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Abstract

The proliferation of modern smartphones such as the Apple iPhone or Google

Android Phones has given rise to Public Sensing, a new paradigm for sensor data

acquisition using spare resources of commodity smartphones. As smartphones are

already deployed wherever there are people present, data collection is enabled at

an urban scale. Having access to such a wealth of data facilitates the creation

of applications depending on real-world information in a way that may have a

lasting impact on our everyday life.

However, creating large-scale Public Sensing systems is not without its chal-

lenges. On the data requesting side, an interface is required that allows to specify

arbitrary sensing tasks independent of the mobility of participants and thus fa-

cilitates user acceptance of Public Sensing. On the data gathering side, as many

people as possible must participate in the system and thus provide a sufficient

amount of data. To this end, the system must conserve the resources shared by

participants as much as possible, with the main concern being energy. Partic-

ipants will withdraw from the system, when participating significantly impacts

the battery life of their smartphone. We address the aforementioned issues in the

context of two applications: Indoor map generation and large-scale environmental

data acquisition.

In the area of indoor map generation, we first address the problem of building

an indoor map directly from odometry traces. In contrast to existing approaches,

our focus is to extract the maximum amount of information from trace data

without relying on additional features such as WiFi fingerprints. Furthermore,

we present an approach to improve indoor maps derived from traces using a formal

grammar encoding structural information about similar indoor areas. Using this

grammar allows us to extend an incomplete trace-based map to a plausible layout

for the entire floor while simultaneously improving the accuracy of floor plan

objects observed by odometry traces. Our evaluations show that the accuracy of

17



Abstract

grammar-based maps in the worst-case is similar to the accuracy of trace-based

maps in the best-case, thus proving the benefit of the grammar-based approach.

To improve the energy efficiency of the mapping process, we furthermore present a

generic quality model for trace-based indoor maps. This quality metric is used by

a scheduling algorithm, instructing a participating device to disable its energy-

intensive sensors while it travels in an area that has been mapped with high

quality already, enabling energy savings of up to 15%.

In the area of large-scale environmental data acquisition, we first present the

concept of virtual sensors as a mobility-independent abstraction layer. Applica-

tions configure virtual sensors to report a set of readings at a given sampling rate

at a fixed position. The Public Sensing system then selects smartphones near

the position of a virtual sensor to provide the actual data readings. Further-

more, we present several optimization approaches geared towards improving the

energy efficiency of Public Sensing. In a local optimization, smartphones near

each individual virtual sensor coordinate to determine which device should take

a reading and thus avoid oversampling the virtual sensor. The local optimization

can achieve a 99% increase in efficiency with the most efficient approaches and

exhibits only about 10% decrease in result quality under worst conditions. Fur-

thermore, we present a global optimization, where a data-driven model is used to

identify the subset of most interesting virtual sensors. Data is obtained from this

subset only, while readings for other virtual sensors are inferred from the model.

To this end, we present a set of online learning and control algorithms that can

create a model in just hours or even minutes and that continuously validate its

accuracy. Evaluations show that the global optimization can save up to 80% of

energy while providing inferred temperature readings matching an error-bound

of 1◦C up to 100% of the time.

18



Zusammenfassung

Die wachsende Verbreitung moderner Smartphones wie des Apple iPhone oder

den Android-Geräten von Google hat die Idee des Public Sensing inspiriert. Pu-

blic Sensing ist ein neues Paradigma der Datenerfassung unter Verwendung un-

genutzter Ressourcen von Smartphones. Da Smartphones überall dort verfügbar

sind, wo sich Menschen aufhalten, ermöglicht Public Sensing eine Datenerfassung

auf urbanem Maßstab. Die Verfügbarkeit dieser Datenmenge ermöglicht die Ent-

wicklung neuer, Realwelt-bezogener Anwendungen, die unser alltägliches Leben

nachhaltigen verändern können.

Die Entwicklung von Public-Sensing-Systemen in großem Maßstab birgt jedoch

einige Herausforderungen. Systeme müssen die Anfrage von unterschiedlichsten

Daten unabhängig von der Mobilität der Menschen ermöglichen, um die Verwen-

dung und Akzeptanz von Public Sensing zu fördern. Weiterhin müssen so viele

Personen wie möglich am System teilnehmen, damit die notwendigen Daten er-

fasst werden können. Dazu muss das Public-Sensing-System die Ressourcen der

Teilnehmer, insbesondere den Energievorrat der Smartphones, so weit wie mög-

lich schonen. Teilnehmer werden sich aus dem System zurückziehen, wenn die

Teilnahme die Akkulaufzeit ihres Smartphones signifikant beeinträchtigt. In die-

ser Arbeit betrachten wir die zuvor genannten Herausforderungen im Kontext

zweier Anwendungen: Der Erfassung von Innenraumkarten und der Erfassung

von Umweltdaten in großem Maßstab.

Im Bereich der Erfassung von Innenraumkarten präsentieren wir zunächst ein

System zur Ableitung von Innenraumkarten aus Bewegungsspuren der Teilneh-

mer. Im Gegensatz zu bestehenden Ansätzen konzentrieren wir uns darauf, ohne

Verwendung zusätzlicher Informationen, wie z.B. WLAN-Fingerabdrücken, ein

Maximum an Informationen aus den Bewegungsspuren zu extrahieren. Weiterhin

präsentieren wir einen Ansatz zur Verbesserung von Innenraumkarten aus Bewe-

gungsspuren mit Hilfe einer formalen Grammatik. Die Grammatik codiert dabei

19



Zusammenfassung

strukturelle Informationen über ähnliche Innenraumbereiche anderer Gebäude.

Die Verwendung der Grammatik erlaubt das plausible Vervollständigen einer un-

vollständigen Innenraumkarte, wobei zusätzlich die Genauigkeit fehlerbehafteter

Beobachtungen verbessert wird. Diese Verbesserung wird von unseren Experi-

menten belegt, die zeigen, dass die Genauigkeit der besten Innenraumkarten aus

Bewegungsspuren gerade der Genauigkeit der schlechtesten grammatikgenerierten

Karten entspricht. Um die Energieeffizienz des Kartierungsprozesses zu verbessern

präsentieren wir weiterhin ein generisches Qualitätsmodell für Innenraumkarten.

Dieses Qualitätsmodell wird von einem Planungsalgorithmus verwendet, der die

energieintensive Erfassungssensorik eines Smartphones deaktiviert, während es

sich in einem Bereich aufhält, der bereits mit hoher Qualität erfasst wurde. Da-

durch kann bis zu 15% der Energie für die Datenerfassung eingespart werden.

Im Bereich der Umweltdatenerfassung in großem Maßstab stellen wir zunächst

das Konzept des virtuellen Sensors als mobilitätsunabhängige Abstraktion vor.

Anwendungen konfigurieren virtuelle Sensoren, um Informationen an einer festen

Position mit einer vorgegebenen Datenrate aufzunehmen. Das Public-Sensing-

System wählt dann Smartphones in der Nähe jedes virtuellen Sensors aus, um

die tatsächliche Datenerfassung auszuführen. Weiterhin präsentieren wir mehrere

Optimierungsanätze um die Energieeffizienz von Public Sensing zu verbessern.

Bei der lokalen Optimierung koordinieren die Smartphones in der Nähe jedes ein-

zelnen virtuellen Sensors selbstständig, welches Gerät Daten erfassen soll. Somit

wird vermieden, Daten mehrfach zu erfassen. Die lokale Optimierung kann die

Effizienz der Datenerfassung um bis zu 99% verbessern, während die Datenqua-

lität im schlechtesten Fall um höchstens etwa 10% sinkt. Weiterhin präsentieren

wir eine globale Optimierung, die ein datengetriebenes Modell nutzt, um eine

Untermenge der wichtigsten virtuellen Sensoren zu bestimmen. Daten werden

nur für diese Untermenge erfasst, während die Messwerte für alle anderen vir-

tuellen Sensoren aus dem Modell abgeleitet werden. Dazu stellen wir eine Reihe

von Online-Lern- und Kontrollalgorithmen vor, die die Erstellung eines Modells

in Stunden oder sogar nur Minuten ermöglichen, und die kontinuierlich die Gül-

tigkeit des Modells überprüfen. Unsere Untersuchungen zeigen, dass die globale

Optimierung bis zu 80% Energieeinsparung bietet. Dabei bleibt der Fehler in ab-

geleiteten Temperaturmesswerten bis zu 100% der Zeit unter einer Fehlerschranke

von 1◦C.
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1. Introduction

1.1. Motivation

The proliferation of modern smartphones such as the Apple iPhone or Google

Android Phones has given rise to Public Sensing, a new paradigm for sensor data

acquisition [CEL+08]. In Public Sensing, data is gathered using spare resources of

commodity smartphones. These smartphones contain a wealth of sensors and are

carried and maintained by participants, i.e., ordinary people willing to share their

resources with the public. As these sensors are already deployed wherever there

are people present, data collection is enabled at an urban scale. Having access to

such a wealth of data facilitates the creation of applications depending on real-

world data in a way that may have a lasting impact on our everyday life [HD09].

Common examples of such applications include finding social hotspots (“Vibe of

the City”) [MPL+11], traffic monitoring [TRL+09] or large-scale environmental

monitoring [KBRL09, MSN+09, WAK+10].

Traditionally, real-world measurement data is either collected manually by ex-

perts or acquired automatically using static sensor networks specially crafted for

each sensing task. Both approaches are labor-intensive and expensive and are

thus rarely ever used beyond individual applications. Furthermore, static sensor

networks are managed by a single authority, which is problematic when operating

on an urban scale, where areas of interest are governed by different authorities

and thus individual agreements on the placement of sensors have to be negotiated.

Public Sensing represents a move away from this centralized paradigm, as data

collection is fundamentally distributed in the hands of the people. As smart-

phones are already deployed, there is no monetary up-front cost to execute a

sensing task, enabling both experts and “Citizen Scientists” [CHK08] to use real-

world data on a large scale. In addition, this solves the problem of negotiating

sensor deployment locations, as participants carry sensors to any accessible area.
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This opportunity to set up data collection campaigns enables new ways to use

the resulting data. Previously, availability of and access to data was controlled

by the funding entity of the corresponding measurement campaign as a way to

compensate for the cost of running the campaign. In such cases, access to data

carries a significant upfront monetary cost or comes with restrictive licensing

issues. One example of this problem is the availability of data for geo information

services (GIS data, commonly referred to as maps). GIS data can be bought from

for-profit companies, e.g., NAVTEQ. If such a (substantial) financial investment is

not practical or desired, Google offers access to its Maps service free of charge, but

reserves the right to restrict data access on its own terms or to add advertising

information into the available data [goo14]. In contrast, the OpenStreepMap

Project uses data collected by volunteers in a Crowd Sensing system to build

a GIS database which can be copied and used free-of-charge by anyone [HW08,

opeb]. Thus, Public Sensing as a data provider can accelerate the creation of

new applications and services, based on publicly available data, as application

developers can shift their focus from finding input data for their application to

creating novel applications that make use of the wealth of available data.

Another major benefit of “free data” is an increased environmental awareness

of individuals [WAK+10]. Environmental influences such as noise pollution or

air pollution (CO or fine particulates, for instance) are becoming an increasing

problem [Com96, Com13]. In many countries, legislation exists that dictates mea-

sures to reduce such influences, e.g., erecting noise-reflecting walls or imposing

speed limits on road traffic. However, to begin the deployment of such measures,

a problem such as excessive pollution must first be detected. Currently, this

often involves lengthy lobbying campaigns fueled by suspicions that a problem

might exist, before even initial measurements are taken to verify (or disprove)

the suspicion, let alone to ascertain the extent of the problem. Furthermore, the

actual deployment of such measures is based on extrapolations from a small num-

ber of measurements. In some cases, these extrapolation models are known to be

inaccurate. Yet, they continue to be used for lack of a better method. With large-

scale fine-grained data acquisition as provided by Public Sensing, problems can

be detected as soon as they arise and extrapolation models can be continuously

verified and improved—i.e., be grounded in reality at the location in question—or

possibly be abandoned altogether in favor of real-time measurement data.
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However, creating large-scale Public Sensing systems is not without its chal-

lenges. On the data gathering side, as many people as possible must participate

in the system and thus provide a sufficient amount of data. To this end, the

execution of sensing tasks in the Public Sensing system must be unobtrusive, i.e.,

participants must not be required to interact with the Public Sensing system or

even to go out of their way to facilitate sensing task execution. Furthermore, the

system must conserve the resources shared by participants as much as possible,

with the main concern being energy. Participants will withdraw from the system,

when participating significantly impacts the battery life of their smartphone. On

the data requesting side, an interface is required that allows to specify arbitrary

sensing tasks independent of the mobility and population of participants and thus

facilitates user acceptance of Public Sensing.

We address the aforementioned issues in this thesis in the context of two appli-

cations: Indoor map generation and large-scale environmental data acquisition.

Our main focus is the development of optimization algorithms that reduce the

data acquisition workload subject to a user-specified quality bound. Rather than

blindly getting all the data there is to get, we show how to select a reduced set of

effective data readings out of the wealth of data potentially provided by the Pub-

lic Sensing system at any given time, gathering only information that is actually

relevant to the task at hand. Furthermore, we show how to apply model-driven

approaches in the context of Public Sensing to infer the missing information from

effective readings. In combination, optimization approaches and model-driven

inference provide data that is sufficient for the application at hand (i.e., satisfy

the user-specified quality bound) at a much reduced energy cost, thereby making

large-scale Public Sensing viable.

The next subsections give a more detailed view on the problems we face in

deploying large-scale Public Sensing systems and on our approaches to tackle

them for each of the application contexts. In the following, Section 1.2 summarizes

our contributions and Section 1.3 presents the structure of this thesis.

1.1.1. Indoor Map Generation

A very basic requirement for Location Based Services, e.g., navigation applica-

tions, is the availability of map data. Maps provide a mapping of real-world
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objects, e.g., rooms within a building such as “Room 2.164”, to positions, e.g.,

coordinates such as (48.745205, 9.106515). As presented before, OpenStreetMap

was one of the earliest Public Sensing projects with the goal of creating a free map

of the world [HW08]. Volunteers record odometry traces using the GPS device

in their smartphones. The resulting traces are combined to remove measurement

errors and to determine the type of path (road, freeway, etc.) a user traveled.

While this approach works very well for outdoor settings, creating indoor maps

is a far more complex task, mainly due to the unavailability of absolute position-

ing systems like GPS or Galileo. In the past, indoor maps had to be created in

a manual effort by converting building blueprints (often not available in digital

form) or by tediously mapping a building using 3D laser scanners. Fueled by the

research on SLAM (Simultaneous Location and Mapping) in the robotics com-

munity, several approaches for indoor mapping from odometry traces recorded by

participants using their smartphones have emerged, e.g., [AR12, AY12, SCC12],

[PBD+14]. In these approaches, odometry traces are recorded as relative measure-

ments from an Inertial Measurement Unit (IMU) such as the built-in acceleration

sensors of a smartphone or an external foot-mounted sensor.

All of these approaches face the problem that vast amounts of data are required

to fully and accurately map a given building, for a number of reasons:

1. IMU readings are inaccurate, typically due to sensor drift. Step lengths and

turning angles are frequently recorded incorrectly, so that a large number

of odometry traces is required to reliably identify the building layout.

2. Odometry traces only carry information about exactly those positions a user

passed through and no information about the surroundings. For instance,

when a participant moves through a hallway several meters wide, a single

odometry trace does not provide information on the width of the hallway.

Thus, multiple observations of each part of the interior are required to find

the full geometric extent of rooms and hallways. Furthermore, each and

every room must be visited to obtain a complete building layout.

As argued before, gathering large amounts of data also consumes large amounts

of energy. We therefore leverage observations on architectural principles to facil-

itate the creation of indoor maps from a much smaller amount of information.

To this end, we first address the problem of building an indoor map directly
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from odometry traces. Existing approaches on the one hand rely on a large num-

ber of observations to average out individual errors. On the other hand, they are

either computationally complex or require the acquisition of additional features,

e.g., WiFi fingerprints, to combine observations into a single map. Thus, we look

at how we can extract the maximum amount of information from observations,

i.e., how to improve the overall process of indoor map construction from odome-

try traces. We present a system that can smooth out most data recording errors

of each trace, even when only few traces are available. Furthermore, we present

a novel approach to find the indoor room layout that, in contrast to existing

approaches, does not require additional features to identify individual rooms.

Second, we present an interpolation approach for indoor maps. If the amount of

trace data that is input to the indoor map construction algorithm is reduced, the

amount of features represented in the indoor map will decrease. Even when all

available information is used, some parts of the building may not be mapped, as

they have never been visited. To alleviate this problem, Becker et al. presented an

indoor grammar that encodes knowledge about architectural principles as well as

actual geometric and topological information taken from similar floors (e.g., other

floors from the same building) [BPF+13], [PBD+14]. Applying this grammar to

the problem of indoor map construction from a small amount of input data,

we show an algorithm that, given a trace-based indoor map, will interpolate

a grammar-based indoor map that extends the trace-based map to a plausible

layout for the entire floor while explaining the observations from odometry traces.

Finally, to optimize the process of data acquisition, we present a generic quality

model for trace-based indoor maps that quantifies the state of the map for various

areas of the indoor space. Areas of low quality represent parts of the floor where

additional information is required, whereas in areas of high quality, energy can

be saved by not acquiring any more data without sacrificing map accuracy. This

quality model is used by a scheduling algorithm, instructing a smartphone to

disable its energy-intensive sensors when it enters a well mapped area.

1.1.2. Large-Scale Environmental Data Acquisition

Another common application for Public Sensing systems is the observation of

environmental phenomena, thus serving as a flexible and efficient replacement for
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traditional static sensing systems. Several existing approaches, e.g., [KBRL09,

MSN+09, SM08, WAK+10, MPLM11], show the effectiveness of Public Sensing

for this task. However, these approaches do not address the aforementioned

specific issues for building viable Public Sensing systems.

To address these issues, we present the DrOPS system. DrOPS solves the

problem of how to specify sensing tasks through the concept of virtual sensors

(v-sensors for short). V-sensors provide a mobility-transparent abstraction of

the Public Sensing system. They are configured to report a set of readings at

a client-defined sampling rate at a given position, thus presenting a view on a

(virtual) static sensor network. The Public Sensing system then selects nearby

smartphones to provide readings for a v-sensor. Thus, DrOPS can be used as a

drop-in replacement for a static sensor network. This, in turn, enables Request-

Driven Execution, i.e., the Public Sensing system performs work only when data

consumers requested data by specifying a set of v-sensors they are interested

in. While the Request-Driven Execution is effective with respect to providing

requested data, its efficiency can be improved further. The Request-Driven Ex-

ecution collects readings from all participating smartphones near any specified

v-sensor. When only a single reading is desired, or, more generally, k readings

were requested (k -coverage), all but the first k readings are discarded. Thus, the

energy for recording and transmitting these readings is wasted. We tackle this

problem in our Local Optimization where we reduce the effort for data acquisition

by adjusting the number of readings taken for each individual v-sensor.

While the v-sensors are a powerful abstraction, DrOPS faces another problem:

A v-sensor is temporarily unavailable if no participating smartphone is in its

vicinity. Clearly, the probability for a v-sensor being unavailable increases with

an increasing v-sensor sampling rate and a decreasing density of participating

smartphones. We alleviate this problem by a model-driven data acquisition ap-

proach, which uses a model to infer readings of unavailable v-sensors from other,

available data. Moreover, we save energy for sensing and communicating data on

mobile devices by inferring readings of v-sensors even if they are available when

inferred readings are sufficiently accurate, thus enabling a Global Optimization.

For model-driven approaches to provide accurate inferred readings, a mini-

mum set of input data from available v-sensors is required. Thus, the basic

global optimization performs well in dense networks, where most v-sensors are
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well covered (and thus available), e.g., in a busy city center or a business area

at lunchtime. Collecting the minimum set of data is a problem in (partially

or completely) sparsely populated areas, e.g., business areas during off-hours or

housing areas during business hours, where the density of smartphones is over-

all low, or when the most interesting v-sensors are unavailable while many less

interesting v-sensors are available. We address this challenge by providing an

adaptive extension to our approach that enables operation in both dense and

sparse networks.

1.2. Contributions

In the area of indoor map generation, we present MapGenie, a system for indoor

map generation from odometry traces recorded using inertial sensors. MapGenie

improves over existing systems by taking into account knowledge about archi-

tectural principles and the building exterior. In detail, our contributions are as

follows.

1. We detail a novel approach for detecting rooms from odometry traces in

the indoor environment. In contrast to existing algorithms, our approach

can fuse observations from several traces solely based on features extracted

from these traces, i.e., does not rely on observations of features external to

the traces, such as WiFi fingerprints.

2. We show how to use architectural principles encoded in a formal grammar

to extend an incomplete observed indoor map to a plausible full indoor map

using a grammar-based map layout derivation algorithm.

3. We present a generic quality model to quantify the available information

in the indoor maps for parts of a building. The quality model can be

used to determine which parts of the building are insufficiently mapped

and need additional observations. We demonstrate how our quality model

can be used in a scheduling algorithm for improving the energy efficiency

of the mapping process. The scheduling algorithm disables the sensors of

a smartphone when the device is located in an area with sufficient quality,

i.e., reduces the energy spent on observing unnecessary information.
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Parts of this work have been previously published in [PBD+14], [BPDR14].

These works were a collaborative effort, where others have contributed as follows.

In [PBD+14], Peter et al. contributed the concept of recording odometry traces

using Zero Velocity Updates and the concept of aligning odometry traces to exte-

rior walls (cf. [PHF11]). The trace-based modeling component was developed by

Christoph Dibak in a thesis supervised by the author [Dib13]. Based on his work,

the author developed an improved trace-based modeling component as presented

in this thesis. The Android App is the work of Naresh Nayak under the super-

vision of Patrick Baier, while the grammar for the construction of indoor layouts

is original work by Becker et al. [BPF+13]. The algorithm for incorporating

observations of floor plan objects derived from odometry traces is original work

of the author.

In [BPDR14], the quality model and the mobility model are original work of

the author. The energy model and the energy-efficient mapping approach and

were developed by Patrick Baier. Furhermore, the student project of Bonet et al.

was invaluable help in developing the evaluations for this publication [BRW14].

In both publications, Fank Dürr provided guidance for the project and helped

to improve the presentation of concepts and results.

In the area of large-scale environmental monitoring, we present DrOPS, a sys-

tem for model-Dr iven Optimization of Public Sensing systems. DrOPS provides

a range of optimizations to reduce the data acquisition workload, and thus the

energy consumption, for environmental monitoring. In detail, our contributions

are as follows.

4. A Sensor Network Abstraction to build a simple application interface to

Public Sensing systems and to enable the Request-Driven Execution of sens-

ing tasks. The Sensor Network Abstraction introduces the concept of the

v-sensor that can be placed like a sensor in a static sensor network. The

role of the v-sensor is then filled by nearby participating devices.

5. A series of distributed coordination algorithms for k-coverage, i.e., to select

k devices for each v-sensor to fill its role. These algorithms aim to minimize

the effort of data acquisition by reducing the number of redundant readings

taken. Selecting one of these algorithms allows to trade off decreased energy

consumption for increased robustness of the data collection process.
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6. An approach to infer readings for spatially distributed phenomena from a

reduced set of effective readings using multivariate Gaussian models. Thus,

DrOPS can reduce the required effort for data acquisition while still provid-

ing data matching a client-defined quality threshold. In contrast to existing

approaches, it does not require a prototypical deployment. DrOPS can ob-

tain training data from a running sensing task and create a model suitable

for model-driven sensing in a matter of minutes. To this end, it uses an

online learning algorithm (OLA) for the quick construction of models and

an online model validity check algorithm (MOCHA) to verify whether a

model still accurately reflects the underlying phenomenon.

7. An improved multi-round execution model that extends DrOPS to com-

pensate for unavailable v-sensors. The availability of v-sensors is learned

online during query execution and the data acquisition effort is adapted so

that—if at all possible—sufficient effective data from v-sensors is recorded,

even when an a-priori unknown number of these sensors are unavailable.

Parts of this work have been previously published in [PDR11, PSA+13, PSDR13].

These works were a collaborative effort, where others have contributed as follows.

In [PDR11], the clustering algorithm used for multi-hop communication was

developed by Daniel Fischer [HFP12]. All other contributions are original work

of the author.

In [PSA+13], the model driven approach for sensor data acquisition is original

work of the author. Implementation and experiments in the real-world testbed

were carried out by a group of students under the supervision of the author

[TMA12, Alt12]. The implementation of the simulated environment was advanced

by a number of theses supervised by the author [Fro11, Sta11].

The concepts presented in [PSDR13] are original work of the author. This

work was inspired by a number of theses supervised by the author that helped to

advance the understanding of the topic [Til12, Neu13].

