem to an MDP, a generic state sd is constructed
that represents the starting point of the decision. From this state two possible
actions are available, which are either to send an opportunistic position update
with a given transmission or not. Hence, the possible actions that can be taken
in state sd are defined as A = {send, send}. The relation to Algorithm 5 is
as follows: Every time Algorithm 5 reaches line 5, the MDP is in state sd and
decides whether to take action send or send. The result of this decision is then
returned back to Algorithm 5.
Starting from state sd and choosing one of the two available actions in A, the

following events can occur:

1. Action send is taken and an opportunistic position update is sent right
after the current transmission (see Figure 4.7a). To describe this event,
state s0 is introduced.
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Figure 4.7: States of the Markov decision process.

2. Action send is taken and no other transmission will occur before the quality
constraint is violated (see Figure 4.7b). In this case, the position update
cannot be sent opportunistically, since there is no further transmission
available before tu. As a result, the position update will be forced at time
tu. To describe this event, state s1 is introduced.

3. Action send is taken and at least one other transmission will occur on
the device before tu (see Figure 4.7c). In this case, the sending of the
opportunistic update can be postponed until the next transmission. To
describe this event, state s2 is introduced.

Figure 4.8 gives an overview of the states and transitions of the MDP. Note that
for defining these states it is assumed that the update due time tu is known, i.e.,
the time when the quality constraint will be violated. It will be shown later on,
how tu can be predicted for the different update protocols. Next, the transition
probabilities for the state transitions are defined.
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Figure 4.8: States and transitions of the Markov decision process.

4.5.2.2 Transition Probabilities

To define the transition probability from state sd to state s2, we need to quantify
the probability that another transmission occurs on the device before tu. For
this purpose, the random variable Xt is introduced that describes the arrival
time of the next transmission. The random variable Xt−1 is referred to as the
last traffic interarrival time which follows the same distribution as Xt. Since the
last interarrival time τt−1 can be determined by the device, this knowledge is
utilized to define p send(sd, s2) as the following conditional probability:

p send(sd, s2) = P (Xt ≤ tu|Xt−1 = τt−1)

We can then define the probability that no other transmission arrives before tu
as:

p send(sd, s1) = P (Xt > tu|Xt−1 = τt−1)

It is easy to see that these probabilities sum up to 1. For all other transitions
(e.g., psend(sd, s0)), the transition probability is 1. As a result, after deciding on
an action, the MDP automatically returns to state sd.
Since the MDP is executed on the mobile device, the device has to know

the distribution of its traffic interarrival times. For this purpose, the device
can either be provided with a typical distribution of Xt or it can learn this
distribution over time by logging its traffic interarrival times as demonstrated
by the communication study in Section 4.4.
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4.5.2.3 Cost Model

To finish the definition of the MDP, transition costs are assigned in order to be
able to measure the effects when deciding on an action. Since the overall goal is
to minimize the energy consumption of the mobile device, the transition costs of
the MDP are related to the energy costs that result from moving to the different
states. Cost c1 denotes the energy cost to move from state sd to state s1 and
is defined as the energy that is consumed for sending a forced update including
its full tail energy. This energy is denoted as Eu. Moving to state s2 does not
induce any costs since no message is sent, instead it will be waited for the next
transmission that occurs before tu. Hence, c2 is set to be zero. To define the
energy costs c0 when moving to state s0, we need to quantify the energy costs
that result from sending an opportunistic position update. In general, sending a
position update earlier than required by the quality constraint can increase the
number of position updates that need to be sent in total. However, the closer an
opportunistic update is sent to the original update due time tu, the smaller are
the chances that additional updates have to be sent. To map this risk to a cost
measure, an early sending is associated with the proportional costs for sending a
forced position update. More precisely, assuming that the last position update
was sent at time tu−1 and the next will be due at time tu, the cost for sending
a position update already at time t is given as Eu · (tu − t)/(tu − tu−1).

With these definitions, the cost model is defined as follows:

c0 = Eu · (tu − t)/(tu − tu−1)
c1 = Eu

c2 = 0

With this cost model, the definition of the MDP is now complete. Next, we look
on how it can be used for deciding which action should be taken in state sd.
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4.5.2.4 Deciding on an Action

Given the definition of the MDP, we can calculate which action in state sd results
in the lowest expected costs (referred to as the optimal action). In general, the
computational effort of finding the optimal action depends on the value of the
discount factor γ ∈ [0; 1), which is given as a parameter of the MDP. This
discount factor determines how many future states are taken into consideration
when evaluating the costs of a given action. Consequently, the smaller γ is
chosen, the more efficient can the optimal action be computed. For instance,
γ = 0 takes only the cost for the next set of actions into account, while the
extreme case of γ = 1 would take the infinite number of all future states into
account. Since the overall goal is to reduce the energy consumption of a mobile
device, this computational effort has to be kept as low as possible. Hence, γ is
set to zero. This means that no expected costs of future states are considered.
This may on the one hand lead to less accurate predictions, however, on the
other hand the optimal action a∗ for a state s can be found very efficiently by
solving the following optimization function:

a∗ = arg min
a∈A

(∑
s′
pa(s, s′) · ca(s, s′)

)

Here, pa denotes the state transition probability when choosing action a and ca

the costs that are assigned to this transition. Since only two actions need to
be taken into account, this equation can be formulated by the following closed
formula:

Action send︷ ︸︸ ︷
Eu · (tu − t)/(tu − tu−1) <

Action send︷ ︸︸ ︷
p(sd, s1) · Eu

⇔ P (Xt ≤ tu|Xt−1 = τt−1) < t− tu−1

tu − tu−1
(4.1)

If this inequality is fulfilled, the expected energy costs for sending an oppor-
tunistic position update are less than the cost of not sending an opportunistic
update. In this case an opportunistic position update is sent.
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However, to solve Equation 4.1 we need knowledge about the due time tu of
the next position update. Next, we will see how to calculate or estimate this
value for the time-, distance-based and dead reckoning position update protocol.

4.5.3 Time-based Update Protocol

As mentioned earlier, the time-based update protocol forces a position update
to the LS in a predefined time interval δT . More precisely, the update condition
is fulfilled at time t if the following inequality holds, where tu−1 denotes the time
when the last position update was sent:

t− tu−1 ≥ δT

For this protocol, all parameters to evaluate Equation 4.1 are known, since time
tu can be easily calculated based on the time of the last update.

4.5.4 Distance-based Update Protocol

The update condition of the distance-based update protocol is defined by the
Euclidean distance between the current position of the mobile device pd(t) and
the last updated position ps(t) on the LS. When this distance at time t is bigger
than accuracy threshold δD, a position update is sent:

dEucl(pd(t), ps(t)) ≥ δD

Applying the MDP to this protocol brings up the difficulty that time tu, at
which the next position update is due, is not known at decision time. Since this
value is needed to evaluate Equation 4.1, it is predicted by the time at which the
quality constraint is likely to be violated if the device keeps its current movement
direction and speed. To this end, the last movement trajectory ~v of the device
is used and it is assumed that the device keeps on moving according this vector
(see Figure 4.9a). The time until the next update can then be predicted by value
∆t for which the distance between pd(t) + ∆t · ~v and ps(t) is equal to δD.
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Figure 4.9: Prediction for the time of the next position update tu.

4.5.5 Dead Reckoning Update Protocol

Similar to the distance-based protocol, the dead reckoning update protocol de-
fines a threshold on the deviation between the position on the device and the
LS. However, the position on the LS is not statically set to the position that
was contained in the last position update, but evolves over time. For this pur-
pose, the device includes a movement estimation trajectory ~v with each position
update. The LS can now estimate the device position pest(t) at time t as follows:

pest(t) = pu−1 + ~v(t− tu−1)

Here, pu−1 and tu−1 refer to the position and time of the last received position
update. The protocol triggers a position update at time t if the device position
deviates more than threshold δDR from the estimation of the LS:

dEucl(pd(t), pest(t)) ≥ δDR

As for the distance-based protocol, update time tu needs to be predicted. How-
ever, not only the device position but also the position stored on the LS is
changing over time. Therefore, two vectors need to be considered for the pre-



66 4 Opportunistic Position Update Protocol

diction: The actual movement vector of the device, denoted as ~vd, and the
movement vector ~v stored on the LS which was updated with the last position
update, respectively. To predict time tu, an extrapolation is needed for the cur-
rent device position pd(t) and the estimated position pest(t) on the LS with the
respective vectors (see Figure 4.9b). The time until the next update can then
be predicted by the value of ∆t for which the distance between pd(t) + ∆t · ~vd

and pest(t) + ∆t · ~v is equal to the accuracy threshold δDR.

4.6 Evaluation

In this section we look at the evaluation results for the proposed opportunistic
update protocols. First, the experimental setup of the evaluation is introduced,
before the evaluation results are presented.

4.6.1 Experimental Setup

To evaluate the efficiency of an update protocol, the communication energy
for sending position updates needs to be measured. However, accurate energy
measurements on mobile devices require the deployment of additional hardware
[RH10] and make long term measurements for scenarios that include device
mobility hardly feasible. To be able to inspect a large variety of scenarios with
different parameter settings, a software tool was implemented that simulates
the behavior and characteristics of a mobile device. The simulated device runs
an update protocol and sends position updates via a cellular network interface.
To model this interface, an uplink speed of 384 kpbs [RHS+06] is assumed and
the energy model of Liu et al. [LZZ11] is used to model the energy for sending
messages via the 3G network. This energy model was empirically derived by
measurements on a HTC G1 smartphone. The power consumptions for the
different states of the interface are shown in Table 4.1. Note that these energy
characteristics were verified by several other measurements that obtained similar
results [BBV09; DB12].
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To consider the communication of other applications on the device, the com-
munication traces that were collected for the communication study (see Sec-
tion 4.4) were used to simulate traffic on the device. To model the movement
trajectory of the mobile device, real-world GPS traces of persons either walking
or running were used that were extracted from OpenStreetMap [OSM]. The typ-
ical GPS sampling interval of these traces lies between one and three seconds.

State Power
DCH 570mW
FACH 401mW
IDLE 10mW

State Transition Delay
IDLE → DCH 2 s
DCH → FACH 4 s
FACH → IDLE 6 s

Table 4.1: Energy model for 3G communication.

The evaluation compares the following three approaches:

basic The basic (non-opportunistic) versions of time-based, distance-based,
and dead reckoning update protocols.

extend The update protocol that uses the opportunistic extension that is pre-
sented in this chapter.

nopred In addition to these two approaches, the evaluation shows the results of
one additional approach that implements a generic (non-predictive) oppor-
tunistic update protocol. In contrast to the opportunistic position update
protocols, this non-predictive protocol sends a position update with every
message from other applications. That is, it does not include the MDP to
predict future traffic and estimate the benefit of sending or deferring posi-
tion updates (line 5 in Algorithm 5 evaluates always to true). On the one
hand, the evaluation of this approach shows the performance of a simple
protocol that uses opportunistic updates in comparison to the basic ap-
proach. On the other hand, the results show the additional benefits of the
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Figure 4.10: Energy consumption for the time-based update protocol.

extend-approach that uses an MDP for deciding when to send opportunistic
updates.

To obtain the following results, each protocol was simulated for a time period
of three hours.

4.6.2 Energy Consumption

To evaluate the energy efficiency of an update protocol, we only consider the
energy that is consumed for sending position updates to the LS. However, since
other applications also power up the communication interface, this value cannot
be determined from a single simulation run. Hence, in a first step, the energy
consumption of a device was measured when not using any update protocol.
This value depicts the amount of energy that is consumed by other applications
on the device and is denoted as Eapp. Subsequently, the energy consumption
of the device when using one of the update protocols is evaluated and denoted
as Etotal. The energy that is consumed solely by the update protocol is then
given as Eu = Etotal − Eapp. Figures 4.10, 4.11 and 4.12 show Eu for the three
protocols using different update thresholds. For the time-based protocol (Fig-



4.6 Evaluation 69

Figure 4.11: Energy consumption for the distance-based update protocol.

ure 4.10), the opportunistic approach consumes on average 70% less energy than
the basic approach, while the non-predictive approach consumes in some cases
even more energy than the basic protocol. The gap to the basic approach is
getting larger with smaller values of update interval δT . Obviously, the more
updates the protocol requires, the more energy can be saved by the opportunis-
tic approach. Since the non-predictive approach triggers a position update with
each transmission on the device, this approach is efficient if the number of re-
quired updates is high, i.e., for small values of δT . However, with larger values of
δT , this approach gets inefficient since too much energy is consumed for sending
unnecessary position updates. In contrast, the opportunistic approach is also
efficient for large values of δT . This shows that the MDP chooses the right point
in time to send an opportunistic position update. Hence, opportunistic position
updates are sent with only a small subset of transmissions.
For the distance-based (Figure 4.11) and the dead reckoning (Figure 4.12)

update protocols, we can observe similar results. Using the distance-based pro-
tocol, the opportunistic approach performs on average 35% better than the basic
approach and 17% better than the non-predictive approach. For the dead reck-
oning protocol, the opportunistic improves energy efficiency on average by 17%
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Figure 4.12: Energy consumption for the DR-based update protocol.

compared to the basic approach, while the non-predictive approach consumes
almost the same amount of energy as the basic protocol. For the same reasons
as explained before, the difference between the opportunistic approach and the
basic approach decreases with a larger update threshold, while the gap between
the opportunistic approach and the non-predictive approach increases.

Compared to the time- and distance-based protocol, the relative energy savings
for the dead reckoning update protocol are the least. To better understand this
behavior, Figure 4.13 directly compares the distance-based and the dead reckon-
ing protocol to each other. We can see that the dead reckoning update protocol
outperforms the distance-based protocol even in the basic version. Hence, the
use of movement predictions obviously reduces the number of required position
updates significantly. As a result, the benefit that is gained from the opportunis-
tic approach is smaller because there is not much room for improvement. For
a larger update threshold, the advantage of the dead reckoning protocol slowly
decreases. However, we can see that the opportunistic extensions reduce the
energy consumption for all parameter settings.
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Figure 4.13: Comparison of energy consumption for different protocols.

