
Studienarbeit Nr. 2464

Development of a benchmarking framework
for Inverse Reinforcement Learning

algorithms based on Tetris

Pascal Bock

Studiengang:

Prüfer:

begonnen am:

beendet am:

CR-Klassifikation:

Betreuer:

Technische Kybernetik

Prof. Dr. rer. nat. Marc Toussaint

M. Sc. Peter Englert

01.09.2015

03.03.2015

D.2.8, H.5.2, I.2.1, I.2.6

Institut für Parallele und Verteilte Systeme (IPVS)

Universität Stuttgart
Universitätsstraße 38
D - 70569 Stuttgart

Abteilung Maschinelles Lernen und Robotik (MLR)

Abstract

Tetris is one of the oldest, most popular and most well-known video games. The simple rules
and scoring options make it a viable choice for benchmarking artificial intelligence, especially
in the machine learning department. This work describes a customizable benchmarking frame-
work using a simplified variant of the original Tetris game focused on Inverse Reinforcement
Learning algorithms.

1

Contents

1 Introduction 5

2 Related work 7
2.1 Early research . 7
2.2 Gaming and Active Learning . 8
2.3 Tetris . 9

3 Tetrisframe 11
3.1 Constants and base variables . 11
3.2 Rotation system . 11
3.3 Mainframe . 12
3.4 Graphical User Interface . 12
3.5 GUI Callback functions . 14
3.6 API . 14
3.7 Helpers and Wrapper . 14
3.8 The Algorithm template . 15

4 Experiments 17

A Tetrisframe 19

B Algorithm template 35

Bibliography 37

3

1 Introduction

During early research for this work, one significant complication was the limited comparability
of different algorithms and their performance, especially those in the field of Inverse Reinforce-
ment Learning (IRL). Many authors do their best trying to decribe their algorithm’s strengths
and weaknesses, but even then, comparing different approaches is a tedious and complex
task. This problem led to the decision to focus this study thesis on creating an independent
framework to assess the performance of IRL algorithms by calculating a score based on how
well the respective approach solved a specific, ideally rather simple task.

One of the most defining influences on the direction of this work is [RGB10], which applies
advanced IRL techniques to several classic video games. Given appropriate adaptation and
simplification, video games can provide such a rather simple task and meet the requirements
of this framework. Additionally, since gaming as a tool for learning is a very effective method
for humans (as can be seen in very young children, who learn nearly everything through
playing), applying that method to artifical intelligence can provide much insight into the
relation between machine learning and human learning. Of course, not every game is suitable
for this specific application, and video games are exceptionally well suited due to their implicit
structural similarity to algorithms and programs. Choosing a video game from the time when
they were not as widespread as they are today would ensure a concept that is sufficiently
simple to be incorporated into a benchmarking framework without going beyond the scope of
this task. Some of the games taken into account as potential candidates were Pong, a simple
ping pong simulation, Super Mario, a jump and run game, The Binding of Isaac, a modern
retro style shooting game, Space Invaders, a very simple shooting game, and Tetris, a puzzle
game. As the title of this work suggests, the latter was chosen in the end.

Tetris, one of the most well-known video games of all time, has been very popular as a bench-
mark for many different algorithms and methods related to Artificial Intelligence, both in the
classical sense ([Gie11], [Fah12]) and the learning department, ranging from evolutionary
approaches (e.g. [BKM05]) to classical Reinforcement Learning and related optimization tech-
niques ([SL06], which also lists several other approaches between those extremes). However,
its application to IRL is not documented in any of the sources found during research for this
thesis.

The framework described in this study thesis is built with modular design in mind, every part
of it is replaceable to fit the user’s exact needs, although it is advised to make changes only to
the algorithm in order to retain comparability, which was the main motivation in developing
this framework.

5

1 Introduction

Outline

This thesis is structured as follows:

Chapter 2 – Related work introduces related work and discusses some of it in detail with
regards to its influence on this work at different stages.

Chapter ?? – ?? describes the framework developed as well as the interface for creating and
testing algorithms with it.

Chapter ?? – ?? outlines the development process and possible future work.

6

2 Related work

In this chapter, related work and its influence on this work will be discussed. The different
stages of development will be described in chronological order, also detailing the development
of this work’s focus, which has changed over time.

2.1 Early research

Originally, the focus of this thesis was intended to be the preparation of the development of
a framework, which itself would be part of a future work. As such, part of this preparation
was researching and comparing different algorithms and approaches in the field of IRL and
the starting point for this research was the survey of IRL techniques [SE12], complemented by
[HYL08] as a general introduction to Machine Learning. This gave an overview over what IRL
as a field of study has achieved so far, as well as a general idea of how the different approaches
worked.

Following the general overview of state of the art IRL, a partial framework was to be conceived,
focusing on one specific, but arbitrarily chosen approach evaluated with a simple toy example
as a starting point, later expanding the scope to a more complex problem setting so as to
obtain a strong foundation for a future benchmarking framework that would expand these
basic tests into a standalone piece of software. The field of this complex problem was decided
to be gaming, mainly because of the similarity to human learning mentioned in the previous
chapter.

The algorithms and techniques that were most interesting for this task were the ones able to
offset limitations in the learning set, avoiding traps and mistakes done by the demonstrator,
possibly even outperforming the demonstrator in the long run. These can be grouped into two
categories, one of which uses the underlying structure of the problem, such as the approach
described in [ML10], which abuses the structure of the Markov Decision Problem (MDP). The
other category acts autonomously as far as possible and adapts to information gained while
learning, thus finding ways itself from time to time instead of simply following the expert. An
example of this approach is described in [ML11], where an autonomous unit adapts to the
user and personalizes his experience gradually while it gets to know the user. Other examples
of the second category are described in the next section.

7

2 Related work

2.2 Gaming and Active Learning

The main influence for the decision towards gaming was [RGB10], in which the authors
develop a no regrets online learner that plays adaptations of the jump and run game “Super
Mario” as well as the racing game “Mario Kart”. The basis of their approach is to reduce the
size of the original learning set while offering the algorithm a way to request assistance from
the expert or demonstrator in any state. Compared to other approaches used with a learning
set based on expert demonstrations created by playing through an entire game, the notable
advantage of this approach is the reduction of unknown states and ability to recover from
mistakes. A typical offline learner working with a learning set made by an expert might make
a mistake and come into a game state where the expert never ended up, for example standing
right in front of an obstacle, which the expert would avoid by changing his trajectory long
before reaching the obstacle. Once the learner does become blocked by an obstacle, it has no
way of freeing itself because the learning set doesn’t account for this situation. If the learner
can request assistance from the expert, however, it can learn how to unblock itself, significantly
raising its performance in those situations.