In all publications, Fank Dürr provided guidance for the project and helped to

improve the presentation of concepts and results.
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1.3. Structure

This work is structured in three parts. The remainder of the first part presents

background information on Public Sensing and its enabling technologies in Chap-

ter 2 and an overview of our system model and architecture in Chapter 3.

The second part is concerned with the challenge of constructing an indoor map

using Public Sensing. In Chapter 4 we present an overview of the MapGenie

system. Chapter 5 details how to extract an indoor map from observations. We

show how to improve this map using a grammar-based map generation algorithm

in Chapter 6 and present an approach to improve the energy efficiency of the

mapping process using a quality model in Chapter 7. Chapter 8 presents the

evaluation results of a real-world experiment before we take a look at related

work in Chapter 9.

In the third part, we discuss the use of Public Sensing for environmental

monitoring. Chapter 10 presents our Sensor Network Abstraction and gives an

overview of the operation of DrOPS. We detail the local optimization for DrOPS

in Chapter 11. Our model-driven approach for global optimization is discussed

in Chapter 12. Chapter 13 presents the evaluation results for the performance of

DrOPS from a small-scale real-world testbed and a large-scale simulated setting,

followed by a discussion of related work in Chapter 14.

Finally, we conclude this work in Chapter 15 with a summary and outlook onto

future work.
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In this chapter we present background information on Public Sensing and on the

technologies Public Sensing systems build on. We begin with a more in-depth

discussion of the characteristics and paradigms of Public Sensing. In subsequent

sections, we discuss the properties of positioning systems and communication

systems available in todays smartphones.

2.1. Public Sensing

The idea of Public Sensing (also known as Urban Sensing) is to use the near-

omnipresent commodity smartphones of ordinary people as a large-scale mobile

sensor platform that can—in populated areas—reach almost all places of interest.

Public Sensing is one of several focal points in the research area of “people-centric

sensing” [CHK08]. While Public Sensing deals with data acquisition for public

use, social sensing is concerned with gathering data for the benefit of a group of

(social) peers, e.g., finding social hotspots (“Vibe of the City”) [MPL+11], and

personal sensing deals with providing data to (and usually about) a single person,

e.g., personal health monitoring [CEL+08].

The foundation for the idea of Public Sensing was laid by Liu et al. [LBD+05].

They compared a system of static sensors to a system of the same number of mo-

bile devices. A formal analysis regarding the coverage area and object detection

speed showed the benefit of using mobile devices. Later, Campbell et al. pro-

posed to use smartphones as mobile sensors to fill the gaps left in the deployment

of static sensor networks [CEL+06]. When smartphones came into wide-spread

use amongst consumers with the release of the Apple iPhone, focus shifted to

stand-alone Public Sensing systems, e.g., [HW08, CEL+08, AAB+07].

Using such mobile sensors provides several benefits compared to the use of

stationary sensor networks. When there is an application that prompts the use

33



2. Background

of a sensor network, the necessary devices are so expensive that only the bare

minimum of devices is deployed. This leads to a sensor network that is specifically

crafted for this one purpose and cannot be reused for other tasks. Thus, stationary

sensor networks are both application-specific as well as expensive to deploy and

maintain. Public Sensing, in contrast, does not require the purchase of devices

or even the deployment thereof. Smartphones are carried by people regardless

of participation wherever they go, without the need for the operator of a Public

Sensing system to buy them beforehand or to actively deploy them – a major

advantage, when monitoring a large area, as there is no need to negotiate places

for deployment with a multitude of authorities.

People may choose to participate in the system for several reasons. Participa-

tion can yield an immediate personal benefit, e.g., when the participant is directly

interested in the obtained data [HW08] or when the Public Sensing system oper-

ator offers a monetary compensation [YKG10]. Participation in the system may

also be motivated by a delayed personal benefit, e.g., a tit-for-tat: If a person

shares her resources with the system now to make the system viable, she can later

use the existing system for her own data acquisition tasks. Furthermore, people

may also participate for purely altruistic reasons, i.e., share their resources for

the greater good without expecting any direct personal benefit from participation.

Under any motivation, participation is likely to decline when participating in the

system impacts user experience, i.e., prevents people from pursuing tasks as they

would when not participating. This may take the form of the system interrupting

the persons current task by constantly prompting for input, or by impacting the

user experience of the respective participants smartphone by draining the battery.

To this end, Public Sensing systems can be classified by their interaction pat-

tern [LEM+08]. Participatory Systems follow a “human-in-the-loop” paradigm,

i.e., they require the participant to manually execute a sensing task. For example,

this might involve moving to a certain location (“Go to the pedestrian precinct to

take a noise measurement.”) or answering a question about an observation (“How

many cars are there waiting at the traffic light?”). Opportunistic Systems, on

the other hand, completely exclude the participant from sensing task execution.

They execute tasks only when a device is in the correct state for task execu-

tion (location, sensor exposure,. . . ), i.e., running in the background with no user

interaction and without requiring the participant to go out of her way.
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While the wide-spread presence of smartphones is one factor that makes Pub-

lic Sensing feasible, their capabilities are another. Even though smartphones are

resource-constrained devices, their resources in terms of storage capacity, compu-

tation power, energy supply and communication capabilities as well as available

bandwidth far surpass that of commercially available stationary sensor nodes.

Furthermore, they offer a wealth of communication capabilities such as WiFi,

Mobile Internet Connections, or Bluetooth, to communicate to internet services,

other smartphones, or additional hardware augmentations. Typically, Smart-

phones come with a number of sensors built-in, e.g., ambient light and sound,

gyroscope, accelerometer, compass, and an absolute positioning system such as

GPS. When a sensor is not built-in, the smartphone may be augmented using

USB or low-power wireless communication technologies. An example for this is

the Broadcom WICED Sense [Bro14], which provides an external accelerometer,

gyroscope and compass along with barometer, humidity sensor and thermometer

to a smartphone via a Bluetooth LE connection.

2.2. Positioning Systems

To be able to interpret a data reading received from a smartphone, a client

requires information about the context of the smartphone at the time the reading

was taken. Given the unknown mobility of participants, the position at which the

readings was taken is among the most important pieces of context information.

Smartphones have access to a range of positioning systems, which we will review

in the following. In the following section, we consider absolute positioning systems

that provide absolute coordinates relative to earth. In subsequent sections, we

focus on relative positioning systems, providing a position in relation to a known

initial position. Note that we only consider positioning systems from a users’

point of view. An in-depth review of the mathematical foundation of many of

the systems presented here is provided by, e.g., Roth [Rot02].

2.2.1. Absolute Positioning Systems

Absolute positioning systems provide a device with a specific position on earth.

To determine the position, these systems rely on a set of radio beacons in one
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form or another, located at well-known coordinates. On the one hand, using an

absolute positioning system requires either knowledge about all beacon positions

or access to an on-line database of beacon positions. On the other hand, it also

requires radio contact, typically line-of-sight, to a minimum number of beacons.

While absolute positioning systems have a wide range of applications, their most

common application is in wide-area outdoor environments. Commercial systems

for indoor use are currently emerging.

In the following, we will first discuss three types of absolute positioning systems

designed for outdoor settings: Satellite-based, terrestrial infrastructure based and

terrestrial opportunistic systems, before moving on to a review of absolute posi-

tioning systems for indoor settings.

Satellite-based Systems

Satellite-based absolute positioning systems rely on a set of radio transmitters

placed in earth orbit. The best-known systems in operation today are GPS,

Glonass and Galileo. Given a sufficient number of satellites in operation, they

provide a high accuracy location service with world-wide coverage. The satellites

broadcast their identifier together with time information from an on-board atomic

clock. A device on the ground or in the atmosphere receives the information from

multiple satellites and uses the time information to estimate its position relative

to the satellites. Given information about the satellite orbits, the device can

compute the current position of each satellite relative to earth and thus derive

its own absolute position on earth. Information about satellite orbits can be

received from the satellites themselves at an extremely low data rate or, as an

optimization, downloaded via an Internet connection (“Assisted GPS”, AGPS).

Satellite-based systems offer very good accuracy and coverage, but they are not

perfect. While most position fixes are exact, GPS only provides a position with a

horizontal error of less than 22m in 95% of cases, even under perfect conditions.

This error is frequently modeled as a normal distribution [Gur91, LWG+09].

When the number of satellites with a direct line-of-sight to the device is insuf-

ficient, the system instantly becomes unavailable. This can occur, for example,

when traveling in woods, where the foliage shields the satellite signals, or in cities,

where only a small patch of sky is visible between buildings. Furthermore, due
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to the low data rate for downloading orbit information, it may take up to 12.5

Minutes after starting the positioning system on the device to obtain a first po-

sition fix when AGPS is not available. Even when AGPS is available, the first

position fix is frequently delayed by several seconds until the device has received

timing information from a sufficient number of satellites. Additionally, the en-

ergy consumption of running a receiver for satellite-based positioning systems is a

major challenge in Public Sensing scenarios. Running a GPS positioning system

on a smartphone for longer periods of time will quickly drain its battery. Finally,

as satellite-based positioning systems require the concurrent operation of a large

number of satellites for global coverage (24 in the case of GPS), operating such

a system is beyond the capabilities of any single private entity. As a result, all

current systems are operated by one or more nations.

Terrestrial Infrastructure-based Systems

As satellite-based systems are expensive to maintain, have a high energy cost on

the receiver-side and have a high startup-time, other options for implementing

positioning systems were investigated. Terrestrial infrastructure-based systems

make use of radio transmitters located at fixed positions. The most notable

of these technologies is triangulation using cellphone towers, e.g., in the Ericsson

Mobile Positioning System [EMP]. In this case, existing cellphone towers are used

as radio beacons, amortizing the maintenance cost. They are located at fixed,

known positions and are placed densely enough that in most cases a sufficient

number of cellphone towers is in range to perform a triangulation. In the majority

of cases, a device can sample its position instantly at next to no extra energy cost,

as the cellphone radio is almost constantly enabled.

The major drawback of terrestrial infrastructure-based systems is their varying

accuracy. The accuracy of a position fix depends on the correct measurement of

the distance to the cell towers in range. However, due to reflections or moving

obstacles, these measurements are frequently incorrect. While obtaining a precise

position is possible, most position fixes are just accurate enough to determine

which neighborhood a device is located in.
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Terrestrial Opportunistic Systems

Terrestrial opportunistic positioning systems rely on the presence of WiFi Access

Points as radio beacons, which are found in abundance in most households and

businesses. Their exact position is unknown, making triangulation infeasible.

However, in urban areas, they provide an extremely dense network of short-range

radio beacons, allowing for a fingerprinting approach: In a training phase, the set

of visible WiFi access points is recorded for known positions. To take a position

fix, a mobile device performs a WiFi scan and determines the most likely location

by matching the set of WiFi access points to the training database. Such a system

is, for example, operated by Skyhook Wireless [Sky].

While Terrestrial Opportunistic positioning systems do not provide completely

accurate positions, their accuracy is fairly constant and, in urban areas, sufficient

to determine the closest building and the side of the street. However, as the

access points are not subject to a central management entity, they may be moved

or disappear, or new access points may be added at any time, requiring constant

updates to the underlying database.

Indoor Positioning Systems

The principles from terrestrial opportunistic positioning using WiFi can, to a

limited extent, also be applied to indoor settings. In buildings with several access

points, fingerprints containing the set of visible access points along with their re-

ceived signal strength are recorded at known positions in a training phase [BP99].

In the operation phase, to obtain a position fix, a device measures the current

set of visible access points and their received signal strength. It then selects the

position from the database that has the closest match to observed values, e.g.,

by picking the position that minimizes the mean square difference of recorded

and observed signal strength values. Such systems provide an accuracy of a few

meters and are thus sufficient to determine the current room (for rooms larger

than the accuracy of the system) or the current hallway. However, indoor WiFi

positioning is still a subject of research to date. Systems like Active Bat [WJH97]

use triangulation via ultrasonic sound to locate mobile devices with an accuracy

in the range of a few centimeters. Their drawback is that the infrastructure part

needs to be set up with extreme care to achieve this level of accuracy.
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Currently commercially emerging approaches for absolute indoor positioning

follow the infrastructure paradigm, where beacons are deployed by the building

management. These beacons may be Bluetooth LE transmitters (e.g., Apple

iBeacon [ibe15]) or specialized overhead lights (e.g., Philips Connected Light,

[N.V14]). The position may be determined by simple proximity to a beacon,

through fingerprinting, or through triangulation.

2.2.2. Relative Positioning Systems

Relative Positioning Systems provide the current position relative to some previ-

ous position (“initial position”) based on observations or estimations of movement

direction and movement speed of a device. The current position can only be given

in absolute coordinates (relative to earth) when the absolute coordinates of the

initial position or some intermediate position are known. Before the availability of

absolute positioning systems with global coverage, dead reckoning was a common

method for relative positioning in naval and aerial navigation. The speed of a

ship and all changes in heading are constantly recorded. Integrating these values

over time gives the relative position of the ship from the last known position.

The benefit of relative positioning systems is that they do not require commu-

nication with the outside world, i.e., the position can be tracked using sensors

local to the device only. Thus, they are applicable when there is either no net-

work connectivity or when signals from beacons cannot be received with sufficient

quality, such as GPS signals inside buildings [KBG+10]. The challenge in using

relative positioning systems is to provide accurate estimates for the movement

vectors. In naval or aerial applications, the heading can be measured as an abso-

lute value (compass), but the speed is measured relative to a medium that is itself

moving, i.e., relative to water or air. This, along with ever-present measurement

errors, leads to an inaccurate estimated position, even when the initial position

is perfectly known. Furthermore, the error of the position estimate increases over

time.

Inertial Navigation in Smartphones

In the context of positioning systems for smartphones, movement can be tracked

using built-in sensors, i.e., accelerometer and gyroscope, as well as the compass
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[Har13, XSF10]. The accelerometer detects changes in speed, e.g., whether a user

speeds up or slows down. The integral of the acceleration provides the momentary

speed at any point in time. Similarly, the gyroscope detects rotations and thus

changes in heading. Speed and heading can then be integrated a second time to

perform dead reckoning.

However, this approach suffers from two major problems. On the one hand,

readings due to actual user movement are mixed with other movement, e.g.,

the smartphone being placed in a flapping jacket or the up-and-down movement

occurring during the gait cycle. On the other hand, sensors are inexact and exhibit

drift errors. Compared to aerial and naval applications, the forces observed for

changes in heading are very small. Thus, the magnitude of the error becomes a

sizable fraction of the magnitude of the observed value. The position error grows

cubically in time over the runtime of the system since the last known position

[Woo07, Fox05]. Thus, the accumulated error after dead reckoning is so massive

that after just a few steps, the position is essentially unknown. While the compass

may be used to correct the recorded heading in outdoor settings, this approach

does not transfer to indoor settings as measurements are easily disturbed by

metallic parts of the building construction or live electrical wiring.

As we will show in the following sections, several approaches exist to improve

the accuracy of estimated positions.

Zero Velocity Update Protocol

One approach to improve the accuracy of inertial navigation in smartphones

is to reduce the growth of the error over time. To this end, Foxlin presented

the Zero Velocity Update Protocol (ZUPT) [Fox05]. Based on a foot-mounted

inertial measurement unit, it recognizes the gait cycle of a walking user. The

gait cycle consists of a stationary phase and a stride phase. The stationary

phase, where the foot rests on the ground, is detected. From measurements taken

during the stride phase, i.e., the time since the last stationary phase, the length

and orientation of the last step are computed as a movement vector using dead

reckoning. Furthermore, as during the stationary phase acceleration, rotation,

and velocity of the sensor are known to be zero, the difference of readings during

the stationary phase and these known values can be used to compensate for the
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drift error during the last step. Thus, the integration of acceleration and rotation

measurements is performed for each step individually instead of the full runtime

of the system. With ZUPT, the error is improved to growing linearly in the

number of steps since the last known position.

Landmarks & Map-Matching

Another approach for better position estimates is to use a map of landmarks

to periodically reset the estimated position to a known position. A landmark

is a position with easily detectable features and known coordinates, such as an

intersection or a location with a distinct signature of sensor values. For example,

if movement is restricted to a known network of paths, map-matching helps to

reduce the noise in movement vectors [CCR10]. When a distinct turn is detected,

it can be assumed that the participant is currently turning at an intersection. In

case the position estimate after the turn is located outside the path network, it

can be reset to the closest intersection. Furthermore, when a movement vector

ends outside of any known path but intersects the boundary of the path at a very

small angle, this observation is assumed to be caused by a drift error. Thus, the

current position estimate is shifted back onto the last path.

If no a-priori map is available or the movement is not restricted, more general

landmarking techniques can be employed. In Pazl [RKM13], devices track their

(estimated) position using dead reckoning while recording WiFi fingerprints at the

same time. WiFi fingerprints and corresponding position estimates from multiple

trips and devices are combined to derive a set of common anchor points, i.e., places

with distinct WiFi fingerprints that were visited multiple times. For each such

anchor, coordinates are computed as an average of the corresponding individual

position estimates. The resulting knowledge can then be used to improve the

position estimates along the remainder of each trip passing an anchor point by

resetting the estimated position to the position of the anchor at the time of

passing.

Particle Filters

Another approach to computationally reduce the noise in observed movement

vectors without knowledge of the environment is the application of particle filters
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[KR08, WH08, WKB08]. Particle filters combine current observed movement with

a given mobility model, e.g., computed from earlier movement vectors with added

white noise. In general, they work as follows. First, the observed movement is

split into a set of movement vectors, e.g., resembling individual steps as provided

by ZUPT. The particle filter then iterates over this sequence of movement vectors.

Initially, a set of particles is created at the initial position. Each particle is then

displaced according to a mobility model, representing the expected movement of a

person. Based on the similarity of particle movement and the current movement

vector, particles are assigned weights. Finally, the set of particles is modified

to represent the distribution of weights, i.e., particles with bigger weights are

replicated in the set. The filter then continues with the next movement vector.

While it has been shown that particle filters can find the original trace of a

user from noisy observations with very little error, this performance comes at

a price: The complexity in terms of computation and storage is prohibitive for

many real-world applications. Thus, they are often not applicable without the

addition of other techniques such as the use of landmarks [Har13].

2.3. Wireless Communication Systems

Wireless Communication Systems are a fundamental requirement for Public Sens-

ing. Wide-area wireless communication is used to communicate tasks to smart-

phones and resulting readings to clients. Local-area communication allows smart-

phones to coordinate their sensing effort with other devices in the vicinity. Per-

sonal-area communication can be used to augment the capabilities of a single

smartphone by, e.g., attaching additional sensing hardware via a wireless connec-

tion. In the following, we present one communication technology for each of these

scenarios.

2.3.1. Cellular Networks

Cellular networks, originally developed for voice communication, today provide

wide-area network access with virtually universal coverage in any moderately

densely inhabited area. As they are designed for connecting mobile devices run-

ning on a limited energy supply, they exhibit a distinct energy usage characteris-
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tic, making them suitable for only a subset of communication patterns. Balasub-

ramanian et al. [BBV09] analyzed the energy usage characteristics of smartphones

on a 3G network. They found that cellular network transceivers have two distinct

power modes. While the connection is idle, the transceiver enters a low-power

mode. When data is to be exchanged, the transceiver switches to a high-power

mode. However, switching power modes is not instantaneous. Especially when in

high-power mode, a transceiver delays switching to low-power mode for over 10 s

to wait for the possible arrival of new data. This tail time with high energy usage

makes 3G communication better suitable for either bulk transfer at medium data

rates (tail energy is amortized over a lot of data) or burst transfer at low duty

cycles (tail time is small compared to overall operation time).

2.3.2. Wireless LAN

Wireless LAN networks using the IEEE 802.11 family of standards, commonly

called WiFi, have become the dominant technology to extend local area networks

to mobile devices. Their traditional application is in infrastructure mode, where

an Access Point, connected to the local LAN, advertises its wireless network to all

devices in radio range (10 to 50m, depending on the presence of obstacles). When

a device joins the wireless network, the Access Point relays messages between

devices on the wired and wireless networks.

Another application of Wireless LAN technology is Ad-Hoc Networking. WiFi

Direct [CMGSS13] is proposed as a new standard for ad-hoc high-speed data

exchange between a group of devices without the need for the presence of an

Access Point. Furthermore, this mode can be used to create mobile Ad-Hoc

networks (MANETs). These employ a routing protocol to relay messages across

multiple hops between devices that are not in direct communication range, e.g.,

Geographical Routing [KK00] or Ring-based Routing [HFP12].

Wireless LANs provide a higher data rate than cellular networks. However,

this comes at the cost of a higher energy consumption. While the cost of actually

transferring data is lower than in cellular networks, the energy for basic system

maintenance is higher [BBV09, XSK+10]. Thus, Wireless LANs are more suitable

when higher duty cycles are required.
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2.3.3. Bluetooth

Bluetooth is a personal-area networking technology present in virtually every

modern mobile device (smartphones, laptops, etc.) today. It is commonly used to

wirelessly attach peripherals to a device. In its original form, Bluetooth provides

a “virtual wire” abstraction. This requires device owners to complete a pairing

process to authenticate devices and peripherals to each other. Furthermore, it

requires devices to constantly maintain their connection, causing a significant

energy drain even when no data is transmitted.

To open Bluetooth communication for new applications, Low-Energy Bluetooth

(BLE) was specified. On the one hand, BLE allows communication without prior

pairing, thus enabling the use of BLE devices as beacons for positioning systems

[ibe15]. On the other hand, BLE also loosenes the requirements on connection

maintenance, thus allowing communication at extremely low duty cycles. This

mode is frequently used to connect a smartphone to additional sensor devices for

personal fitness tracking or portable environmental sensors [Bro14]. The ultra-

low duty cycle allows operation of suitable peripherals on a single coin cell for up

to a decade.
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In this chapter we will give an overview of our Public Sensing system (PS system)

in terms of the architecture of the software system and our assumptions on the

underlying technology. We begin by identifying the requirements for a PS system

in the following section before detailing our system model and the software archi-

tecture in subsequent sections. Note that our system model follows the general

design of PS systems, e.g., [Eis08, KBP+08]. Therefore, our algorithms can easily

be integrated into other systems.

3.1. Requirements

From our previous discussions, we identify the following key requirements for

creating viable PS systems.

Quality-Aware Data Acquisition The system must aim to provide data of a

sufficient (client-requested) quality. As the ability for data acquisition is

upheld by volunteers, the system cannot guarantee the constant availability

of the respective data. If data cannot be provided at sufficient quality, the

client must be informed so that he can account for low-quality data in his

application.

Opportunistic Operation To maximize data availability, the system must oper-

ate in an unobtrusive fashion so that data can be gathered wherever there

are participating devices present, rather than where there are participating

people present and willing to interact with the system.

Energy Efficiency The system must minimize the energy drain on participating

devices to avoid a negative impact on a participants’ user experience with

her device. Namely, it must ensure that the battery lifetime is not reduced
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to less than the recharge cycle duration, which is typically one day. To this

end, it must exploit the optimization potential presented by the best-effort

data acquisition requirement and thus limit its data acquisition efforts to

provide the requested quality only.

Mobility-Independent Operation The system must operate without tracking

the mobility of participating devices. Devices participating in the system

move in a way that cannot be anticipated by a client or the system itself.

Continuously tracking the position of participating devices is in conflict

with the requirement on energy efficiency. Thus, the design of the system

must take this unforeseeable mobility into account. On the one hand, the

interface to the system must abstract from device mobility, so that clients

can request data without knowledge of device mobility. On the other hand,

the system must take into account that there may not be any participating

device present at a point of interest and thus find suitable substitute data

to fulfill the promise of best-effort data acquisition with sufficient quality.

Scalability Gathering data using PS is possible wherever there are people car-

rying smartphones. With an increasing population and both increasing

population density as well as the sprawling of populated areas, the system

must be scalable both in the number of participating devices and the size

of the service area, managing a multitude of queries executed by millions

of participants.

3.2. System Model

Our PS system consists of two major components, as depicted in Figure 3.1:

The gateway service and the participating mobile devices. These work together

to provide a data acquisition service for a predefined service area, i.e., a set of

locations where data readings may be obtained. The size and shape of the service

area is defined by the operator of the PS system and may cover anything in the

range of a few square meters to the entire world. In the following subsections, we

define the capabilities and responsibilities of the gateway and the mobile devices.

Furthermore, we show how the system implements the scalability requirement,

before we detail the failure model assumed in our system.
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Figure 3.1.: Overview of the System Model

3.2.1. Gateway Service

The gateway service is located on the Internet and serves as a coordinator and

central meeting point for data consumers and mobile devices. For data consumers,

i.e., clients and applications, it provides an interface to submit queries for data

and to receive the results of current and past data acquisition campaigns. The

content of a query depends on the type of data acquisition to be performed. We

will detail the query model for each of the applications considered in this work in

corresponding Chapters 4 and 10.