4.6.3 Update Messages

To understand the results from the energy evaluation in more detail, we have
a look at the number of position updates that are sent. Figure 4.14 shows this
number for each approach with a fixed update threshold of 500 s (time-based
protocol), respectively 500m (distance-based and dead reckoning protocols).
Moreover, the figure also includes the fraction of position updates that were
sent opportunistically, i.e., during the tail time of other transmissions. Note
that the results of the time- and distance-based protocols are not comparable
with each other, even if they use a similar update threshold. The number of
position updates in the distance-based protocol are also dependent on the move-
ment pattern of the mobile device, which is not true for the time-based protocol.
Hence, in the following we are only interested in the relative performance of one
protocol regarding the different approaches to implement it.
The basic approach sends for each update protocol the fewest number of po-

sition updates, since an update is only sent when the quality constraint is going
to be violated. Therefore, this approach can be considered as a lower bound
on the number of position updates. We see that even in the basic approach a



72 4 Opportunistic Position Update Protocol

 0

 50

 100

 150

 200

 250

 300

 350

 400

basic
extend

nopred

basic
extend

nopred

basic
extend

nopred

P
os

iti
on

 U
pd

at
es

time-based distance-based DR

forced update
opportunistic update

Figure 4.14: Number of position updates that were sent.

small fraction of position updates are coincidentally sent in the tail time of other
transmissions.
The non-predictive approach sends the most position updates. The oppor-

tunistic approach can be considered as tradeoff between these two extremes.
While the number of position updates increases compared to the basic approach,
a large fraction of messages are sent opportunistically and, thus, sent in an en-
ergy efficient manner. For the time-based protocol, for which the next update
time is known, the opportunistic approach manages to send almost all update
messages opportunistically, which results in large energy savings as we have seen
before.

4.6.4 Accuracy

Finally, we take a closer look at the position accuracy that the distance-based
and dead reckoning protocol provide. Although the target accuracy of these
protocols is defined by their respective quality constraint, it can be of interest
how big the actual deviation between the device position and the position stored
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Figure 4.15: Position accuracy of the distance-based protocol.

Figure 4.16: Position accuracy of the dead reckoning protocol.
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on the LS is on average. For this purpose, for each time t ∈ T , where T is the
total simulation time, the Euclidean distance between the current device position
and the position stored on the LS is determined. Figures 4.15 and 4.16 shows
the average of this deviation for different accuracy thresholds.
As we have seen before, the extended protocol and the non-predictive protocol

trigger in total more position updates than the basic update protocol. As a
result, the position of the mobile device is updated more often on the LS and
the deviation between device position and LS position decreases on average.
Hence, the opportunistic extensions not only decrease the energy consumption
of the basic update protocols but also increase the position accuracy on the LS.

4.7 Related Work

Before this chapter is concluded, we have a look on related work considering
position update protocols and energy-efficient communication. As already men-
tioned, existing work on update protocols [LR01; WXX+11; FHR12; Kjr12] aims
to minimize the number of position updates without considering the specific en-
ergy characteristics of the communication interface. The opportunistic update
protocol that was presented in this chapter extends the three prevailing update
protocols proposed in [LR01].
Within the last few years, the awareness to also consider the power character-

istics of mobile devices in algorithm design increased [PJH+12; PHZ12; PMR14].
Considering communication energy, different empirical studies [BBV09; LZZ11;
DB12] agree that a lot of energy is wasted in the tail time of the cellular in-
terface, i.e., the time in which the interface stays in high power mode after a
data transfer is completed. Consequently, a number of different approaches were
proposed that suggest to adapt this tail time to the actual traffic pattern of the
smartphone [QWG+10a; QWG+10b; DB12]. Although, this can help to reduce
the tail time and therefore save energy, they rely on the assumption that the tail
time is adaptable, which is typically not possible since its length is hard-coded
in the device hardware.
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Instead of adapting the tail time, several approaches reschedule outgoing traf-
fic to reduce the energy that the interface consumes in the tail time. Liu et
al. [LZZ11] propose TailTheft that reschedules delay tolerant messages to the
tail time of other transmissions. To this end, the user has to provide a delay
tolerance threshold for its application via an API. If another transmission occurs
before this threshold, the message is sent right after this transmission. Balasub-
ramanian et al. [BBV09] chose a similar approach and additionally propose the
idea of prefetching of future content during the tail time of other transmissions.
In contrast to the approach presented in this chapter, these approaches propose
to send a given message with the next transmission on the device. However,
regarding our scenario, position updates should only be sent if the quality con-
straint of the update protocol is going to be violated. The basic idea of these
approaches is implemented by the nopred approach that was evaluated in Sec-
tion 4.6. We have seen that the presented opportunistic update approach is
more energy efficient since the number of position updates is less.
An alternative method to decrease energy consumption is by utilizing the

different radio interfaces that are available on a mobile device. Given that they
differ in characteristics like availability, range, and data rate, one can select the
interface for transmission that currently promises the least energy costs. For
instance, Pering et al. [PAG+06] propose the CoolSpots system that enables a
device to save energy by automatically switching between WiFi and Bluetooth.
Similarly, Ra et al. [RPS+10] propose a communication link selection strategy
that chooses the currently cheapest communication interface based on the delay
tolerance of the data and the availability of the networks. However, in many
situations there is only a cellular network interface available which renders these
approaches ineffective.

4.8 Conclusion

In this chapter, opportunistic extensions to existing position update protocols
were presented that significantly improve energy efficiency. It was shown that
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by taking into account the characteristics of cellular network interfaces, energy
efficiency can be significantly improved by sending position updates opportunis-
tically together with other messages. An approach was presented for optimizing
the schedule of opportunistic update messages. This optimization is based on
a Markov decision process that predicts the arrival of messages and optimizes
the cost of opportunistic messages with respect to energy. The evaluations have
shown that the energy efficiency of existing position update protocols—namely,
time-based, distance-based, and dead reckoning protocols—can be improved by
up to 70% when using the opportunistic extensions on top of these protocols.
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5 Efficient Query Distribution

With the update protocol that was introduced in the last chapter, there is a
very efficient way to provide position information of mobile devices to the PS
server. This chapter now focuses on the question, how this information can
be used to increase the energy efficiency of query distribution. We introduce
an algorithm that utilizes the available position information to limit the set of
query receivers while distributing a sensing query. Instead of sending a query to
all devices, as in the basic sensing system, this algorithm identifies a restricted
set of devices which only contains those devices that are very likely to capture
data for the query. As a result, all devices that do not receive the query save
communication energy. For instance, devices that are moving towards the range
of a sensing query are promising candidates for capturing data. Hence, they
should be included in the set of query receivers. In contrast, devices that are
far-off the query’s sensing range would most probably not capture data and
should be excluded from the receiver set.
Before the technical details of the query distribution algorithm are introduced,

Section 5.1 presents the necessary modifications to the basic system in order to
implement the subsequently presented concepts. After that, Section 5.2 formal-
izes the goal of the query distribution by introducing the problem statement. To
be able to quantify which devices are likely to capture data for a given query, a
probabilistic sensing model is defined in Section 5.3. This model takes the posi-
tion information that is provided by the position update protocol as input and
defines the probability that a mobile device reaches the sensing range before the
sensing deadline. Based on this model, Section 5.4 presents an algorithm that
selects a minimum set of devices to receive a given query such that the chances
of successfully sensing this query are not negatively affected. Subsequently, Sec-



78 5 Efficient Query Distribution

tion 5.5 introduces an adaptive update control mechanism that automatically
disables the update protocol on the mobile devices if only very few queries are
issued to the PS system. Section 5.6 presents the evaluation results, before Sec-
tion 5.7 presents related work in the area of efficient query distribution. Finally,
Section 5.8 concludes this chapter.

5.1 Modifications to Basic Sensing System

The query distribution starts when the PS system receives a sensing query from
a client. Then, the PS server has to decide to which devices it should send this
query. As introduced in Chapter 3, the basic sensing system simply broadcasts
the query to all mobile devices m ∈M in the service area. However, this results
in high energy consumption, since every received message consumes additional
energy on a device. Even if the size of the query message is small (in fact, the
necessary query information can be encoded in a few bytes), the receiving event
powers up the communication interface of the device for typically more than
10 s due to the tail-time characteristics of the cellular network interface (see
Section 4.2). This is especially critical for PS systems with large geographical
coverage, since they have to distribute many sensing queries. In this case, the
communication interface of a single device would only rarely have the chance
to power down. In a more sophisticated approach, the server filters out devices
that should not receive certain queries and, hence, save energy on devices that
do not receive the query message.
To implement this approach, the query manager of the basic system that was

introduced in Algorithm 1 is modified according to Algorithm 6. With this
modification, a query q is distributed to only a limited set of devices that is
defined by a special function (line 2), which will be derived in the course of
this chapter. On the mobile device, the sensing engine that was introduced in
Algorithm 3 is changed according to Algorithm 7. Here, the only modification
is the addition of the position update protocol that was introduced in the last
chapter (lines 6–8). Note that this modification ensures that the device sends
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Algorithm 6 Modifications to query manager for efficient query distribution.
1: procedure QueryManager(q)
2: R←calcRecipientSet(p) . Modified
3: for all m ∈ R do
4: sendQuery(m, q)
5: end for
6: ... . As in basic system

Algorithm 7 Modifications to sensing engine for efficient query distribution.
1: procedure SensingEngine
2: while TRUE do
3: posInterval← 1 s
4: sleep(posInterval)
5: p← getPosition()
6: if checkUpdateCondition() then . Added to basic system
7: sendPositionUpdate(p)
8: end if
9: ... . As in basic system

forced position updates in order to fulfill the quality constraint of the update
protocol. To also send energy-efficient opportunistic updates, the device runs
the opportunistic update extension (see Algorithm 5) in parallel to Algorithm 7.
At this point, we neither specify which update protocol the device uses (e.g.,

time-, distance- or DR-based) nor do we fix the update threshold for the respec-
tive protocol to a certain value. We will see later on in the evaluation the effects
of different protocols and thresholds on the efficiency of query distribution.

5.2 Problem Statement

The problem with the basic sensing system is that it distributes queries also
to devices that cannot participate in sensing until the sensing deadline because
of their spatial distance to the sensing range. Obviously, this is an unnecessary
waste of energy. In order to tackle this problem, the server limits the distribution
of the query to only a subset of devices (called the recipient set R ⊆ M) that
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will be probably able to sense the query. However, this selection has to be
done wisely, since choosing a limited recipient set also increases the risk that a
sensing query is not sensed by any device, since not all devices are aware of the
query. Hence, the goal is to find a minimal recipient set that achieves the same
sensing result as the basic sensing system, i.e., when all devices are aware of the
query. To formalize this idea, let ϕ(R) ∈ {true, false} denote the successful or
unsuccessful sensing of a given query q, when q is distributed to all m ∈ R. As
introduced in Chapter 2, we consider a query to be successfully sensed, when
at least one device can capture sensor data for it before the query deadline is
reached. The goal of the efficient query distribution can now be formulated as
follows:

minimize
R⊆M

|R|

subject to ϕ(R) = true
(5.1)

Having found such an R, sending q only to R instead of M avoids the energy
for receiving q on all devices in M\R. Note that if we would assume that the
server has perfect knowledge about the future movement of devices, finding R
would be trivial. In fact, the server could just identify the device m∗ ∈ M that
reaches the sensing range of q first and set R = {m∗}. If no device reaches q
within the sensing deadline of q, the server would set R = ∅.

The challenge of this problem lies in the fact that the PS server does not
know for certain the future movement of mobile devices. When deciding on R the
server has position information from the position update protocol but it does not
know where the devices are moving to. Therefore, it cannot know which devices
will actually reach the sensing range of q. For this reason, the subsequently
presented approach includes all mobile devices in R that are very likely to move
into the range of q before the sensing deadline. This reduces communication
energy while the sensing semantics (ϕ(R) = ϕ(M)) can be preserved.

To be able to identify the devices that are likely to capture data for q, a
probabilistic sensing model is introduced in the next section that predicts the
sensing success for each device.
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5.3 Probabilistic Sensing Model

This section introduces the probabilistic sensing model in three steps. To com-
pute the sensing probability of a device for given sensing query, it is important
to know whether the sensing range of the query lies on the future movement
path of the device. Hence, in the first step, the movement prediction model is
introduced. Based on the position information provided by the position up-
date protocol, this model enumerates all possible movement paths of a device
and assigns each path a probability that the device will actually take this path.
In the second step, the single path sensing probability for a device is defined.
Here, we assume that the future path of a device m is known and formulate
the probability that the device can read data for a query q when it moves along
this specific path. Finally, the multiple path sensing probability combines both
models in order to define the overall probability that m can read data for q.

5.3.1 Movement Prediction Model

As described in the system model in Section 2.1, mobile devices move on a road
graph that is known to the PS server. This road graph is defined by a set of road
nodes and a set of edges that interconnect these nodes (see Figure 5.1a). For
each road node r, the set of its adjacent road nodes is given as Ar. To reflect the
significance of different roads, an individual turning function fr : Ar×Ar → [0, 1]
is given for each road node r. The value of fr(ra, rb) denotes the probability that
a mobile device leaves road node r towards road node rb when having entered
it via road node ra. This function can for example be derived from road traffic
studies [Mah84], in which movement patterns of pedestrians are analyzed in
order to infer statistical information about turning probabilities.
For predicting the movement path of a device m, we enumerate the different

paths that the device can take starting from its last known position pu, which is
the position that is provided by the position update protocol. However, since the
number of possible paths grows exponentially over time, we limit this number
by assuming that a device always moves towards some unknown destination on
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Figure 5.1: Road graph and movement tree.

the graph traversing the shortest path. This assumption follows the intuition
that a person wants to arrive at a certain point of interest as fast as possible
and therefore chooses the shortest way to reach that point. This is also a basic
assumption that is used by many sophisticated mobility models, for instance the
random waypoint model [BHP04], or for trajectory matching [ESS+11]. Follow-
ing this assumption, we can describe the movement of a device m between time
tu (the time of the last position update pu) and the query sensing deadline td by
a tree of road nodes which is rooted at root node pu (see Figure 5.1b). The leaf
nodes of this tree are the set of all points on the road graph that are distance
smax = (td − tu) · vmax away from pu. Here, vmax depicts the maximum speed of
device m. This value can either be obtained directly from the device or some
value about the maximum device speed can be assumed (for instance, by taking
into account speed limits that are included in the road graph). Each path from
the root node towards a leaf describes one possible movement path w that m
can take until td. We describe such a path w by the sequence of nodes that are
traversed on this path, i.e., w = (rroot, · · · , rleaf ).