Related to this approach is what [SE12] calls “Active learning”. Detailed, among others, in
[LMM09], this approach has the main purpose of reducing the amount of samples necessary to
reach good performance, which is achieved by complementing the arbitrary samples provided
in advance with specific samples requested from the expert. This is the same basic idea as the
no regrets online learner, but instead of requesting assistance once the algorithms fails, the
ideal states to query are calculated such that the information gain from them is optimal, thus
minimizing the amount of queries sent to the expert.

Following this line of thought, [CMDS10] develops a method to determine as efficiently as
possible when to request information and when to act autonomously, introducing the concept
of Expected Myopic Gain, which is basically a measure of long-term value gain a specific query
adds, not necessarily limited to finding the optimal action for the current state, but rather
geared towards understanding the MDP better, or in other words, learning what the problem
being solved is exactly.

8

2.3 Tetris

2.3 Tetris

At this point of the research, it was clear the algorithm would be some variation of active
learning. What still needed a decision, was the game the framework would make the algorithm
play. After evaluating the candidates mentioned above, Tetris was found to be the best
suited one, so research on details about this game started, using the community driven Tetris
Wiki [Var15] as a starting point. The framework to be developed herein was assigned the
working title “Tetrisframe”, which will be used in this thesis from this point forward to refer
to the software developed as part of the study thesis. One of the most concise and complete
collections of information about Tetris, its history and details about its internal structure has
been assembled by Colin Fahey [Fah12], who also contributed an early AI program playing
Tetris, which he describes in the same article. Most of the technical details of Tetrisframe
are based on that article. Design choices are based both on [Fah12] and [Var15] as well as
personal preferences.

It soon became clear that The MathWorks’ MATLAB was the ideal platform to develop Tetr-
isframe on, being widely used in both research and industrial applications because of its
highly efficient data handling capabilities. MathWorks offers a service called File Exchange
where users can upload and share scripts, functions and code snippets developed for their
MATLAB software. This is where the projects [Gie11], [Ald08] and [Fig12] originated, all
of which served as inspiration and helpful resources while creating Tetrisframe. By far the
most influential of these was [Gie11], mainly because it wasn’t as complex as [Fig12], which
incorporates many cosmetic upgrades with no relevant function besides looking better. [Gie11]
also includes a hard coded AI behaviour and is thus geared towards programmatically simple
structures. Most notably, it provided the basic data structure and Tetrimino moving algorithms
used in Tetrisframe.

9

3 Tetrisframe

This chapter gives an overview of the Tetrisframe framework and describes how to build
an algorithm for use with Tetrisframe. Tetrisframe does not include a default algorithm as
adapting an algorithm and including it goes beyond the scope of this study thesis. More about
this can be found in the last chapter.

The complete source code of Tetrisframe is included in the appendix. It is free to use and
modify as long as the original author is referenced and any modifications are marked as such.
The following is an overview over the program, how it works and how the soruce code is
organized. Each section in this chapter refers to a section in the source code, which is written
in MATLAB’s cell mode, thus coloring a section in light yellow when the cursor is placed within
that section.

3.1 Constants and base variables

This section contains all constants and generally used variables excluding local variables of
nested functions and highly volatile or temporary variables. One of these variables is the
“blocks” variable, which contains all blocks to be used. Replace this variable or remove blocks
from it to make the game easier.

3.2 Rotation system

The rotation system defines what the Tetriminoes look like in each of their rotational states.
The system included in the original Tetrisframe package is based on the so-called "Original
Rotation System (ORS)", simplified to fit the needs of the framework. Thus, all rotational states
start out with a block in the topmost row, which is where they would spawn if the respective
rotation was their starting rotation. In ORS, blocks always spawn with the longest solid line in
the topmost row, but some rotational states are not technically possible in that position and
rotating the pieces would be impossible until they drop at least 1 space. This behaviour is
disregarded in this version.

Tetrisframe assumes a virtual player skilled enough to move and rotate pieces at arbitrary
speed. The only limitation is given by unreachable states. Thus, the way of reaching a certain

11

3 Tetrisframe

final state for each piece is neglected and the algorithm concentrates on deciding which one
of the possible final states to select. Reachable states are calculated by the Rotation system
module with the function “makemoves”, which updates the “moves” variable. Each move has a
corresponding position and rotation, which are used to index into the variable.

The “makeblock” function takes as input an integer from 1 to 7, encoded with the “Tetr”
structure seen in the previous section of the source code. This structure assigns an identifier
to each of these integers so that a block can be (and is in all of Tetrisframe’s source code)
referenced as, e.g., “Tetr.I”. The function then returns a 20x10xX “block” matrix which holds the
starting position of each rotational state of the respective block. X is the number of rotational
states the block has and rotating it is merely a matter of indexing in the third dimension.

3.3 Mainframe

The Mainframe contains the functions needed to calculate resulting states from the current
field and current piece. The functions are moving and rotating as well as dropping a piece and
clearing lines to determine the new score and final field state. The Mainframe also contains
the “gameover” function that handles a state where the next block cannot spawn because the
field is blocked. These functions are being called by internal functions and are not supposed to
be called by the algorithm or related functions directly. The entire Mainframe section is thus
considered private (although for technical reasons it’s not actually handled as being private by
MATLAB).

3.4 Graphical User Interface

This section generates what the user sees and uses to do anything. The GUI supports different
features: creating learning sets, loading a learning set, and running an algorithm (which may
or may not request user input to complement its learning set). Figure 1 on the next page shows
the GUI upon starting Tetrisframe. Some of the button labels change when clicked to reflect
their current function. The area to the left is used to inform the user about things he needs
to do or things that happened. The area on the right is where the game is going to happen.
Ticking the “Show AI playing” checkbox will update the field after each move the algorithm
executes, while leaving it unticked will make only the score update.

12

3.4 Graphical User Interface

Figure 3.1: This is what Tetrisframe looks like when first started.

13

3 Tetrisframe

3.5 GUI Callback functions

These handle the GUI’s functionality. Whenever something is clicked, one of these callbacks
is executed. Going into detail about how these callbacks work would serve little purpose as
some understanding of MATLAB would be necessary to understand this anyway and with that
understanding, the reader can easily understand the source code itself.

3.6 API

The API (application programming interface) contains the functions to be used by the algorithm
to communicate with the framework and the user. The functions here are the only ones that
should be used by the algorithm, all other functions in other sections of this file are considered
private and are not intended to be called except by one another. Technically, the algorithm
function itself cannot call these functions anyway. But they are they ones called by the button
callback that executes the algorithm. How this API and the algorithm function affect each
other is outlined in the last section of this chapter.