For the mobile devices, it provides an interface to register as participating de-

vice and to submit sensor readings. The gateway generates sensing tasks for

participating devices from currently active queries, defining the current data ac-

quisition work to be performed, and stores all data readings subsequently taken

by the mobile devices. Furthermore, the gateway computes additional informa-

tion from stored data whenever required by one of our optimizations presented

in later chapters.

3.2.2. Mobile Devices

The set of participating mobile devices is the core component of any PS system.

These devices are commodity smartphones, carried by participants, i.e., ordinary
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smartphone owners, who choose to share the resources of their smartphones with

the system. We assume the mobile devices (through their owners) to exhibit

pedestrian mobility. For indoor settings, we assume that each trip of a partici-

pant has a fixed destination. While the actual destination is unknown to us, we

assume that participants travel on the shortest path from their current location

to the destination. For outdoor settings, we make no further assumptions on the

mobility of participants, i.e., movement is essentially random with a limited top

speed.

Mobile devices are equipped with a number of sensors that can be either built-

in or may be connected wirelessly, e.g., via Bluetooth. They can use environ-

mental sensors (e.g., light, sound, temperature, air pollution) to observe their

environment, inertial sensors (Accelerometer, Gyroscope, etc.) to observe their

situation and, in outdoor settings, absolute positioning sensors (e.g., GPS, Cell-

Tower triangulation) of varying accuracy and varying energy consumption to

determine their location. We assume readings from environmental sensors to be

exact. Readings from inertial sensors are assumed to be noisy, where the noise

is represented by an unknown probability distribution added to the real value.

The positioning sensors also provides noisy readings, modeled as a 2D Gaussian

distribution with standard deviation σvis, centered at the true position of the

device. To distinguish true positions and noisy positions, we define the following

terminology. A position vector is denoted as −→a . δ(−→a ,
−→
b ) denotes the euclidean

distance between the positions −→a and
−→
b . The true position of an object a is

indicated as −→a true. The sensed position −→a sens is a noisy position, such as given

by the positioning sensors. It holds that δ(−→a true,−→a sens) ≥ 0. In cases where we

do not distinguish between true and sensed positions, the index is omitted.

Furthermore, mobile devices can communicate via a number of interfaces. Blue-

tooth and WiFi allow ad-hoc communication between mobile devices up to a

certain maximum distance, denoted as the ad-hoc communication range. Com-

munication to services on the Internet, e.g., registering with the gateway service

or submitting data readings, is possible using either the aforementioned inter-

faces when a nearby access point (e.g., WiFi-Hotspot) is available, or using the

(always available) mobile data connection, e.g., 3G or LTE. Every mobile device

has a built-in battery that provides a limited energy supply for its operation.

This battery is frequently recharged by the device’s owner, e.g., every night.
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3.2.3. Extensions for Scalability

To ensure scalability of the system, the PS system may be partitioned. To this

end, the service area of the system is partitioned into smaller partition service

areas by the operator, e.g., per city district or per street block. Furthermore,

the gateway service is implemented as a distributed system consisting of multiple

gateway servers, e.g., physical machines or virtual machines rented from a cloud

service provider. Each partition service area is assigned to a gateway server.

Mobile devices are informed of the partitioning by the gateway service when

joining the system or when partitions are modified. Upon moving to a different

partition service area, they register with the gateway server responsible for the

new partition. Thus, each partition forms a self-contained PS system capable of

independent operation, where the gateway service can geographically address all

nodes in a partition. However, the ability for independent operation is limited

when a query requires data from multiple partitions. In this case, the query

is managed by one of the gateway servers responsible for any of the partitions

the query is interested in, while other gateway servers only relay communication

between the managing gateway server and the mobile nodes in their partition.

Defining the partitioning of the system requires defining the size of the partition

service areas. While smaller partition service areas lead to a better distribution

of the workload amongst gateway servers, this also leads to more frequent regis-

trations for new partitions from mobile devices, thus violating our requirements

on energy efficiency and mobility-independent operation. However, finding the

best size of partition service areas is also a well-known problem in the design of

cellular networks and can be solved using existing techniques (see the work of

Akyildiz et al. for a survey of possible approaches [AH96]). We thus consider

this problem to be out of scope for this work.

3.2.4. Failure Model

In this work, we assume the following failure model. All Ad-Hoc channels used

for communication to nearby devices, i.e., Bluetooth and WiFi, are subject to

omission failures, e.g., due to message collisions or temporary interference by

other communication technologies, and crash failures, e.g., due to permanent

interference.
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Figure 3.2.: Overview of the canonical system architecture

All other parts of the system are assumed to be failure-free. Omission failures

by any mobile device or the infrastructure-based communication channel (WiFi-

Hotspots and mobile data connection) would degrade the performance of our

system to that of a failure-free system with fewer participating devices. The

same holds true for omission failures of the gateway service or crash failures of

mobile devices. Thus, we do not consider such failures in the design of our system.

Crash failures of the gateway service or infrastructure-based communication

channels cannot be handled by the system. They would, in turn, cause the PS

system to crash and must be handled by an operator outside of the system.

Therefore, we do not consider them in the design of our system.

3.3. System Architecture

The architecture of our PS system is split into five layers as shown in Figure 3.2. In

the following, we give an overview of the purpose of each layer and its components.

The concrete operation of each component is dependent on the type of query to

be executed and will thus be detailed in the corresponding sections.

The Application Layer represents the client side of a PS system, where obser-

vations are requested and resulting data is returned. It contains the applications

that consume data provided by the system. To request such data, applications

formulate queries that are passed to the gateway.

On the system side, the Service Layer represents the application interface to

the PS system. It receives queries and converts them into tasks suitable for

distribution to the mobile devices. These tasks are then passed on to the Opti-
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mization Layer. This layer consists of two components. The Task Optimization

component uses knowledge gathered from a-priori information or historic data to

identify parts of the task (or entire tasks) that no longer need execution, e.g.,

where the result can be inferred from existing knowledge with sufficient quality,

and modifies the task accordingly. The Result Integration component integrates

results inferred from available information with the data that has been collected

as a result of the task execution, e.g., it performs the inference and outputs a

single result to the application layer.

The task, as modified by the Task Optimization component, is then passed to

the Communication Layer for dissemination to mobile devices by the Task Dis-

semination component. Furthermore, the Result Collection component collects

the data readings transmitted by mobile devices.

Finally, the Scheduler component of the Execution Layer, located on each mo-

bile device, receives the task to be executed and instructs the device hardware to

act accordingly, e.g., determine whether the device is in the correct location for

taking a data reading, sample the appropriate sensing hardware, and transmit

the reading to the Result Collection component.

Note that the focus of this work is on the operation of the gateway and the mo-

bile devices, not on the communication network. Therefore, we assume the Task

Dissemination component to provide a best-effort multicast service for commu-

nication from the gateway to the mobile devices and assume best-effort unicast

communication service for the Result Collection component. The implementation

of these semantics is subject to the specific networking technology used. We will

note in our evaluations which implementation of these semantics has been chosen

for the respective experiments.
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Indoor Map Construction
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4. The MapGenie System for

Indoor Map Construction

The availability of indoor maps is a key enabler for the deployment of indoor lo-

cation based services. To aid in the developement of such applications we present

MapGenie, a system for the efficient generation of indoor maps. MapGenie de-

rives maps from mobility traces recorded using Public Sensing, thus enabling the

creation of indoor maps on the fly without relying on specialized devices or expert

knowledge. We also show how MapGenie leverages knowledge about architectural

principles to provide a complete map of a building floor even when only a part

of this floor has been observed, and how to increase the energy efficiency of the

mapping process.

We begin with an overview of the MapGenie system, detailing its components

in relation to the overall system architecture (cf. Section 3.3) in the remainder

of this chapter. Chapter 5 details how to record and process odometry traces

to derive an indoor map purely from observations. To extend the floor plan in

unobserved areas, we describe our algorithm for the grammar-based generation

of indoor layouts in Chapter 6. In Chapter 7 we then introduce our Quality

Model for indoor maps, which is used to improve the energy efficiency of the

mapping process by reducing the number of repeated observations for accurately

mapped areas. Chapter 8 presents the evaluation results of our system in a real-

world setup, before we conclude this part with a discussion of related work in

Chapter 9.

4.1. MapGenie System Overview

Figure 4.1 presents an overview of the components of the MapGenie system and

their place in the overall system architecture (cf. Figure 3.2).
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Figure 4.1.: Overview of the MapGenie Architecture

Applications specify a street address to query the MapGenie system for the

indoor map of the respective building. The address is received by the Area Task

Creation component. This component first converts the given street address to

GPS coordinates of the building outline using existing (outdoor) map services,

such as OpenStreetMap. Next, it generates a set of sensing tasks by partitioning

the building into a set of areas, where an individual task is defined for each area.

The definition of areas is subject to requirements of the mapping algorithm and

will be discussed in Section 4.3 in more detail. The tasks are then handed off

to the Quality Model, which provides an indication of how well an area has been

mapped, i.e., classifying the area of each task as accurately mapped (AM-area)

or inaccurately mapped (IM-area), based on the currently available knowledge

about the building layout in the corresponding area. Note that this binary no-

tation is sufficient, as we only require information on the set of areas for which

additional information is required, rather than on the amount of information re-

quired for each area. The Task Dissemination component then distributes all

tasks to all participating devices. Furthermore, as the definition of tasks as well

as the quality values for individual tasks may change when additional information

about the building layout becomes available, the Task Dissemination component

also ensures that the set of tasks is up-to-date on all participating devices.

Participating devices run a Scheduler component. The Scheduler instructs the

device to enable its Inertial Measurement Unit (IMU) to execute a sensing task

or to otherwise disable it to conserve battery power. While the device is outside

of a building, i.e., a GPS signal is available, it monitors the device position to

determine when the user enters a building for which there are tasks available.

56



4.2. Floor Plans

While the device is inside a building, it uses information about current and past

mobility from the IMU as well as WiFi signal measurements to track its position

inside the building and to determine which task to execute, if any.

When the IMU is enabled, the Trace Data Acquisition component records

odometry traces. These are transmitted back to the infrastructure, where the

Trace-based Mapping component derives the current trace-based floor plan, re-

flecting the observed building layout. The Trace-based Mapping component in-

forms the Area Task Creation component and the Quality Model whenever the

trace-based floor plan changes, so that tasks can be updated immediately. Fur-

thermore, the trace-based floor plan is the input to the Grammar-based Mapping

component, which uses knowledge about architectural principles and indoor maps

of similar buildings to enhance the floor-plan, resulting in the grammar-based

floor plan. To this end, the Gammar-based Mapping component performs a pro-

cedural reconstruction of the building layout to provide information in unobserved

areas and to reduce observation errors in observed areas.

Our research focuses on the Trace-based Mapping component, the Grammar-

based Mapping component and the Quality Model, which will be discussed in

detail in subsequent chapters. For the remaining components, we briefly sketch

their operation in the remainder of this chapter, after introducing our floor plan

data model.

4.2. Floor Plans

MapGenie considers a floor plan to consist of spatial objects (“floor plan objects”),

namely hallways and rooms (cf. Figure 4.2). Each room is accessible from at least

one hallway. We assume individual hallway objects to be sections of the building’s

hallway network that are free of intersections. Hence, intersections of the hallway

network are formed when the ends of two or more hallway objects meet. As

every hallway network can be projected into this definition, this does not impact

the generality of our approach. Furthermore, we define a fixed assignment of

rooms to hallways based on accessibility. A room that is accessible from exactly

one hallway is assigned to that hallway. A room that is accessible from multiple

hallways is assigned to one of these hallways. Note that while the choice of

hallway is arbitrary, the room must always be assigned to the same hallway.
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Figure 4.2.: Indoor Map consisting of Hallways and Rooms.

4.3. Area Task Creation

In order to control the process of energy-efficient mapping, the floor plan is par-

titioned into areas by the Area Task Creation component, generating a task for

each area. Areas represent the granularity at which mapping can be controlled

and subsequently optimized. Therefore, their definition can be provided by, e.g.,

an operator, depending on requirements of the concrete mapping algorithm used.

The only restriction is that areas must be defined such that they only contain

whole floor plan objects, e.g., do not cut a room in half. The most basic parti-

tioning is to consider the whole building as a single area, thus providing binary

control over the mapping process.

In line with the requirements of our energy-efficient mapping approach, we

define an area to comprise a single hallway and all rooms assigned to (accessi-

ble from) that hallway, i.e., every hallway forms its own area. Note that full

knowledge about the floor plan layout is required to find areas according to this

definition. If there is no prior knowledge about the interior of a building, the

required set of areas can be found through an iterative refinement. Initially, the

entire building is covered by a single area. Whenever information about hallways

is gathered, this single area can be split down into new subareas, allowing for

more fine-grained control of the mapping process. This is feasible, as our quality
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model places emphasis on finding hallways first before considering an area to be

accurately mapped (see Chapter 7.1), thus allowing for the timely refinement of

areas.

4.4. Trace Data Acquisition

The goal of the trace data acquisition component is to provide odometry traces

from mobile users. These traces are periodically uploaded to the gateway ser-

vice and later used by the Trace-based Mapping component to derive the trace-

based indoor map. In our evaluation, odometry traces are collected using a

foot-mounted IMU that detects steps by using a Zero-Velocity-Update protocol

(cf. Section 2.2.2).

Formally, we define an odometry trace t = (−→π , S) where−→π is the initial position

and S = {s1, ...sn} is an ordered set of steps. Each si is given as a (relative)

2D vector (xi, yi), annotated with a timestamp si.time denoting the time the

step began. The position −→pk after the k-th step is calculated as −→pk = −→π +∑k
i=1 si, annotated with a timestamp −→pk .time = sk.time. To record an indoor

trace we rely on inertial positioning, as absolute positioning systems (such as

GPS) are not available with sufficient accuracy in indoor settings [KBG+10].

Their infrastructure-based indoor counterparts (using, e.g., WiFi beacons) are

not usable for the reconstruction task at hand, as their set-up itself involves

mapping, such as fingerprints of the received signal strength or the locations of

the beacons. Therefore, we can only use GPS to determine the initial position
−→π = −→π sens before entering a building [AY12]. Note that due to the possible

inaccuracy in GPS (cf. Section 2.2.1), the sensed initial position −→π sens may be

different from the true initial position−→π true, i.e., translated from its true location.

Although we assume the use of a foot-mounted IMU, the relative positions of

traces can also be derived from a variety of other sensors. Every modern smart-

phone has a built-in accelerometer, which can be used to track user movement.

Since these built-in sensors are subject to high sensor noise [Woo07], a large set of

traces is necessary to cancel out the resulting drift errors [AY12]. The use of an

external IMU using a foot-mounted strap-down system with drift correction (cf.

Figure 8.1b) can reduce drift errors and, thus, perform well even with a small set

of traces. However, this requires the deployment of additional hardware that is
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rather expensive [Fox05]. Our system is agnostic of the actual inertial positioning

system that is used for recording traces.

Even with the most accurate IMU, traces are still inaccurate. To deal with

the remaining errors, we include trace correction steps as detailed in the next

chapter. An initial trace correction step automatically preprocesses traces to deal

with remaining drift errors, whereas a trace translation recovery step reduces the

impact of translation errors of the initial position. Implementing and evaluating

the system with more noisy sensors is part of future work.
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Odometry Trace Data

In this chapter we describe the Trace-based Mapping component. Its goal is to

derive a floor plan for an observed floor of a building. Given an exterior outline

of the building and a set T of (noisy) odometry traces collected by the trace data

acquisition component, we compute a set of hallways (the hallway skeleton) and

a set of rooms (the room layout) that together form the trace-based indoor map.

As depicted in Figure 5.1, detecting the hallway skeleton and detecting the

room layout both are multi-step processes. As a preprocessing step to both, we

first reduce the noise of direction changes in the traces in the initial trace correc-

tion step. For the detection of the hallway skeleton, in the hallway detection step,

we extract hallway segments from all traces and group these segments per hall-

way. These segments define the walkable area of each hallway, which is converted

into a 2D rectangle representation in the hallway geometry estimation step, form-

ing the hallway skeleton. Using the hallway skeleton, we improve the translation

error of traces in the trace translation recovery step.

To subsequently detect the room layout, we first reduce the noise of odometry

traces further using the hallway skeleton in the secondary trace correction step.

Next, we extract individual observations of rooms from traces in the initial room

detection step by analyzing all steps that were taken inside the building interior

but outside of a hallway. Finally, we find the actual room layout in the room

geometry estimation step by clustering initial rooms. We present these steps in

detail in the following subsections.

61



5. Generating Indoor Maps from Odometry Trace Data

Hallway
Detection

Hallway Geometry 
Estimation

Secondary Trace 
Correction

Initial Room 
Detection

Initial Trace Correction

Trace-based Indoor Map

Room LayoutHallway Skeleton

Trace Translation 
Recovery

Room Geometry 
Estimation

Figure 5.1.: Overview of the Trace-based Mapping component.

Algorithm 5.1 Initial Trace Correction
Require: Trace t, Exterior Outline E, minLength, τ
HS t ← findHallwaySegments(t,minLength, τ)

for all hs ∈ HS t do
hs .chord ← (hs .start , hs.end)

minAngle← min({angle(hs .chord , e)| Exterior Wall e ∈ E})
rotate(t [ps, plast ], minAngle)

end for

5.1. Initial Trace Correction

As detailed in Section 4.4, odometry traces recorded using an IMU contain errors.

As an example, consider the trace depicted in Figure 5.3, taken using a foot-

mounted IMU: Turning angles were recorded incorrectly, and due to sensor drift,

the trace is slightly bent even though the user walked in a straight line. To reduce

sensor noise, we leverage two observations: First, users commonly walk along the

long axis of a hallway, and, secondly, hallways are commonly built parallel to an

exterior wall of the building. Thus, given the exterior outline of the building—as

can be readily obtained from, e.g., OpenStreetMap—we rotate straight segments

of a trace parallel to an exterior wall according to Algorithm 5.1: We first extract

a set of hallway segments HS t from each trace t. Hallway segments are maximum-

length sequences of steps with a minimum length of minLength, where the angle of
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Hallway Segment hs 

pe = hs.end ps = hs.start 
hs.chord 

length < minLength 
<τstep 

<τchord 

Figure 5.2.: Definition of Hallway Segments

any two subsequent steps is less than τstep and the angle of any step to the chord

of the segment is less than τchord (cf. Figure 5.2). The value ofminLength must be

chosen longer than the longest room that is presumably present in the building,

so that no hallway is detected when walking along the length of such a room.

Starting from the first hallway segment, for each hallway segment hs ∈ HS t, we

rotate the remainder of the trace including hs around hs.start by the smallest

possible angle so that hs.chord is parallel to an exterior wall. Note that if a trace

is extremely noisy, it may be rotated towards the wrong exterior wall. In this

case, we say that a trace has been corrupted. Corrupted traces are detected and

handled while deriving the hallway skeleton in the next steps.

5.2. Deriving the Hallway Skeleton

To derive the hallway skeleton, we begin by determining the set of hallways in the

building and the topology of these hallways, i.e., finding the connections between

hallways, by grouping the observed hallway segments in the hallway detection

step. Intuitively, we would say that a hallway has been found wherever a hallway

segment is detected on a trace. However, there are two problems with this simple

criterion: First, if multiple users traveled through a hallway, that hallway is de-

tected several times. Secondly, non-existing hallways are detected from corrupted

traces. We solve these problems by detecting clusters of steps forming a hallway

using the DBSCAN clustering algorithm [SEKX98]. We then apply a heuristic

solution to identify which detected hallways are actual hallways and which are

misdetections from corrupted traces. After finding the topology of hallways, we

next compute their geometry in the hallway geometry estimation step from the

walkable area observed in the hallway segments and the topological information

found during hallway detection. Last, we use the trace translation recovery to
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5. Generating Indoor Maps from Odometry Trace Data

Figure 5.3.: Raw and corrected trace shown on the actual building layout. Orig-
inal trace marked in blue. Trace after initial correction shown in
red, with Hallway Segments marked in Cyan and Green. Trace after
secondary trace correction shown in black.

attempt to recover information from traces that may have been erroneously clas-

sified as corrupted. In detail, the process works as follows.

Hallway Detection We first partition the set of observed hallway segments

HS into subsets HSwall according to which exterior wall they were rotated to-

wards. For each HSwall we extract all positions −→pk from all segments in HSdir.

The coordinates of each position are then used as features for the DBSCAN

clustering algorithm. DBSCAN assigns the steps to clusters based on their dis-

tance. Intuitively, a cluster is formed from positions −→p0 that have at least minPts

other positions −→p1 , ...,
−−−−→pminPts in their ε-Neighborhood, i.e., δ(−→p0 ,

−→pi ) ≤ ε, i ∈
{1, . . . ,minPts}. This definition is transitive: if −→p0 forms a cluster P0, −→p1 forms

a cluster P1 and −→p1 ∈ P0, then P1 ⊆ P0 and vice versa, i.e. Clusters P0 and P1

are joined. Thus, segments whose positions were assigned to the same cluster by

DBSCAN are then considered to be observations of the same hallway.
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Figure 5.4.: Hallway geometry estimated from the bounding box, interquartile
range and centerIndex. Actual building layout shown in grey.

To exclude false positives caused by corrupted traces, we require a minimum

number of minHallwaySegments segments to contribute positions −→pj to a cluster

in order to accept the existence of a hallway. If there are less thanminHallwaySeg-

ments segments, the traces contributing segments to this hallway are considered

to be corrupted. Note that minHallwaySegments is different from the minPts

parameter of DBSCAN. minPts regards positions only, i.e., multiple positions

from a corrupted trace might still form a cluster. The additional use of minHall-

waySegments requires the observations leading to the acceptance of a hallway to

be independent.

Hallway Geometry Estimation To find the geometrical outline of each hall-

way, we begin by computing the initial geometry of each hallway. When the initial

geometry is known, we extend it to the actual geometry by performing a topologi-

cal extension and a topological contraction of all hallways (connecting topological

neighbors), ensuring that the geometry accurately reflects the topological rela-

tionship of the hallways.

The initial geometry of each hallway is computed from three values, as depicted

in Figure 5.4. The length (the dimension along the direction) is taken from the

bounding box around all steps of all hallway segments. The width (the dimen-

sion orthogonal to the direction) is computed as the interquartile range of step

positions, i.e., 25% of steps are not included on either side of the hallway. This

is motivated by the observation that traces exhibit a normal-distributed error or-

thogonal to the direction of a hallway. Furthermore, we observed that the position
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5. Generating Indoor Maps from Odometry Trace Data

(a) Initial geometry of hallways (b) Actual geometry after topological
expansion and contraction

Figure 5.5.: Topological expansion and contraction of hallways.

of hallway segments with respect to the true position of a hallway trends towards

the side of entry. When users can enter a hallway from only one side, e.g., at the

edge of a building, the center of the hallway is found too close to the center of the

building. Thus, we compute the ratio of entrances into a hallway from either side

and push the center (location of the hallway) towards the side with fewer entries.

To this end, we set centerIndex = (
enter left−enter right

2(enter left+enter right)
+ 0.5) ·number of steps and

choose the center line of the hallway so that it passes through the centerIndex ’th

step from the left.

After finding the initial geometry of all hallways, we compute the actual ge-

ometry by performing the topological extension and topological contraction (see

Figure 5.5). In the topological extension, we first consider the space left between

hallways and exterior walls: The size of each hallway is increased so that no space

of depth less than minRoomDepth is left between a hallway and an exterior wall,

i.e., the space to place rooms in must have sufficient size to at least open the

door. Next, we consider traces that pass from one hallway hi to another hallway

hj . The rationale behind the topological extension is that when a trace tk passes
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from hi to hj , hi and hj must be connected. Therefore, we extend the length of

hi and hj so that they intersect. This effect is illustrated in the topmost hallway

depicted in Figure 5.5.

In the topological contraction, we again consider traces passing from hi to hj .

The rationale behind this is that when a trace tk passes from hi to hj , tk should

not cause hi to be extended past the intersection with hj . Due to the fact that

the width of hj was limited to the interquartile range of step positions, tk may

have overshot the derived intersection of hi and hj . Therefore, we recompute the

length of hi and hj , considering the respective segments from tk up to the point

of intersection only. This effect is illustrated in the bottommost hallway depicted

in Figure 5.5.

The set of all hallways with their actual geometry computed in this step forms

the hallway skeleton.

Trace Translation Recovery In a last step we attempt to recover traces that

were classified as corrupted during hallway detection. There are two reasons why

traces are classified as corrupted: If they were rotated towards the wrong exterior

wall during the initial trace correction or if they use an erroneous (translated)

initial position −→π sens 6= −→π true. While in the first case the trace is lost, in the

latter case, traces can easily be recovered given an existing hallway skeleton as

follows. For each hallway segment hsi of a trace classified as corrupted, we find

the closest accepted hallway with the same orientation from the hallway skeleton.