To model a probability distribution over all possible paths, we introduce the
random variable Xw that reflects the future movement path of a device. The
probability that a device m takes a certain path w is then given as P (Xw =
w). To derive the probability distribution over Xw, we multiply the respective
turning probabilities at the encountered road nodes when traversing a certain
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path w:

P (Xw = w) =
i<|w|−1∏

i=1
fw[i](w[i− 1], w[i+ 1]) (5.2)

As a result, we get for each movement path of a device a probability value. In
the next step, we define the probability that a device can read data for a given
query under the condition that we know the path on which the device is moving.

5.3.2 Single Path Sensing Probability

To denote the sensing success of a single device, we introduce the random variable
Xs ∈ {0, 1}, which reflects whether a device m can read data for a given query q
(denoted as Xs = 1) or not (Xs = 0). In this section, the probability distribution
over Xs is derived under the assumption that m takes a certain path w, i.e.,
P (Xs = 1 | Xw = w). Using this definition and the probabilistic information
provided by the movement prediction model, the general distribution P (Xs = 1)
is then defined in the next section. In the following, we will use the short term
P (Xs) instead of P (Xs = 1) and refer to this probability as sensing probability.
As already mentioned, we assume that m traverses path w after starting from

point pu. In order to be able to read data for query q when following path w,
the sensing range of q must intersect with w, otherwise the sensing probability
for this path is P (Xs | Xw = w) = 0. In case path w intersects with the sensing
range, the enclosed line segment [pi1, pi2] contains the points from which m can
read data for q (see Figure 5.2).
The existence of such an intersection ensures that the spatial condition for

sensing is fulfilled. However, to determine whether m can read data for q, we
also have to check the temporal condition. More precisely, m needs to pass line
segment [pi1, pi2] in the time frame between the time when q is queried (referred
to as tq) and the sensing deadline td of the query. To this end, we derive in
the following a probabilistic representation of the position of device m between
time tq and td. Based on this, we can derive the likelihood that the temporal
condition for sensing is fulfilled.
To consider a device’s moving speed, we assume that a probability density
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q.p

q.range

pu pi1 pi2 pend

Figure 5.2: Movement path of a device including the line segment [pi1, pi2] from
which the device can read data for query q.

function (pdf) fXv(v) of the random variable Xv is given, which describes the
average speed of the device for an arbitrary time interval. Furthermore, we
assume that the values of Xv for two disjoint time intervals are independent,
since we assume that a device can change its speed independently in any time
interval. This pdf can either be provided directly by the device or we can assume
an appropriate probability distribution to approximate the device speed (e.g.,
a Gaussian distribution). The distance d that a device passes in a given time
period ∆t is then given by the following formula:

d = Xv ·∆t

We denote the distance that m passes on w between time tu (when the last
location update from the device was received) and the time tq (when the query
was issued) as Xd1. Note that this is the distance that the device has already
passed since the last location update. Analogously, we denote the distance that
m passes between tq and td as Xd2, which is the distance that the device will
pass until the sensing deadline. Both are defined as follows:

Xd1 = Xv · (tq − tu)
Xd2 = Xv · (td − tq)

The two variablesXd1 andXd2 are a linear transformation of the random variable
Xv. Hence, they are both random variables as well. The pdfs of these linearly
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transformed variables are then given as:

fXd1
(d1) = 1

tq − tu
· fXv

(
d1

tq − tu

)

fXd2
(d2) = 1

td − tq
· fXv

(
d2

td − tq

)

Based on these probabilistic definitions, the position of m on path w at time tq
is given as pu + Xd1 and as pu + Xd1 + Xd2 for time td. We can now formulate
the case in which m passes line segment [pi1, pi2] in the time frame [tq, td] by the
following two conditions:

1. When m receives q from the server at time tq, it must not have moved
further than point pi2 on w. Otherwise m has already passed q when it
receives the query.

2. When the sensing deadline of q is reached at time td, m must have reached
at least point pi1 on w.

More formally, we say a device m can read data for q on a given path if the
following two conditions are fulfilled:

Xd1 ≤ pi2 (5.3)
Xd1 +Xd2 ≥ pi1 (5.4)

Here, pi depicts the distance between pu and pi on path w. Note that due to
our shortest path assumption, we can assume that a device only moves towards
the end of path w.
To formulate these two conditions in a closed form, we need to define the joint

pdf of the random variables Xd1 and Xd1 +Xd2. Due to the independence of
Xd1 and Xd2, we get the convolution of the pdf of both variables as:

fXd1 ,Xd1+Xd2
(d1, d) = fXd1 ,Xd2

(d1, d− d1)
= fXd1

(d1) · fXd2
(d− d1)
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We can now formulate the sensing probability for q when m moves on path w
by integrating this joint pdf over the boundaries that we defined in Equation 5.3
and 5.4:

P (Xs | Xw = w)
=P (Xd1 ≤ pi2, pi1 ≤ Xd1 +Xd2 ≤ pend)

=
∫ pi2

0

∫ pend

pi1

fXd1
(x) · fXd2

(y − x) dydx
(5.5)

Here, pend refers to the end of path w (see Figure 5.2).
Note that for the calculation of the sensing probability we assumed that there

are only two intersection points between w and the sensing range of q. Cases
in which the sensing range intersects path w on more than two points can be
handled by summing up the single sensing probabilities for each intersection
using the inclusion-exclusion method [Cam94].

5.3.3 Multiple Path Sensing Probability

To get the overall sensing probability P (Xs), which is independent from a spe-
cific path, we combine the definitions from Equations 5.2 and 5.5. Given the
probability that device m moves on path w and the probability that m can read
data for q if it moves on w, we apply Bayes’ Theorem as follows:

P (Xs) =
∑
∀wi

P (Xs | wi) · P (Xw = wi) (5.6)

In the following, we will denote the sensing probability P (Xs) for a certain device
m and a given query q as pm,q.

5.4 Recipient Selection Algorithm

We can now use the introduced definitions to find a recipient set for the query
distribution. The idea is to first introduce the joint sensing probability for a
set of devices and then use this metric to find a recipient set that satisfies the
quality constraints that is required by the client that issued the sensing query.
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To quantify this quality, we use the quality parameter σ that is included in the
definition of a sensing query, as introduced in Section 2.2.
Assuming that q is distributed to all m ∈ D, the joint sensing probability for

a given set of devices D is defined as the probability that query q can be read by
at least one device (which is sufficient for successfully sensing the query). To this
end, we use the sensing probability pm,q for a single device from Equation 5.6
and calculate the joint sensing probability pq for D as:

pq(D) = 1−
∏
∀m∈D

(1− pm,q) (5.7)

This function can be derived from the special case of a binomial distribution, in
which at least one event is true. Note that we could easily extend the earlier
defined query semantics by requiring that a sensing query is only satisfied if k
different devices read data for it. This can for instance be necessary if a client
requires more than one sensor value from the query range. In this case, Equation
5.7 can be extended to consider k events (see [Cam94] for the combinatorial
details), while all other parts of the system stay untouched.
To find a promising recipient set R, we can use the above definition to quantify

the sensing success of different R ∈ 2M . Obviously, pq(R) would be maximized
if we set R = M , i.e., including all devices in R. However, since our goal is to
increase energy efficiency, we try to find a small R that still promises high sensing
success pq(R). Finding such an R requires that the sensing probability pm,q is
known for all m ∈M . Considering the computational effort for calculating pm,q,
this is hardly scalable if there is a very large number of mobile devices in the
PS system. Hence, we first limit the solution space by restricting the number of
devices that are candidates for being included in R.
As already mentioned, only mobile devices can read data that can reach the

sensing range of q before its sensing deadline. We can use this property to apply
a filter on the set of mobile devices, which excludes all devices that are too far
away to reach q in time. To implement this filtering operation in an efficient
way, we only check if the Euclidean distance between the last known position
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pm
u of device m and the sensing range of q is smaller than the maximum distance

that m can travel before the sensing deadline. For this purpose, we introduce
the following predicate that maps to this condition:

φ(m) : dEucl(pm
u , q.p− q.range) < vm

max · (td − tu)

We can now define the candidate set C for the recipient set selection as:

C = {m ∈M |φ(m)}

Having defined this set, pm,q is subsequently calculated for only those devices
that are included in C.

The goal is now to include as many devices in R such that the joint sensing
probability of these devices reaches the client defined quality parameter σ ∈
(0, 1]. In case σ cannot be reached (since not enough devices have high sensing
probability), a best effort solution should be provided that maximizes the joint
sensing probability. To implement this goal, we define R by greedily including
the mobile device with the highest sensing probability in C and use σ to restrict
the number of devices that will be included into R. More precisely, we start by
setting R = ∅ and then include devices in R until pq(R) reaches the value of σ.
As a result, the higher σ is set, the more devices are included in R. Algorithm 8
shows the calculation of R in detail. The function called in line 2 calculates the
candidate set out of all devices, as shown before, while the function in line 6
returns the device with the currently largest value of pm,q in C. The algorithm
stops when the joint sensing probability of R reaches the quality parameter σ
or when R is equivalent to C. In the latter case, quality parameter σ cannot be
reached. However, to provide a best effort solution by maximizing the sensing
probability the algorithm returns R, which is then equal to the candidate set C.
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Algorithm 8 Calculation of the recipient set R.
1: procedure calcRecipientSet(q)
2: C ← filterCandidates(R, q)
3: R← ∅
4: pq ← 1
5: repeat
6: m← getMaxProbDevice(C)
7: R← R ∪ {m}
8: C ← C \ {m}
9: pq ← pq · (1− pm,q)

10: until (1− pq ≥ q.σ) ∨ (R = C)
11: return R
12: end procedure

5.5 Adaptive Update Control

The presented query distribution is especially energy efficient if the PS system
has to handle a high query load, i.e., when a large number of sensing queries are
issued to the system. However, if queries are issued only rarely, the efficiency of
this approach decreases. If no queries are issued at all, it is even more energy
consuming than the basic sensing system, since devices still run the position
update protocol that consumes energy. To account for this fact, this section
introduces a concept that temporarily disables the update protocol on a device
if it moves in an area in which the query load is low.
To reflect the spatial variations of the query load, a grid is introduced that

covers the service area. The size of a grid cell is a system parameter and we
assume it to be in the magnitude of several hundred meters, since a small grid
cell sizes implies communication overhead on the devices, as we will see next.
For each grid cell c, the PS server keeps track of the number of queries which
are located within that cell and then computes the average interarrival time λc

between two queries. If λc is bigger than some predefined threshold λmin the
state of cell c is set to passive, otherwise it is set to active. These cell state
values are initially distributed to the device and updated whenever the state of
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a cell changes. To distribute them efficiently, they can be encoded as a binary
string and attached when sending sensing queries to a device. With the help of
this information, a device activates and deactivates its position update protocol
according to the status of the cell in which it is currently located.
In general, we assume that the query load for one cell is constant over time.

In fact, there are places that are especially interesting for placing queries, e.g.,
city centers, and places that are not very busy, thus, queries are issued only
rarely, e.g., in suburban areas. As a result, the PS server rarely has to update
the status values of the cells on the devices. In this thesis, we only consider
this basic version of the adaptive update control. However, to also address
temporal variations in the query load, the server could use a more sophisticated
query arrival model to predict the query load. For instance, the server could
provide the devices with a predictor, which can be used by the devices to predict
the current query load using their current location and time as input. Such
a predictor can be learned by the server over time using advanced prediction
techniques like time series analysis or artificial neural networks [Cho03].

5.6 Evaluation

In this section, we look at the evaluation results of the efficient query distri-
bution. Before the results are presented, the simulation setup and the energy
model are introduced.

5.6.1 Simulation Setup

The concepts presented in this section were implemented with the Opportunistic
Network Environment (ONE) simulator [KOK09], since real-world experiments
would require a large number of physical devices and participants. Therefore,
they are only hardly feasible. The ONE simulator is a Java based mobility sim-
ulator that is capable of generating realistic node movement by providing map-
based movement models which constrain the node movement to predetermined
paths [KOK09]. For simulating device mobility, the included mobility trace files
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of the simulator were used, which realize a random shortest path movement of
pedestrians on the road graph of Helsinki that has a size of 15 km2. This road
graph is also considered as the service area of the PS system. We assume to
not have any prior knowledge about the turning probabilities at intersections on
this map. Thus, we assume that each road at an intersection is equally likely
to be taken by a device. To allow for the calculation of sensing probabilities for
several hundreds of devices in real-time on the PS server, the integrals for the
calculation of the probabilistic sensing model were numerically approximated.
The simulator generated three hours of pedestrian movement on the given road
graph. In the evaluation the following approaches are compared:

basic The basic sensing system that broadcasts a sensing query to all mobile
devices. Using this approach, the devices do not run any kind of position
update protocol.

dist The efficient query distribution in which devices use a distance-based up-
date protocol to update their positions on the PS server.

dr The efficient query distribution in which devices use a dead reckoning update
protocol to update their positions on the PS server.

For the following results, different parameters of the PS system were varied.
While one specific parameter was varied for one analysis, the other parameters
stayed fixed during that experiment. For this purpose, the following standard
parameter configuration was chosen: One sensing query per minute was gener-
ated at a random position on the map, which expires after a the sensing deadline
of 300 s. The accuracy of the update protocol that is used in the dist- and dr-
approach is set to 200m. The number of mobile devices in the PS system is
set to 900. Furthermore, the quality parameter σ of a sensing query is set to
σ = 1.0. We will use a the notation approach − σ to denote the case when σ

is different from 1.0. For instance, dr-0.8 means that the dr-approach is used
with σ = 0.8.
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Figure 5.3: Energy consumption for different number of devices in the service
area.

5.6.2 Energy Model

For evaluating the energy consumption of the approaches, we only consider the
energy that is needed on the device for communication, i.e., for receiving sensing
queries and sending position updates. To measure this communication energy,
the energy model is used that was introduced for evaluating the position up-
date protocol in Section 4.2. Also considering the energy that is consumed for
positioning would add the same amount of energy in all approaches (since all
approaches use continuous positioning) and is therefore not decisive.