The API’s “request” function initiates a request to the user. It displays the current field state
and lets the user select the appropriate move from all possible moves. Note that in accordance
with the scoring system of earlier Tetris games, which rewarded hard dropping Tetriminoes
from as high as possible, Tetrisframe only considers moves where the Tetrimino is dropped
from the very first line in order to maximize this theoretical score. The actual score measured
by Tetrisframe award 1 point for the first cleared row and 2 points for each additional row
cleared at the same time, incentivizing building up fields to clear several rows at once. The
“request” function is used both by the algorithm in order to request additional learning data
and Tetrisframe’s learning set creation feature.

The “updatedisplay” function updates all relevant fields in the GUI including the field only
if the user wants to see the AI playing and forces MATLAB to update the figure window and
display the changes.

The “execute” function commits the currently selected move to the field and updates the field
and score.

3.7 Helpers and Wrapper

This last section of the Tetrisframe source code contains usually small functions that help with
minor recurring tasks or wrap a function to make is compatible to a specific task. They’re all
very easy to understand and the interested reader is therefore referred to the source code in
the appendix.

14

3.8 The Algorithm template

3.8 The Algorithm template

In appendix B, the reader will find a template file for the algorithm. It is thoroughly commented
and thus rather self-explanatory, which is why this section will only give a short overview of
how it works inside the framework.

When the algorithm is run, the algorithm function is called once and returns handles to its
nested functions “rewardfcn”, “updaterewardfcn” and “request”. The first one calculates the
reward for a specific field state. Tetrisframe will then execute the move which leads to the field
with the highest reward. The latter function is used to determine, based on the matrix of each
move’s reward, whether to act autonomously or request an additional sample based on the
current state. If a sample is requested, it’s added to the learning set and the second function is
called, which returns the handle to the new, updated reward function.

15

4 Experiments

The development of Tetrisframe turned out to be very complex and time consuming, which
made the additional adaptation and development of an example or default algorithm too much
for the scope of this work. Before this was obvious, several algorithms were partially adapted,
but technical limitations made it impossible to develop a working version within a reasonable
amount of time.

Therefore, this section will only point out that future work can be done in this area.

Most of the algorithms in [NR+00] were part of the failed attempts to create a working
demonstration, as well as a variant of the active learning approach detailed in chapter 2, but
ultimately, none of them worked and fixing them would have cost more time than was available
for this study thesis.

17

A Tetrisframe

%% TETRISFRAME

% TETRISFRAME is a benchmarking framework for Inverse Reinforcement

% Learning algorithms based on the popular video game Tetris. The source

% code is easily adaptable to AI algorithms outside the realm of IRL.

% Running this function opens a GUI that displays various options to run

% base variables" contains definitions and may be adapted to change options

% like the difficulty level (which blocks can appear).

%

% (c) 2015 Pascal Bock

function tetrisframe

%% Constants and base variables

% This section contains all constants and generally used variables

% excluding local variables of nested functions and highly volatile or

% temporary variables.

% the framework and test the algorithms. The first section "Constants and

% The Tetr struct allows Tetriminoes to be referenced as, e.g., Tetr.I

Tetr = struct(’I’,1,’O’,2,’J’,3,’L’,4,’S’,5,’Z’,6,’T’,7);

% difficulty: select all Tetriminoes that will be used

blocks = [Tetr.I Tetr.O Tetr.J Tetr.L Tetr.S Tetr.Z Tetr.T];

% The following are variables that will be used later

field = zeros(20,10); % starts out empty, first row is top

score = 0; % the game state’s current score

scores = []; % tracks scores across multiple runs

current = Tetr.I; % holds the Tetr identifier of the current block

next = Tetr.I; % holds the Tetr identifier of the next/preview block

block = zeros(20,10,4); % holds information about the current block

rot = 1; % current rotation of current block

algorithm = ’’; % the function (file) containing the algorithm

learnset = struct([]); % starts out empty, holds the learning set

pos = 1; % current left/right position of selected move when requesting

moves = cell(0); % will store possible moves in each step

busy = false; % this flag is used to properly terminate

cancel = false; % this flag is used to abort the running algorithm

showaiplaying = false; % determines whether the display is updated

learning = false; % determines whether a learnset is being built

requesting = false; % determines whether user input is being requested

randomls = false; % determines whether to give random examples or play

19

A Tetrisframe

%% Rotation System

% The rotation system defines what the Tetriminoes look like in each of

% their rotational states. The system included in the original TETRISFRAME

% package is based on the so-called "Original Rotation System (ORS)",

% simplified to fit the needs of the framework. Thus, all rotational states

% start out with a solid block in the topmost row, which is where they

% would spawn if the respective rotation was their starting rotation. In

% ORS, blocks always spawn with the longest solid line in the topmost row,

% but some rotational states are not technically possible in that position

% and rotating the pieces would be impossible until they drop at least 1

% space. This behaviour is disregarded in this version.

% makeblock function

% input is a member of Tetr, output is a 20x10xR matrix defining the

% position of the current block relative to the field in each rotation. R

% is the number of rotational states that block has.

function block = makeblock(blocktype)

switch blocktype

case Tetr.I

miniblock(:,:,1) = [1 1 1 1;

0 0 0 0;

0 0 0 0;

0 0 0 0];

miniblock(:,:,2) = [0 0 1 0;

0 0 1 0;

0 0 1 0;

0 0 1 0];

case Tetr.O

miniblock(:,:,1) = [0 1 1 0;

0 1 1 0;

0 0 0 0;

0 0 0 0];

case Tetr.J

miniblock(:,:,1) = [1 1 1 0;

0 0 1 0;

0 0 0 0;

0 0 0 0];

miniblock(:,:,2) = [0 1 0 0;

0 1 0 0;

1 1 0 0;

0 0 0 0];

miniblock(:,:,3) = [1 0 0 0;

1 1 1 0;

0 0 0 0;

0 0 0 0];

miniblock(:,:,4) = [0 1 1 0;

0 1 0 0;

0 1 0 0;

0 0 0 0];

case Tetr.L

miniblock(:,:,1) = [1 1 1 0;

20

1 0 0 0;

0 0 0 0;

0 0 0 0];

miniblock(:,:,2) = [1 1 0 0;

0 1 0 0;

0 1 0 0;

0 0 0 0];

miniblock(:,:,3) = [0 0 1 0;

1 1 1 0;

0 0 0 0;

0 0 0 0];

miniblock(:,:,4) = [0 1 0 0;

0 1 0 0;

0 1 1 0;

0 0 0 0];

case Tetr.S

miniblock(:,:,1) = [0 1 1 0;