We then compute a translation vector−→vi orthogonal to hsi.chord that would place

hsi onto the center line of the hallway. The trace is then translated by the average

of all −→vi . We then recompute the hallway skeleton using the hallway detection

and hallway geometry estimation as detailed before.

5.3. Finding the Room Layout

Using the hallway skeleton computed in the previous section, we now determine

the room layout. As explained in the hallway geometry estimation step, in each

hallway, traces exhibit a normally distributed error orthogonal to the direction of

the hallway. Therefore, we add a secondary trace correction step, where we move

the hallway segments of each trace onto the center line of their corresponding

hallway (see Figure 5.3), analogous to the initial trace correction process shown
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in Algorithm 5.1. Rooms then become visible as distinct protrusions of steps from

hallways. Next, as an intermediate step, we perform an initial room detection,

where we extract these observations of initial rooms from traces. In the sub-

sequent room geometry estimation step, these initial rooms are merged using a

Clustering algorithm based on a mixture of Gaussians to derive the actual rooms

that were visited by participants.

Initial Room Detection We detect initial rooms by extracting room segments

from traces. A room segment is a maximum-length sequence of contiguous steps

in a trace that do not overlap with the hallway skeleton and are not part of a

hallway segment which is, in turn, part of an accepted hallway.

However, there are other causes for observing such segments besides the obser-

vation of a room. First, when a participant takes a wide turn around a corner

passing from one hallway into another, the apex of the turn may appear outside

of the hallway skeleton even after the secondary trace correction. Second, when

movement along a hallway was too erratic or the sensor drift was too high, some

steps may not be detected as belonging to a hallway segment. In this case, parts

of a trace may be “leaking” out of the side of the hallway. Fortunately, both of

these cases are easy to detect. For every room segment, we find an entrance door

and an exit door, placed at the location where the first and last step of the seg-

ment, respectively, cross the boundary of a hallway. In addition, we also identify

the entrance hallway and exit hallway to which the room is connected by each

respective door. We accept only room segments where the entrance hallway and

exit hallway are identical (thus excluding wide turns) and where the entrance door

and exit door are no more than 2m apart (excluding leaking hallway segments).

The remaining room segments form the set of initial rooms (cf. Figure 5.7a).

Each room segment is converted into an initial room by determining its outline

and its door. Note that we limit our discussion to rectangular rooms, which are

most common, and therefore simply use a bounding box parallel to the hallway

for the outline. Support for rooms of a more complex shape may be added using,

e.g., alpha shapes [AY12], if required. The door is placed at the location of

the entrance door. The rationale behind this is that the accuracy of the trace

degrades while the participant moves about in a room where our trace correction

mechanisms cannot limit the sensor drift. Thus, the position of the entrance door

is likely to be more accurate than that of the exit door.

68



5.3. Finding the Room Layout

-0.1

0

0.1

0.2

0.3

0.4

-20 -15 -10 -5 0 5 10 15 20

P
ro
ba

bi
lit
y
D
en
si
ty

Door Position Error [m]

Sample Error
Gaussian PDF

Figure 5.6.: Door Position Error for detected initial rooms.

Room Geometry Estimation Next, we determine the set of actual rooms

visited by participants along with their geometry (outline and position) from the

set of initial rooms. To this end, we first determine clusters of initial rooms, where

each cluster corresponds to an actual room. We then compute the geometry of

each actual room from the geometry of the initial rooms in its cluster.

In order to find a suitable clustering algorithm as well as a method to combine

the geometries of clustered initial rooms, we conducted a preliminary analysis.

Figure 5.6 shows the error in door position (“Sample Error”), i.e., the difference

in position between an initial door (the door of an initial room) and the true

position of the corresponding door. We found that the error in door position

can be approximated by a Gaussian distribution with mean 0.04m and standard

deviation 4.22m (“Gaussian PDF”). Thus, doors of initial rooms observed along

a hallway can be viewed as samples from a Gaussian Mixture Model (GMM),

where each mixture component corresponds to an actual room. Furthermore, the

true position of a door can be found as the mean of all door positions of initial

rooms observing this actual room.

Note that our GMM-based clustering algorithm makes use of the functionality

for finding the geometry of an actual room from the geometry of a set of initial

rooms. Therefore, we first solve the problem of finding the geometry of an actual
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Algorithm 5.2 estimateRoomGeometry function to combine multiple initial
rooms into a clustered room.
Require: Cluster c, initial rooms ri ∈ c.initialRooms with doors ri.door
1: c.door← mean({r.door|r ∈ c.initialRooms})
2: translatedRooms← {r + (c.door− r.door)|r ∈ c.initialRooms}
3: c.outline← boundingBox(translatedRooms)
4: return c

room as follows. Given a cluster of initial rooms, we compute the geometry of the

actual room using function estimateRoomGeometry (see Algorithm 5.2). es-

timateRoomGeometry sets the door of the resulting room c.door to the mean

position of all doors in the cluster (line 1). To find the outline of the clustered

room, a (temporary) set of translated rooms is computed (line 2). Translated

rooms are the initial rooms in the cluster, each translated so that its door is

located at c.door. The outline of the clustered room is set of the bounding box

of all translated rooms (line 3). The rationale behind this is that first, as stated

before, the mean of all initial door positions is a good estimate of the true door

position. Second, all traces must have passed through the same door. Thus, the

mean door position can be used to improve the accuracy of the observed initial

rooms.

Given estimateRoomGeometry, we can now tackle the problem of finding

the correct cluster of initial rooms for each actual room. As stated before, we view

the doors of initial rooms as samples from a GMM. Determining the parameters

of the underlying GMM requires two steps: First finding the number of mixture

components in the model, equivalent to finding the number of rooms, and second

finding the parameters (mean, variance) for each component. Initial rooms can

then be clustered based on their membership to a mixture component to obtain

the actual rooms.

When the number of components in the mixture model is known, the second

problem can easily be solved through a maximum-likelihood estimation using a

readily available EM-Algorithm [PVG+11]. The first problem, finding the correct

number of components, is more challenging. A common solution is to use an in-

formation criterion, for example, by finding the number of components that min-

imizes the Bayesian Information Criterion (BIC) of the resulting mixture model.

In practice, this requires fixing a plausible range for the number of components

70



5.3. Finding the Room Layout

(a) Detected initial rooms. Colors
indicate the corresponding actual
room.

(b) Actual rooms derived according to
the Expand-and-Merge algorithm.

Figure 5.7.: Example of initial rooms, clustered according to the Expand-and-
Merge algorithm. Actual building layout shown in grey. Dots repre-
sent doors.
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to test, finding the parameters for each number of components in this range, and

computing the BIC for each resulting mixture model. In the following, we denote

this approach as function BICClustering(initial rooms, minClusters), where

minClusters denotes the lower bound on the number of components to test.

In our experiments we found that although BICClustering computes the

correct set of rooms in some cases, most often the results are incorrect. On the

one hand, BICClustering does not take into account that doors are usually

observed close to their actual position, i.e., the variance of the initial doors for

the same actual room is bounded. On the contrary, the use of the BIC leads the

algorithm to use the smallest number of components that can fit the data. Thus, it

often underestimates the true number of rooms, with the extreme case of merging

all rooms along a hallway into one. On the other hand, when the lower bound

for the number of components matches the actual number of components, i.e.,

underestimation is not possible, BICClustering tends to separate observations

of the same room, i.e., finds more than the number of rooms that were actually

observed. As with the position of hallway segments, the position of initial doors

trends towards the side of entry (cf. Section 5.2). While the set of initial doors for

a single room follows a Gaussian distribution, we often observe multiple distinct

subsets of doors for each room, typically one to the left and one to the right of

the true door position, while almost no observations are made at the true door

position, leading to an overestimation of the number of rooms.

To address these issues, we developed our Expand-and-Merge algorithm, shown

in Algorithm 5.3. Expand-and-Merge augments BICClustering using domain

knowledge as identified above. In the expansion phase, we find a set of clusters

that overestimates the true number of actual rooms, but where all initial rooms

in a cluster are observations of the same actual room. In the merge phase, the

resulting clusters are combined so that all observations for an actual room belong

to the same cluster. In detail, Expand-and-Merge works as follows.

In the expansion phase, we iteratively increase the lower limit on the number

of mixture components for BICClustering until it returns a set of clusters

where the variance of the initial doors in each cluster is less than σexpandmax (line 1–

5). Once we have found a suitable lower limit, BICClustering will typically

return too many clusters, e.g., identify observations for a room located to the left

and a room to the right of an actual room.
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Algorithm 5.3 Expand-And-Merge algorithm to find the set of actual rooms.
Require: Initial Rooms I, Variance Limits σexpandmax , σmergemax

minClusters← 1 . Expansion Phase
2: repeat

C ← BICClustering(I,minClusters) . Find BIC-minimal clusters
4: minClusters← minClusters + 1

until ∀c ∈ C : variance(c.initialDoors) ≤ σexpandmax

6: C ← {estimateRoomGeometry(c)|c ∈ C} . Prepare Clustered Rooms
C ← sort(C, key = c.door) . Merge Phase

8: for i ∈ {1, ..., |C|}, C[i] 6= ⊥ do
for j ∈ {i+ 1, ..., |C|} do

10: merged← C[i] ∪ C[j] . Find Merge Candidates
merged← estimateRoomGeometry(merged)

12: if variance(merged.initialDoors) ≤ min(σmergemax ,merged.outline) then
C[i]← merged

14: C[j]← ⊥
else

16: break
end if

18: end for
i← j

20: end for
return {estimateRoomGeometry(c)|c ∈ C}

In the merge phase, we compensate for this by merging a cluster of initial

rooms C[i] with its neighbors. To this end, the clusters are first ordered by

their mean door position along the hallway (line 7). Starting at one side of the

hallway (line 8), we merge C[i] with its neighbor C[j] iff the variance of the door

positions in the combined set of initial doors is less than σmergemax , limiting the

overall distance of initial rooms being merged, and less than the width of the

merged room, ensuring that several neighboring small rooms are not accidentally

merged (line 12). If C[i] and C[j] have been merged, we continue to try and

merge the next neighboring room C[j + 1] into C[i]. Otherwise, C[i] is complete

and we restart the merging process with C[j] and C[j + 1] (line 19). Figure 5.7b

shows an example of actual rooms derived by our algorithm.

Finally, the hallway skeleton together with the detected rooms forms the trace-

based indoor map.
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5.4. Limitations

Compared to previous approaches, MapGenie offers a number of improvements.

However, its performance is limited in several areas, mainly the detection of short

hallways and the clustering of very small rooms, as we will discuss in the following.

One limitation of MapGenie is that extremely short hallway segments are not

detected, such as when a user turns into a hallway and then immediately enters

the first room on this hallway. These (undetected) hallway segments can neither

be used in any of our correction steps to improve the quality of the trace, nor

do they contribute independent observations of a hallway. Furthermore, these

undetected hallway segments may later be considered parts of a room, leading

to the detection of initial rooms that are assigned to the wrong hallway and

can subsequently not be used in finding the room layout. While the resulting

erroneous initial rooms are eliminated by our criteria, we lose the information

about the respective actual room contributed by these observations. In particular,

we obtain only few usable observations for rooms at the end of a hallway.

An overall problem in deriving indoor floor plans from multiple independent

observations is how to merge these observations. For rooms, a common approach

is to rely on external features such as WiFi fingerprints to assign an observation

of a room to an actual room [AY12] . The accuracy of WiFi fingerprints heavily

depends on the environment, e.g., the number of access points and construction

materials used. Thus, the resolution of such an approach can greatly vary. In

our experiments, we found the resolution of WiFi fingerprinting to be insufficient

to distinguish all but the largest rooms. Thus, we introduced our Expand-and-

Merge algorithm, to enable correct clustering of smaller rooms. However, while

Expand-and-Merge improves over the Fingerprinting approach, its resolution is

still insufficient in some cases, i.e., initial rooms observed from a large number of

very small actual rooms in close proximity may be incorrectly merged.

5.5. Summary

In this chapter we have adressed the problem of extracting an indoor floor plan

for a building from a set of noisy odometry traces. First, our initial trace cor-

rection uses observations on architectural principles and typical user behavior to
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improve the quality of the odometry traces. By rotating and translating each

individual trace so that all of its hallway segments are aligned with an exterior

wall, we obtain a set of odometry traces that is much less noisy and where hallway

segments lie close to their actual position.

Next, we presented an approach for deriving the hallway skeleton. The DB-

SCAN clustering algorithm is used to form clusters of hallway segments that

represent the same hallway. We then showed how to extract the geometry of each

hallway from the hallway segments in its cluster by taking statistical properties

of the observed hallway segments into account.

Finally, we detailed our expand-and-merge algorithm to retrieve the room layout

of the building from the odometry traces without relying on external features

such as WiFi fingerprints. Augmenting a standard algorithm for computing a

Gaussian Mixture Model with domain knowledge allows expand-and-merge to

improve the resolution of the room geometry estimation over similar approaches,

i.e., the minimum size of rooms that can accurately be recovered is reduced.
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6. Grammar-based Improvement

of Indoor Maps

The information in the trace-based indoor map can be incomplete for areas where

we do not have traces, or the map can be inaccurate due to the inaccuracies in

the trace data (see Figure 6.3). We try to improve the quality of the trace-based

indoor map in the Grammar-based Mapping component by filling white spots in

the map and by trying to correct these inaccuracies by imposing constraints on

valid indoor maps. For instance, in the trace-based map, rooms of the same type

have slightly different geometries, and some walls might have been missed due to

missing traces in a room. The Grammar-based Mapping will try to align walls

such that these errors are corrected. To this end, we use architectural knowledge,

encoded in a formal room grammar as developed by Becker et al. [BPF+13],

[PBD+14].

In the following, we first present the formal definition of the grammar that

encodes structural knowledge of the building. Subsequently, we define the Lay-

out Error, a measure used to identify how well a grammar-based map fits the

observations from the trace-based indoor map. Finally, we present our algorithm

to derive a room layout with the help of the grammar. Note that for simplicity,

we limit our discussion to rectangular rooms. The full grammar that supports

arbitrarily shaped rooms is presented in [BPF+13].

Rroom
1 Runit

5

Rule Space → r1 Space Space → r3r2r3 Space
Width 2.4m 19.2m

A-Priori 0.06 0.04

Type Small Office Two executives with
assistant’s office

Figure 6.1.: Example for room rules and room unit rules
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6.1. Room Grammar

In general, the structure of a building can be separated in two different areas:

Hallway spaces and non-hallway spaces. While hallway spaces are traversed by

users to reach different rooms, non-hallway spaces contain the rooms which are

ordered in a certain sequence along each non-hallway space. However, the size and

relative ordering of these rooms is not created by random composition of walls, but

follows architectural principles and semantic relationships. For instance, public

buildings often feature a very limited set of room sizes. Furthermore, individual

rooms may be grouped into superior room units by their semantic relationship,

e.g., the office of an assistant is very likely next to the office of an executive.

Thus, once an executive office has been detected from traces, the neighboring

assistant’s office is implicitly detected along with it.

Structural information for non-hallway spaces is encoded by a formal grammar

for a regular language of the form G = (N, T, P, S), where N = {Space} is the set
of non-terminal symbols, T = {ε, ra, rb, rc, ...} is the set of terminal symbols, P

is the set of production rules and S = Space is the axiom. Each terminal ri ∈ T
represents a class i of rooms, identified by their geometric extent (see Figure 6.1,

6.4). For instance, assistant’s office and executive office are two different classes of

rooms that can occur more than once in one floor plan. Furthermore, knowledge

about room units is encoded as fixed sequences of rooms that can be produced.

Therefore, the production rules P are defined as follows (cf. Figure 6.1):

• Rroomi : Space → ri Space for i ∈ room classes found in the building

• Runitn : Space → rj ...rk Space for n ∈ room units found in the building

• Rε : Space → ε

For instance, one possible sequence of rules to fill a non-hallway space with this

grammar is: Space→ r3 Space→ r3r1r5.

While this grammar encodes knowledge about existing room classes and room

units, it does not contain knowledge about the typical neighborhood of these

elements. For example, a combination of assistant’s office and executive office

may typically occur in combination with other office rooms, but hardly ever in

combination with maintenance access rooms. Therefore, two probability mod-

els are defined for the grammar: (1) The a priori probabilities of rules and (2)
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Trace-based 
model

Grammar

Compare 
Layout Error

Room Layout 
Generation

Map 3Map 2Map 1

Figure 6.2.: Overview of the grammar-based room layout generation

the relationship probabilities between rules. The a priori probability Pa(Ri) en-

codes the relative frequency of occurrence of a room or room unit defined by rule

R
{room,unit}
i . The relationship probability Prel (Ri|Rj) is a conditional probabil-

ity which models neighborhood relationships between rooms or room units. For

instance, Prel(Rroomj |Rroomi ) = 0.5 states that with a probability of 50%, room

rnext = rj in any sequence ...rirnext.

To use these probabilities to generate a room layout, the grammar is translated

into a Markov chain according to [BPF+13]. Room rules Rroomm and unit rules

Runitn form the nodes of the Markov chain. The probability for a transition from

Ri to Rj is defined as Pa(Rj )
Pa(Ri)

· Prel(Ri |Rj )
Prel(Rj |Ri)

. We can then generate a room layout

according to the grammar by performing a random walk on the resulting Markov

chain.

6.2. Layout Error

The grammar presented in the previous section can create a multitude of differ-

ent grammar-based indoor maps. However, we are interested only in the map

that matches the observations from the trace-based indoor map. Intuitively, a

grammar-based map matches a trace-based map when the following constraints

are satisfied:

Free Constraint No wall may be placed inside a room observed from traces, i.e.,

observed rooms should not be cut in half.

Wall Constraint At least one wall must be placed in between any pair of neigh-

boring rooms, i.e., observed rooms should not be merged.
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6. Grammar-based Improvement of Indoor Maps

sepr1 r2 r4

r5 r7 r9

Trace-Based Rooms

Grammar-Based Rooms

Violated free constraint

Satisfied wall constraint

r3

r8

Satisfied wall constraint

r6

Satisfied free constraint
Violated wall constraint
Violated free constraint

m1 m2 m3

sep

Satisfied free constraint

Figure 6.3.: Example identification of constraint satisfactions and constraint vio-
lations. r1 to r4 denote rooms observed from traces, r5 to r9 denote
rooms generated by the grammar. mi denote magnitudes of viola-
tions. sep denote separating spaces.

As observations may be inaccurate, a grammar-based indoor map that fully sat-

isfies these constraints may not exist. Thus, we are more interested in identifying

the grammar-based map that best matches the observations from the trace-based

indoor map, i.e., violates these constraints the least (cf. Figure 6.2). To com-

pare grammar-based indoor maps in terms of how well they satisfy the above

constraints, we introduce the layout error (LE) of a grammar-based map:

LE =

(∑
v∈violations v

2
)

|violations|+ satisfactions
(6.1)

Here, satisfactions denotes the number of instances where a constraint was

satisfied by the grammar-based map. violations is the set of magnitudes of vio-

lation. The magnitude of a violation is defined as the distance from the position

where a wall was placed by the grammar to the position where it was expected

in the trace-based map. In detail, these values are computed as follows (cf. Al-

gorithm 6.1).

First, we iterate over individual rooms in the trace-based map. For each wall

in the grammar-based map that intersects the current trace-based room, the
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6.2. Layout Error

Algorithm 6.1 Algorithm for computing the layout error of a rule sequence
Require: Rule Sequence w, Trace-based Map TM

satisfactions ← 0

2: violations ← ∅
for all room ∈ TM do

4: if w generates any wall in room then
for all wall generated by w ,wall intersects room do

6: magnitude ← min (δ(wall, room.leftWall), δ(wall, room.rightWall))

violations ← violations ∪ {magnitude}
8: end for

else
10: satisfactions ← satisfactions + 1

end if
12: end for

for all rooma , roomb ∈ TM , rooma is neighbor of roomb do
14: sep ← area in between rooma and roomb

if w generates wall in sepSpace then
16: satisfactions ← satisfactions + 1

else
18: magnitude ← min({δ(w, sep)|wall generated by w})

violations ← violations ∪ {magnitude}
20: end if

end for
22: return

(∑
v∈violations v

2
)
/ (|violations|+ satisfactions)

free constraint is violated. We record a magnitude of violation as the minimum

distance of the generated wall to either wall of the room (line 6). If no such wall

exists, we count a constraint satisfaction for this trace-based room (line 10).

Next, we iterate over all pairs of neighboring rooms in the trace-based map.

For each of these pairs we identify the separating space, i.e., the space in between

these rooms (line 14). If a wall exists in the grammar-based map that is located

inside the separating space, this wall satisfies the wall constraint and we count

a constraint satisfaction for this pair of rooms (line 16). Otherwise, we record

the minimum distance of any wall in the grammar-based map to the separating

space as a magnitude of violation (line 18).

Finally, we compute and return the LE as defined in equation 6.1 (line 22).

An example of this process is depicted in Figure 6.3. For rooms r1 and r3 the

free constraint is violated with magnitude m1 and m3, respectively. For rooms
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6. Grammar-based Improvement of Indoor Maps

Algorithm 6.2 Constraint-Augmented Random Walk
Require: Current Rule Sequence w, Set of Rules P, Trace-based Indoor Map

TM

P ← {R ∈ P |wR fits in the available space} . Annotate
2: for all R ∈ P do

RER ← getError(wR,TM )

4: Q← last rule in w
R.prob ← P(R)

P(Q)
· P(Q |R)
P(R|Q)

6: end for
Perror ← {R ∈ P |RER 6=⊥} . Filter

8: Pprob ← {R ∈ P |RER =⊥}
minRE ← min({RER|R ∈ Perror})

10: Perror ← {R ∈ Perror|RER ≤ minRE}
P ← {R ∈ Perror ∪ Pprob|R.prob > 0}

12: if P = ∅ is empty then . Recover
P ← Perror

14: for all R ∈ P do
R.prob ← 1/|P |

16: end for
end if

18: normalize all R.prob to 1.0 . Select
if P = ∅ then

20: return Rε

else
22: return R ∈ P randomly selected according to R.prob

end if

r2 and r4 the free constraint is satisfied. For the pair of rooms (r2, r3) the wall

constraint is violated with magnitude m2. For all other pairs of neighboring

rooms, the wall constraint is satisfied.

Note that the grammar can produce room layouts that do not completely fill

(or may overflow) the available area. Avoiding such layouts is the responsibility

of the room layout generation algorithm presented in the next section.

6.3. Room Layout Generation

The goal of the room layout generation algorithm is twofold: (1) Find a room

layout with minimal layout error and (2) provide a probable room layout for un-

observed areas that completely fills the non-hallway space. Finding the minimum-
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error room layout from the grammar is an NP-hard problem that can be reduced

to the Knapsack problem. Therefore, we employ a heuristic solution: We per-

form a constraint-augmented random walk on the Markov chain to find different

room layouts (see Algorithm 6.2). The random walk is repeated numRandomWalk

times and the room layout that minimizes the LE is chosen. Note that achieving

a LE of 0 may not be possible: due to noisy observations, e.g., rooms detected

at a short distance left or right of their actual position, it may not be possible to

perfectly recreate the trace-based room layout from the grammar. To make our

algorithm less sensitive to low noise, we define a tolerance threshold T̂LE for all

violations. Any magnitude of violation below the threshold is rounded to zero

when computing the layout error. In our experiments, T̂LE = 0.8m achieved the

best results.

The algorithm iteratively performs the four steps of Annotate, Filter, Recover

and Select as follows (cf. Algorithm 6.2).

Annotate: Initially, rules are annotated with their transition probability and

the error they will cause. Given an (initially empty) sequence of rooms and the

rules w that were used to produce these rooms, we first determine which rules

can be applied without the resulting rooms overflowing the current non-hallway

space (line 1). For each remaining rule R we compute a rule error (RER, line 3)

and set its transition probability from the Markov chain (line 5). The rule error

is computed analogously to the LE, limited to the area of the non-hallway-space

that is affected by R. If no trace-based rooms are encountered in the affected

area, e.g., when computing a layout in a part of the building that has not been

observed at all, no rule error is set for R (RER =⊥, cf. Figure 6.1).

Filter: Next, rules are filtered for their applicability, i.e., whether they have

a non-zero transition probability and minimize the resulting error. To this end,

we split rules into two disjoint subsets: Error-Rules Perror (rules that have RER
set, line 7) and Probability-Rules Pprob (all remaining rules, line 8). Error-Rules

are filtered, keeping only the rules with the minimal rule error value (line 10).