5.6.3 Energy Efficiency

First, we look at the energy efficiency of the query distribution. For this purpose,
we sum up the energy that each device consumes to get the total energy that is
consumed by all devices together. Figure 5.3 shows how the energy consumption
varies for different number of devices that are present in the service area. Over
all scenarios, the optimization with the dead reckoning update protocol is the
most energy-efficient approach. We will investigate in the following subsections
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Figure 5.4: Energy consumption for different values of the quality parameter σ.

in detail why it is the most efficient approach. It saves on average 50% of
energy compared to the basic approach, while the distance approach saves on
average 43% with respect to the basic approach. Obviously, the overall energy
consumption increases with more devices in the PS system. However, we can
also see that the energy savings of the distance and DR-approach increase with
more number of devices in the service area.
Next, in Figure 5.4 we can see how the quality parameter σ influences the en-

ergy consumption of the system. While the energy consumption of the basic ap-
proach is not affected by this parameter, the energy of the optimized approaches
decreases with smaller values of σ. That reflects the intended semantics of pa-
rameter σ, which can be specified by the client in order to control the amount
of system resources that should be utilized to answer its query. These results
can be explained by the fact that parameter σ controls the number of devices
that are included in the recipient set. For instance, a small value of σ results in
a small recipient set and leads to more energy savings.
To see how the accuracy parameter δ of the underlying position update pro-

tocol influences the energy consumption of the system, we look in Figure 5.5 at
different values of δD, respectively δDR. In general, smaller values of δ result
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Figure 5.5: Energy consumption for different accuracy parameters of the under-
lying position update protocol.

in more position updates that are sent by a device to the server. As a result,
the device position on the server is more accurate. However, more updates also
result in more energy overhead for sending them. We see from the figure that for
both approaches, there is a scenario in which the energy consumption is mini-
mal, i.e., when δD = 300 m and δDR = 200 m. The existence of such a minimum
can be explained as follows. If δ is smaller than this optimal value, the accuracy
of the update protocol requires the sending of many position updates and results
in a high energy consumption for sending them. In contrast, if δ is larger than
the optimal value, the device position on the server is not accurate enough for
the query distribution to work efficiently. As a result, the query distribution
cannot identify a small recipient set and too many devices receive a query, i.e.,
the energy consumption is high again.

Finally, we look at the efficiency of the PS system for different numbers of
queries that are requested by the clients. This is implemented by varying the
interarrival times between two queries that are issued to the system, i.e., larger
interarrival times lead to less queries that are issued to the system. Figure 5.6
shows the energy consumption without using the adaptive update control that
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Figure 5.6: Energy consumption for different query interarrival times without
the adaptive update control.

Figure 5.7: Energy consumption for different query interarrival times using the
adaptive update control.
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was introduced in Section 5.5. We see that the optimized approaches perform
better than the basic approach when queries are frequently issued. On the
other hand, a larger query interarrival time leads to less energy savings of the
optimized approach. If the query interarrival time is larger than 350 s, the basic
approach is even more energy efficient. In this case, the energy overhead for
running the position update protocol is too big and cannot be compensated
by the more efficient query distribution. This figure clearly shows that the
proposed approach can save a lot of energy if the query load in the PS systems
is high, but also indicates that the PS system should fall back to the basic
approach if only few queries are present. To adaptively switch between these
strategies, Figure 5.7 shows the same scenario when using the adaptive update
control. For this purpose, the whole service area is considered as one grid cell
and the threshold for activating the update protocol is set to λmin = 350 s
seconds. We see that for small query interarrival times the optimized approach
performs better and for large interarrival times the energy consumption for both
approaches are equivalent. Hence, the system automatically falls back to the
basic approach if the query load is low.

5.6.4 Sensing Effectiveness

To see if the shown energy reduction has a negative impact on the sensing
effectiveness, we compare the number of successfully satisfied queries. First, we
compare this number for different number of devices in Figure 5.8. Obviously,
with more devices in a scenario more sensing queries can be satisfied. Moreover,
we see that the optimized approach that uses the DR protocol with σ = 1.0,
satisfies the same number of queries as the basic approach. If σ decreases, the
number of satisfied queries decreases accordingly. To investigate this in more
detail, Figure 5.9 shows the number of satisfied queries for all values of σ. The
distance approach reaches for σ = 0.1 a relative sensing success of 72% which
goes up to 100% when σ ≥ 0.7. In comparison, the dead reckoning approach
has a much lower sensing success for smaller values of σ, i.e, for σ = 0.1 it
reaches 37% which also goes up to 100% for higher values of σ. One other thing
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Figure 5.8: Sensing effectiveness for different number of devices in the service
area.

Figure 5.9: Sensing effectiveness for different values of quality parameter σ.
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Figure 5.10: Message overhead for sending sensing queries.

that we can see from Figure 5.9 is that already a small value of σ is sufficient
to successfully sense the majority of queries. Overall, the results show that a
reduced value of quality parameter σ not only decreases the energy consumption
of the system, but also reduces the sensing effectiveness.

5.6.5 Message Overhead

To understand how the presented energy values are composed, we look at the
different messages that are sent in the system. Figure 5.10 shows the message
overhead for sending sensing queries. We see that the basic approach sends a
large number of query messages, while only a fraction of these messages are sent
for the optimized approach. In comparison, Figure 5.11 shows the number of
update messages that are sent. As we have seen already in the last chapter,
the dead reckoning protocol only needs a fraction of messages compared to the
distance-based approach. In contrast, the basic approach does not require any
location update messages. However, this advantage is compensated by the high
number of sensing queries that are distributed.
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Figure 5.11: Message overhead for sending position updates.

5.6.6 Summary

The results and findings of this evaluation can be summarized as follows. The
efficient query distribution significantly lowers the energy consumption of de-
vices in contrast to the basic approach, because of the reduced amount of query
messages a device receives from the PS server. However, this approach requires
that each device runs a position update protocol to report its positions to the
PS server. The measurements showed that the energy overhead for this protocol
is less than the savings that can be achieved by the query distribution. Fur-
thermore, we saw that this approach is especially beneficial in cases when many
queries are distributed by the PS server.

5.7 Related Work

Before we conclude this chapter, we have a look on related work in the field of
efficient query distribution. However, only a few approaches have been proposed
so far in this area. Lu et al. [LLE+10] showed with their “Bubble-Sense” system
how a sensing query can be “pinned” to a physical location by periodically
exchanging ad-hoc messages between the devices near that location. However,
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this concept relies on the wide availability of ad-hoc communication interfaces
on all devices, which are still hard to configure and therefore are rarely available
in practice. Moreover, if no device is nearby the location of the sensing query,
the query is lost and can only be restored by a node that has stored the query.
Other concepts that are more closely related were proposed by Reddy et al.

[RES10], Ruan et al. [RNL11] and Cardone et al. [CFB+13]. Similar to the
presented approach, their systems choose a subset of mobile devices to which a
sensing query is distributed. To decide which devices are most suitable for being
included into that subset, their approaches analyze historic information about
the users movement patterns and extract places were the user regularly resides.
However, this requires that the user agrees to store a privacy critical user profile
of its movement history. Moreover, these approaches do not consider the energy
that is required for generating these profiles and keeping them up-to-date on the
server. The query distribution approach that was presented in this chapter uses
a different strategy. More precisely, it does not analyze user profiles but rather
estimates the future movement of a user based only on its last known position.
Another related approach was presented by Hachem et al. [HPI13], which

propose a probabilistic device registration mechanism. Rather than distributing
sensing queries to devices, a mobile device registers at the PS server if it is willing
to receive queries for the current region in which it moves. The introduced
probabilistic registration approach reduces the number of device registrations
by lowering the probability for a device to register if there are several other
devices on the same movement path. In contrast to the presented approach,
they assume that a device knows its future movement path, while the prediction
of the movement of other devices is solely based on a spatial distribution model.
Finally the PRISM platform [DMP+10] follows the same idea as the presented

approach by proactively updating device resources on the PS server to enhance
query distribution. With the help of the resource information, PRISM automat-
ically pushes queries to an appropriate set of devices. However, the system does
not give details on the device selection and proposes the use of customizable
predicates to filter out devices that are not appropriate to receive a given query.
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5.8 Conclusion

This chapter introduced an algorithm that efficiently distributes sensing queries
from the PS server to mobile devices. In comparison to the basic sensing system
that simply broadcasts sensing queries, this approach distributes queries selec-
tively by utilizing the information provided by the position update protocol. A
probabilistic sensing model was presented that is used to restrict the distribution
of a query to those devices that are best suited for capturing sensor data for that
query. The evaluation showed that this approach can significantly increase the
energy efficiency of query distribution, especially when the query load of the PS
system is very high.
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6 Efficient Outdoor Position Sensing

So far, we have assumed that a mobile device is always aware of its current
position and did not consider the energy for sensing its position. Considering
the proliferation of location-based services, the availability of the current device
position is a valid assumption, since applications like friend finders or navigation
systems typically require accurate position information. In outdoor scenarios,
these applications require a device to continuously sample its GPS sensor. As
a result, the device position is also available to the PS application without any
extra energy overhead.
From this chapter on, we drop the assumption that the PS system can ac-

cess the current device position without any additional overhead. Instead, we
consider the case in which no other application on the device requires position
information. Consequently, the energy that is consumed to sense a device’s po-
sition is fully accounted to the PS system. To avoid confusion with the energy
that is consumed for sensing environmental data, we refer in the following to the
energy that is needed for position sensing as positioning energy.
The PS system that was used so far relies on continuous positioning, since a

device needs the current position to check if a sensing range is reached and to
trigger position updates. However, in today’s mobile devices GPS positioning is
still one of the most energy consuming operations [LYL+10], which can reduce
the battery lifetime of a device significantly. As a result, users typically avoid
running applications that need continuous position information since they are
aware of the high energy overhead for positioning. To tackle this drawback,
this chapter introduces a modification to the PS system that avoids continuous
positioning on the device and, hence, reduces positioning energy. Note that
in contrast to the position update protocol that was introduced in Chapter 4,
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this approach does not tackle the sending of position updates to the PS server.
Instead it provides algorithms that modify the underlying positioning system,
which provides the position information for the efficient update protocol.

Existing work on energy-efficient position sensing [KLG+09; FRC11] has shown
that one possibility to reduce positioning energy is the adaption of the sampling
rate of the GPS sensor. However, finding an efficient strategy for sampling the
GPS sensor in a PS scenario is not straightforward. Simply reducing the inter-
val between two consecutive position fixes would have an undesired impact on
the sensing result. For instance, a device may miss to read data for a sensing
query while passing through the range of that query as the GPS sensor is tem-
porarily deactivated. Hence, the approach presented in this chapter controls the
operation of the GPS sensor in such a way that the energy for positioning is sig-
nificantly reduced while the quantity of captured sensor data does not decline.
This is achieved by adapting the time until a mobile device performs its next
position fix to the distance to the nearest sensing range. For instance, consid-
ering the case that a noise level measurement is requested at some location l in
the city. Using the basic sensing system, a mobile device m would continuously
fix its position to determine whether it is close enough for recording a sound
sample at l, even when it is still far away from l. In contrast, the approach that
is presented in this chapter determines an optimal time span by which m can
delay the next position fix until m is close enough for recording at l.

This rest of this chapter is organized as follows: In order to find an energy-
efficient position sensing algorithm, we need to understand the energy charac-
teristics of the GPS sensor, which are introduced in Section 6.1. Subsequently,
the adaptive positioning scheme is introduced in Section 6.2, which temporarily
deactivates the GPS sensor to save energy. The use of adaptive positioning has
implications on other parts of the sensing system, namely the query listener and
the position update protocol, which both run on the devices. Hence, Section 6.3
and Section 6.4 introduce modifications to these components, before Section 6.5
presents the evaluation results of this approach. Finally, Section 6.6 summarizes
related work on this topic before Section 6.7 concludes this chapter.
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6.1 GPS Energy Model

To understand the concepts that are introduced in this chapter, we start by
looking at the energy characteristics of a GPS sensor. In general, the energy
consumption of a GPS sensor is non-linear, i.e., the consumed energy is not a
constant factor of the position fixes that were performed. This is attributed
to the fact that such a sensor has a certain request delay to switch from idle
state to the operational state. Additionally, once powered up, the sensor does
not immediately power down after a position fix is completed. Instead, it stays
in the operational state for a certain time frame to avoid the request delay for
subsequent position requests. As a result, the total energy consumption not only
depends on the number of position fixes but also on the time intervals between
them. This behavior is very similar to what we have seen before when looking
at the energy characteristics of a cellular communication interface of a mobile
device (see Section 4.2).

To investigate these characteristics in more detail, we have a look at the mea-
surement results that were published by Kjærgaard et al. [KLG+09]. In general,
a GPS sensor has two power states: IDLE and ON. According to the measure-
ments, a mobile device consumes in the IDLE state on average 0.0621W, while
it consumes 0.324W on average in the ON state. To perform a position fix, the
sensor has to be in the ON state. After a position fix is completed, the sensor
stays for another 30 s in the ON state, before it switches back to the IDLE state.
This time frame is called the power-off delay. Once the sensor switched back
to the IDLE state, it needs some time to power up again and is then able to
provide a new position after 6 s. This time frame is called the request delay.
Table 6.1 gives an overview of all introduced values.

To illustrate these energy characteristics, Figure 6.1 shows an example that
includes the different power states and delays. At the beginning of the example
(at t = 0 s) the GPS sensor is in IDLE mode. At t = 10 s, some application
requests a position from the sensor. Hence, the sensor switches to the ON state
and starts calculating the current device position. At t = 16 s, this calculation is
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Table 6.1: Energy characteristics of a GPS sensor.

Operating State Power [W]
IDLE 0.0621
ON 0.324

Symbol Delay Type Delay [s]
delayreq Request delay 6
delayoff Power-off delay 30

Power [W]

Time t [s]

delayreq delayoff

0 10 16 26 36 66

Position Fix
Position Request

ON

IDLE

0.324

0.0621

Figure 6.1: Example of the energy consumption of a GPS sensor over time.

finished and the position is provided back to the application. If no other position
request would arrive, the sensor would power down to the IDLE state after the
lapse of the power-off delay. However, at t = 26 s and t = 36 s subsequent
position requests arrive at the sensor. Since the sensor is already in the ON
state, it can serve these requests immediately. After the last position fix at time
t = 36 s, the sensor stays for the length of the power-off delay in the ON state
until it powers down at t = 66 s.