1 1 0 0;

0 0 0 0;

0 0 0 0];

miniblock(:,:,2) = [0 1 0 0;

0 1 1 0;

0 0 1 0;

0 0 0 0];

case Tetr.Z

miniblock(:,:,1) = [1 1 0 0;

0 1 1 0;

0 0 0 0;

0 0 0 0];

miniblock(:,:,2) = [0 0 1 0;

0 1 1 0;

0 1 0 0;

0 0 0 0];

case Tetr.T

miniblock(:,:,1) = [1 1 1 0;

0 1 0 0;

0 0 0 0;

0 0 0 0];

miniblock(:,:,2) = [0 1 0 0;

1 1 0 0;

0 1 0 0;

0 0 0 0];

miniblock(:,:,3) = [0 1 0 0;

1 1 1 0;

0 0 0 0;

0 0 0 0];

miniblock(:,:,4) = [0 1 0 0;

0 1 1 0;

0 1 0 0;

0 0 0 0];

end

21

A Tetrisframe

rots = size(miniblock,3);

block = [zeros(4,3,rots) miniblock zeros(4,3,rots) ;

zeros(16,10,rots)];

end % function makeblock

% makemoves calculates the possible final positions of the current block

function makemoves

moves = cell(0); % reset moves container

if anyone(block(:,:,1)+field > 1) % block cannot spawn

gameover(); % might reset the field so it goes on

if anyone(block(:,:,1)+field > 1) % still game over

return;

end

end

% loop through all rotations, setting the global rot so other

% functions (moveblock, mainly) can use it properly

for rot = 1:size(block,3) %#ok<FXUP>

while moveblock() % move all the way left using fieldmask

% this loop terminates when the current rotation block hits

% the left edge of the field or a blocking field space

end % the block is now as far left as possible

pos = 1; % initialise position

hitwall = false; % we didn’t hit the wall yet

while ~hitwall % stop when we hit the wall

[~,thismove] = drop; % drop and store final position

if all(thismove(1,:)+thismove(20,:) < 2)

moves{pos,rot} = thismove; % no overflow while dropping

end

while ~moveblock(false,false); % try moving right w/o mask

if ~moveblock(false) % try moving right with mask

hitwall = true; % if both don’t work, it’s over

break; % because we hit the wall

end % if it worked with mask, continue moving

end % block now moved 1 step right, jumping over obstacles

pos = pos+1; % increase pos

end % if we didn’t hit the wall, loop

end % otherwise go on with the next rotation

pos = 1; % pick first position as initial selection

rot = 1; % pick first rotation as initial selection

end % function makemoves

%% Mainframe

% The Mainframe contains the functions needed to calculate resulting states

% from the current field and current piece. The functions are moving and

% rotating as well as dropping a piece and clearing lines to determine the

% new score and final field state.

% moveblock moves the current block with current rotation to either the

% left or the right. Optional input is the direction, where true is left

% and false is right. Returns true if moving did not result in hitting the

% wall. Checks for collision with block specific fieldmask. The flag

22

% forceMove determines whether movement is forced through a collision.

function success = moveblock(isMoveLeft,useFieldMask,forceMove)

if ~nargin

isMoveLeft = true; % default is moving left

end

if nargin < 2

useFieldMask = true; % default is using the fieldmask

end

if nargin < 3

forceMove = false; % default is reverting impossible moves

end

fieldmask = field; % remove parts of the field to get the mask

if useFieldMask % provided we’re using it

switch current

case Tetr.I

fieldmask(2:4,4:8) = 0;

case Tetr.O

% no fancy rotate-skipping obstacles with O

case Tetr.J

if rot == 2 % only Jrot2 is blocked by (3,8)

fieldmask(3,3:7) = 0;

else

fieldmask(3,3:8) = 0;

end

case Tetr.L

if rot == 4 % only Lrot4 is blocked by (3,3)

fieldmask(3,4:8) = 0;

else

fieldmask(3,3:8) = 0;

end

case Tetr.S

fieldmask(3,4:9) = 0;

case Tetr.Z

fieldmask(3,3:8) = 0;

case Tetr.T

fieldmask(3,3:8) = 0;

end

end

success = true; % assume it’s gonna work

if isMoveLeft

if any(block(:,1,rot)) % a space in the left col is occupied

success = false; % hit the left wall

return; % set error flag and stop execution

end

block(:,:,rot) = block(:,[2:10 1],rot);

if anyone(block(:,:,rot)+fieldmask > 1) % collision

success = false; % hit the fieldmask

if ~forceMove

block(:,:,rot) = block(:,[10 1:9],rot); % move back

end

end

23

A Tetrisframe

else % moving right

if any(block(:,10,rot)) % a space in the right col is occupied

success = false; % hit the right wall

return; % set error flag and stop execution

end

block(:,:,rot) = block(:,[10 1:9],rot);

if anyone(block(:,:,rot)+fieldmask > 1) % collision

success = false; % hit the fieldmask

if ~forceMove

block(:,:,rot) = block(:,[2:10 1],rot); % move back

end

end

end

end % function moveblock

% drop returns the field state reached after dropping the current block

% with current rotation into the current field.

function [newfield,droppedblock] = drop

bottom = false; % flag for hitting the floor

droppedblock = block(:,:,rot); % temporary copy of block

while all(field+droppedblock < 2) % no spaces overlap

if any(droppedblock(20,:)) % if the bottom row has elements

bottom = true; % set the flag

break; % stop dropping

end

% move last (empty) row to top => dropped block by one space

droppedblock = droppedblock([20 1:19],:);

end % terminates if either the block intersects the existing field

% or drops onto the floor

if ~bottom % unless bottom line was hit

% revert last drop step: move first (empty) row to bottom

droppedblock = droppedblock([2:20 1],:);

end

% insert dropped block into field

newfield = field+droppedblock;

end % function drop

% clearlines removes full rows and calculates score gain

function [newfield,scoregain,rows] = clearlines(oldfield)

if ~nargin

oldfield = field;

end

rows = find(sum(oldfield,2) == 10); % find full rows

numrows = numel(rows); % number of full rows to clear

scoregain = max(0,2*numrows-1); % first row=1 point, rest=2 points

oldfield(rows,:) = []; % delete full rows

newfield = [zeros(numrows,10);oldfield]; % fill top with empty rows

end % function clearlines

function gameover()

field = [0 1 1 1 0 0 1 1 1 0

24

0 1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 1 0 1 0

0 1 1 1 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 0

0 1 0 1 0 0 1 0 1 0

0 1 1 1 0 0 1 0 1 0

0 1 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 1 1 0

0 1 0 1 0 0 1 0 0 0

0 1 0 1 0 0 1 1 0 0

0 1 0 1 0 0 1 0 0 0

0 0 0 0 0 0 1 1 1 0

0 1 1 1 0 0 0 0 0 0

0 1 0 0 0 0 1 1 1 0

0 1 1 0 0 0 1 0 1 0

0 1 0 0 0 0 1 1 0 0

0 1 1 1 0 0 1 0 1 0];

pos = 1; rot = 1; % reset moves for current display

requesting = false; % block further user input

scores = [scores;score]; % add score to tracker

updatedisplay(true); % display the game over message

if learning % learning by playthrough

set(handles.createplay,’String’,’Continue’,’Callback’,@cont);

set(handles.createrand,’String’,’Finish’,’callback’,@savels);

inform(’GOlearn’);

uiwait(handles.figure);

else

inform(’GOrun’);

field = zeros(20,10); % reset field so it starts a new game

end

end % function gameover

%% Graphical User Interface

% This section generates what the user sees and uses to do anything.