Note that we cannot limit the selection to either Error- or Probability-Rules, as

illustrated by the example depicted in Figure 6.4. r1 ∈ Pprob as r1 does not violate

the free constraint for the trace-based room, whereas r3 ∈ Perror. For instance,

if we were to focus only on Perror, we would lose the chance to select the room

sequence r1r3 which would improve the LE over selecting r3. Furthermore, the
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r4 r2

r3

r3r1

Trace-based Room

Figure 6.4.: Example application of rules. Combining Error- and Probability-
Rules avoids unnecessary increases of the layout error.

grammar would be biased towards choosing rules that place more and larger

rooms, as any rule in Perror generates rooms that occupy more space than those

generated by any rule in Pprob. The reverse would also be true if we were to

focus only on Pprob. Therefore, both sets are rejoined, removing all rules with a

transition probability of 0 in the Markov chain, i.e., rules that cannot occur in

this neighborhood (line 11).

Recover: The grammar can be semi-accurate for the current floor, e.g., pro-

ductions may be missing, the grammar may contain additional room classes, or

transition probabilities in the Markov Chain may be different. Semi-accurate

grammars can occur any time a grammar is constructed from an indoor layout

that is similar but non-identical to the current floor, e.g., partial observations of

the same floor that have not yet encountered all room classes, or observations of

another floor of the same building featuring the same room classes but different

room units. When building a room layout using a semi-accurate grammar, we

may encounter a situation where none of the remaining rules in either set has a

transition probability > 0 in the Markov chain, effectively deadlocking our algo-

rithm. In this case, we override the Markov chain by using the set of Error-Rules

with minimal rule error value, temporarily adjusting their transition probabilities

to a uniform value (lines 12–17).

Select: Finally, we choose a rule out of the remaining ones at random according

to the (adjusted) transition probabilities (line 22). When the available space is

insufficient to accommodate the rooms generated by any of the remaining rules,

Rε is applied and the resulting sequence of rooms is returned as the room layout

for this non-hallway-space.
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6.4. Summary

The hallway skeleton from the trace-based indoor map together with the set of

grammar-based room layouts for all non-hallway-spaces forms the grammar-based

indoor map, which is the final output of our system.

6.4. Summary

In this chapter, we addressed the problem of improving trace-based indoor maps

using structural knowledge about the building. Structural knowledge can be

obtained from indoor maps of floors similar to the current floor to be mapped,

e.g., other floors of the same building. This information is then used in our

grammar-based mapping approach to fill white spots and to correct inaccuracies

in the trace-based map.

To this end, we first presented a formal grammar that encodes the structural

knowledge, e.g., information about the types of rooms and about common groups

of rooms. This grammar can be used to create a multitude of different grammar-

based indoor maps that are similar in structure to the observed floor.

To identify which of these many grammar-based maps best resembles the cur-

rent floor, we introduced the layout error. The layout error is a measure of how

well a given grammar-based map matches the observations from the trace-based

map. By selecting the grammar-based map with the minimum layout error, we

find the map that best explains the current observations.

However, deriving all possible maps from the grammar is an NP-hard problem.

Thus, the above approach is not feasible for practical applications. To alleviate

this problem, we presented the constraint-augmented random walk, a heuristic

solution to find the grammar-based map that best matches the observations.
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As argued previously, a major challenge in developing Public Sensing systems

is limiting the energy drain on participating devices. The analysis of Baier et

al. has shown that the biggest energy drain in MapGenie—as presented up to

now—is recording a mobility trace via the Inertial Measurement Unit (IMU)

[BPDR14]. Moreover, as participants will observe most objects several times and

the amount of information gained decreases with each additional observation,

the utility of running the IMU (and thus the energy spent) decreases over time.

Therefore, we aim to focus the mapping effort on parts of the building where

the currently available information is insufficient and to disable the IMU while

traveling elsewhere.

In developing an approach for a more focused mapping effort, we face two chal-

lenges. The first challenge is to create a quality model that labels areas of the

building as inaccurately mapped (IM) when we still need to record additional

information, or accurately mapped (AM) when the available information is suffi-

cient. The second challenge is to efficiently track the devices’ position when the

IMU is disabled, and to provide a new initial position for the IMU upon restart-

ing the recording of a mobility trace. If we simply deactivate the IMU upon

entering an AM-area, we sacrifice all information that a device may contribute in

the future when it moves back to an IM-area.

To solve the second problem, we use a WiFi-based approach for position track-

ing. On the one hand, using WiFi for position tracking is more efficient than

continuously using the IMU. Figure 7.1 compares the energy consumption of

recording a mobility trace via the IMU and tracking the position through WiFi

scans. We see that while the energy for running the IMU is less than the peak

power consumption during WiFi scans, the device can enter a low-power idle

state in between WiFi scans. This leads to an average energy consumption of

0.16W for WiFi scans at a 10 s interval, compared to 0.45W for running the
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(a) Device runs IMU (b) Device performs WiFi scan every 10 s

Figure 7.1.: Energy consumption of a mobile device over time. Source: [BPDR14]

IMU. Therefore, we save energy by deactivating the IMU and switching to WiFi

position tracking for as long as possible, while the device travels in an AM-area.

Note that the focus of this work is the Quality Model, as detailed in the next

section. To demonstrate how the Quality Model is used to improve the energy

efficiency of MapGenie, we will briefly sketch the remaining components as pro-

posed by Baier et al. in the subsequent section. For a more detailed explanation

of these components, we refer to the original work of Baier et al. [BPDR14].

7.1. Quality Model

The goal of our quality model is to label areas of the floor plan as accurately

mapped (AM) or inaccurately mapped (IM), thus informing the scheduler whether

additional traces should be recorded for an area. Intuitively, an area is AM if

no more information can be gained from traces. Theoretically, this is the case

when an area is completely filled with floor plan objects (hallways and rooms)

with no empty space left in between. However, due to inaccessible spaces, e.g.,

maintenance access rooms with practically no visits or furniture blocking access

to walls, an area may contain blank spots that cannot be covered by traces. From

traces alone it is in general undecidable whether there is no information for an

area due to missing traces (no user traveled there although it would have been

possible) or due to an obstacle (no user can physically travel there). Therefore,

it is impossible to define a perfect quality metric based on traces alone. Hence,
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such a metric has to be based on heuristics. In the following, we define a generic

quality metric applicable to all trace-based algorithms.

We define the quality of an area A based on a threshold T̂ area of the relative

spatial coverage QA of A by accurately mapped objects (AM-objects). Whether

an objects is accurately mapped (AM) or inaccurately mapped (IM) is defined

by the number of observations, i.e., how many times the object was observed in

the underlying trace data. More formally, our quality model is defined as follows.

An individual floor plan object o is classified as AM-object if the number of

observations |o| is above a certain threshold: o is AM if |o| ≥ T̂ type(o), type(o) ∈
{room, hall}. Otherwise, o is IM. Based in this definition, we define an area A of

the floor plan as AM, if the relative spatial area of all AM-objects in A is above a

certain threshold: A is AM if QA =
(⋃

o∈A,o is AM geoArea(o)
)
/geoArea(A) ≥

T̂ area. Otherwise, A is IM.

This metric ensures that we do not consider A to be an AM-area if there is a

very large number of observations for a small part of A (e.g., few rooms with many

visits) and few observations for the remainder. It also tolerates a certain fraction

of inaccessible space per area (up to
(
1− T̂ area

)
·geoArea(A)) without having to

accept a lot of inaccurately mapped objects (IM-objects). The rationale behind

this metric is based on the following observations about mapping approaches and

real user mobility.

All mapping approaches based on traces require users to cover the complete

space of an object to determine its correct size. As it is unlikely that any single

user will cover a complete object with a single trace—e.g., covering the complete

length and width of a hallway or room—we require multiple observations of each

object. However, with an increasing number of observations already available,

the chance to discover a new feature of the object diminishes. We therefore use

threshold values T̂ room and T̂ hall to define whether a floor plan object is an AM-

object or an IM-object. Note that we use different threshold values for T̂ room

and T̂ hall, as movement in hallways is typically less constrained than in rooms

and thus fewer traces are sufficient to cover the full width of a hallway.

However, only basing the area quality metric on the relative spatial coverage by

AM-objects will often lead to sub-optimal results due to the fact that large popu-

lar objects will dominate small and/or unpopular objects. In particular, hallways

often cover large parts of an area and are visited by many users. Therefore, after
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Algorithm 7.1 Algorithm for computing the quality of an area A. geoArea()

defines the area covered by an object, |o| the number of observations of o. hi
denotes a hallway, and ri denotes a room.
1: if ∃hi ∈ A : |hi| < T̂ hall ∨Observation of hi not finished then
2: return IM-area . Phase 1: Detect Hallways
3: else
4: QA ←

∑
{geoArea(ri)||ri|≥T̂ room}

geoArea(A)−
∑
{geoArea(hj)} . Phase 2: Detect Rooms

5: if QA ≥ T̂ area then
6: return AM-area
7: else
8: return IM-area
9: end if
10: end if

a large popular hallway has been accurately mapped—which due to its popularity

typically happens quickly—, no more rooms would be detected since the area is

well-covered by AM-objects. To avoid this problem, we use a two-phase approach

as shown in Algorithm 7.1: First, we ensure in Phase 1 that all hallways have

been detected (lines 1–2). Then in Phase 2 we focus on the mapping of rooms

only (lines 4 ff.).

Note that as mentioned above it is undecidable from traces alone whether we

have detected all objects (including all hallways). However, for the specific case of

hallways, topological constraints typically apply that make the problem decidable

for hallways. Hallways are typically connected to other objects (further hallways

or rooms) or an outer wall on both sides. Thus, as long as there is empty space

at either side of the hallway (we say that the hallway observation is not finished),

it is not accurately mapped since its coverage is still unknown, and the hallway

is marked as IM-area (line 1). If we have detected both ends of a hallway and it

received enough traces, it is considered to be accurately mapped. If every hallway

is accurately mapped, we start Phase 2 and focus from there on the mapping of

rooms based on the relative coverage of the area by AM-objects (line 4). Since

at this point we know that hallways have been accurately mapped already, we

subtract their area from the total area under consideration.

Note that all threshold values T̂ {room,hall,area} are parameters of the quality

model that need to be set by an operator. T̂ hall and T̂ room must be adjusted

depending on the floor plan generation component, e.g., to account for the vary-
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ing degree of accuracy of different mapping algorithms. T̂ area can be adjusted

according to the desired level of accuracy of the indoor map and thus defines

an energy/accuracy-tradeoff. T̂ area = 1.0 would only classify areas as AM-areas,

when every detail about them is known. From our evaluations, we could conclude

that choosing T̂ area ≤ 0.4 allows significant energy savings without compromising

on the quality of the derived floor plan.

7.2. Energy-Efficient Mapping

The quality model presented in the previous section can be used to improve the

energy efficiency of the mapping process by disabling the IMU while the device

is in an AM-area, and reenabling it when the device enters an IM-area. However,

to determine whether the device is about to leave the AM-area and enter an IM-

area, we must continuously track the (rough) position of the device, even when

the IMU is disabled. This can be solved by using a coarse-grained WiFi Position

Tracking system (WPT), based on RSSI fingerprinting.

In overview, the energy-efficient mapping process works as follows. Whenever

there is an update to the indoor map, the Area Task Creation component veri-

fies the current set of tasks. For example, when a new hallway is discovered, a

new task t2 is defined for its area geoArea(t2). The task that previously cov-

ered the area of the new hallway, say t1, is modified to exclude the area of t2:

geoArea(t1) := geoArea(t1) \ geoArea(t2). Next, the Quality Model recomputes

the IM/AM classification for all areas. On any change in the set of tasks or the

quality classification, the respective updates are transmitted to participating de-

vices. On each device, the Scheduler component tracks the current position of the

device as provided by the IMU or WPT, respectively. Depending on the quality

information about the current area and the past mobility, the Scheduler enables

or disables the IMU, and thus the Trace Data Acquisiton component along with

it.

Next, we briefly look at the operation of the WiFi Position Tracking system,

before we present the decision-making process for the scheduler in subsequent

sections.
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Anchor Point
31m

(a) Placement of WiFi anchor points.

Positions of RSSI values
Anchor Point

(b) Anchor points derived from positions
where RSSI values were recorded.

Figure 7.2.: Building the WiFi anchor point database. Source: [BPDR14]

7.2.1. WiFi Position Tracking

The task of the WiFi Position Tracking component is to provide a coarse-grained

position. This is achieved by defining a set of anchor points at well-known posi-

tions and recording their RSSI fingerprint. A device can then at any time record

the current RSSI fingerprint and find the anchor point with the best-matching fin-

gerprint. The WPT then returns the position of the anchor point as the devices’

current position.

The placement of the anchor points is subject to application requirements. In

our system, these are as follows. First, the Scheduler uses the anchor points to

track the sequence of AM-areas visited by the device while the IMU is disabled,

i.e., the density of anchor points must be sufficient to always determine the current

area. Second, the IMU uses the WPT to find an initial position when it is

reenabled. Simply using the position of the closest anchor point leads to huge

positioning errors in the order of magnitude of the distance between anchor points.

Thus, anchor points must be placed so that a device can detect when it is at the

actual position of the anchor point.

Based on these requirements and our definition of areas (cf. Section 4.3),

we place anchor points at each hallway intersection as shown in Figure 7.2a.

Intersections can be detected by the IMU whenever a device takes a sharp turn
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WiFi Scan

(a) WiFi scan taken at 90◦ turn (b) Trace located in the building ac-
cording to WiFi fingerprint

Figure 7.3.: Finding an absolute position for a trace without an initial position
using WPT. Source: [BPDR14]

(around 90◦, cf. Figure 7.3). Furthermore, these anchor points can be set up

on-the-fly when initial information about the hallway skeleton is recorded. When

the IMU is recording a trace with a known initial position, the device performs a

WiFi scan at every such turn. The information about the recorded RSSI values

and the associated position within the building is then uploaded to the gateway.

The gateway combines this information based on the RSSI fingerprint and fixes

the position of each anchor point at the average position of the measurements

(cf. Figure 7.2b). This database of fingerprints is transmitted to all devices along

with task updates.

Note that when a device crosses an intersection without turning, no anchor

point is detected. Thus, in this case, the IMU can not be reenabled. This is a

known limitation of the WPT that is handled by the scheduler presented in the

next section.

7.2.2. Scheduler

The Scheduler uses the information provided by the WPT to decide whether

the IMU should record a trace or be disabled. As we do not want to miss any

information about an IM-area, the IMU should already be recording a trace when

entering an IM-area. To reenable the IMU in a timely manner, we use a mobility

model to predict whether the device will enter an IM-area in the near future. In

the following section, we detail this mobility model before presenting the decision

algorithm to enable or disable the IMU and the algorithm to determine the initial

position for the IMU upon reenablement.
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Mobility Model

Given the current user trace as input, the mobility model outputs the probabilities

of possible continuations of the trace. From these probabilistic trajectories, we

then determine the probability P (a|t) that the device, having traveled along trace

t, will visit a certain area a. Based on P (a|t), the scheduler can then decide

whether to stop or resume IMU positioning.

Note that we make no further assumptions on the capabilities of the indoor

mobility model. Designing a sophisticated indoor mobility model is an open

research question beyond the scope of this work. For the purpose of this work,

we define a simple mobility model based on the (reasonable) assumption that

users take the shortest path towards their destination. Obviously, more complex

models taking, for instance, user habits into account, can lead to even more

accurate predictions.

Given the path t that the user has previously traveled, we first compute the

set A of reachable areas. An area a is reachable from trace t if t is a prefix of

a shortest path from the origin of t to a (note that depending on the building

layout, multiple shortest paths may exist). Next, we assign visiting probabilities

to all ai ∈ A. In our simple model there is no information whether for any two

destinations ai, aj ∈ A one is more likely than the other. Hence, we assign a

uniform visiting probability P (ai|t) = |A|−1 to each area ai ∈ A.

IMU decision

Based on the information from the quality model and the set of reachable areas,

we now present the decision algorithm to enable or disable the IMU. To disable

the IMU, two conditions must be fulfilled:

1. The device is currently located in an AM-area.

2. For every path leading to an IM-area, IMU positioning can be resumed

before entering that area.

While the first condition is easy to evaluate, the second condition is more

challenging. To reenable the IMU in a timely manner, a 90◦ turn (indicating

an anchor point) must be detected before entering any IM-area. Therefore, we

first determine the next intersection X the device will pass. Next, we partition
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Figure 7.4.: Only the IM-area at the top can be reached without a turn from the
next intersection the device passes.

the set of reachable areas A into disjoint subsets AdirectIM , i.e., IM-areas that are

reachable from X without taking a turn (cf. Figure 7.4), and AturnIM , i.e., IM-areas

that are only reachable from X via at least one turn. As condition 2 holds for all

a ∈ AturnIM , our decision is based on Adirectin . We therefore compute the probability

pIM for the device moving into any area a ∈ AdirectIM as

pIM = 1−
∏

∀a∈Adirect
IM

1− P (a|t)

Using a random sample sr from a uniform distribution, the IMU is disabled

iff sr > pIM and (re-)enabled otherwise. Note that this probabilistic decision

also ensures that every now and then IMU traces are recorded for areas that are

already sufficiently mapped. This gives our system a chance to discover features

that are observed by only very few traces, i.e., rooms that are rarely ever entered.

Furthermore, it provides a way to notice changes in the floor plan, i.e., when an

obstacle such as a desk has been moved.

IMU recovery

To perform the position recovery, the device enables its IMU and takes a trace

without a known initial position. When a sharp turn is discovered in the trace, it

performs a WiFi scan to determine the current anchor. The trace is fixed to this

anchor by setting its initial position −→π = −→π anchor −
∑k

i=1 si, where
−→π anchor is
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the position as reported by the WPT, and sk is the step at which the WiFi scan

was performed.

7.3. Summary

In this chapter, we addressed the challenge of improving the energy efficiency

of the indoor map construction process. To this end, we first detailed a quality

model that classifies areas of the indoor map as accurately mapped (AM-area)

or inaccurately mapped (IM-area), depending on whether additional information

should be recorded for this area.

We then showed how our Scheduler component exploits this information by fo-

cusing the mapping effort on IM-areas. While the device is located in an IM-area,

the Scheduler uses the inertial measurement unit (IMU) to record an odometry

trace. When the device moves to an AM-area, the Scheduler can disable the IMU

and switch to a more efficient but less accurate WiFi position tracking system

(WPT). While the position accuracy of the WPT is insufficient to provide an

odometry trace, it is sufficient to determine when a device moves into another

IM-area. Thus, the Scheduler can reenable the IMU in time to record information

about the next IM-area.
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8. Evaluation

To demonstrate the effectiveness and energy efficiency of MapGenie, we tested

our system in a real-world scenario. In the following section, we present our

setup for gathering real-world trace data. Next, we analyze the effectiveness

of the grammar-based approach for the improvement of indoor maps. We first

describe the general setup of our evaluation, before we discuss evaluation results

for sparse and dense scenarios, showing the performance of our system during

trace acquisition and when a full set of trace data for the building is available.

Finally, we discuss methodology and results for the evaluation of our energy-

efficient mapping approach.

8.1. Real-World Trace Data

To set up the inertial positioning system, we designed an Android App, commu-

nicating with a foot-mounted Inertial Measurement Unit (IMU) via Bluetooth

(see Figure 8.1). We used a Zero-Velocity-Update protocol [Fox05] to limit the

sensor drift of the foot-mounted unit. All other components are implemented as

(a) Android App (b) Foot-mounted IMU

Figure 8.1.: Utilities used for recording the pedestrian traces: A foot-mounted
IMU that sends relative position changes to an Android App which
merges these steps to a trace and shows it on a map.
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Parameter Description Value
minLength minimum length of hallway segments 4m

minHallwaySegments minimum number of independent observa-
tions for hallways 10

ε neighborhood size for DBSCAN 2m

minPts minimum neighborhood population for
DBSCAN 4

σmerge
max

maximum variance of initial doors for clus-
tering rooms 5

minRoomDepth minimum depth of space for rooms 2m
T̂LE lower threshold for layout error 0.8m

numRandomWalk repetitions of grammar-based map gener-
ation 10

T̂ hall minimum number of segments for AM
classification of hallways 10

T̂ room minimum number of segments for AM
classification of rooms 5

T̂ area minimum area covered for AM classifica-
tion of areas 11%, 18%

Table 8.1.: Parameters used in the evaluation

a backend-service on a Linux server (cf. Section 4.1). The parameters used in

our evaluation are shown in Table 8.1.

To test our implementation, we collected 250 odometry traces, measuring a

total of over 22 km from four volunteers. Traces are collected from the 2nd floor

of the computer science building in Stuttgart (see Figure 8.5). Volunteers were

given a list of trips to complete, containing both visitor trips and employee trips.

Visitor trips specify an entrance to use and a destination office to search for,

without further instructions on how to get there. These trips mimic the random

travel of people unfamiliar with the building layout, searching for a room. In

contrast, employee trips specified a sequence of locations (offices, meeting rooms,

coffee machine, printer room, etc.) and the exact path to each destination, mim-

icking the everyday behavior of people working in the building to be mapped.

Note that this includes trips of regular office staff as well as cleaners and security

guards. Apart from these instructions, volunteers could freely walk all hallways

in the building. Room access was limited to only a subset of office rooms, mainly

located in the top left quadrant. Thus, hallways in this quadrant are well trav-

eled, whereas only very few traces passed through hallways at the right and

lower edges of the building. Furthermore, users did not visit maintenance rooms,
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8.1. Real-World Trace Data

Figure 8.2.: Real-World Traces used in the Evaluation, shown on the ground truth
map.

which are not publicly accessible. In total, volunteers visited 21 hallways (i.e.,

all hallways) and 26 rooms. Unfortunately, there are several traces in which no

hallway segments were found. Thus, none of our correction steps can be used to

reduce the noise in these traces. This affected mainly the trips of cleaners, who

do not travel along a hallway but enter into every room. However, as detecting

these traces is trivial, we configured MapGenie to exclude such traces, leaving

147 traces to be used in our evaluation. Figure 8.2 shows the complete set of raw

traces used in our evaluations. The data set is available from the ComNSense

Project Website [com14].
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Figure 8.3.: Trace-based Indoor Map

8.2. Effectiveness of the Grammar-based

Improvement of Indoor Maps

We evaluate our grammar-based approach for the improvement of indoor maps

in two scenarios. In the dense trace scenario, we show the output of the system

when using all available information, i.e., we derive the indoor map using all

traces and using an accurate grammar for the floor. This demonstrates how even

a well-mapped area can benefit from using a grammar-supported approach. Fur-

thermore, we demonstrate the performance of our algorithm for clustering initial

rooms using Gaussian Mixture Models. Later evaluations use perfect external

knowledge for the clustering of rooms, i.e., have a-priori knowledge, which actual

room was observed when an initial room is found. This allows us to abstract

from the limitations of this algorithm, focusing on the individual benefit of the

respective approach under evaluation.

In the sparse trace scenario, we analyze the performance of the system with

incomplete information, i.e., using only a fraction of the traces, showing how the

grammar-based approach is used to enhance the incomplete information of these

traces. Furthermore, in the sparse scenario we use two grammars for the room

layout generation: An accurate grammar derived from the floor plan of the 2nd

floor and a semi-accurate grammar derived from the 1st floor of the same building,
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Figure 8.4.: Grammar-based Indoor Map

which, while overall similar to the 2nd floor, features different room types, room

units and neighborhood relationships. Neither grammar includes knowledge of

maintenance access rooms, which we cannot find without having an accurate floor

plan in the first place. The semi-accurate grammar illustrates the performance

of our system when using data obtained from a similar building. Note that using

a fully inaccurate grammar will lead to fully inaccurate floor plans.

In the following, we first present the results for the dense trace scenario, followed

by the results for the sparse trace scenario in the next subsection.

8.2.1. Dense Trace Scenario

Figure 8.3 shows the trace-based indoor map from the dense trace scenario, i.e.,

using all traces. Hallways, on the one hand, were estimated almost perfectly in

areas covered by a large number of traces, i.e., the top-left quadrant and the

center hallways. The rightmost and bottommost hallways are derived from only

four traces each, which do not contain a sufficient number of samples to accurately

find their width and position. The room layout, on the other hand, is very poor.

Out of a total of 74 office rooms in the building, only 23 were found. Rooms are

only of the right size if they are either very narrow or were detected from multiple

(in our case at least seven) traces.

The remaining rooms, that were visited by volunteers but not found, are miss-
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Figure 8.5.: Ground-Truth Indoor Map

ing due to one of two reasons. In some cases, very short hallway segments have

not been detected as such and were thus wrongly included in an initial room.

The resulting initial rooms were discarded, leaving the system with too few ob-

servations to derive actual rooms. In other cases, multiple very small rooms have

been merged into one.

Next, we look at the grammar-based indoor map, depicted in Figure 8.4. When

comparing the grammar-generated room layout to the trace-based indoor map

and the ground truth, we see that in areas where no rooms were found, the

grammar provides a plausible but not necessarily perfectly accurate layout of

rooms. In areas with observations, the observed rooms are reproduced by the

grammar. Overall, the basic structure of the building is reflected in the map.