We can see from this example, that the different power states and delays of
the GPS sensor need to be considered when designing energy-efficient position
sensing algorithms. For instance, avoiding continuous positioning by simply in-
creasing the delay between two position requests to 10 seconds is not an efficient
strategy. In this case, the sensor would still consume as much energy as for
continuous positioning, since it cannot power down between two requests.



6.2 Adaptive Positioning 107

6.2 Adaptive Positioning

The concept of continuous positioning ensures that no mobile device passes the
range of a sensing query without being aware of it. Thus, this approach can be
used as a reference for achieving optimal sensing effectiveness. Nevertheless, this
approach also causes high energy consumption since mobile devices continuously
fix their position. To tackle this problem this section introduces the adaptive
positioning approach, which suppresses position fixes if the range of the closest
sensing query is some distance away.
To introduce this approach, we first look on the modifications that need to be

done on the device in order to implement adaptive positioning. Subsequently,
the concept of adaptive positioning is introduced.

6.2.1 Modification to Basic System

To implement adaptive positioning, the sensing engine of the basic sensing sys-
tem needs to be modified according to Algorithm 9. Compared to the non-
modified algorithm, the length of the posInterval in line 4 is no longer fixed to
a fixed time interval cp but is now assigned by a dedicated function. This func-
tion returns a time frame by which the following position request to the GPS
sensor is delayed (line 4–6). The design and implementation of this function is
subject of the next section.

Algorithm 9 Modifications to the sensing engine for adaptive positioning.
1: procedure SensingEngine
2: p← getPosition()
3: while TRUE do
4: posInterval← getAdaptivePosInterval(Q,p) . Modified
5: sleep(posInterval)
6: p← getPosition()
7: ... . As in basic system
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Figure 6.2: Basic idea of the adaptive positioning approach.

6.2.2 Adaptive Positioning Interval

The goal of the getAdaptivePosInterval function (Algorithm 9, line 4) is
to return the maximal time frame that still ensures that no sensing range is
passed while the sensing engine is in sleep mode (line 5). The idea for finding
this value is as follows (see Figure 6.2): Given are the current position p of a
device and a sensing query q. The distance between p and the sensing range of q
is denoted as dpq . If we assume that the device moves directly towards q with a
constant velocity of v, the time frame t that the device needs to travel distance
dpq is given by the following formula:

v = dpq

t
⇔ t = dpq

v
(6.1)

With the help of this formula, a device can calculate the minimum time that
it needs to reach the closest sensing range and delay the next position request
accordingly.
Algorithm 10 shows the implementation of this idea. In the first step (line 2),

the distance to the closest sensing range is calculated (referred to as dmin). Next,
the device calculates an estimate about its future velocity v (line 3). Both values
are calculated by separate functions, which will be explained in more detail later
on. In line 4, the values dmin and v are used to calculate the minimum time t
that is needed to reach the nearest sensing range. If the energy characteristics
of the GPS sensor would not be considered, the value of t could be returned as



6.2 Adaptive Positioning 109

Algorithm 10 Calculation of the adaptive positioning interval.
1: procedure getAdaptivePosInterval(Q, p)
2: dmin ← getDistanceToQuery(Q, p)
3: v ← getVelocity()
4: t← dmin/v
5: if t ≤ delayoff then
6: return t
7: else
8: tr ← t− delayreq

9: if tr ≤ delayoff then
10: return delayoff

11: else
12: return tr
13: end if
14: end if
15: end procedure

result of the algorithm. However, as we have seen in Section 6.1, the GPS sensor
has a non-linear energy characteristic that needs to be taken into account when
calculating the adaptive positioning interval. More precisely, if t is smaller than
the power-off delay of the GPS sensor, then t is returned (line 6). In this case, no
energy can be saved since the sensor does not have enough time to power down.
Note that even if the sensor cannot power down, it is more energy efficient to
return a large value for t, since this delays the execution of the sensing engine
and, thus, reduces its computational overhead. If t is bigger than the power-off
delay, the sensor can power down before reaching q, but then needs the length
of the request delay to provide a new position fix. Hence, t is reduced to tr by
subtracting delayreq (line 8). If this reduction results in tr being smaller than
the power-off delay, delayoff can be returned as result (line 10). In this case the
sensor does not power down, which means there is no request delay for the next
position fix. In contrast, if tr is bigger than delayoff , the value of tr is returned
as result (line 12).

To calculate the distance to the closest sensing range dmin and the velocity v,
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Figure 6.3: Euclidean distance vs. graph-based distance when measuring the
distance between device and sensing range.

Algorithm 10 calls two subroutines (lines 2–3). Next, we have a look on how
these subroutines are realized.

Distance to Sensing Query. The distance from the mobile device to the clos-
est sensing range can be measured according to two different distance metrics,
which are the Euclidean distance or the graph-based distance (see Figure 6.3).
While the Euclidean distance measures the direct distance to the sensing range,
the graph-based distance depicts the shortest distance to the sensing range on
the road graph. In general, the graph-based distance is at least as long as the
Euclidean distance and in most cases much longer. According to Equation 6.1,
using the graph-based distance allows for longer sleeping times between two
position requests and, hence, results in higher energy efficiency. However, the
graph-based distance also requires a device to run a shortest path algorithm
for measuring distances. Since the computational overhead for running such an
algorithm is higher than calculating the Euclidean distance, there is a trade-off
between energy for computation and energy savings for positioning. To analyze
this trade-off, we next look at the distance calculation in more detail.
Calculating the distance to the closest sensing range according to the Eu-

clidean distance is straightforward: The device compares is current position p

against the positions of all known sensing queries and returns the closest dis-
tance. Algorithm 11 shows the implementation of this function. Note that the
range of the respective sensing query must be subtracted (line 4), since the device
should already have a position available when it enters the sensing range (see
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Figure 6.2). Since the calculation of the Euclidean distance requires constant
time, the computational overhead for this algorithm is linear with the number
of known queries, i.e. the time complexity is O(|Q|).

Algorithm 11 Calculation of Euclidean distance to closest sensing query.
1: procedure getDistanceToQuery(Q, p)
2: dmin ←∞
3: for all q ∈ Q do
4: d← euclideanDist(p, q.p)− q.range
5: dmin ← min(d, dmin)
6: end for
7: return max(dmin, 0)
8: end procedure

In contrast, the calculation of the graph-based distance is more complex. One
prerequisite for this calculation is that a device knows the road graph on which
it is moving (otherwise the device has to use the Euclidean distance metric).
Before the distance calculation starts, the device position and all sensing ranges
need to be mapped to the road graph. In general, a sensing range can intersect
with more than one edge of the road graph (see Figure 6.4a). Each intersection
point marks a starting point for reading data for the respective sensing query.
Hence, the device has to determine the distance to the intersection point that
is closest to its position. To avoid computing overhead on the devices, these
intersection points can be determined by the server in advance and can be sent
to the devices together with the sensing query. For running a shortest path
algorithm, the road graph on which the device is moving is manipulated as
follows (see Figure 6.4b): The current device position is inserted as starting
node for the shortest path algorithm. For every intersection point of the graph
with a sensing range, a query node is inserted.
A naive way of finding the distance to the closest sensing range is to replace

line 4 of Algorithm 11 with the distance that is returned when executing a
shortest path algorithm to find the distance between p and a query q. However,
this would require to run the shortest path algorithm |Q| times. For instance,
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Road node
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Figure 6.4: Restructuring the road graph for calculating the graph-based dis-
tance with a shortest path algorithm.

using Dijkstra’s algorithm as shortest path algorithm would result in an overall
time complexity of O(|Q||E|+ |Q||V |log|V |), where |V | is the number of nodes
and |E| the number of edges in the road graph. Due to the computational
overhead of such an algorithm, the device may spend more energy on calculation
than it can save through positioning. Hence, the following introduces a way to
reduce the calculation overhead for the graph-based distance calculation.
The basic idea is to start the shortest path algorithm from the starting node

and to stop its execution as soon as the first query node is found. Instead of
running the shortest path algorithm |Q| times, this only requires to run it once.
Algorithm 12 shows the implementation of this idea. This algorithm is based on
the Dijkstra implementation presented in [FT87] which utilizes priority queues
to yield a time complexity of O(|E|+ |V |log|V |). As discussed earlier, the device
position p and the known queries Q are mapped to the road graph (line 2). This
returns the starting node vs and the modified road graph with vertex set V ∗.
The rest of the algorithm is identical to the standard Dijkstra implementation,
with one exception: When a vertex is taken from the remaining nodes set N ,
the algorithm checks whether this vertex is a query node (lines 12–14). In this
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Algorithm 12 Calculation of graph-based distance to closest sensing query.
1: procedure getDistanceToQuery(Q, p)
2: V ∗, vs ← mapToRoadGraph(Q, p)
3: d[vs]← 0
4: N ← {vs}
5: for all v ∈ V ∗ do
6: d[v]←∞
7: N ← N ∪ {v}
8: end for
9: while |N | > 0 do

10: vmin ← arg minv∈N d[v]
11: N ← N\{vmin}
12: if isQueryNode(vmin) then
13: return d[vmin]
14: end if
15: for all neighbors u of vmin do
16: if d[vmin] + euclideanDist(u, vmin) < d[u] then
17: d[u] = d[vmin] + euclideanDist(u, vmin)
18: end if
19: end for
20: end while
21: end procedure
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case, the algorithm stops and returns the distance to this vertex. Following the
semantics of the Dijkstra algorithm, it is guaranteed that the first vertex that
is found in line 12 is the closest query node for the device.

Velocity of Device. Besides the distance to the closest sensing range, Al-
gorithm 10 takes the velocity of the device as input to compute the adaptive
positioning interval. In general, there are different possibilities for setting this
value. To ensure that a device will not miss any sensing range, v can be set
to the device’s maximum speed vmax. As detailed in Section 5.3.1, we assume
that each device is aware of its own maximum speed. Even if the device moves
directly towards the closest sensing query, the query will then not be missed.
However, if the device is actually moving slower than vmax, the GPS sensor is
activated earlier than actually required. Hence, a more optimistic approach is to
use a device’s average speed vavg instead of vmax. This decreases the number of
position fixes but may also reduce the effectiveness of the sensing system. More
precisely, a sensing range can be missed if the device actually moves faster than
vavg and reaches the sensing range before the GPS sensor is activated again.
To see the effects on the energy efficiency and sensing effectiveness of choosing

vavg over vmax, both values will be used in the evaluation.

6.3 Modified Query Listener

After having introduced the concept of adaptive positioning in the last section,
we next look on how this concept affects other parts of the PS systems. This
section shows how the query listener on the device needs to be adapted, while
the next section introduces a modification to the position update protocol.
As introduced in Section 2.2, the query listener runs on the mobile device and

is part of the basic sensing system. It is responsible for receiving query messages
from the server, which contain sensing queries that should either be added or
removed from the set of known queries on a device. In order to use adaptive
positioning, the query listener algorithm needs to be modified. To illustrate the
necessity of this modification, we assume the following scenario: At time t, a
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Figure 6.5: Arrival of a new sensing query.

device receives its current position p from the GPS sensor. Since the range of
the closest sensing query q is some distance away, it decides to delay the next
position fix for 100 s and puts the sensing engine to sleep mode (Algorithm 9,
line 5). At time t + 10 s, the device receives a new query q∗ from the server.
Now the following two cases can be differentiated:

1. Query q∗ is closer to p than q (see Figure 6.5a). In this case, the sleeping
time of the sensing engine needs to be reduced, otherwise the new query
might be missed. The details of this reduction are given later on.

2. Query q∗ is further away from p than q (see Figure 6.5b). In this case, the
sleeping time of the sensing engine needs no adaption, since q is still the
closest query to p.

Apart from these cases, a device can also receive a query revoke message while
the sensing engine is in sleep mode. In this case, the sleeping time of the sensing
engine can be extended if exactly that query is revoked that was previously the
closest query when calculating the sleeping interval.
To consider all these cases, Algorithm 13 shows the modifications that need to

be done for the query listener. While the basic parts of the query listener stay
unmodified (lines 1–8), lines 9–11 include the additional concepts. In line 9, an
adaptive positioning interval t is calculated. The input for this calculation is the
query set Q that was modified in lines 4–8 and the last available device position
p. In line 10, the result of this calculation is used to determine a new sleeping
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Figure 6.6: Time frames for calculating the sensing engine’s sleeping time.

time for the sensing engine. To this end, the time frame between the current
time tnow and the time of the last position p.time is subtracted from t, since this
is the time that the sensing engine already spent in sleep mode (see Figure 6.6).
Note that this value can be negative if the newly added sensing query is close
to p. Hence, a max function is used to prevent a negative sleeping time. With
the resulting value, the sleeping time of the sensing engine is adjusted (line 11).
In case sleepT ime = 0, the sensing engine immediately wakes up and requests
a position fix.