% The GUI supports different features: creating learning sets, loading a

% learning set, and running an algorithm (which may or may not request user

% input to complement its learning set).

% The figure window

screensize = get(0,’ScreenSize’);

handles.figure = figure(’Resize’,’off’,’Toolbar’,’none’,...

’Menu’,’none’,’Name’,’TetrisFrame’,’NumberTitle’,’off’,...

’Units’,’pixels’,’CloseRequestFcn’,@quitgui,...

’WindowKeyPressFcn’,@key,... % still wirks after clicking buttons

’Position’,[screensize(3)/2-400 screensize(4)/2-300 800 600],...

’Visible’,’off’); % not visible until fully created

set(0,’DefaultAxesYDir’,’reverse’,’DefaultAxesLineStyleOrder’,’s’,...

’DefaultAxesNextPlot’,’replacechildren’,’DefaultAxesBox’,’on’,...

25

A Tetrisframe

’DefaultLineMarkerSize’,18,’DefaultLineMarkerEdgeColor’,’k’,...

’DefaultLineMarkerFaceColor’,’r’);

handles.ax = axes(’Parent’,handles.figure,’Units’,’pixels’,...

’Position’,[571 21 210 400],’XLim’,[0 11],’YLim’,[0 21],...

’XTick’,[],’YTick’,[],’NextPlot’,’add’);

handles.preview = axes(’Parent’,handles.figure,’Units’,’pixels’,...

’Position’,[628 470 96 58],’XLim’,[3 8],’YLim’,[0 3],...

’XTick’,[],’YTick’,[]);

handles.scorelbl = uicontrol(’Parent’,handles.figure,’Style’,...

’text’,’Units’,’pixels’,’String’,’Score:’,’FontSize’,14,...

’Position’,[596 561 60 25]);

handles.score = uicontrol(’Parent’,handles.figure,’Style’,’text’,...

’Units’,’pixels’,’String’,’0’,’FontSize’,14,...

’HorizontalAlignment’,’right’,’Position’,[656 561 100 25]);

handles.createlbl = uicontrol(’Parent’,handles.figure,...

’Style’,’text’,’Units’,’pixels’,’String’,’Create learning set’,...

’FontSize’,10,’Position’,[296 561 120 25]);

handles.createplay = uicontrol(’Parent’,handles.figure,...

’Style’,’pushbutton’,’Units’,’pixels’,’String’,’by playthrough’,...

’Position’,[296 521 100 25],’Callback’,@createls,’FontSize’,10);

handles.createrand = uicontrol(’Parent’,handles.figure,’Units’,...

’pixels’,’Style’,’pushbutton’,’String’,’from random states’,...

’Position’,[406 521 130 25],’Callback’,@createls,’FontSize’,10);

handles.loadlbl = uicontrol(’Parent’,handles.figure,’Style’,’text’,...

’Units’,’pixels’,’String’,’No learning set loaded’,’FontSize’,...

10,’Position’,[296 471 200 25],’ForegroundColor’,[.8 0 0]);

handles.loadset = uicontrol(’Style’,’pushbutton’,’Units’,’pixels’,...

’Parent’,handles.figure,’String’,’Load learning set’,’Position’,...

[296 431 140 25],’Callback’,@loaddat,’FontSize’,10);

handles.alglbl = uicontrol(’Parent’,handles.figure,’Units’,’pixels’,...

’Style’,’text’,’String’,’No algorithm loaded’,’FontSize’,...

10,’Position’,[296 381 200 25],’ForegroundColor’,[.8 0 0]);

handles.loadalg = uicontrol(’Style’,’pushbutton’,’Units’,’pixels’,...

’Parent’,handles.figure,’String’,’Load algorithm’,’Position’,...

[296 341 140 25],’Callback’,@loaddat,’FontSize’,10);

handles.runalg = uicontrol(’Style’,’pushbutton’,’Units’,’pixels’,...

’Parent’,handles.figure,’String’,’Run algorithm’,’Position’,...

[296 301 140 25],’Callback’,@runalg,’FontSize’,10,’Enable’,’off’);

26

handles.showai = uicontrol(’Style’,’checkbox’,’Units’,’pixels’,...

’Parent’,handles.figure,’String’,’Show AI playing’,’Position’,...

[296 251 200 25],’Callback’,@showai,’FontSize’,10);

handles.quit = uicontrol(’Style’,’pushbutton’,’Units’,’pixels’,...

’Parent’,handles.figure,’String’,’Quit’,’Position’,...

[336 101 100 25],’Callback’,@quitgui,’FontSize’,10);

handles.infopnl = uipanel(’Title’,’Information’,’Units’,’pixels’,...

’Parent’,handles.figure,’Position’,[25 25 250 550],...

’BorderType’,’line’,’BorderWidth’,3,’HighlightColor’,[.6 .6 .6]);

handles.infotxt = uicontrol(’Parent’,handles.infopnl,’Style’,’text’,...

’Units’,’pixels’,’Position’,[11 11 224 516],’String’,...

’This box informs you about various things.’);

% all done, display GUI

set(handles.figure,’Visible’,’on’);

%% GUI callback functions

% These handle the GUI’s functionality. Whenever something is clicked, one

% of these callbacks is executed.

function quitgui(~,~) % Quit program

if busy

cancel = true; % this will make the main functions abort asap

% In case something happens and the GUI freezes, abort after

% 2 seconds regardless

start(timer(’StartDelay’,2,’TimerFcn’,@abort));

else

delete(handles.figure); % this is used as CloseRequestFcn!

end

end

function abort(~,~) % Not really a callback; called if canceling

if ~busy % abort has been called already

return; % this catches cases where cancel is clicked, ...

end % but the GUI is not frozen and can abort itself

busy = false; % reset the flag so subsequent calls to abort return

if cancel % the call results from the quit timer

delete(handles.figure);

else % abort is called via button

cancel = true; % only set cancel flag

set(handles.runalg,’Str’,’Run algorithm’,’Callback’,@runalg);

end

end

function showai(hObject,~) % Toggles showing the ai playing

showaiplaying = get(hObject,’Value’);

end

27

A Tetrisframe

function createls(hObject,~) % start creating a learning set

set(handles.createplay,’String’,’Save and finish’,...