8.2.2. Sparse Trace Scenario

In the sparse trace scenario, we analyze the performance of our system when

operating on a limited set of traces only. For varying numbers of traces n, we

repeatedly selected 1000 random subsets of n traces out of the set of all traces.

For each set of traces we construct the trace-based indoor map and 10 grammar-

based indoor maps using either grammar.

We first compare the hallway skeleton from the computed indoor map to the

ground truth hallway skeleton. Figure 8.6a shows the average number of hallways
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Figure 8.6.: Average fraction of floor plan objects over the number of traces used.

detected for each number of traces. Using 30 traces, we can find 48% of hallways

in the building (“Building”). Finding more than 75% of hallways requires at least

110 traces. This is due to our requirement of a minimum number of independent

observations, before a hallway is accepted. While a smaller number of traces

is sufficient to observe all hallways, requiring fewer observation introduces false-

positives, i.e., non-existing hallways are detected. When limiting the analysis to

the top left quadrant (“Quadrant”), results are much improved. On average, we

find half of the hallways in this quadrant with only 10 traces, and all hallways

when using at least 30 traces. This is due to the concentration of traces in that

area, i.e., we are more likely to find hallways here than in any other part of the

building.

Next, we analyze the accuracy of the room layout generation. For each com-
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Figure 8.7.: Fraction of matched rooms vs. average error in room size. 700 sam-
ples from each experiment shown.

puted indoor map, we match detected rooms to rooms from the ground truth

map. Matching rooms lie on the same side of the same hallway and have similar

size. Furthermore, we respect the ordering of rooms, i.e., if room b is located

to the right of room a in the computed map and a was matched to x from the

ground truth, then b cannot be matched to a room left of x. From here on we

limit our analysis to the top left quadrant, where room information from traces

is available. Note that maintenance access rooms, which account for about 19%

of rooms in the top-left quadrant, can not be detected from either traces or from

the grammar-based room layout.

Figure 8.7a shows the average error in the size of matched rooms compared to

the fraction of rooms that have been found on detected hallways for all indoor

maps built from 50 traces. The trace-based indoor map (“Traces”) finds only

very few rooms (up to 40%) and shows a large error in the room size (0.3m

to 1.3m), whereas using the accurate grammar (“Accurate”), many more rooms

(at least 60%) are found. Furthermore, the accurate grammar reduces the size

error of rooms over the trace-based indoor map. At 1.0m, the maximum size

error using the grammar is less than that of traces. In addition, the grammar

also provides room layouts with no error. The semi-accurate grammar (“Semi-

Accurate”) finds the same number of rooms, with a slightly higher average size

error. Thus, using grammar support greatly increases the accuracy of the floor
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plan even when the grammar is not perfect. Figure 8.7b shows the same metric

for 90 traces. Note that while the trace-based indoor map hardly improves (42%

of rooms detected, maximum size error 1.1m), the accuracy of the grammar-

based approaches drastically increases (maximum size error reduced to 0.5m).

Thus, additional information has little impact on the trace-based indoor map,

but significantly boosts the performance of the grammar-based approach.

To analyze the impact of the grammar further, we look at the overall fraction

of matched rooms. Figure 8.6b shows the average number of matched rooms for

each sample size of traces. Using 147 traces, we find only 40% of rooms from

traces alone, while using either grammar we detect 80% of rooms, i.e., almost all

rooms that can be found, with only 30 traces. Overall, we find up to 4 times as

many matching rooms using the grammar-based map. Note the steep increase

in the number of matching rooms from 10 to 30 traces. As argued before, more

traces lead to detecting more hallways. For the trace-based map, the number of

detected rooms grows with the number of traces. For the grammar-based map,

the number of detected hallways is the important factor, as on each hallway,

multiple matching rooms are detected. With only a few hints in existing rooms

from the trace-based map, the grammar provides a far more accurate indoor map.

8.3. Energy-Efficient Mapping

To evaluate our energy-efficient mapping approach, we simulate the trace data

acquisition process by replaying traces in random order. To include the WiFi

Position Tracking system (WPT) in our simulation, we first collected a database

of WiFi fingerprints for all hallway intersections and annotated our traces with

real-world RSSI information taken at corresponding positions in the building.

When a WiFi scan is performed, we use the annotated RSSI values to determine

the closest anchor point.

During the replay of each trace, the Scheduler decides when to record trace

data, i.e., enabling the IMU, and when to discard trace data, i.e., disabling the

IMU and relying onWPT. Additionally, we record the energy for position tracking

using the IMU or WPT, respectively, using the energy model from [BPDR14] (cf.

Chapter 7). After the replay of additional traces, we update the trace-based map

from all recorded data and recompute the quality classification (AM/IM) for each
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Figure 8.8.: Average Cumulated Energy Consumption over the number of traces.

area. To improve the runtime of our simulation, we replay batches of 20 traces

before updating the trace-based map and the quality information.

Note that our data set of real-world odometry traces is an extremely challenging

setup for our energy-efficient mapping approach. The traces in the set visit rooms

on only 10 of the 21 hallways. Thus, most areas can never be classified as AM

areas. As these permanent IM areas are located along the bottom and right side

of the building, there is almost always an IM area directly reachable (i.e., without

turning at an intersection), resulting in a high probability pIM for visiting an IM

area and, in turn, a low probability to disable the IMU.

In the following, we analyze the energy efficiency and quality of the resulting

trace-based indoor map for our energy-efficient mapping approach for multiple

quality thresholds T̂ area (cf. Table 8.1). Furthermore, we compare the results

to that of a naive algorithm, where the IMU is always enabled. For each set of

parameters, the simulation was repeated 50 times. Results are averaged over all

simulations.

8.3.1. Evaluation Results

Figure 8.8 shows the average cumulated energy consumption of all participating

devices over the number of traces. We can see that the energy consumption

decreases, as we decrease the quality threshold T̂ area for considering an area

to be accurately mapped. Furthermore, when at least 50 traces are recorded,

the energy usage under our approach is consistently lower than the energy usage
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Figure 8.9.: Number of Floor Plan objects found over the number of traces.

under the naive approach. Using all traces, we can save 15% of energy on average

with T̂ area = 11 %. However, if we consider the number of floor plan objects that

were detected (depicted in Figure 8.9), we see that when setting T̂ area = 11 %, we

miss one room and all five hallways along one side of the building. This typically

affects hallways with the least number of traces passing through them, i.e., those

at the right side and the bottom of the building. If we set T̂ area = 18 %, we find

all floor plan objects while still saving 9% of energy.

In addition, we also analyzed the influence of our energy-efficient approach

on the accuracy of the position and size of rooms. Under the naive approach

using all available traces, rooms are on average shifted by 3.9m from their true

position. Using our energy-efficient approach, this value slightly increases to 4.3m

for T̂ area = 18 % and 4.6m for T̂ area = 11 %. The difference in the recorded size

of rooms is even smaller. Where the error in the width of rooms is 1.8m for the

naive approach, we observe 2.0m and 2.2m for T̂ area = 18 % and T̂ area = 11 %,

respectively. To explain the increase in these errors, we look at the accuracy of

the IMU recovery process. The analysis of Baier et al. showed that the position

error during IMU recovery is less than 3m in 50% of cases (less than 5m in

95% of cases). Thus, the increase in these errors can be explained by the limited

accuracy of the IMU recovery process.
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In summary, note that adjusting the quality threshold T̂ area is not a trade-off

between energy consumption and quality. We can see from Figure 8.9 that the

lower the quality threshold, the more traces are required to find the same number

of floor plan objects. Thus, while setting T̂ area = 18 % achieves the same quality

as the naive approach with a reduced energy consumption, we can reduce the

energy consumption even further when we are willing to accept a longer delay

until all floor plan objects have been found.

8.4. Summary

In this chapter we have demonstrated the effectiveness and efficiency of Map-

Genie. We evaluated MapGenie using 250 real-world odometry traces from four

volunteers. Our evaluations show that the trace-based mapping approach can ac-

curately extract the hallway skeleton and the set of rooms visited by participants,

when the number of observations is sufficiently high. However, despite the size of

our dataset, many rooms in the building have not been visited, leading to blank

spots in the map. Even for visited rooms, the number of observations is often

insufficient, leading to rooms being represented with the wrong size.

Our grammar-based approach significantly improves over these results. Even

when given a small fraction of our data set, the grammar can provide a complete

indoor map that features almost all rooms actually present in the building. When

the amount of input information is increased, the accuracy of the trace-based

map hardly changes while the accuracy of the grammar-based map drastically in-

creases. These results hold even when the grammar is semi-accurate, i.e., does not

perfectly match the observed floor. Thus, grammar-based mapping is a feasible

approach for transferring knowledge about the indoor layout from a well-mapped

building to other buildings with similar floor layouts.

Our evaluations also show the benefit of our energy-efficient mapping approach.

Despite the challenging setup of our dataset where only few areas contain enough

information to be classified as accurately mapped, we can decrease the energy

consumption of MapGenie by up to 15%. Note that the tradeoff for this increase

in efficiency is a longer delay until all floor plan objects are detected, not a

reduced quality of the resulting map. Thus, if the longer delay can be tolerated,

our approach can save energy while still providing an accurate indoor map.
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OpenStreetMap [HW08, opea] has pioneered the construction of maps for outdoor

areas from Public Sensing data on a large scale. By relying on GPS information to

record the movement of participants, the world-wide road network can be mapped

in an opportunistic manner. Recent approaches have adapted this concept to the

construction of indoor floor plans, as we will show in the next section. In the

subsequent section, we analyze how architectural principles are represented and

exploited through the use of grammars and methods for the procedural genera-

tion of buildings and landscapes. Finally, we show what efforts have been made

to analyze the quality of architectural information and to optimize the energy

consumption of mapping approaches.

Indoor Mapping using Public Sensing In contrast to mapping outdoor areas,

indoor mapping approaches can not rely on absolute positioning systems to track

the movement of participants with sufficient accuracy [KBG+10]. The problem

of generating a map of an unknown area in the absence of an absolute positioning

system is known as “Simultaneous Localization And Mapping” (SLAM). In the

area of robotics, Dissanayake et al. proposed a solution where a robot uses radar

sensors to track its movement relative to landmarks in the vicinity [DNC+01].

When the robot encounters more landmarks over time, a Kalman filter is used

to fuse the observations and generate an accurate map containing the relative

locations of encountered landmarks. As this approach is computationally expen-

sive and thus frequently not applicable to real-world problems, other research

improved over this approach by proposing more efficient algorithms, e.g., Fast-

SLAM [MTKW02]. Similar approaches based on other ranged sensors have been

proposed for both robotic and human-operated applications, e.g., using sonar

[TNNL02], laser scanning [FJVF10, BZF12], time-of-flight cameras [MDF+09],

the Microsoft Kinect [ACMR11, NDI+11], or a combination of the above [pro15].

109



9. Related Work

There are also dedicated mapping solutions commercially available, using a com-

bination of multiple cameras and laser scanners to build full 3D indoor models

[Gmb].

Lifting the requirement for specific hardware, i.e., a ranged sensor with depth

information, other approaches aim to extract floor plan information from 2D

images as provided by ordinary smartphone cameras. Wang et al. show how

to extract information about the geometry of a room from a single photo of a

cluttered scene [WGR13]. Peter et al. use a photo of an emergency evacuation

plan to extract a floor plan for indoor positioning using map matching [PHSO10,

PHF11]. Gao et al. use a set of 2D images to extract 3D geometry information

about larger areas [GZY+14]. They assume the use of odometry data to record

the translation and rotation of the image sensor between images.

However, all of the approaches presented so far have the drawback of requiring

the respective sensor to be exposed, e.g., the smartphone may not be covered by

clothing or stored in a backpack, thus severely limiting the time at which a device

can be used for mapping. Shin et al. alleviate this problem by constructing a

map purely from WiFi fingerprints [SC10]. However, they provide a topological

map only, i.e., do not give any geometrical information.

Therefore, other approaches focus on creating the indoor floor plan entirely

from odometry data recorded from inertial sensors, i.e., without any ranged sen-

sors. Such approaches have the drawback of providing only maps of walkable

areas instead of complete architectural features. However, odometry data pro-

vides geometry information and can be recorded regardless of the context of a

participating device, e.g., even when the device is placed in the pocket of a partic-

ipant. Examples include FootSLAM [AR12], SmartSLAM [SCC12], CrowdInside

[AY12], ActionSLAM [HMC+13], CIMloc [ZJTS14], or Walkie-Markie [SCZ+13].

Almost all of these systems require the detection of landmarks, often in the form

of turns or WiFi fingerprints, to combine multiple observations and to limit the

drift error of odometry traces. A notable exception is FootSLAM, which in its

original form corrects and combines traces using a particle filter. However, this

approach is computationally complex and thus infeasible for a larger number of

traces. Therefore, the authors have since improved it using various landmarking

techniques [RAK10, BR11, RFA+13].

Closest to our approach, CIMloc and CrowdInside use DBSCAN for clustering
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hallway segments, which has inspired our algorithm. However, CrowdInside relies

on WiFi fingerprints for clustering rooms, which is not suitable for rooms smaller

than the accuracy of the WiFi fingerprints. CIMloc does not consider rooms at

all.

None of these approaches consider using knowledge about architectural princi-

ples or typical user behavior, such as frequently traveling parallel to an exterior

wall, to improve the quality of odometry traces.

Applications of Grammar in Architectural Modeling Formal grammars and

rule-based procedural modeling are frequently used to generate life-like objects

and structures. Lindenmayer-systems [PL90] were originally proposed for model-

ing the structure of plants and artificially generating life-like plants. They have

later been shown to be a practical tool for generating life-like cities as well. Parish

and Müller [PM01] showed how to generate a street network and building shapes

from information about population density and impassable areas (e.g., water,

mountains). Talton et al. presented a general approach to use Lindenmayer-

systems to generate plants and city layouts whose outlines follow a given shape

[TLL+11]. While their work inspired our grammar-based modeling approach,

their algorithm can only limit the outline of the resulting object, not its internal

structure. This, however, is required to accommodate observations of rooms in a

floor plan in our approach.

Other approaches focus on the layout of individual buildings. Huang et al. use

a generative model to construct building roofs from a set of primitives to explain

the observations of low-resolution cluttered aerial photographs and subsequently

derive the correct slope of roofs and building outlines from these photos [HBS11].

Müller et al. used a grammar-based approach to combine simple building prim-

itives and textures to generate a variety of complex, life-like building shapes

[MWH+06], and to extract relevant textures from photos of building facades

[MZWVG07]. Becker et al. extended this work to augment low-quality observa-

tions of a building facade (or unobserved parts) using information extracted from

parts of the same facade that were observed with high quality [BHF08, BH09],

which again inspired our work.

To model the indoor space of a building, Gröger and Plümer use attributed split

grammars to create a 3D layout for the interior of a given building outline [GP10].
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The indoor layout is set up according to geometrical and semantic constraints,

e.g., so that every generated hallway has a connection to the outside world and

every point in the building is actually reachable. Similar to this, Becker et al.

developed a 2D version of the attributed split grammar [BPF+13]. The goal

of their approach is to enable the automatic construction of the grammar from

observations made through odometry traces. Peter et al. demonstrated how this

grammar can be used to enhance the quality of a floor plan map that is fully

known but possibly inaccurate [PBF13], while we used this grammar in our work

to augment incomplete floor plans.

Optimized Mapping While a lot of effort has been put into making general

Public Sensing system more energy-efficient (cf. Chapter 14), hardly any work

has considered the optimization of mapping approaches. Similar to our approach,

Baier et al. optimized the process of collecting mobility traces using GPS for

the construction of outdoor maps [BWDR11]. They reduce the duty cycle of

the GPS receiver when a device is located on a map element that has already

been observed with high quality. To this end, they propose metrics that derive

the quality of a map element from the joint quality of all observations for that

element. However, their approach requires information about the measurement

accuracy of individual observations, i.e., information about the accuracy of GPS

position fixes, which is not available in approaches using odometry traces.

In the context of SLAM, Dissanayake et al. [DNC+01] also used a notion of

quality to determine when a landmark was observed with sufficient quality to be

used for navigation, or whether additional confirmations are required. However,

their focus is on the quality of known objects. In contrast, our quality model

also considers the question whether additional observations are likely to provide

information about additional objects.

The question of quality of data is also of considerable interest to the Geospatial

Information Systems (GIS) community. For example, ISO 19157 specifies general

data quality topics and guidelines for evaluating quality metrics [ISO13]. Filip-

povska, for example, has developed actual metrics to determine the quality of a

simplified building outline [Fil12]. However, such approaches rely on knowing the

true shape of the object in question and are thus not applicable to the SLAM

setting, where no ground truth information is available.
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10. The DrOPS System for

Optimized Environmental

Public Sensing

Environmental data acquisition using Public Sensing systems gives experts and

common citizens access to a wealth of data about their surroundings. This allows

for the creation of novel, data-intensive applications, as well as increased environ-

mental awareness. To facilitate the development of such PS systems, we present

DrOPS (model-Dr iven Optimization of Public Sensing systems), a flexible sys-

tem for the efficient collection of spatially distributed environmental data using

participating smartphones. DrOPS offers a mobility-independent application in-

terface, centered around the concept of a virtual sensor, that lets applications use

the system as a drop-in replacement for a static sensor network. Furthermore, we

show how DrOPS aims to reduce the effort of sensor data acquisition by taking

application-defined quality bounds into account. This reduces the energy con-

sumption on participating devices and thus avoids driving participants from the

system.

The purpose of this chapter is to give an overview of the DrOPS system. The

first section defines our application interface, the Sensor Network Abstraction.

Next we present the architecture of the DrOPS system and detail its compo-

nents in relation to the overall system architecture in Section 10.2. Finally, in

Section 10.3, we show a basic task execution algorithm for Request-Driven Exe-

cution as a basic implementation of our Sensor Network Abstraction, which we

improve upon in the following chapters. To this end, we first present the local

optimization in Chapter 11, where nearby devices coordinate to locally achieve

k -coverage, i.e., to avoid taking and transmitting redundant readings. Chap-

ter 12 details our model-driven approach for the global optimization, where we
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exploit correlations between observed values to take and transmit only the most

interesting readings, and its extensions to deal with smaller sets of participating

devices. To demonstrate the performance of DrOPS, we discuss evaluation results

from both a small-scale real-world testbed and a large-scale simulated setting in

Chapter 13, before Chapter 14 concludes with a review of related work.

10.1. Sensor Network Abstraction

Previously, static sensor networks were the method of choice for large-scale sensor

data acquisition. Such sensor networks are specially crafted for each application

by experts, both from the application domain and from the sensor network op-

eration domain. Application experts define requirements on what data should

ideally be collected by specifying Points of Interest (POIs), data types and sam-

pling rates. Operations experts then determine a placement of sensors so that

the system best collects data from the requested POIs while ensuring that the

system can operate, e.g., by deploying additional hardware to ensure the availabil-

ity of communication channels among the sensors, or by adapting the collection

methodology to maximize the battery lifetime of wireless sensors.

In Public Sensing, instead of deploying fixed sensors, we query for data from

participating mobile devices. Due to the high mobility of mobile devices, manual

selection of devices to gather data at a fixed set of POIs is not feasible, as we

cannot expect applications to have intimate knowledge on the current state of the

Public Sensing system, e.g., where mobile devices are located or where they will

be moving next. Thus, the system must automatically select devices, constantly

adapting to device mobility.

We tackle these problems in our Sensor Network Abstraction. This abstraction

is based on the concept of Virtual Sensors as a mobility-independent data centric

abstraction to request readings from a Public Sensing system. Using Virtual

Sensors, applications can specify queries as the deployment of a static sensor

network. In the following, we first present a formal definition of Virtual Sensors,

before we define our query model that mimics the specification for the deployment

of a static sensor network.
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10.1.1. Virtual Sensor

In DrOPS, a Virtual Sensor (v-sensor for short) represents a Point of Interest,

where data readings should be obtained. More formally, it is defined as follows.

A v-sensor v is associated with a type of reading v.type, e.g., temperature or

light intensity, a point in space −→v , and a coverage area v.area defined relative to
−→v . While −→v indicates the location for which data is requested, v.area specifies a

wider area surrounding −→v , where data readings for v may be taken. The rationale

behind this is twofold. On the one hand, it is unlikely that a participating device

will pass the exact location of −→v . Therefore, we allow readings to be taken at a

distance. On the other hand, observations from environmental phenomena may be

location-dependent, i.e., we assume that for two readings a, b taken some distance

δ(−→a ,
−→
b ) > 0 apart, their difference is limited by an (unknown) monotonically

increasing error function of the distance: |a − b| ≤ e(δ(−→a ,
−→
b )). For example,

given a sound source and a device measuring the sound volume, the recorded

volume decreases when the distance between source and device increases. The

same holds true for every phenomenon that is subject to a diffusion process, such

as the spatially distributed environmental phenomena we are focusing on in this

work, e.g., air pollution or temperature. Therefore, applications may use v.area to

bound the distance from −→v at which a reading is taken, thus ensuring that every

device in v.area can register any phenomenon occurring in v.area with bounded

error. Note that despite the definition of e(δ(−→a ,
−→
b )), we do not require v.area

to be of circular shape. Thus, applications may use domain knowledge beyond

e(δ(−→a ,
−→
b )) to further limit the area where data readings may be taken.

V-sensors provide measurements called virtual readings, which can either be

effective readings or inferred readings. An effective reading r is taken by a partic-

ipating device at position −→r ∈ v.area, whereas an inferred reading is computed

using a model of the observed phenomenon without interaction with any partic-

ipating device. If there is at least one participating device located in v.area to

capture readings for v, we say that v is available. Otherwise, v is unavailable.

10.1.2. Query Model

Using the previous definition of v-sensors, applications can now request data read-

ings from the PS systems by formulating a query Q = (V, p,QoS), consisting of
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a set of v-sensors Q.V = {v1, v2, . . . } denoting where data should be obtained

for this query, a sampling period Q.p defining the interval at which data read-

ings for all v-sensors in Q.V should be provided, and a set of quality parameters

Q.QoS = {q1, q2, . . . } that control the operation of our algorithms. For exam-

ple, quality parameter k ∈ Q.QoS (Q.QoS.k for short) configures the system for

k-coverage: The system should report Q.QoS.k independent readings r1, . . . , rk

for every v-sensor vi ∈ Q.V in every sampling period. Additional quality pa-

rameters depend on the algorithm being used and will thus be presented in the

corresponding sections.

Note that we place two restrictions on the coverage areas vi.area over the def-

inition given in the previous section. First, our local optimization requires the

diameter of the coverage area to be less than the maximum wireless communica-

tion range: ∀v ∈ Q.V ∀−→a ,
−→
b ∈ v.area : δ(−→a ,

−→
b ) ≤ ad-hoc communication range

(cf. Section 3.2). This enables the use of ad-hoc communication between all

devices in the same coverage area. Second, all of our optimization algorithms re-

quire the coverage areas of all v ∈ Q.V to be pairwise disjoint to ensure a unique

mapping of participating devices and effective readings to v-sensors, regardless of

the types of reading. While our local optimization may be extended to support

overlapping coverage areas, e.g., by running separate instances of the algorithm

for every covered v-sensor, disjoint coverage areas are a necessary prerequisite

for the global optimization. If the same effective reading is assigned to multi-

ple v-sensors, the global optimization will incorrectly detect a strong correlation

between these v-sensors and may then provide unacceptably bad data.

No restrictions are placed on the shape of the coverage areas. For example,

applications may specify circular areas with a fixed diameter δmax to limit the

total distance (−→π ∈ vi.area iff δ(−→π ,−→v ) ≤ δmax), or use a voroni decomposition

of the observed area if no limit should be imposed (−→π ∈ vi.area iff ∀vj ∈ Q.V, i 6=
j : δ(−→π ,−→vi ) < δ(−→π ,−→vj )).

10.2. DrOPS System Overview

In this section we give an overview of the components of the DrOPS system

(see Figure 10.1) that implement our Sensor Network Abstraction. Applications

request data from the DrOPS system by posting a query Q, specifying the deploy-
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Figure 10.1.: Overview of the DrOPS Architecture

ment of a static sensor network, i.e., specifying a set of Points of Interest (POIs),

where data should be obtained. The Request-Driven Execution component re-

ceives these queries and performs a temporal decomposition, generating a set of

tasks for each query. Tasks represent a one-shot request for data readings from

participating devices. Due to the constant mobility of participating devices, we

have to reconsider which devices to select for taking readings for each query, or,

in the case of periodic queries, even for each period. Thus, for periodic queries,

a one-shot sensing task is generated in each period. For one-shot queries, we

consider them to be periodic queries that are canceled after the first period has

expired. Tasks are then forwarded to the V-Sensor Selection component. Based

on available information about data received for current and past queries encoded

in a data model, the V-Sensor Selection splits the set of v-sensors requested in the

task into subsets for effective readings and inferred readings. It then temporarily

modifies the task to remove the subset of v-sensors for inferred readings. The

modified task, containing only requests for effective readings, is then forwarded

to the Task Dissemination component for distribution to participating devices.