Algorithm 13 Modified query listener to adjust sleep time of sensing engine.
1: procedure QueryListener
2: while TRUE do
3: msg ← receive()
4: if msg instanceOf(queryMsg) then
5: Q← Q ∪ {msg.q}
6: else if msg instanceOf(stopQueryMsg) then
7: Q← Q\{msg.q}
8: end if
9: t← getAdaptivePosInterval(Q, p) . Begin of extension
10: sleepTime ← max(t− (tnow − p.time), 0)
11: adjustSleepTime(sleepTime) . End of extension
12: end while
13: end procedure
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6.4 Modified Update Protocol

With adaptive positioning a device does not periodically track its position since
the GPS sensor is not always active. However, the availability of an up-to-
date device position is a requirement for the position update protocol that was
introduced in Chapter 4. More precisely, the update protocol needs the current
position to constantly check if a position update needs to be sent to the PS
server. In order to also work with adaptive positioning, this section introduces
a modification to the previously presented update protocol.
In Chapter 4, two algorithms were introduced which are responsible for send-

ing position updates to the server, namely the basic update protocol (see Algo-
rithm 4) and its opportunistic extension (see Algorithm 5). The basic protocol
waits until there is a new GPS position available and then checks whether this
position violates the update condition. If this is the case, a position update is
sent. In fact, this protocol also works when using adaptive positioning with the
only difference that the position accuracy of the update protocol can no longer
be guaranteed. For instance, the update condition can be violated while the
GPS sensor is currently in idle mode. This violation can only be detected once
the GPS sensor is active again. However, for the implementation of efficient
position sensing, this protocol is not modified and the resulting inaccuracy is
tolerated.
While the basic update protocol stays unmodified, the opportunistic extension

of the update protocol needs minor modifications. The problem is that it queries
the GPS sensor for the current device position whenever there is background
traffic on the device. Since the sending of an opportunistic update does not
bring any additional benefit when no new GPS position is available, we decide to
not send an opportunistic update when the GPS sensor is currently deactivated.
Obviously, these modifications imply that the accuracy of the device position

on the PS server can no longer be guaranteed by the update protocol. On the
one hand, the resulting drop of the position accuracy has a negative effect on the
efficiency of the query distribution, as we have seen in the evaluation of Chap-
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ter 5. On the other hand, by temporarily disabling the GPS sensor a significant
amount of energy can be saved on the device. We will see in the following
evaluation how this trade-off between position accuracy and positioning energy
affects the total energy consumption of the mobile device.

6.5 Evaluation

In this section, we look on the evaluation results of the efficient position sensing
approach. First, the energy efficiency of adaptive positioning is evaluated and,
subsequently, its effects on the sensing effectiveness of the PS system are ana-
lyzed. To see the system’s relative performance, the aforementioned metrics are
shown with respect to the basic sensing system in which devices continuously
run the positioning system. Finally, the concepts from the efficient query dis-
tribution are included in this comparison in order to analyze the total energy
savings when using all concepts that were presented so far.

6.5.1 Simulation Setup

The evaluation in this section is based on the same system setup that was used
for the query distribution in Section 5.6. Hence, all concepts were implemented
with the help of the ONE simulator and, if not stated otherwise, are based on
the same standard parameter configuration that is used in Section 5.6. The en-
ergy that is needed for calculating distances to sensing ranges (see Section 6.2)
is measured as follows: Parts of the simulation were executed on a Samsung
Galaxy Nexus i9250 to log the time that is needed by the device for the distance
calculation. Furthermore, the power consumption of the device during calcula-
tion was measured by attaching a measurement kit between the device’s battery
and the device. The results of these measurements show that a device consumes
on average 1.3 W while running the distance calculation. This value was used
in combination with the logged execution times to calculate the computation
energy in the simulation. In the following, this energy is included in the posi-
tioning energy. To measure the energy for position fixes, the energy values and
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state transition delays from Section 6.1 were used.
For the evaluation, we compare three different algorithms:

basic Implements the basic sensing system that uses continuous positioning with
a positioning interval cp = 1 s (as in [KLG+09]).

eucl Implements adaptive positioning using the Euclidean distance for measur-
ing distances to sensing ranges.

graph Implements adaptive positioning using the graph-based distance for mea-
suring distances to sensing ranges.

Since the distance calculation can either take the average or the maximum speed
as base for calculating the GPS timeout, the corresponding speed is attached
to the name of the approach. For instance, eucl-max denotes the adaptive
positioning using the Euclidean distance and the maximum speed for calculating
the GPS timeout.

6.5.2 Energy Efficiency of Adaptive Positioning

First, we have a look at the energy that is consumed by the mobile devices for
positioning. Figure 6.7 shows on the y-axis the positioning energy that is con-
sumed over all mobile devices. We can see that the basic approach consumes
significantly more energy than the optimized approaches in all scenarios. For in-
stance, the graph-based approach that uses average speed saves 90% on average
compared to the basic approach.
To see the differences between the optimized approaches in more detail, Fig-

ure 6.8 leaves out the basic approach and only shows the optimized ones. The
figure shows that the use of the maximum speed consumes more energy than
using average speed, no matter which distance metric is used. For the pedestrian
traces, the maximum walking speed is 40 % higher than the average speed of a
pedestrian. Using maximum speed, the graph-based approach is more energy
efficient than using the Euclidean distance. More precisely, the graph-based
approach saves 5 % of energy compared to the Euclidean distance approach.
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Figure 6.7: Positioning energy for different number of devices.

Figure 6.8: Positioning energy for different number of devices.
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Figure 6.9: Number of satisfied sensing queries for different number of devices.

However, when using average speed there is no difference between both ap-
proaches, i.e., both consume on average the same amount of energy. This can
be explained as follows: When using a device’s average speed for calculation,
the resulting GPS timeout is longer as when using maximum speed. Hence, it
is more likely that a device receives a new sensing query in this time frame that
wakes up the GPS (see Section 6.3). In this case, there is no difference between
the Euclidean and the graph-based approach considering the length of the GPS
timeout. Furthermore, also considering the computational overhead for calcu-
lating the graph-based distance, the graph-based approach consumes the same
amount of energy as the distance-based approach.

6.5.3 Effectiveness

The energy results show that the use of adaptive positioning gives rise to tremen-
dous energy savings with respect to positioning energy. Next, we will check if
these savings come for the price of decreased sensing effectiveness. For this pur-
pose, the number of satisfied sensing queries is shown in Figure 6.9. We can see
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Figure 6.10: Total energy for different number of devices.

from the figure that the approaches lowers the sensing effectiveness only insignif-
icantly (on average < 1 %). This means that even the use of average speed for
the GPS timeout calculation is sufficient to not lower the sensing effectiveness.
Hence, the use of this more optimistic speed estimation pays off, as it does not
decrease sensing effectiveness but increases energy efficiency, as we have seen
before.

6.5.4 Total energy efficiency

Finally, we have look at the combination of the different approaches that were
introduced in this thesis so far. For this purpose, we look at a device’s total en-
ergy consumption that includes communication energy and positioning energy.
Figure 6.10 shows the result of the basic approach, an approach that only uses
efficient query distribution (effDist) and an approach that uses efficient query
distribution together with efficient position sensing (effDist+effPos). Here, the
latter one uses the graph-based distance metric and the average speed for calcu-
lating the GPS timeout. While the efficient query distribution already increases
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the energy efficiency of the basic approach, we see that the additional use of
adaptive positioning results in big additional energy savings. Compared to the
basic approach, the energy savings of this combined approach are on average
82 %.

6.6 Related Work

Before concluding this chapter, we have a look on related work in efficient posi-
tion sensing. Taking the context of the user into account, Ryder et al. [RLR+09]
and Lu et al. [LYL+10] propose a way to increase the battery lifetime of a mobile
device by adapting the GPS sampling rate to the movement mode of the user.
For instance, no position fix is needed while the accelerometer indicates that the
user stays at the same position. However, Chon et al. [CTS+14] have recently
shown in a measurement study that this strategy does not reduce the energy
consumption of a mobile device. Instead, continuous sampling the accelerome-
ter prevents a device’s CPU from going into sleep mode. Hence, the proposed
strategy actually increases the total energy consumption.
Other systems follow the same approach that is used in this chapter and

adaptively schedule the GPS sensor. For instance, the RAPS system [PKG10]
adaptively turns on the GPS sensor if the position uncertainty of a device ex-
ceeds a certain accuracy threshold. Similar approaches have been proposed to
efficiently track the position of a device. Farrell et al. [FLR07; FRC11] show in
their work on continuous range queries that the next position fix can be deferred
until the earliest point in time when the mobile device can reach the boundary
of the range query. Based on this work, Kjærgaard et al. propose the EnTracked
system [KLG+09] that implements the aforementioned concepts on a real device
and give valuable insights to the power characteristics of a mobile device po-
sitioning. While these approaches temporarily disable GPS positioning until a
certain inaccuracy threshold is reached, the approach presented in this chapter
follows a different idea. More precisely, the presented approach does not limit
the inaccuracy of the device position but ensures that an accurate position is
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available before reaching a sensing range. As a result, a different strategy for
scheduling the GPS sensor is required.

6.7 Conclusion

The evaluation in this chapter showed that continuously running a positioning
system consumes a large amount of energy on the mobile device. To account for
this fact, the concept of adaptive positioning was introduced that temporarily
disables the GPS sensors. However, disabling the positioning system can also
result in missed sensing queries, since a device can only read data for a sensing
query when GPS is active. This chapter introduced a concept that tackles
both, increasing energy efficiency while not decreasing sensing effectiveness. By
adaptively calculating an individual GPS timeout, depending on the current
device position and the position of sensing ranges, the GPS can be disabled long
enough to save energy, but not too long to miss any sensing query.
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7 Efficient Indoor Position Sensing

The concepts that were introduced so far assume that mobile devices are moving
outdoors while capturing sensor data for the PS system. In fact, many sensing
scenarios like air pollution monitoring require sensor data that was captured out-
doors. Besides these outdoor scenarios, indoor environments can also be subject
of sensing scenarios that provide valuable insights. This is especially true if we
consider that people typically spend large fractions of their time indoors [Ott89].
For instance, indoor air quality monitoring [JLT+11] and automatic floor plan
generation [PBD+14] are only two examples out of a wide range of possible in-
door application scenarios. To account for this fact, this chapter extends the
concepts that were presented so far to be applicable in indoor environments. On
the one hand, this does not require any changes to the opportunistic position
update protocol and the efficient query distribution. Both can receive the re-
quired position information from the inertial positioning system (IPS) that runs
on the device. On the other hand, the previously introduced concept of efficient
position sensing cannot be applied without major modifications, as we will see
in the following.
As already discussed in the system model, devices rely indoors on an IPS.

Similar to GPS, an IPS has high power consumption and therefore drains a
device’s battery quickly. Thus, constantly running an IPS lowers the user ac-
ceptance of the PS system, which has a negative impact on the coverage of the
sensing system. Similar to the concept of efficient outdoor position sensing, a
promising way to save energy is to temporarily turn the IPS off when no sensing
query is close to the device. However, this is not straightforward since an IPS
requires an absolute starting position when it is turned on. More precisely, an
IPS is based on angular and linear acceleration values, which are integrated to
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calculate a motion vector. This vector is added to an absolute starting position,
which is not available when the device is already indoors and decides to start the
IPS. Hence, to enable efficient position sensing also for indoor scenarios, these
special characteristics of an IPS need to be taken into account. To address these
problems, this chapter introduces concepts that allow to temporarily turn off
the positioning system in indoor scenarios. As a result, the energy efficiency of
indoor positioning can be increased, however, to achieve this we have to accept
a decrease in sensing effectiveness of the PS system, as we will see later on.
The remainder of this chapter is structured as follows: Before the actual con-

cepts are introduced, Section 7.1 gives an overview of the different components
of the positioning approach. Subsequently, Section 7.2 introduces an energy
model for the IPS and WiFi scanning, which will be used to support the IPS.
Sections 7.3 and 7.4 introduce the main concepts to implement the efficient in-
door position sensing. In Section 7.5 we look at the evaluation results for the
presented approach, before Section 7.6 gives an overview of related work on this
topic. Finally, Section 7.7 concludes this chapter.

7.1 Overview

The general idea of efficient indoor position sensing is the same as for outdoor
positioning, which was introduced in the last chapter: Mobile device disable
their energy-intensive positioning system as long as there is no sensing range in
their current vicinity. As mentioned before, this is not easily possible with an
IPS, since it needs an absolute starting position when being turned on. For this
purpose, a device additionally uses a low-energy WiFi-based positioning system.
The reference data for this system is collected on-the-fly and, hence, it does not
require any prior collected WiFi fingerprints. This WiFi-based positioning is
used to provide so-called anchor points, which serve as absolute reference points
when turning the IPS on again. The remainder of this section gives an overview
over all the components that are necessary to implement this approach. In
subsequent sections, each component will be elaborated in more detail.
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Figure 7.1: Components of the efficient indoor positioning approach.

In contrast to the previously presented concepts, the efficient indoor position
sensing approach cannot be easily integrated into the basic sensing system by
replacing a few lines of code. Instead, it consists of a set of different components
that run on the mobile device in parallel to the basic sensing system. Figure 7.1
gives an overview of these components and their relations to each other. In
general, two operation modes can be distinguished which are IPS on and IPS
off. While the IPS is on, a mobile device runs the non-modified version of the
sensing engine that was presented in Algorithm 3. In this case, the IPS provides
the position that the sensing engine uses for checking if the device reached a
sensing range. In contrast, if the IPS is off, the sensing engine on the device is
temporarily disabled and the device cannot read sensor data.
The decision when to turn the IPS on or off is made by the Scheduler com-

ponent, which takes the current device position and the locations of the sensing
ranges as input. With the help of a mobility model, the scheduler predicts
whether it is likely that the device will reach a sensing range in the near future.
If that is the case, the IPS must be running when reaching this range. Hence,
the scheduler uses a mobility model to decide when the IPS can be turned off
and when the initialization of the IPS must be started again.
The WiFi position recovery is activated once the IPS is disabled. To ensure

that the IPS can be initialized before reaching a sensing range, it is responsible
for two tasks: First, it keeps track of the device position. Since the IPS is
temporarily turned off to save energy, a device still needs to be able to locate
itself. Otherwise it is possible that it passes the next sensing range without
capturing sensor data. For this purpose the WiFi position recovery helps to
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track the device position with decreased accuracy. Second, it helps to initialize
the IPS after the scheduler decided that the IPS should be turned on. To
support these operations, it uses so-called WiFi anchor points, which provide
coarse device positioning with small energy overhead. These anchor points are
placed inside a building and are associated with a known position and a set of
WiFi fingerprints. Such a fingerprint consist of several received signal strength
indicator (RSSI) measurements of WiFi signals that a device can receive at the
anchor point’s position. Devices can use these RSSI values as reference data for
finding to the closest anchor point in order to get a coarse position, as we will
see later on in more detail.
The IPS initialization component interacts with the WiFi position recovery

to allow for dynamically turning on the IPS. To provide an absolute starting
position for the IPS, it uses WiFi anchor points to pin a relative IPS trace to
the absolute position of an anchor point. To precisely know when a device passes
such an anchor point, acceleration data from the IPS is used to identify sharp
turns at corners (hallway intersections and turns). Thus, anchor points will be
strategically placed at each corner such that the trace can be precisely aligned
when the device reaches a corner and makes a turn.