’Callback’,@savels);

set(handles.createrand,’String’,’Cancel’,’Callback’,@clearls);

learning = true; % now building a learning set

showaiplaying = true; % update field after move execution

current = blocks(randi(length(blocks))); % random current block

block = makeblock(current); % load data for current block

next = blocks(randi(length(blocks))); % random next block

if hObject == handles.createplay

field = zeros(20,10); % reset field

randomls = false; % only update field after each move

inform(’learnplay’);

else

randomrows = randi(16); % randomly decide how many rows to fill

field = [zeros(20-randomrows,10);randi([0 1],randomrows,10)];

randomls = true; % make a new random state after each move

inform(’learnrand’);

end

makemoves(); % create possible final moves from field and current

updatedisplay(true); % display field and selected final state

requesting = true; % now requesting input from the user

uicontrol(handles.scorelbl); % take focus from button so keys work

end % function createls

function savels(~,~) % save the currently creating learnset to file

uiresume(handles.figure); % for game over handling

[filename,filepath,fileformat] = ...

uiputfile({’*.mat’,’Learning set (*.mat)’},...

’Please choose a filename and saving location.’,...

[’learnset_’ datestr(now,’yyyymmddhhMMss’) ’.mat’]);

if fileformat == 0 % user clicked the cancel button

return;

end

save(fullfile(filepath,filename),’learnset’);

set(handles.loadlbl,’ForegroundColor’,[0 .8 0],...

’String’,[’Learning set "’ filename ’" loaded.’]);

set(handles.createplay,’String’,’by playthrough’,...

’Callback’,@createls);

set(handles.createrand,’String’,’from random states’,...

’Callback’,@createls);

learning = false;

end % function savels

function clearls(~,~) % Clear/delete the currently creating learnset

uiresume(handles.figure); % unlock

learnset = struct([]); % reset learnset

set(handles.loadlbl,’ForegroundColor’,[.8 0 0],...

’String’,’No learning set loaded.’);

set(handles.createplay,’String’,’by playthrough’,...

’Callback’,@createls);

28

set(handles.createrand,’String’,’from random states’,...

’Callback’,@createls);

learning = false;

end

function cont(~,~) % continue making a learning set

set(handles.createplay,’String’,’Save and finish’,...

’Callback’,@savels);

set(handles.createrand,’String’,’Cancel’,’Callback’,@clearls);

if randomls

randomrows = randi(16); % randomly decide how many rows to fill

field = [zeros(20-randomrows,10);randi([0 1],randomrows,10)];

inform(’learnrand’);

else

field = zeros(20,10); % reset field

inform(’learnplay’);

end

uiresume(handles.figure); % continue with makemoves

end

function loaddat(hObject,~) % load either a learnset or an algorithm

if hObject == handles.loadset

if strcmp(get(handles.createrand,’String’),’Cancel’)

response = questdlg([’You are creating a learning set,’,...

’ but did not save it yet. Do you want to save it ’,...

’before loading a new learning set?’],’TetrisFrame’,...

’Save’,’Discard’,’Cancel’,’Cancel’); % save question

switch response

case ’Save’

savels();

case ’Cancel’

return;

case ’’ % user closed the dialog -> assume Cancel

return;

end

clearls(); % case Discard

end

[filename,filepath,fileformat] = ...

uigetfile({’*.mat’,’Learning set (*.mat)’},...

’Please select a previously saved learning set file.’);

if fileformat == 0 % user clicked the cancel button

return;

end

tmp = load(fullfile(filepath,filename));

learnset = tmp.learnset;

set(handles.loadlbl,’ForegroundColor’,[0 .8 0],...

’String’,[’Learning set "’ filename ’" loaded.’]);

else % handles.loadalg

[filename,filepath,fileformat] = ...

uigetfile({’*.m’,’Algorithm script file (*.m)’},...

’Please select a script file containing the algorithm.’);

29

A Tetrisframe

if fileformat == 0 % user clicked the cancel button

return;

end

addpath(filepath); % ensure the algorithm file is on the path

algorithm = filename(1:end-2); % cut off .m extension

set(handles.alglbl,’ForegroundColor’,[0 .8 0],...

’String’,[’Algorithm "’ filename(1:end-2) ’" loaded.’]);

set(handles.runalg,’Enable’,’on’);

end

end % function loaddat

function runalg(~,~) % run the selected algorithm with loaded learnset

set(handles.runalg,’String’,’Cancel’,’Callback’,@abort);

busy = true; % flag the algorithm as running

scores = []; % reset stored scores

alghandle = str2func(algorithm); % convert the loaded algorithm

try % failsafe since the algorithm is potentially external

% extract (partially initial) function handles

[updaterewardfunc,rewardfunc,deciderequest] = alghandle();

if ~isempty(learnset) % learning data exists

rewardfunc = updaterewardfunc(learnset,@makemoves);

end

while ~cancel % cancel is used to kill the loop

rewards = zeros(size(moves)); % initialise rewards as 0

for posr=1:size(moves,1) % loop through positions

for rotr=1:size(moves,2) % and rotations

if isempty(moves{posr,rotr}) % empty move ->

rewards(posr,rotr) = -1; % impossible reward

else

[newfield,scoregain] = ... % result of move

clearlines(field+moves{posr,rotr});

rewards(posr,rotr) = ... % is evaluated

rewardfunc(newfield,scoregain,next);

end

end

end % rewards now has the reward for each move

bestmoves = find(rewards == max(rewards(:))); % highest

if deciderequest(rewards) % query for more examples?

request(); % wait for user to show best move

rewardfunc = updaterewardfunc(); % update reward

else

thebest = bestmoves(randi(length(bestmoves))); % random

[pos,rot] = ind2sub(size(moves),thebest);

end

execute(); % apply the selected move

end % repeat until cancelled

catch ex % something went wrong during algorithm execution

inform([’The loaded algorithm "’,algorithm,’" is erroneous’,...