Inferred readings will be provided later by the Data Collection component.

When a device receives a task, it uses its Distributed Coordination compo-

nent to determine whether it should take an effective reading. If so, the Sensor

component samples the respective sensor and forwards the reading to the Data

Collection component. The Data Collection component maintains a database of

past and current effective data readings. Using current effective readings and the

data model used by the V-Sensor Selection component, it computes the values of

the inferred readings that were removed from the task by the V-Sensor Selection
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Figure 10.2.: Overview of the Basic Task Execution Algorithm

component, and adds them back to the task. In addition, inferred readings

are annotated with additional information to inform an application about their

quality. Furthermore, it constantly informs the V-Sensor Selection component

about the progress of the collection of effective readings, potentially prompting

the Model-Driven Optimization component to select additional effective readings

to successfully complete the data acquisition task in the current period. At the

end of each period, all readings are forwarded to the Model Management compo-

nent. The Model Management component verifies whether the data model used

by the Model-Driven Optimization component is still accurate, i.e., whether the

inferred readings match the quality bound, or whether the model must be up-

dated. Finally, effective and inferred readings are integrated into a unified task

result RQ and returned it to the application.

10.3. Basic Task Execution Algorithm

Next, we present the Basic Task Execution Algorithm for Request-Driven Execu-

tion as a simple implementation of our Sensor Network Abstraction. The Basic

Task Execution is used to illustrate the basic operation of DrOPS and will later

serve as a baseline for comparing the performance of our optimized approaches.
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When a query Q = (V, p,QoS) is submitted to the gateway, the Request-Driven

Execution component performs a temporal decomposition of the query by gener-

ating a new task T = (V,QoS) every p seconds at the beginning of each sampling

period. Per our requirement on mobility-independent operation, the gateway ser-

vice does not track the exact position of participating devices (cf. Section 3.1).

Thus, it does not know which devices are close to a v-sensor. Therefore, the Task

Dissemination component distributes each T to all participating devices located

in a partition service area that intersects with the coverage area of any v-sensor

in T.V . This process is illustrated in Figure 10.2.

On receiving a task, the Distributed Coordination component of a device n

samples the positioning system and determines whether n is located within the

coverage area of any v-sensor, i.e., ∃v ∈ T.V : −→n sens ∈ v.area. In this case,

it takes a reading r of type v.type and returns (v, r,−→r ), where −→r = −→n sens, to

the Data Collection component on the gateway. Otherwise, it discards the task.

Note that devices execute tasks instantly, thus we do not introduce any delay in

waiting for device positions to improve. In case there were more than T.QoS.k

readings taken for v, the Data Collection component selects the k readings ri with

minimum Euclidean distance δ(
−→
ri ,
−→v ). The Data Collection component stores all

selected readings together with the starting time of the corresponding sampling

period. At the end of each sampling period, the collected effective readings are

returned to the application as result RQ. Note that with this basic algorithm

readings are returned only for available v-sensors.

In the following chapters, we extend this basic sensing algorithm to account

for v-sensors with a surplus number of participating devices in their vicinity,

to minimize the number of necessary effective readings, and to compensate for

unavailable v-sensors.
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In this chapter we present extensions to the Distributed Coordination compo-

nent that implement the local optimization. While in the previous chapter the

Distributed Coordination component was simply responsible for determining the

proximity to a v-sensor, it now has the additional goal of reducing the effort for

taking effective readings at a v-sensor. This is achieved by adjusting the number

of readings taken for the v-sensor, i.e., selecting a (sub)set of participating devices

to take and transmit effective data readings.

While selecting the subset of devices purely at random would provide the de-

sired increase in efficiency, it would also decrease the quality of the data returned

to the application, e.g., readings at a greater distance may be chosen. To quantify

the quality and thus guide the selection of devices, we identified a set of qual-

ity metrics, i.e., coverage and distance of readings, as presented in the following

section. Based on these quality metrics, we formulate the problem to be solved

by our algorithms in Section 11.2. Finally, Section 11.3 presents our distributed

algorithms for device coordination, that aim to optimize the selection of devices

according to our quality metrics.

11.1. Quality Metrics

Intuitively speaking, a query result is of high quality if the data gives a sufficiently

complete and accurate picture of the real world, e.g., no phenomenon was missed

and measurements carry an error that is acceptable for the application. Whether

or not given data can be considered complete and accurate is dependent on the

application and thus out of the scope of the PS system. We have, however,

identified two quality metrics that will allow a user to make this determination:

Task coverage and distance of readings.

Task coverage is defined as the fraction of v-sensors for which k-coverage was
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achieved, i.e., the fraction of v-sensors for which at least k readings were obtained.

The environmental readings we are focusing on exhibit a spatial variance. Thus, a

user can determine from the task coverage value whether any phenomenon might

have been missed or the data is sufficient. When Q.V was designed appropriately

to observe the phenomenon of interest, i.e., a complete set of readings for all

v-sensors will contain all required information but no redundant information,

maximizing the task coverage leads to an increased chance of capturing more

properties of the observed variable and, therefore, to a more meaningful query

result as well.

The distance of a single reading is defined as δ(−→r true,−→v ), the distance of the

true position −→r true where a reading was taken and the v-sensor −→v the reading

is assigned to. As we assume that a reading may deviate from the true value at
−→v if δ(−→r true,−→v ) > 0, knowing δ(−→r true,−→v ) indicates to the user the accuracy of

the query result, i.e., how trustworthy the readings are. To determine the overall

quality of a query result, the user is presented with the full set of reading distances

and can then map these to a quality value according to his own requirements.

However, as we know that the deviation is bounded by a monotonically increasing

error function e, we can conclude that the quality of a query result increases as

the single reading distances decrease.

11.2. Problem Description

In the local optimization, the basic problem that we solve is that given a task

T , for each v-sensor v ∈ T.V , we want to return T.QoS.k readings ri, i ∈
{1, . . . , T.QoS.k} at a location −→ri true. To provide a high quality result, we should

minimize the distance δ(−→v ,−→ri true) for each v and maximize the task coverage.

With perfectly accurate device positions, this goal is easy to achieve. However,

we have to deal with position errors.

In addition, we also consider the efficiency of query execution. To this end, we

design our algorithms for taking as few readings as possible, since every additional

(redundant) reading increases the energy consumption on each device (reading

the sensor, potentially processing the reading) and increases network load, as

each reading has to be transmitted to the gateway.
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Table 11.1.: Taxonomy of selection algorithms
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Figure 11.1.: Devices in the vicinity of v-sensors form groups. Dots are partici-
pating devices; crosses are v-sensors (v1, v2).

11.3. Distributed Algorithms for Device

Coordination

We solve the problem outlined in the previous section using a set of distributed

algorithms for device coordination. These algorithms are used by the Distributed

Coordination components on participating devices to locally select a subset of

devices for taking effective readings.

In the following section we present independent selection algorithms, where

devices use only local knowledge to decide on whether they should take a sen-

sor reading. Coordinated algorithms, where devices communicate to determine

which devices should take sensor readings, are presented in the next section. A

taxonomy of our algorithms is depicted in Table 11.1.
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Algorithm 11.1 Independent Nearest-Neighbor Candidate (NNC) selection al-
gorithm. mink denotes the k’th smallest value from the set.
Require: Task T = (V , QoS)
−→r sens ← GPS fix
v ← v ∈ V where −→r sens ∈ v.area
distance← δ(−→v ,−→r sens)
broadcast(v, distance)

∆← {distance}
repeat

receiveBroadcast(v′, distance′)

if v′ = v then
∆← ∆ ∪ {distance′}

end if
until timeout t0 is reached
δlimit ← minQoS.k(∆) + σ

if distance ≤ δlimit then
vNNC ← {d|d ∈ ∆ ∧ d ≤ δlimit}
psensing = QoS.k

|vNNC |
return read(v.type) with probability psensing

end if

11.3.1. Independent Selection Algorithms

We present two independent selection algorithms where devices first form groups

according to their location in a v-sensor area (see Figure 11.1), and then inde-

pendently decide whether or not they will take a sensor reading. In all of our

algorithms, the devices in one group have to be able to communicate directly

using wireless communication, hence the requirement on the maximum diameter

for the coverage areas of v-sensors in our query model (see Section 10.1.2).

The basic idea of the first algorithm, Nearest-Neighbor Candidates (NNC), is

to probabilistically select devices from a set of candidate devices vNNC for each v-

sensor v. A device is included in vNNC if it is located in v.area and its distance to
−→v is less than δlimit = δ(−→v ,

−→
nksens)+σ, where

−→
nksens is the the k’th closest sensed

position to −→v of any device covering v and σ denotes the standard deviation of

the sensed position as indicated by the positioning system. Each device in vNNC
computes a sensing probability psensing = QoS.k

|vNNC | and records a sensor reading

with probability psensing. In detail, NNC works as follows (cf. Algorithm 11.1).

Upon receiving a task T , a device determines its sensed position −→r sens and
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Algorithm 11.2 Deterministic Nearest-Neighbor (DNN) selection algorithm.
mink denotes the k’th smallest value from the set.
Require: Task T = (V , QoS)
−→r sens ← GPS fix
v ← v ∈ V where −→r sens ∈ v.area
distance← δ(−→v ,−→r sens)
broadcast(v, distance)

∆← {distance}
repeat

receiveBroadcast(v′, distance′)

if v′ = v then
∆← ∆ ∪ {distance′}

end if
until timeout t0 is reached
δlimit = minQoS.k(∆)

if distance ≤ δlimit ∨ |∆| ≤ QoS.k then
return read(v.type)

end if

finds the v-sensor v ∈ T.V where −→r sens ∈ v.area. If no such v exists, the device

discards the task. Otherwise it broadcasts the identity of v ∈ V and its distance

to v, δ(−→v ,−→r sens) to other devices. To learn about other devices in vNNC , every

device collects a set of broadcasts ∆ = {(v′, δ(
−→
v′ ,−→r sens))|v′ = v} from other

devices for a duration of t0 from the reception of the task. t0 is a system parameter

whose value is empirically determined. In our evaluations, we use a value of 3 s

(cf. Section 13.1.1). Next, each device locally computes δlimit from the received

distance values as given above and uses it to determine its own membership in

vNNC as well as the number of members |vNNC | = |{δ ∈ ∆|δ ≤ δlimit}|. Note

that vNNC itself is never computed, as each device is only interested in the number

of (other) members of vNNC , not their identity.

For σ = 0m, vNNC includes exactly the k nearest neighbors of v. For larger

values of σ, vNNC grows to increase the probability that the true nearest neighbors

are included, even if other devices erroneously report closer positions. Note that

as large errors in positioning are less likely than small errors, it is unlikely that a

device at a very long distance is included in vNNC , even when σ grows.

A major problem of this approach is that there is a significant probability

p∅ = (1 − QoS.k
|vNNC |)

|vNNC | that no device will take a sensor reading, e.g., for k = 1

127



11. Local Optimization

and |vNNC | = 3, p∅ ≈ 30%. Thus, the task coverage is reduced. The reason for

this is that the decision for taking a reading is statistically independent on all

devices. While we could reduce p∅ by increasing psensing, this would also increase

the amount of redundant sensor readings taken.

To alleviate this problem, we introduce a deterministic nearest-neighbor selec-

tion algorithm called DNN. For DNN we choose the devices that report the k

smallest distances δ(−→v ,−→r sens) to record a sensor reading instead of computing

a random selection. In detail, DNN works as follows (cf. Algorithm 11.2).

Upon receiving a task, an exchange of distance information identical to NNC

is performed. After the timeout t0 has passed, each devices independently de-

termines δlimit as the k’th smallest distance of any device to −→v . If the device is

closer to −→v than δlimit, it records a sensor reading.

By directly using the reported position of devices, DNN is subject to the same

influence of location uncertainty as the basic approach. However, as shown by

our evaluations (cf. Figure 13.2), it provides a better task coverage than NNC.

11.3.2. Coordinated Selection Algorithms

Another approach to reduce p∅ is to remove the statistical independence of the

sensor selection. By introducing coordination amongst the devices, we ensure

that at least k devices in a group will take a reading.

In the Coordinated Nearest-Neighbor Candidate (CNNC) selection algorithm,

devices first perform an exchange of distance information identical to NNC to

compute δlimit (cf. Algorithm 11.3). Instead of taking a reading at a fixed prob-

ability, every nearest-neighbor candidate now chooses a random backoff time in

the interval [0, tCNNC ], where tCNNC is a system parameter whose value is em-

pirically determined. In our evaluations we used a value of 1 s (cf. Section 13.1.1).

When the backoff timer expires, a device takes a reading and broadcasts a sens-

ing notification message (SNM) containing the identity of v. Upon receiving the

k’th SNM for v, a device aborts the backoff timer and discards the task.

We further introduce a coordinated variant of DNN, Distance-Coordinated

Nearest-Neighbor selection (DCNN). Similar to CNNC, DCNN uses a backoff

timer t and SNMs to decide which devices will take a reading. However, in

DCNN t is chosen based on δ(−→v ,−→r sens). Therefore, we do not need to exchange
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Algorithm 11.3 Coordinated Nearest-Neighbor Candidate (CNNC) selection
algorithm. mink denotes the k’th smallest value from the set.
Require: Task T = (V , QoS)
−→r sens ← GPS fix
v ← v ∈ V where −→r sens ∈ v.area
distance← δ(−→v ,−→r sens)
broadcast(v, distance)

∆← {distance}
repeat

receiveBroadcast(v′, distance′)

if v′ = v then
∆← ∆ ∪ {distance′}

end if
until timeout t0 is reached
δlimit ← minQoS.k(∆) + σ

if distance ≤ δlimit then
t← uniform(0, tCNNC)

count← 0

repeat
receiveBroadcast(snm(v′))

if v′ = v then
count← count+ 1

if count = QoS.k then
Abort timeout and discard task

end if
end if

until timeout t is reached
broadcast(snm(v)) and return read(v.type)

end if

information about other devices in the group prior to taking a reading. In detail,

DCNN works as follows (cf. Algorithm 11.4).

First, a device determines its sensed position −→r sens and computes the v-sensor

v ∈ V where −→r sens ∈ v.area. If no such v exists, the task is discarded. Next,

it finds δmax as the maximum distance from −→v to any point in v.area. The

backoff timer t is then set to a value in [0, tDCNN ] proportional to δ(−→v ,−→r sens)
δmax

, i.e.,

proportional to the distance of the device from −→v . tDCNN is a system parameter

whose value is determined empirically. In our evaluations we used a value of 0.5 s

(cf. Section 13.1.1). When the backoff timer expires, the device takes a reading
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Algorithm 11.4 Distance-Coordinated Nearest-Neighbor (DCNN) selection al-
gorithm
Require: Task T = (V , QoS)
−→r sens ← GPS fix
v ← v ∈ V where −→r sens ∈ v.area
distance← δ(−→v ,−→r sens)
δmax ← max({δ(−→v ,−→x )|∀x ∈ v.area})
t← distance

δmax
· tDCNN

count← 0

repeat
receiveBroadcast(snm(v′))

if v′ = v then
count← count+ 1

if count = QoS.k then
Abort timeout and discard task

end if
end if

until timeout t is reached
broadcast(snm(v)) and return read(v.type)

and broadcasts an SNM containing the identity of v. Upon receiving the k’th

SNM for v, the device aborts the backoff timer and discards the task.

11.4. Summary

In this chapter we presented our local optimization approach to improve the

energy efficiency of PS systems for environmental data acquisition. The idea of

our approach is to minimize the number of readings per v-sensor: When a query

has been configured for k-coverage and there are more than k devices present in

the coverage area of a v-sensor, only k of these devices should take a reading.

To quantify the quality of the obtained data and thus guide the selection of

devices, we identified a set of quality metrics : task coverage and distance of

readings. We then presented a range of selection algorithms that optimize the

selection of devices for these metrics: Two independent algorithms, where devices

use local knowledge to decide whether to take a reading, and two coordinated

algorithms, where devices communicate to determine which devices should take

sensor readings.

130



12. Global Optimization

In this chapter we present our approach for the model-driven global optimization.

In the global optimization we exploit correlations between observed values in

spatially distributed environmental phenomena. On the one hand, we can improve

the task coverage of the result by computing inferred readings for unavailable v-

sensors. On the other hand, this allows us to increase the efficiency of the data

acquisition process by reducing the number of effective readings taken.

In detail, our goal is to efficiently provide sensor data on spatially distributed

environmental phenomena according to an application-defined quality bound

Q.QoS, independent of the current distribution of devices in the observed area.

We want to minimize the number of requested effective readings while at the

same time compensating for unavailable v-sensors and maximizing the number of

v-sensors |V ′| for which the quality constraints are fulfilled. To this end, DrOPS

learns and maintains a model of the phenomenon observed in a query Q to opti-

mize the data acquisition process.

We begin with a brief discussion of how to use a data model to optimize the

data acquisition process in principle in the following section. In Section 12.2 we

apply this concept to the Public Sensing setting, before we detail the algorithms

used by our system in Sections 12.3 and 12.4.

12.1. Model-Driven Optimization

In the past, many approaches for modeling spatially distributed environmental

phenomena have been proposed (cf. [Cre93, Slu08, MLR13]), the most promis-

ing of which are inverse distance weighing (IDW), Markov random fields (MRF),

and multivariate Gaussian distributions (MGD). Next, we will discuss these ap-

proaches to identify which approach is most suitable for our global optimization.

In IDW an inferred reading is computed as a weighed sum of effective read-
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ings from surrounding v-sensors. The weights are defined by a monotonically

decreasing function of the distance of the corresponding v-sensors. Thus, IDW

assumes that the distance of a pair of v-sensors is an indication of the similarity

of their readings. However, consider a placement of light sensors on buildings of

a university campus. Sensors placed on walls facing the sun will report similar

values and sensors placed on walls facing away from the sun will report similar

values, i.e., sensors in each group show a high correlation. Computing an inferred

reading from only nearby effective readings ignores other available information,

e.g., from v-sensors in the same group, that could improve the accuracy.

MRF and MGD do not make the assumption that only effective readings taken

nearby are relevant to the value of an inferred reading. In MRF readings for a

v-sensor v are modeled as a probability distribution that is dependent on the

current values at v and its immediate neighbors. By iteratively resampling the

reading of each v-sensor from the corresponding probability distribution, knowl-

edge about all effective readings is propagated to all v-sensors. In an MGD a set

of v-sensors v ∈ V is modeled as a set of correlated one-dimensional Gaussian

distributions, stored as a mean vector and a covariance matrix. Inferred readings

are again computed by a weighed sum. However, in contrast to IDW, the weights

are defined by the actual correlation of observed values rather than an indirect

criterion such as spatial distance.

Sluiter [Slu08] and Mendez et al. [MLR13] have compared the performance

of these modeling techniques. They found that they all provide usable inferred

readings when effective readings for most v-sensors are available. However, when

only few effective readings are available, MGD provided the most accurate inferred

readings. As our goal is to minimize the number of effective readings, we will focus

on using MGD to model the observed phenomena. Note that capturing other

phenomena, e.g., discrete environmental phenomena such as individual events

(e.g., lightning strikes), may require a different model.

In our system, an MGD model is used in two ways: Inferring missing values

from a set of incomplete observations and selecting the best set of v-sensors to

observe. We will first present the principle of how to apply MGDs to infer readings

and select interesting effective readings in more detail, before we show how to use

these principles in a PS system. For more in-depth information about the use of

MGDs, we refer to [Cre93, GKS05].
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12.1.1. Inference of Readings for Unavailable V-Sensors

Given a modelMGDV over a set V of v-sensors and a vector of effective readings

PVeff
for a subset of v-sensors v ∈ Veff ⊂ V , we can compute inferred values for

all v-sensors u ∈ Vinf = V \Veff . To present the computation of inferred readings,

we will use the notation defined by Guestrin et al. [GKS05] as follows.

µV denotes the mean vector of MGDV . The entries of µV are the mean values

of the individual Gaussian distributions for each v-sensor vi ∈ V , denoted as µvi ,

i.e., µV = (µv1 , µv2 , . . . , µvn)T . For V ′ ⊂ V , µV ′ denotes a projection of µV .

Similarly, ΣV,V denotes the covariance matrix of MGDV , where individual

entries Σu,w denote the covariance value of v-sensors u and w. Entries on the

diagonal denote the variance of the individual Gaussian distributions: ∀v ∈ V :

Σv,v = σ2
v . Furthermore, when U,W ⊆ V, u ∈ U,w ∈ W , then ΣU,W denotes a

projection of ΣV,V . Σu,W and ΣU,w denote vectors of covariance values between

u and all v-sensors w ∈ W or vice-versa.

Using these definitions, we now show how an MGD can be used to compute

inferred readings. Given PVeff
and a v-sensor u ∈ Vinf , the inference process

derives a (univariate) Gaussian distribution for u from the Gaussian distribution

for u in the MGD as follows:

µu|PVeff
= µu + Σu,Veff

Σ−1
Veff ,Veff

(PVeff
− µVeff

) (12.1)

σ2
u|Veff

= Σu,u − Σu,Veff
Σ−1
Veff ,Veff

ΣVeff ,u (12.2)

Here µu|PVeff
refers to the inferred mean value (the inferred reading) for v-

sensor u given the input of effective readings PVeff
for v-sensors in Veff . µu|PVeff

is

computed as a linear combination of the mean value stored for u and the deviation

of effective readings PVeff
from their respective stored mean values, weighed by a

function of their covariance with u. σ2
u|Veff

denotes the variance of the inferred

distribution and thus indicates whether the observations at Veff were a good

choice for inferring µu|PVeff
, i.e., whether the inferred value is likely to be within

the user-specified tolerance. Note that µu|Veff
is independent of the actual values

of effective readings but only depends on the identity of v-sensors in Veff .

In the following, we will refer to the inference process as function Infer(MGD,

P), where P denotes available effective readings.
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Algorithm 12.1 Original Greedy algorithm by Guestrin et al.
Require: Task T = (V,QoS), Model MGDV = (MV ,ΣV,V ), Budget of effective

readings b.
Veff ← ∅

2: Vinf ← V

while |Veff | < b do
4: Imax ← 0

w ← ⊥
6: for all u ∈ V \ Veff do

V ′eff ← Veff ∪ {u}
8: V ′inf ← Vinf \ {u}

Iu ←
Σu,u−Σu,V ′

eff
ΣV ′

eff
,V ′

eff
ΣV ′

eff
,u

Σu,u−Σu,V ′
inf

ΣV ′
inf

,V ′
inf

ΣV ′
inf

,u

10: if Iu > Imax then
w ← u

12: Imax ← Iu
end if

14: end for
Veff ← Veff ∪ {w}

16: Vinf ← Vinf \ {w}
end while

18: return Veff

12.1.2. Near-Optimal V-Sensor Selection

Given a budget of b < |V | v-sensors to observe, the goal is to select effective

readings Veff ⊂ V, |Veff | = b so that the resulting inferred readings for Vinf =

V \Veff are most accurate. To identify the best Vinf , we use a mutual information

criterion. The mutual informationMI(Vinf , Veff) of two sets of v-sensors (Vinf and

Veff , respectively) is defined as the difference in the Shannon entropy of inferred

readings for v-sensors in Vinf when given no information (denoted as H(Vinf))

and when given full knowledge about current sensor readings for v-sensors in Veff

(denoted as H(Vinf |Veff)):

MI(Vinf , Veff) = H(Vinf)−H(Vinf |Veff)

By selecting Veff so that MI(Vinf , Veff) is maximized, we obtain effective read-

ings that carry the most information about values at all other v-sensors and will

thus allow us to compute the most accurate inferred readings. Guestrin et al.
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showed that finding Veff is an NP hard problem, but can be solved using a near-

optimal heuristic [GKS05]. To this end, they proposed the Greedy algorithm.

As shown in Algorithm 12.1, Greedy partitions V into two subsets Veff and

Vinf . Veff contains all v-sensors for which effective readings should be taken and

Vinf denotes all v-sensors for which readings are computed using Infer. Par-

titioning is performed iteratively as follows. Initially, Vinf = V and Veff = ∅.
In each iteration the v-sensor v that provides the maximum increase in mutual

information is moved to Veff , i.e., the v-sensor that reduces the uncertainty about

the values at v-sensors in Vinf \ {v} the most. Note that the selection only de-

pends on the properties of the model, not on current observations. For a detailed

discussion of this algorithm and the mutual information criterion, see [GKS05].

12.2. Model-Driven Global Optimization in

Public Sensing

Overall, to apply model-driven optimizations as presented in the previous section

to the PS setting, we face three challenges. The first challenge is that given a

model of the observed phenomenon, we must adapt the selection of effective read-

ings so that Veff is selected according to the quality bounds specified in T.QoS

and independent of the current distribution of mobile devices. Second, the result

RQ returned to applications must be extended to include inferred readings com-

puted using the model. Third, we must extend DrOPS to find the correct model

to be used for inference and the selection of effective readings.