7.2 Energy Efficiency of IPS and WiFi Positioning

One prerequisite to increase energy efficiency with the aforementioned approach
is that scanning for WiFi fingerprints consumes less energy than running the
IPS. To backup this assumption, we look in this section at the results of an
experiment that was conducted to compare the energy consumption of an IPS
and WiFi positioning.
For this experiment, both positioning methods were implemented on a Sam-

sung Galaxy Nexus i9250 and a measurement kit was attached between the
battery and the device to measure the device’s power drain. To implement the
IPS system, an Android application was developed that runs an IPS according
to the system of Li et al. [LZD+12]. This application reads sensor data from the
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(a) IPS (b) WiFi

Figure 7.2: Power consumption of the mobile device over time: (a) Device run-
ning the IPS. (b) Device performs WiFi scans every 10 s.

device’s compass, gyro and accelerometer and fuses this data to detect individual
steps of the device user along with the device’s current heading. For the WiFi
positioning, an application was implemented that periodically performs a WiFi
scan every tscan seconds and then compares the scan results against a database
of WiFi fingerprints.

The results of this measurement are shown in Figure 7.2. The power con-
sumption for the IPS is shown in Figure 7.2a, while the results for the WiFi
positioning with a scan period of tscan = 10 s are shown in Figure 7.2b. By look-
ing at the power consumption over time for the IPS, we see that running the
IPS keeps the device constantly active. This can be attributed to the fact that
the device has to continuously sample its sensors and analyze the obtained data.
Therefore, the CPU cannot go into the less power consuming idle mode. For the
WiFi positioning, we see that the peak power consumption when a WiFi scan is
performed is higher than the power consumption of the IPS. However, between
two WiFi scans the device consumes less power than the IPS. In this time frame,
the device’s CPU is able to power down to the energy-saving idle mode. To see
which of these two systems is more energy efficient in total, Figure 7.3 shows the
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Figure 7.3: Energy consumption of IPS and WiFi positioning over time.

cumulated energy consumption for both approaches. In addition to the WiFi
scan period of tscan = 10 s, this figure also shows the energy consumption of the
WiFi application for a scan period of tscan = {1, 3, 5} s. We see that the WiFi
positioning system is more energy efficient than the IPS if the scan period is
bigger than one second. However, if a WiFi scan is performed every second, the
total energy consumption is higher than for the IPS. Hence, periodic WiFi scan-
ning with an one second interval has an average power consumption of 1.19W
and, thus, is more energy consuming than running the IPS that has an average
power consumption of 0.46W. In contrast, using a larger scan period can save
a lot of energy. For tscan = 3 s, the WiFi approach consumes 0.41W, which is
89% of the IPS power. For tscan = 5 s, the power consumption is 0.3W (= 65%
of IPS) and for tscan = 10 s the WiFi approach consumes only 0.16W (= 35%
of IPS).
This study shows that it is worth turning off the IPS and using WiFi posi-

tioning instead. On the downside, using WiFi positioning with a sample period
of 10 s seconds can provide only coarse-grained position accuracy. However, this
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is sufficient if the device is not close to a sensing range, as we will see in the
following sections. For the rest of this chapter, tscan is set to 10 s. In the next
section, we will see how WiFi positioning is set-up.

7.3 WiFi Position Recovery

The WiFi position recovery is based on the concept of geographically distributed
anchors points and follows the idea to supply each device with information to
identify these points when passing them. This information includes the geo-
graphic position of each anchor point and the RSSI values that were measured
at these points during the anchor point setup phase. After the IPS has been
turned off, a device can use this information to estimate its position by compar-
ing the results of WiFi scans with the known RSSI values of the anchor points.
More details on this comparison are given later on.
Before anchor points can be used for positioning, they first need to be set-

up. Since we assume no prior knowledge about the distribution of WiFi signals
inside the building, anchor point setup has to be performed “on-the-fly” in an
initial phase.
For choosing suitable positions for the anchor points inside the building, three

requirements must be fulfilled:

1. The total number of anchor points inside a building must be small. They
should only be set up at few locations, since for every anchor point WiFi
RSSI data needs to be collected by the devices, which is energy consuming
(as shown in Section 7.2).

2. The locations of anchor points should be chosen in such a way that they
allow devices to find their coarse position from few WiFi scans. More
precisely, if the IPS is off, only a few WiFi scans should be sufficient for a
device to identify the closest anchor point.

3. Finally, the locations of the anchor points should be selected in such a
way that they can provide a precise position for initializing the IPS. More



132 7 Efficient Indoor Position Sensing

Anchor Point
31m

Indoor floor plan

(a)

Positions of RSSI values
Anchor Point

(b)

Figure 7.4: Building the WiFi anchor point database: (a) Locations of the WiFi
anchor points. (b) Recording and filtering of RSSI values.

precisely, an anchor point should be placed in such a way that it is possible
to indicate from an IPS trace at which position in the trace the anchor
point was passed. Since this is a rather abstract requirement, we will see
in the following how this can be implemented.

To meet these requirements, anchor points are only placed at hallway inter-
sections as shown in Figure 7.4a. Since there are typically only a few hallway
intersections in a building, the number of anchor points and necessary WiFi
scans is limited. Moreover, the position of intersections can be identified easily
by looking for sharp turns of about 90 ◦ in the IPS trace. Hence, for setting-up
the anchor points, devices perform WiFi scans whenever they make sharp turns
and upload the measured RSSI value together with the current device position to
the PS server. The PS server uses the uploaded RSSI values and associates them
with an anchor point according to the position where the RSSI was recorded.
Note that RSSI values can actually be recorded aside from intersections if the
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Figure 7.5: Reposition of a relative IPS trace: (a) Recording a WiFi scan at
a 90 ◦ turn. (b) Mapping the relative trace to the center of the
according intersection.

user made a sharp turn at some other place, for instance, when entering a room.
These values can be filtered out (see Figure 7.4b) by the PS server by using map
knowledge. The result is a list of anchor points, each one of them associated
with a set of attached WiFi RSSI values. This list is communicated back to the
devices when the server distributes sensing queries to the devices.
After setting-up the anchor points, they can be used by devices for coarse

positioning while the IPS is turned off. To this end, a device performs a WiFi
scan every 10 s and identifies its closest anchor point. This is done by selecting
the anchor point whose RSSI fingerprint is closest to the RSSI values measured
by the device using the Euclidean distance as metric. It has been shown that this
approach has an average accuracy of about 4m [LGY+12]. In general, hallway
intersections in indoor environments are further apart than 4m. A smaller
distance between intersections would imply that there are rooms in between
that are even smaller than this distance, which is not a realistic assumption.
As a result, a device is able to identify the correct anchor point with high
accuracy. We will see in Section 7.5 the results of an experiment that confirms
this accuracy. With the help of the anchor points, a device is able to identify
its closest intersection point and to track its current path through the building.
This information serves as input for the position scheduler that is presented in
Section 7.4.
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In general the layout of the building influences the number and the distribution
of the anchor points. While the building layout in Figure 7.4a has only a very
limited number of intersections that are far apart from each other, there are
other building layouts with much more intersections. The presence of more
intersections results in more anchor points, which allows a device to track its
position more accurately with WiFi. However, WiFi positioning can result in
errors if there are many intersection that are close too each other. In this
case, the closest intersection may not be clearly identified and a position shift
may occur. We will see in the evaluations later on that the distance between
anchor points should be bigger than 5 m. Considering the average room sizes of
buildings, this precondition holds true for almost all room layouts. On the other
hand, in layouts in which intersections are sparse, anchor points should be set
at every intersection as shown in Figure 7.4a.

Besides position tracking, anchor points can also be used as absolute starting
positions when initializing the IPS. More precisely, a device can turn on its IPS
to record a relative trace without having a starting position for this trace. It then
has to wait for a 90 ◦ turn as indicated by the gyroscope (angular acceleration)
values, and perform a WiFi scan at this point. By comparing the obtained RSSI
values with the fingerprints of the anchor points and selecting the point with
the best matching fingerprint, the device knows its precise location, which is the
location of the identified anchor point (see Figure 7.5a). With the help of this
information, the device can position the relative IPS trace recorded so far and
map it to the absolute center of the intersection (see Figure 7.5b). As a result,
the IPS trace has an absolute starting point and can be used to continue indoor
positioning.

Note that there can be more than one possibility to match the IPS trace to
the center of the intersection. For instance, the trace in Figure 7.5b would also
fit if it starts from the top hallway and moves to the right hallway. To overcome
this issue, the device can use information about its previous movement path to
find the correct matching. This information can be provided by the anchor point
tracking, as described earlier. After matching the IPS trace to the intersection,
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the IPS initialization is finished.
One problem with the aforementioned approach is that the position of the

trace might not be perfectly accurate if the device has not turned exactly on the
center of the intersection. We investigate this effect further in the evaluation
in Section 7.5. Furthermore, it is possible that the IPS indicates a 90 ◦ turn
even though the device did not pass an intersection. This can be the case if the
device moves into a room, for instance. Hence, to clearly identify that a device
turns at an intersection, we also require that the trace before and after the 90 ◦

turn is straight for a certain minimum distance. To be sure that a device is
not moving in a room after this turn, this distance must be longer than the
depth of the longest room that is available in the building. For the evaluation
of this approach, a distance of 5m was used, which turned out to be sufficient
to separate turns at intersections from other turns.

7.4 Position Scheduler

This section introduces the position scheduler algorithm, which decides when
to turn the IPS off and when to start the initialization of the IPS again. In
general, a device can turn its IPS off when no sensing range is nearby, while
the IPS initialization must be finished before the device reaches a sensing range.
To support this decision, the scheduler uses a mobility model for predicting the
future path of the mobile device.
Next, we look at the assumptions that we make about this mobility model,

before the decision making for the IPS is presented in detail.

7.4.1 Mobility Model

The design of realistic indoor mobility models is still an open research question
[CBH+04; KKR11], which is beyond the scope of this thesis. Therefore, no
specific mobility model is defined at this point and instead the mobility model
is assumed to be a black box. Later in the evaluations, a specific model will
be used to test the system. The only thing that we require from this mobility
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model is that it can determine the probability P (a | t) that a device will visit
a certain area a, after having traveled along trace t. Based on P (a | t), the
scheduler then decides whether to stop or initialize the IPS.

7.4.2 Turning off IPS

To turn the IPS off, two conditions must be fulfilled:

1. The device is currently not moving directly towards any sensing range, i.e.,
the device has to pass at least one intersection before it can reach any
sensing range.

2. The IPS initialization can be completed before reaching a sensing range.

A mobile device periodically monitors these conditions and only turns off its
IPS if both conditions are fulfilled. The first condition can be easily checked by
comparing the current IPS position of the device to the set of known sensing
queries. In contrast, the second condition is harder to evaluate, as we will see
in the following.
To initialize the IPS, a device must turn at an intersection by 90 ◦ before

entering a sensing range. Otherwise the IPS initialization cannot be completed
because there is no anchor point to which the relative trace of the IPS can be
mapped to. To ensure that IPS initialization can be completed before reaching
a sensing range, the device performs the following steps: When the IPS is on,
a device determines towards which direction it is currently moving. We denote
this intersection as In. Note that In is not fixed to a certain intersection. Hence,
if the device owner turns and walks towards another intersection In is updated
accordingly. In a next step, the setQIn is defined that contains all sensing queries
whose sensing ranges are reachable from In without a turn (see Figure 7.6). For
any query q ∈ QIn, intersection In is the last turning point if the device walks
towards q via intersection In. Hence, the IPS is turned off if it is not very likely
that the device moves to one of the sensing ranges in QIn. In contrast, if the
device is likely to move to one of these sensing ranges then the IPS should not
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Figure 7.6: Decision on turning off IPS: Only the sensing range in the upper left
corner can be reached without a turn from the next intersection that
the device passes.

be turned off, since In would then be the last possibility for initializing the IPS
again.

To estimate the probability that the device moves to one of the sensing ranges
in QIn the mobility model is used. More precisely, the mobility model provides
P (aq | t) for every q ∈ QIn, where aq is the area that is covered by q. The
probability that the device will move to at least one of these areas is then given
as:

pLQ = 1−
∏

∀q∈QIn

1− P (aq | t) (7.1)

Note that this function is a special case of the binomial distribution.

The result of Equation 7.1 can now be used to decide whether to turn the IPS
off. For this decision, two different algorithms are presented in the following,
which are compared to each other in the evaluation.
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For the first algorithm, a system parameter cp is used to decide whether the
IPS stays on or will be turned off:

IPS =


off, if cp > pLQ

on else
(7.2)

The use of this algorithm has the advantage that the likelihood of turning the
IPS off can be controlled by parameter cp and, hence, the performance and
energy efficiency can be adapted.
For the second algorithm, a random sample sr from the uniform distribution

between [0, 1] is drawn and the decision whether the IPS stays on or will be
turned off, is made as follows:

IPS =


off, if sr > pLQ

on else
(7.3)

The use of this algorithm has the advantage that no system parameter needs to
be set. Instead the probabilistic characteristic of pLQ is utilized to support this
decision.
Once the IPS was turned off, the following algorithm determines when the

IPS should be turned on again.

7.4.3 Turning on IPS

After the IPS has been turned off, it must be initialized again, before the device
enters a sensing range. This is the same requirement that is described by Condi-
tion 2 in the last section. Hence, the same algorithm is applied to decide whether
the IPS should be turned on and initialized. For this purpose, the device first
determines towards which intersection In it is currently moving. Since the IPS
is turned off, intersection In can be obtained by using the available information
about the previously visited hallways. More precisely, knowing which hallways
the device has recently passed and knowing its closest intersection from a recent
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WiFi scan, a device is able to infer the intersection In to which it is currently
moving to. With the help of this information, the device starts the IPS initial-
ization if it is very likely that it moves to a sensing range that is reachable from
In without a turn, as described in the last section. Note that also in this case,
the closest intersection In is always updated and the decision whether to turn
the IPS on is reevaluated accordingly.