’ and threw the following error: ’,ex.message]);

set(handles.runalg,’Str’,’Run algorithm’,’Callback’,@runalg);

end

30

busy = false; % done, clear the flag

end % function runalg

function key(~,event) % handle keyboard usage

if ~requesting

return; % ignore if no input request is running

end

usedkey = event.Key; % store the key

if strcmp(usedkey,’return’) % outsource return handling

learnset = [learnset ...

struct(’field’,field,’current’,current,’next’,next,...

’pos’,pos,’rot’,rot)];

if learning

if randomls

current = blocks(randi(length(blocks))); % random

block = makeblock(current); % load data for current

next = blocks(randi(length(blocks))); % random next

randomrows = randi(16); % random num of rows to fill

field = [zeros(20-randomrows,10);

randi([0 1],randomrows,10)];

makemoves(); % create possible final moves

updatedisplay(true); % update what the user sees

else

execute(pos,rot); % apply move, continue

end

% continue requesting in the new state

else

requesting = false; % request done

uiresume(handles.figure); % continue execution

end

return; % that’s it for return

end

% now for the arrows

switch usedkey

case ’uparrow’

rotup();

case ’downarrow’

rotdown();

case ’leftarrow’

posdown();

case ’rightarrow’

posup();

end

originalpos = pos; % stored to catch loops

while isempty(moves{pos,rot}) % there’s no new move here

if strcmp(usedkey,’rightarrow’)

posup(); % go more right if going right

else

posdown(); % in all other cases, go left

end

if pos == originalpos % back where we started

31

A Tetrisframe

rotup(); % rotate some more to see if that works

end

end

updatedisplay(true); % new move selected -> update display

end % function key

%% API

% The API (application programming interface) contains the functions to be

% used by the algorithm to communicate with the framework and the user. The

% functions here are the only ones that should be used by the algorithm,

% all other functions in other sections of this file are considered private

% and are not intended to be called except by one another.

function request() % requests user input

updatedisplay(true); % show the user what’s currently going on

requesting = true; % set the flag so user input is processed

uiwait(handles.figure); % wait for user input

end

function updatedisplay(includingfield) % updates the GUI’s Tetris board

set(handles.score,’String’,num2str(score));

if score > 100000000

set(handles.score,’String’,’Over 1e8’);

end

if includingfield % update field display

delete(get(handles.ax,’Children’)); % clear main axes

nextblock = makeblock(next); % load data for next block

[y,x] = find(nextblock); % extract indices

plot(handles.preview,x,y); % display next block

[y,x] = find(field); % extract indices

plot(handles.ax,x,y); % update field display

rows = find(sum(field+moves{pos,rot},2) == 10); % find fullrows

if ~isempty(rows) % if there are any full rows, plot them

plot(handles.ax,1:10,repmat(rows,1,10),...

’MarkerFaceColor’,’y’);

end

[y,x] = find(moves{pos,rot}); % extract indices

plot(handles.ax,x,y,’MarkerFaceColor’,’m’); % current

end

drawnow; % actually update graphics

end % function updatedisplay

function execute(expos,exrot) % executes selected move

[field,scoregain] = clearlines(field+moves{expos,exrot});

score = score + scoregain; % update score

current = next; % update current block identifier

block = makeblock(current); % create new block data

next = blocks(randi(length(blocks))); % select new block at random

makemoves(); % update possible moves

updatedisplay(showaiplaying); % update score and possibly field

end

32

%% Helpers and Wrappers

% These are small functions that make some lines more concise and easy to

% understand. Most of them wrap a conversion or overflow.

function result = anyone(input) % wrapper to apply any() to any matrix

result = any(input(:));

end

function posup

pos = pos+1;

if pos > size(moves,1)

pos = 1;

end

end

function posdown

pos = pos-1;

if pos < 1

pos = size(moves,1);

end

end

function rotup

rot = rot+1;

if rot > size(moves,2)

rot = 1;

end

end

function rotdown

rot = rot-1;

if rot < 1

rot = size(moves,2);

end

end

function inform(message) % writes text into the Information box

switch message % handle default messages

case ’learnplay’

message = [’You started creating a learning set by pla’,...

’ying. Use the arrow keys to select a final positi’,...

’on for the current Tetrimino. Press Enter/Return ’,...

’to lock in your choice and continue with the next’,...

’ Tetrimino. When you’’re done, click the "Save an’,...

’d Finish" button. Pressing the "Cancel" button cl’,...

’ears the learnset you created. When you lose, you’,...

’ are offered the choice to save the learning set.’,...

’ If you cancel that dialog, you can still save or’,...

’ clear the learning set later.’];

case ’learnrand’

33

A Tetrisframe

message = [’You started creating a learning set by sol’,...

’ving random states. Use the arrow keys to select ’,...

’a final position for the current Tetrimino. Press’,...

’ Enter/Return to lock in your choice and continue’,...

’ with the next random state. When you’’re done, c’,...

’lick the "Save and Finish" button. Pressing the "’,...

’Cancel" button clears the learnset you created. Y’,...

’ou cannot lose in this mode, clicking one of thes’,...

’e buttons is the only way to stop creating a lear’,...

’ning set.’];

case ’GOlearn’

message = [’Game over! Click "Continue" to reset the f’,...

’ield and start a new game, adding to the current ’,...

’learning set. Click "Finish" to save the learning’,...

’ set. If you want to discard the learning set, cl’,...

’ick "Finish", then cancel the saving dialog.’];

case ’GOrun’

message = sprintf([’The current game is over. New game’,...

’ started. The last game yielded a score of %d. Th’,...

’e algorithm’’s average score over the last %d gam’,...

’es is %d.’],score,numel(scores),mean(scores));

score = 0; % reset score for new game

case ’clear’

set(handles.infotxt,’String’,’’); % clear message

return; % don’t flash red

end

set(handles.infotxt,’String’,message); % update message

set(handles.infopnl,’HighlightColor’,[1 0 0]); % flash red

pause(0.05);

set(handles.infopnl,’HighlightColor’,[.6 .6 .6]); % revert

drawnow;

end

end % function tetrisframe

34

B Algorithm template

function [updaterewardfunc,rewardfunc,deciderequest] = algorithmtemplate()

% parameters to be trained by the update and used be the reward fcns

fieldweights = zeros(20,10,7); % weighting each space in the field

scoreweight = 1; % weighting the score gain

% all the algorithm function really does is return handles to these

updaterewardfunc = @updaterewardfcn;

rewardfunc = @rewardfcn;

deciderequest = @decide;

% and of course define them

% The update function takes as inputs the (changed) learnset and a

% handle to the function to calculate all final positions so it can

% determine which moves were passed up in favor of the best move in

% each learning example. It return the handle to the reward function

% now using the updated parameters.

function hNewRewardFcn = updaterewardfcn(learnset,hMakeMoves)

% train parameters that affect rewardfcn

% this template does nothing, add your actual learning

% algorithm here (mostly, depends on your algorithm)

hNewRewardFcn = @rewardfcn; % using the new parameters

end

% The reward function determines a numerical reward for a target field

% with a specific score gain to reach, taking into account the next

% piece to spawn. It takes as inputs the target field, score gain and

% next piece identifier and uses the parameters trained by the

% updaterewardfcn. It returns the reward as a positive integer.

function reward = rewardfcn(targetfield,scoregain,next)

% depending on your approach, possibly adapt this as well

% this trivial example applies the weights corresponding to the

% next piece to the field and neutral weigth to the score

fieldreward = fieldweights(:,:,next) .* targetfield;

scorereward = scoreweight * scoregain;

reward = fieldreward+scorereward;

end

% The decide function decides whether to take a decision with the

% rewards given as input or request a new sample from the user. It

% returns true if a new sample is to be requested.

35

B Algorithm template

function doRequest = decide(rewards)

best = find(rewards == max(rewards(:))); % best moves

% trivial example: request more only if no single best move exists

if numel(best) == 1

doRequest = false;

else

doRequest = true;

end

end

end

36

Bibliography

[Ald08] H. Aldahiyat. Tetris for dummies, 2008. URL http://de.mathworks.com/

matlabcentral/fileexchange/21246-tetris-for-dummies. [Online; accessed 2-
March-2015]. (Cited on page 9)

[BKM05] N. Böhm, G. Kókai, S. Mandl. An evolutionary approach to tetris. In The Sixth
Metaheuristics International Conference (MIC2005). 2005. (Cited on page 5)

[CMDS10] R. Cohn, M. Maxim, E. Durfee, S. Singh. Selecting operator queries using expected
myopic gain. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010
IEEE/WIC/ACM International Conference on, volume 2, pp. 40–47. IEEE, 2010.
(Cited on page 8)

[Fah12] C. Fahey. A lot of information about Tetris, 2012. URL http://colinfahey.com/

tetris/tetris.html. [Online; accessed 2-March-2015]. (Cited on pages 5 and 9)

[Fig12] M. Fig. Matlabtetris, 2012. URL http://de.mathworks.com/matlabcentral/

fileexchange/34513-matlabtetris. [Online; accessed 2-March-2015]. (Cited
on page 9)

[Gie11] J. de Gier. Tetris (vs. AI), 2011. URL http://de.mathworks.com/matlabcentral/

fileexchange/33701-tetris--vs-ai. [Online; accessed 2-March-2015]. (Cited
on pages 5 and 9)

[HYL08] K.-Z. Huang, H. Yang, M. R. Lyu. Machine learning: modeling data locally and
globally. Springer Science & Business Media, 2008. (Cited on page 7)

[LMM09] M. Lopes, F. Melo, L. Montesano. Active learning for reward estimation in inverse
reinforcement learning. In Machine Learning and Knowledge Discovery in Databases,
pp. 31–46. Springer, 2009. (Cited on page 8)

[ML10] F. S. Melo, M. Lopes. Learning from demonstration using mdp induced metrics. In
Machine Learning and Knowledge Discovery in Databases, pp. 385–401. Springer,
2010. (Cited on page 7)

[ML11] M. Mason, M. Lopes. Robot self-initiative and personalization by learning through
repeated interactions. In Human-Robot Interaction (HRI), 2011 6th ACM/IEEE
International Conference on, pp. 433–440. IEEE, 2011. (Cited on page 7)

37

http://de.mathworks.com/matlabcentral/fileexchange/21246-tetris-for-dummies
http://de.mathworks.com/matlabcentral/fileexchange/21246-tetris-for-dummies
http://colinfahey.com/tetris/tetris.html
http://colinfahey.com/tetris/tetris.html
http://de.mathworks.com/matlabcentral/fileexchange/34513-matlabtetris
http://de.mathworks.com/matlabcentral/fileexchange/34513-matlabtetris
http://de.mathworks.com/matlabcentral/fileexchange/33701-tetris--vs-ai
http://de.mathworks.com/matlabcentral/fileexchange/33701-tetris--vs-ai

Bibliography

[NR+00] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
pp. 663–670. 2000. (Cited on page 17)

[RGB10] S. Ross, G. J. Gordon, J. A. Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. arXiv preprint arXiv:1011.0686, 2010.
(Cited on pages 5 and 8)

[SE12] Z. Shao, M. J. Er. A survey of inverse reinforcement learning techniques. 2012.
(Cited on pages 7 and 8)

[SL06] I. Szita, A. Lörincz. Learning Tetris using the noisy cross-entropy method. Neural
computation, 18(12):2936–2941, 2006. (Cited on page 5)

[Var15] Various. Tetris Wiki community project, 2015. URL http://tetris.wikia.com/

wiki/Tetris_Wiki. [Online; accessed 2-March-2015]. (Cited on page 9)

38

http://tetris.wikia.com/wiki/Tetris_Wiki
http://tetris.wikia.com/wiki/Tetris_Wiki

Ich versichere, diese Arbeit selbstständig verfasst zu haben.
Ich habe keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen
Werken übernommene Aussagen als solche gekennzeichnet.
Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht.
Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

I hereby declare that the work presented in this thesis is entirely my own.
I did not use any other sources and references that the listed ones. I have marked all direct or indirect
statements from other sources contained therein as quotations.
Neither this work nor significant parts of it were part of another examination procedure. I have not published
this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

Erklärung

Stuttgart, 03.03.2015

Unterschrift:

Stuttgart, 03.03.2015

Signature:

Declaration

	Titelseite_und_letzte
	Development of a benchmarking framework for Inverse Reinforcement Learning algorithms based on Tetris
	1 Introduction
	2 Related work
	2.1 Early research
	2.2 Gaming and Active Learning
	2.3 Tetris

	3 Tetrisframe
	3.1 Constants and base variables
	3.2 Rotation system
	3.3 Mainframe
	3.4 Graphical User Interface
	3.5 GUI Callback functions
	3.6 API
	3.7 Helpers and Wrapper
	3.8 The Algorithm template

	4 Experiments
	A Tetrisframe
	B Algorithm template
	Bibliography

	Titelseite_und_letzte

 HistoryItem_V1
 InsertBlanks

 Wo: nach der aktuellen Seite
 Anzahl der Seiten: 1
 Seitengröße: identisch wie Seite 1

 Blanks
 1
 Always
 1
 1
 /C/Users/kunde6/Desktop/Neuer Ordner/Sammelmappe1.pdf
 1
 117
 370
 217

 AllDoc
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 AfterCur

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