7.5 Evaluation

The evaluation of the presented approach consists of two parts. The first part
analyzes the accuracy of the WiFi position recovery and the IPS initialization.
The second part evaluates the efficient indoor position sensing algorithm when it
is used on top of the MapGENIE mapping system [PBD+14] that was developed
in the ComNSense project. This enables us to see the energy efficiency of the
approach and its impact on the sensing effectiveness. Before these two parts are
described in detail, the experimental setup is introduced.

7.5.1 Experimental Setup

The evaluation of the system is based on the MapGENIE system and the ac-
cording dataset [PBD+14]. MapGENIE uses a set of opportunistically collected
indoor pedestrian traces to automatically derive an indoor floor plan. A more
detailed explanation of MapGENIE is given in Section 1.4. The MapGENIE
dataset is publicly available1 and includes 154 odometry traces, which were col-
lected from four volunteers with an Android smartphone in combination with
a foot-mounted inertial measurement unit in order to implement an IPS. The
total length of these traces is more than 22 km. For the following evaluation,
the MapGENIE system was modified to execute the presented efficient position
sensing algorithm while constructing the indoor floor plan. For this purpose, all
areas of the indoor floor plan which are not accurately mapped according to a
given quality metric (see [BPD+14]) are marked as sensing ranges. Moreover, a

1see http://www.comnsense.de/downloads

http://www.comnsense.de/downloads
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simple mobility model is used as input to the position scheduler that is described
in [BPD+14]. This model assumes an uniform visiting probability for each area
of the building.

7.5.2 Positioning Accuracy

To evaluate the WiFi position recovery and the IPS initialization, in a first step
WiFi RSSI data was collected to set-up the reference database. More precisely,
WiFi scans were performed at intersection points in the same building in which
the MapGENIE dataset was recorded (see Figure 7.4a). From this data, the
WiFi anchor point database was set-up.
To evaluate the accuracy of the WiFi position recovery, WiFi scans at 30

arbitrary positions were performed in the building with an Android phone. For
each scan, an anchor point from the database was assigned by comparing the
scan’s RSSI values and choosing the anchor point with the minimal Euclidean
distance. The assignment is accurate if the intersection that is closest to the
ground truth position is equal to the intersection that is associated with the
assigned anchor point. Furthermore, we are interested in the number of WiFi
scans that need to be present in the reference database in order to reach accurate
anchor point identification. Hence, the accuracy of identifying the correct anchor
point was evaluated when different numbers of scans per anchor point are stored
in the database.
Figure 7.7a shows the success rate of this experiment. The y-axis shows the

fraction of correctly identified anchor points while the x-axis shows the number
of WiFi scans from the database that were used for identifying the closest anchor
point. We see that if at least three WiFi scans are available in the database at an
anchor point, the WiFi scan can be assigned to the right anchor point. Hence,
only a small set of reference data is needed to implement accurate anchor-based
WiFi positioning. The energy overhead for building the anchor point database
is therefore negligible.
As mentioned before, IPS initialization cannot perfectly reestablish a position

since it maps the relative IPS trace to the center of an intersection. If a device
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Figure 7.7: Position accuracy: (a) Accuracy of anchor point identification. (b)
Cumulative distribution function of shift errors when resuming IPS
positioning.

does not turn directly at the center of the intersection, the reestablished trace is
shifted. Figure 7.7b shows a cumulative distribution function of this shift error
in meters. From this plot we see that in 50% of the cases this error was smaller
than 3m and in 90% of all cases the error was smaller than 5m. Hence, in most
of the cases the IPS can be initialized without a large shift error.

7.5.3 Energy Efficiency

To evaluate energy efficiency and sensing effectiveness (in the next section) of the
presented approach the following algorithms are considered in the evaluation:

basic This approach denotes the unoptimized execution of the MapGENIE map-
ping algorithm when all devices are running the IPS all the time.

effMap-thre This approach shows the energy for executing the mapping ap-
proach when using efficient position sensing with the threshold-based de-
cision algorithm (see Equation 7.2).

effMap-rand This approach shows the energy for executing the mapping ap-
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Figure 7.8: Total energy consumption of all devices.

proach when using efficient position sensing with the probabilistic decision
algorithm (see Equation 7.3).

Figure 7.8 shows the energy consumption of the different approaches when run-
ning the MapGENIE mapping algorithm, where the x-axis denotes the number
of pedestrian traces that are used as input to derive a floor plan. We see that
up to 100 traces all approaches consume the same amount of energy. This is
the number of traces that MapGENIE needs for setting up an initial floor plan.
In this phase efficient position sensing cannot be applied. For more than 100
traces, the derived floor plan already contains a precise representation of the
complete hallway skeleton (see [PBD+14] for details), which can then serve as
base for the efficient positioning algorithm. Hence, after more than 100 traces
were processed, the efficient positioning algorithm starts to work, since it can
now access the hallway layout of the underlying map. Since we are only inter-
ested in the performance of the positioning algorithm, the following numbers are
relative to the energy that is consumed for 100 traces.
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Figure 7.9: Number of satisfied sensing queries.

We see from Figure 7.8 that the probabilistic-approach (effMap-rand) saves
in total 25% of energy compared to the basic approach. For evaluating the
threshold-based approach parameter cp is set to cp = 0.5, which turned out to
result in the best results during the evaluations. The approach achieves energy
savings of 20% in comparison to the basic approach and, thus, is not as efficient
as the probabilistic approach, but still outperforms the basic approach.

7.5.4 Sensing Effectiveness

Next, we have a look on the impact of the optimized approaches regarding the
sensing effectiveness. For this purpose, we look on the number of satisfied sensing
queries. Figure 7.9 shows that the optimized approaches cannot satisfy as much
sensing queries as the basic approach. More precisely, the probabilistic-approach
reaches 76% of the queries of the basic approach, while the threshold-based
approach satisfies 80% of queries.
We see that the loss in sensing effectiveness is almost as high as the gain in

energy savings. Unlike the other approaches that were presented in this thesis,



144 7 Efficient Indoor Position Sensing

Figure 7.10: Rooms and corridors that are present in the derived floor plan.

the benefits of increased energy efficiency come in this approach with a loss in
sensing effectiveness. However, for some applications the reduction of sensing
effectiveness may not be critical since the application that utilizes the sensor
data is robust against such a small decrease in quality of the sensed data. To
show such a case, we have a look on how this reduction in sensing effectiveness
influences the outcome of the MapGENIE system. Hence, we compare the floor
plan generated by the basic approach and the plan generated by the optimized
approaches against the ground truth floor plan. Figure 7.10 shows how many
of the rooms and corridors from the ground truth floor plan were found in the
respective approaches. More precisely, we compare the positions of rooms and
corridors in the generated plans to the ground truth plan and check how many of
them are at the same position. We see that when using efficient position sensing,
in both approaches the same number of rooms and corridors are found as using
the basic approach. Hence, even though the sensing effectiveness declined, we
can see that MapGENIE is robust against this decrease and still provides the
same quality of the generated floor plan, while saving energy for positioning.
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7.6 Related Work

So far, there is no related work that explicitly focuses on improving energy
efficiency of indoor position sensing in PS. However, there exist different ap-
proaches that propose the combination of WiFi fingerprinting and an IPS to
enhance indoor positioning. Noh et al. [NYL+13] propose an infrastructure-free
positioning system using dead reckoning and WiFi beacons sent by peer devices
for positioning. Other work [WSE+12; RKM13; SCZ+13] uses WiFi fingerprints
to correct the error of drift-based IPS traces. They identify landmark spots
within the building with the help of WiFi scans and then correct the direction
drift of the IPS traces to match the landmark. The efficient position sensing that
is presented in this chapter uses a similar approach but for a different goal. In-
stead of correcting a drift-based trace, it uses WiFi to (re-)start the IPS without
any available absolute position.
Other approaches for indoor position sensing use Bluetooth beacons [HNS03;

Oks14] or pre-deployed RFID-Tags [ZWX+13]. However, the presented approach
does not rely on environments being prepared with specialized equipment, but
instead exploits the already available deployments of WiFi access points.

7.7 Conclusion

This chapter presented an approach that reduces positioning energy for indoor
PS scenarios. This is achieved by avoiding the energy-intensive IPS with the
help of WiFi anchor points that can be collected energy efficiently on-the-fly.
To control the switch between these two positioning methods, a positioning
scheduler was introduced. This scheduler adaptively activates and deactivates
the IPS based on the current set of sensing queries and a device mobility model.
The evaluation shows that this approach can save up to 25% energy. Although
the sensing effectiveness is also declining in this case, we saw that applications
that are robust to such a decrease in quality can save energy without resulting
in a decreased quality of the output model.
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8 Summary and Future Work

As a conclusion, this chapter summarizes the contributions of this thesis and
discusses possible future extensions.

8.1 Summary

This thesis advances the state of the art in PS research by presenting concepts
that increase the energy efficiency of PS systems on mobile devices. To this end,
it addressed two of the most energy-intensive operations that are part of a PS
system, namely query distribution and device positioning. In the following, each
contribution is summarized in detail.
As a first contribution, an opportunistic position update protocol was devel-

oped. The goal of this protocol is to provide the query distribution with position
information of mobile devices. To keep the energy overhead of this protocol as
small as possible, a new kind of update protocol was introduced that is based on
so-called opportunistic updates. The idea behind these opportunistic updates is
to send position updates together with regular traffic of a mobile device, since
this reduces the energy overhead for sending the updates significantly. The
evaluation of this approach showed that this protocol lowers the energy con-
sumption for sending position updates by up to 70% with respect to existing
position update protocols.
The second contribution of this thesis is a novel approach that efficiently

distributes sensing queries from the PS server to mobile devices. This approach
utilizes the information provided by the opportunistic position update protocol
to identify a set of devices that are promising candidates to capture data for a
sensing query. In contrast to existing approaches, which distribute queries to
all devices, the presented approach reduces communication energy since only
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a small set of devices are receiving a query. To implement this approach, a
probabilistic sensing model was developed that quantifies the likelihood that a
device successfully reads data for a query. With the help of this model, a small
receiver set of mobile devices can be selected for each query that promises high
sensing success. The evaluations showed that this approach reduces the energy
consumption on mobile devices by up to 50% without compromising the sensing
effectiveness.

The third contribution of this thesis increases the energy efficiency of outdoor
position sensing. Most existing PS approaches assume that a mobile device con-
tinuously runs a positioning system like GPS to determine where it is currently
located. This is in general necessary to determine when a device should read
sensor data. Facing the high energy consumption of continuous positioning,
this thesis introduced an approach that reduces energy overhead for positioning
without affecting the sensing effectiveness of the PS system. For this purpose,
the concept of adaptive positioning was introduced, that implements the idea
to temporarily turn off the energy consuming positioning sensor, when a device
is far from any sensing range. In outdoor scenarios this is implemented, by cal-
culating an optimal time frame for which the next position fix can be delayed
without missing a sensing range. The evaluation showed that this approach re-
duces the energy for GPS positioning by up to 90% in comparison to continuous
GPS positioning.

The last contribution of this thesis extends the concept of efficient position
sensing to indoor scenarios. Since GPS is not available indoors, a mobile device
relies on an IPS for indoor positioning. To apply adaptive position sensing also
when using an IPS, an efficient indoor positioning approach was proposed that
allows to temporarily disable the energy-intensive IPS when moving indoors. To
be able to turn the IPS on before reaching a sensing range, a WiFi position
recovery system was introduced that is based on WiFi anchor points. These
anchor points provide absolute positions, which can be used as starting points
for the IPS. With the help of this concept, the positioning energy for indoor
PS scenarios can be decreased by up to 25% while also having to accept an
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according decrease in sensing effectiveness of the system.

8.2 Future Work

The work presented in this thesis could be extended in different directions by
including additional aspects in the sensing system. In the following, we have a
look at three possible extensions that build upon the contributions of this thesis.
One possible extension would be the use of more advanced query semantics

for the PS system. In this thesis, a sensing query is a one-time request for
sensor data from a certain geographic location. An example for advanced query
semantics is for instance a query semantic that includes periodical aspects of
data reading. More precisely, instead of requesting data only once, a client could
request data in certain time intervals, e.g., having a sensor reading at a certain
place at least once every minute. This can for instance be useful to conduct a
long-time study on a certain phenomenon, e.g., measuring the fluctuation of the
noise level at a certain point over a day. To implement these query semantics,
the efficient query distribution needs to be extended to also consider a longer
temporal horizon. For this purpose, a new sensing prediction model needs to be
designed that not only considers passing a query range once, but also multiple
times in the future.
Another interesting research direction is the adaption of the presented concepts

to also consider fairness in terms of energy consumption between mobile devices.
The optimization criterion that is followed in this thesis is to minimize the total
energy consumption over all devices. However, this does not imply an equal
energy overhead for different devices. For instance, it is possible that a single
device may receive a large number of sensing queries, even though the total
energy consumption is very small over all devices. Hence, one further dimension
for optimizing is to evenly distribute the energy overhead between devices. One
approach towards achieving such energy fairness could be to also consider the
device energy when distributing sensing queries. For instance, a device that has
already received a large number of queries in the past is less likely to receive
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further sensing queries in the future. To implement this idea, the predictive
sensing model of a device could be supplemented by a predictive energy model.
On the basis of this model and the past energy consumption of a device, the
query distribution could be adapted to yield for fairness.
Considering mobile device positioning, one further extension is the use of

multiple positioning systems. In this thesis, GPS was assumed for outdoor posi-
tioning, since it is currently the most accurate positioning system. Furthermore,
it does not require any additional reference data, which is for instance necessary
for WiFi or cellular positioning [PKG10]. However, if we assume that such ref-
erence data is available and other positioning systems can be used, the adaptive
positioning algorithm could be extended. More precisely, the adaptive position-
ing could not only decide on delaying a position fix but also determine which
positioning system should be used for the next position fix. This decision could
be driven by the accuracy and energy characteristics that the available position-
ing methods provide. For instance, if no accurate position is currently required,
the system could fall back to a less accurate and more energy-efficient position-
ing mode. An optimal algorithm would schedule the operation of the different
positioning systems in such a way that the total positioning energy is minimized
while the sensing effectiveness of the PS system is preserved. First approaches
that propose the use of multiple positioning systems have already been proposed
[LKL+10; CTS+14]. However, they are designed for a very general scenario and
need to be customized for the use in a PS system.
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