Existing approaches for optimizing data acquisition, e.g., [DGM+04, GKS05]

target long-running queries and use either expert knowledge or a pilot deploy-

ment, typically lasting at least several days, to create a model that is accurate at

all times. For instance, consider modeling temperatures which rise in the morn-

ing and drop in the afternoon. Training data from several days is required for an

accurate model. However, to provide significant energy savings in PS, any opti-

mization technique may take at most a fraction of the recharge cycle duration,

which is typically one or two days, to set up. Furthermore, PS systems are built

for heterogeneous types of queries with a-priori unknown duration, spontaneously

issued by applications. For example, people commuting to their workplace may be
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interested in the microclimate along potential routes to avoid bad weather condi-

tions. Such queries, each defining an individual set of v-sensors, would be posted

just before the start of a commute and canceled shortly thereafter. Clearly, main-

taining models proactively for all possible types of queries is counter-productive

if the query is never issued. Therefore, the basic idea of our approach is to use an

online learning algorithm (OLA) to derive a model of the observed phenomenon

on demand that is sufficiently accurate for the near future.

To tackle the challenges outlined above, we divide the runtime of a query

into basic operation phases and into optimized operation phases. During a basic

operation phase, queries are executed using the basic task execution algorithm.

The V-Sensor Selection component outputs Veff = V and the Data Collection

component returns effective readings for available v-sensors only. In parallel, the

Model Management component executes OLA to create a new MGD. As soon as

a new model is output by OLA, the basic operation phase ends.

After the basic operation phase, we switch to the optimized operation phase,

where the V-Sensor Selection component uses variants of the Greedy algorithm

to modify tasks for a reduced number of effective readings Veff ⊆ V . Fur-

thermore, we extend the Data Collection component to compute inferred read-

ings at the end of each task execution. Using Infer, readings for v-sensors in

V +
inf = Vinf ∪ unavailable v-sensors in Veff are inferred locally from the effective

readings reported by mobile devices. Thus, in contrast to the Basic Task Execu-

tion Algorithm, virtual readings for all v-sensors are provided by the system. We

output the inferred mean values µv|P
V \V +

inf

for each v ∈ V +
inf as inferred readings.

All inferred readings are annotated with their inferred variance σ2
u|V \V +

inf

to inform

applications about the quality of the result. Since the model might not reflect

changes happening over a longer time period—such as the temperature profile in

the previous example—, the Model Management component continuously mon-

itors model accuracy using an online model validity check algorithm (MOCHA).

When MOCHA considers the MGD to be inaccurate, we switch to the next basic

operation phase.

The operation of the V-Sensor Selection component during the optimized op-

eration phase is detailed in Section 12.3, followed by the presentation of our OLA

and MOCHA algorithms in Section 12.4. The modification of the Data Collection

component is straight-forward and thus not discussed further.

136



12.3. V-Sensor Selection Component

12.3. V-Sensor Selection Component

In this section we present the operation of the V-Sensor Selection component (cf.

Figure 10.1). During the basic operation phase, tasks are passed on to the Task

Dissemination component without further modification. Therefore, we will only

discus the operation during the optimized operation phase.

We begin by presenting our ModifiedGreedy algorithm for quality-based v-

sensor selection in PS. In the subsequent section, we extend our algorithm to

AdaptiveGreedy. AdaptiveGreedy takes the availability of v-sensors into

account and thus enables operation in a sparsely populated area where many

interesting v-sensors may be unavailable.

12.3.1. Quality-based V-Sensor Selection

To optimize the operation of our system, we strive to minimize the size of Veff

while ensuring a data quality that matches the application-defined quality bound,

i.e., limiting σ2
u|Veff

to an application-defined threshold Q.QoS.σ2
max for every

u ∈ Vinf . The rationale behind this is that for sets of strongly correlated v-

sensors, effective readings for a small subset are sufficient to yield good quality

inferred readings for all v-sensors. However, Greedy selects a fixed number of

v-sensors and can not adapt to a given quality bound (cf. Algorithm 12.1). Thus,

we extend it to our ModifiedGreedy algorithm by changing the termination

criterion (line 3). In our ModifiedGreedy algorithm, v-sensors are added to

Veff until ∀u ∈ Vinf : σ2
u|Veff

≤ T.QoS.σ2
max, ensuring that the variance of any

v-sensor is less or equal to T.QoS.σ2
max.

Given an MGD and a sensing task T = (V,QoS), the V-Sensor Selection com-

ponent now works as shown in Algorithm 12.2. We use ModifiedGreedy to

select a set Veff ⊆ V of v-sensors. Then, a modified task T ′ is created, that

requests effective readings for Veff only. The task is subsequently passed to the

Task Dissemination component for execution.

As the selection of Veff only depends on the model, it is not strictly necessary to

recompute Veff for every task. However, this execution model allows us to easily

integrate our validity check algorithm later on. While Veff remains constant for

the same model, due to device mobility, it is unlikely that a device has to provide

multiple consecutive readings unless it remains stationary for a longer period of
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Algorithm 12.2 Model-driven sensing task execution
Require: Task T = (V,QoS), Model MGDV

Veff ←ModifiedGreedy(T,MGDV )

T ′ ← new Task(Veff , T.QoS)

taskDissemination(T ′)

time. Therefore, we did not include explicit mechanisms for fair load balancing.

Note that the achievable degree of optimization depends on the magnitude of

the correlations found in the data. If only weak correlations exist, Modified-

Greedy will select Veff = V . Furthermore, the accuracy of the selection as well

as the inference relies on the accuracy of the MGD. As we will show, the Model

Management component ensures that the MGD in use always reflects current

data.

As discussed previously, the gateway does not track positions of mobile devices

and thus is not aware of v-sensor availability (cf. Section 3.2). Therefore, selecting

Veff is done in an optimistic fashion, assuming that all v ∈ V will be available.

This is not a problem for a dense coverage, where most v-sensors are available.

For instance, as our experiments show, selecting unavailable v-sensors reduces the

quality of inferred readings by at most 4 percentage points (cf. Section 13.2.4).

We show how to compensate for unavailable v-sensors in sparse environments in

the next section.

12.3.2. Adaptive V-Sensor Selection for Sparse Networks

The optimized task execution presented in the last section assumes that most

or all of the v-sensors are constantly available. This assumption does not hold

in a sparse network setting, which is characterized by a low probability for each

individual v-sensor to be available. Thus, Veff may be chosen so that no avail-

able v-sensor is selected. In principle, our model can still output inferred values,

namely, its stored mean value and individual variance for each v-sensor. How-

ever, the mean values represent the average over all observations made in basic

operation phases and the variances merely inform the application about the gen-

eral variance of all readings at that v-sensor. These values carry no information

about the current state of the observed phenomenon. This is a problem for both

applications and our model management algorithms presented later.
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Algorithm 12.3 AdaptiveGreedy algorithm for selecting Veff in sparse net-
work settings
Require: Task T = (V,QoS), Model MGDV = (MV ,ΣV,V ), Known unavailable
V-Sensors Vunav, Known available V-Sensors Vavl

Veff ← Vavl

Vinf ← V \ Veff

while (∃v ∈ Vinf : σ2
v|Veff

> T.QoS.σ2
max) ∧ (Veff 6= V \ Vunav) do

Imax ← 0

w ← ⊥
for all u ∈ Vinf \ Vunav do

Iu ← mutualInformation(u,ΣV,V , Veff)

V ′eff ← Veff ∪ {u}
V ′inf ← Vinf \ {u}

Iu ←
Σu,u−Σu,V ′

eff
ΣV ′

eff
,V ′

eff
ΣV ′

eff
,u

Σu,u−Σu,V ′
inf

ΣV ′
inf

,V ′
inf

ΣV ′
inf

,u

if Iu > Imax then
w ← u

Imax ← Iu
end if

end for
Veff ← Veff ∪ {w}
Vinf ← Vinf \ {w}

end while
return Veff

To alleviate this problem, we begin by introducing the AdaptiveGreedy

algorithm that includes knowledge about the (un)availability of v-sensors in the

selection. Finally, we present how to use AdaptiveGreedy in our Round-based

Adaptive V-Sensor Selection, that provides this knowledge, to allow DrOPS to

compensate for unavailable v-sensors.

AdaptiveGreedy Algorithm

Compared to the previously described ModifiedGreedy algorithm, Adaptive-

Greedy depicted in Algorithm 12.3 takes two additional parameters: A set of

v-sensors known to be unavailable Vunav ⊆ V and a set of v-sensors known to

be available Vavl ⊆ V, Vavl ∩ Vunav = ∅. Vavl and Vunav are determined by com-

paring the set of v-sensors selected for effective readings to the set of effective

readings that were received. This is the task of the Round-based Adaptive V-
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Sensor Selection presented in the next section. The availability of v-sensors not

contained in Vavl ∪ Vunav is unknown. Using an optimistic strategy, Adaptive-

Greedy assumes these v-sensors to be available, although they may turn out to

be unavailable during task execution. A pessimistic strategy would need to probe

the availability of all v-sensors beforehand by querying all participating devices

for their position. This would cause the PS system to use as much energy as

an approach without any optimization just for probing v-sensor availability, thus

voiding the entire optimization approach.

Given these parameters, AdaptiveGreedy computes a new selection of v-

sensors Veff analogous to ModifiedGreedy under the additional constraints

that no v-sensor known to be unavailable is selected and that all v-sensors known

to be available are selected, i.e., Veff∩Vunav = ∅ and Vavl ⊆ Veff . Forcibly selecting

all of Vavl is warranted by the fact that in our system detecting the availability of

v-sensor v coincides with getting an effective reading for v (see Section 12.3.2).

Thus, not selecting all of Vavl would be a waste of effort.

Round-based Adaptive V-Sensor Selection

The quality-based v-sensor selection algorithm presented in the previous section

is effective only in dense network settings, where most v-sensors are available. To

adapt DrOPS to the sparse network setting, we now introduce the Round-based

Adaptive V-Sensor Selection, depicted in Algorithm 12.4, that provides explicit

knowledge about availability and unavailability and then uses AdaptiveGreedy

to achieve a better selection.

In the Round-based Adaptive V-Sensor Selection, the V-Sensor Selection com-

ponent subdivides the execution of each task into a number of rounds as de-

termined by the application-specified quality parameter T.QoS.rounds. The du-

ration of each round is Q.p
T .QoS .rounds , where Q.p denotes the sampling period of

the query, i.e., the duration of a task. Thus, the duration of task execution is

evenly spread amongst all rounds. At the beginning of each round we first update

our knowledge about current v-sensor availability. Based on this knowledge, we

then update the set of v-sensors for which effective readings should be acquired.

Note that for long durations of task execution Q.p, round duration should be

limited to, e.g., 5 s each to ensure that participating devices cannot move too
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Algorithm 12.4 Round-based adaptive v-sensor selection
Require: Task T = (V,QoS), Model MGDV = (MV ,ΣV,V )

Vavl ← ∅
Vunav ← ∅
E0 ← ∅
Veff,0 ← ∅
for i = 1..T.QoS.rounds do

Vavl ← Vavl ∪ Ei−1

Vunav ← Vunav ∪ (Veff,i−1 \ Ei−1)

Veff,i ← AdaptiveGreedy(T , MGDV , Vunav, Vavl)
Veff,i ← Veff,i \

⋃i−1
j=1 Veff,j

if Veff,i = ∅ then
return

⋃i−1
j=1Ej

end if
Ti ← new Task(Veff,i, T.QoS)

taskDissemination(Ti)

Ei ← dataCollection(Ti)

end for

much between individual rounds. Otherwise, the availability of v-sensors may

significantly change during each round, thus voiding the knowledge on v-sensor

availability built so far. For the same reason, we do not carry over knowledge

from past sampling periods, as devices may have moved significantly between

sampling periods.

In the first round, Vavl = ∅ = Vunav, i.e., we assume all v-sensors to be available.

Therefore, the initial selection of Veff,1 is identical to using ModifiedGreedy as

in the non-adaptive system. In fact, when setting T.QoS.rounds = 1, the system

behaves exactly as presented in the previous section. The resulting subtask T1

is distributed to the mobile devices. For all v-sensors in Veff,1 that are actually

available an effective readings will be reported to the gateway. All readings

received in this round are stored in set E1.

In subsequent rounds i = 2 . . .T.QoS.rounds, we first update our knowledge on

v-sensor availability by setting Vavl = Vavl ∪ Ei−1 and Vunav = Vunav ∪ (Veff,i−1 \
Ei−1). Thus, all v-sensors for which a reading was requested but no effective

reading was received are known to be unavailable for the remainder of the sam-

pling period. Based on this new knowledge, we then compute a new selection

Veff,i using AdaptiveGreedy. A new subtask Ti = (Veff,i \
⋃i−1
j=1 Veff,j) is then
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12. Global Optimization

distributed to the mobile devices. We repeat this process until either the maxi-

mum number of rounds has been reached or no additional v-sensors were selected.

At this point, the Data Collection component computes inferred readings from

all effective readings that have been collected. Note that adjusting the number of

rounds allows the application to define the trade-off between quality of inferred

readings and efficiency of operation. We will analyze the performance of DrOPS

for varying values of T.QoS.rounds in our evaluation (cf. Section 13.2.4).

12.4. Model Management

Our optimization algorithms presented in this chapter so far have assumed the

availability of a correct MGD. Providing this MGD for an observed phenomenon

is the task of the Model Management component (cf. Figure 10.1). To this

end, it computes a MGD that is sufficiently accurate for the near future, and

continuously monitors its accuracy to determine when a new model is required.

Next, we begin by detailing our online model validity check algorithm MOCHA,

before we present our online learning algorithm OLA in detail.

12.4.1. MOCHA

The goal of MOCHA is to check a model for correctness. Intuitively, a model

is correct if the Gaussian distributions of inferred readings fit the real data, i.e.,

inferred values from v-sensors v ∈ V +
inf = Vinf ∪ unavailable v-sensors in Veff (cf.

Section 12.2) center around the true mean value and the variance matches the

true variance. However, checking this property for every v would require constant

sampling of all v-sensors and thus render the optimization useless.

Therefore, we take a different approach for MOCHA (see Algorithm 12.5). We

modify the V-Sensor Selection component to randomly choose a set of control

sensors Vctl ⊆ Vinf at the beginning of each sampling period, where the size of

Vctl is determined by the application-defined quality parameter T.QoS.ctrl. In

addition to the v-sensors Veff selected by the ModifiedGreedy algorithm, we

request effective readings for Vctl. When the round-based alternate V-Sensor Se-

lection is used, we select additional v-sensors for Vctl in each round, until effective

readings for T.QoS.ctrl v-sensors have been received or the sampling period has

142



12.4. Model Management

Algorithm 12.5 MOCHA algorithm. C denotes the set of v-sensors used for
control readings.
Require: Final Result RQ, Control Readings CVctl

, Threshold T.QoS.T , Accept-
able Violations T.QoS.violations
RMSE← 0

2: for all c ∈ Vctl, c available do
RMSE← RMSE + (Rc − Cc)2

4: end for
RMSE←

√
RMSE
|Vctl|

6: if RMSE ≥ T.QoS.T then
Add “violation” to window

8: else
Add “no violation” to window

10: end if
if Number of violations in window > T.QoS.violations then

12: return “Model Invalid”
else

14: return “Model Valid”
end if

passed. At the end of the sampling period, only effective readings from (available)

v-sensors in Veff are used as input for the inference algorithm. We then compute

the root mean squared error (RMSE, lines 1 to 5) of mean values of inferred

readings and their corresponding effective control readings. Using the RMSE,

we avoid the problem of comparing individual samples to inferred distributions

since we can compare absolute values directly. Furthermore, by adjusting the size

of Vctl, we can trade off the costs for effective sampling and the probability of

detecting inaccurate models (Quality of Service).

If RMSE > T.QoS.T , where T.QoS.T is a predefined threshold (part of the

quality specification T.QoS of a sensing task), we say that the threshold has

been violated. To avoid discarding an accurate model in case the observed vi-

olation was an outlier, we use a sliding window approach to dampen the reac-

tivity of MOCHA (lines 6–15). We define a model to be inaccurate if there are

T.QoS.violations within the last T.QoS.win samples. For example, for T.QoS.win

= 2 and T.QoS.violations = 1, we discard the model after two consecutive viola-

tions. T.QoS.win and T.QoS.violations are part of the application-defined quality

specification of a sensing task. Applications set these values to define a trade-
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Figure 12.1.: Overview of the basic operation phase

off between result quality, i.e., avoiding low-quality inferred readings by quickly

abandoning a model, and efficiency, i.e., accepting some low-quality inferred read-

ings to reduce the amount of effective readings, according to their requirements.

In our evaluations (cf. Section 13.2.2) suitable values were empirically determined

from preliminary experiments.

Using MOCHA, we now introduce our online learning algorithm OLA.

12.4.2. OLA

During the basic operation phase, OLA aims to create a new MGD of the ob-

served phenomenon. To this end, the basic operation phase is subdivided into

four steps (cf. Figure 12.1). In each step, a new model is created using all

available data obtained in the current basic operation phase and all previous

phases (both basic and optimization) for the same query up to a certain age,

given in the application-defined quality parameter T.QoS.maxAge. While reduc-

ing T.QoS.maxAge reduces the runtime of the learning algorithm, it should be

set to a large enough value to accommodate expected periodic shifts. For ex-

ample, for temperature shifts in day/night cycles, T.QoS.maxAge should be set

to a multiple of the cycle duration. In preliminary experiments using week-long

datasets of temperature readings in our simulation setup (cf. Section 13.2.2),

T.QoS.maxAge = 3days showed best results.

At the end of every step, we replay ModifiedGreedy, Infer, and MOCHA

on data from the last T.QoS.win sampling periods. If the new model is considered

valid by MOCHA, we immediately switch to the next optimized operation phase
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12.4. Model Management

Algorithm 12.6 Instant Mean Update Step
Require: T = (V, p,QoS), MGDV

∀v ∈ V : M ′V [v] = ⊥
2: W ← ∅

for all v ∈ V do
4: data← DataCollection.getHistoricData(v, [QoS.maxAge, now()]))

if |data| > 0 then
6: M ′V [v]← mean(data)

else
8: W ← W ∪ {v}

end if
10: end for

M ′V [W ]← Infer(MGDV ,M
′
V ) return MGD′V

using this model. This ensures that OLA terminates in the earliest possible step.

In the following, we explain each step in detail.

In the instant mean update step (Algorithm 12.6) we update only the

mean vector of the previous MGD from existing data. This is motivated by the

observation that when an MGD is considered invalid, the covariance matrix is

often still correct, while the mean vector failed to account for a global shift in the

observed phenomenon. To avoid costly effective readings from all v-sensors, the

mean vector is directly computed from data currently available from the Data

Collection component (lines 3–10). If no effective readings have been reported in

the considered history for a v-sensor, a mean value for this v-sensor is inferred

using the old model (line 11). This might yield a greater error in inferred readings,

which, however, would be detected by MOCHA.

If the new model is invalid, all v-sensors are queried for effective readings in the

delayed mean update step (Algorithm 12.7). When T.QoS.minRdg effective

readings have been received from at least T.QoS.minSens v-sensors each (line 6),

a new model is constructed as in the previous step (line 7). Here T.QoS.minRdg

specifies the desired number of new readings per v-sensor to be used in the creation

of a new model. Setting T.QoS.minSens < |T.V | allows a new model to be

created even when for a small subset of v-sensors fewer than T.QoS.minRdg

readings are available. This prevents OLA from getting stuck in the delayed

mean update step when a (small) subset of v-sensors has low availability. Both

parameters are defined by the application according to its quality-requirements
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12. Global Optimization

Algorithm 12.7 Delayed Mean Update Step
Require: T = (V, p,QoS), MGDV

waitStart← now()

2: repeat
wait for next sampling period

4: Veff ← V

request data
6: until |{v ∈ V ||DataCollection.getHistoricData(v, [waitStart, now()])| ≥
QoS.minRdg}| ≥ QoS.minSens or totalWaitTime > QoS.totalWaitTime
return InstantMeanUpdate(R,MGDV )

using expert knowledge of the observed phenomenon. Values in our experiments

were empirically derived from preliminary experiments (cf. Section 13.2.2).

If the model is still considered invalid after the delayed mean update step, we

update both the mean vector and covariance matrix in the instant full update

step (Algorithm 12.8). This update is performed using the existing offline learn-

ing algorithm by Schwaighofer et al. [STY05], which roughly works as follows.

Initially, we set the mean vector and covariance matrix to seed values, computed

as the sample mean and sample covariance from effective readings for a small

fraction of sampling periods in the existing data. The mean vector and the

covariance matrix are then updated iteratively as follows. In each iteration we

first compute inferred readings for all v-sensors and all sensing periods in the

existing data using the current model. Next, we compute a new mean vector

and covariance matrix as a weighed sum of the seed values and the difference of

inferred readings to the respective effective readings in the existing data. This

process is repeated until additional iterations no longer change the model.

Note that this algorithm requires at least three effective readings for a v-sensor

v to be able to include v in the model. Thus, if the number of effective readings

available for v at the end of the basic operation phase is insufficient, v is excluded

from the model.

If the new model remains invalid, we continue with the delayed full update

step (Algorithm 12.9). In this step, we request fresh effective readings from

all v-sensors and execute the offline learning algorithm when sufficient data has

arrived. We repeat this step until a valid model has been created.

Note that OLA will remain in this step indefinitely if either a sufficiently large
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12.5. Summary

Algorithm 12.8 Instant Full Update Step
Require: T = (V, p,QoS)

data← DataCollection.getHistoricData(V, [QoS.maxAge, now()])

2: return learnModel(data)

fraction of v-sensors remains unavailable or the replay of sensor data causes a

model to be falsely considered invalid. Therefore, applications may specify a hard

runtime limit T.QoS.totalWaitTime, e.g., a multiple of the expected duration of

the delayed full update step, after which a new full model is learned from the

available data and considered to be valid without further checking. Should the

new model be invalid, this is detected by MOCHA after at most T.QoS.window

sampling periods. This strategy ensures that an attempt is made to optimize the

data acquisition even under adverse conditions, e.g., for only a small subset of v-

sensors. As v-sensors not contained in the model are queried for effective readings

in every sensing period, these v-sensors can then be included in the model in later

basic operation phases.

In the worst case, i.e., when the model is invalid every time the runtime limit

is reached, this strategy will lead to inferred readings that violate the user-

specified quality bound for T.QoS.window sampling periods after every time in-

terval T.QoS.totalWaitTime. If this behavior is undesirable for an application, it

may set T.QoS.totalWaitTime =∞ to disable the runtime limit.

12.5. Summary

In this chapter we presented the model-driven global optimization. Here we ex-

ploit correlations between observed values, modeled as a multivariate Gaussian

distribution (MGD). On the one hand, an MGD can be used to infer readings for

v-sensors where no effective reading is available. On the other hand, this allows us

to increase the efficiency of the data acquisition process by reducing the number

of effective readings taken.

To apply MGDs to the public sensing setting, we presented an online model

learning algorithm (OLA) for the quick construction of MGD models and an

online model validity check algorithm (MOCHA) to verify whether a given model

still provides sufficiently accurate inferred readings. Furthermore, we detailed
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12. Global Optimization

Algorithm 12.9 Delayed Full Update Step
Require: T = (V, p,QoS)

waitStart← now()

2: repeat
wait for next sampling period

4: Veff ← V

request data
6: until |{v ∈ V ||DataCollection.getHistoricData(v, [waitStart, now()])| ≥
QoS.minRdg}| ≥ QoS.minSens or totalWaitTime > QoS.totalWaitTime
data← DataCollection.getHistoricData(V, [QoS.maxAge, now()])

8: return learnModel(data)

two algorithms for finding the minimum-size set of effective readings to request so

that the resulting inferred readings still match a user-defined quality bound. The

quality-based v-sensor selection algorithm selects v-sensors only according to the

user-specified quality bound. Thus, it is only suitable for dense networks, where

all selected v-sensors are available. Our adaptive v-sensor selection improves

over the quality-based approach by also taking v-sensor availability into account.

It thus extends our approach to sparse networks where many v-sensors may be

unavailable.

148



13. Evaluation

In this chapter, we evaluate the performance of our optimizations for the DrOPS

system. We first show the benefit of the local optimization in a simulated setting

in Section 13.1. Then, we focus on the global optimization. In Section 13.2 we

show a small-scale real-world prototype running our quality-based v-sensor se-

lection algorithm as a proof-of-concept. Furthermore, to get more insight about

the behavior of our system for large-scale tasks, we also implemented and eval-

uated both the quality-based and the adaptive v-sensor selection in a simulated

environment.

13.1. Local Optimization

We present the methodology used for our evaluation in subsection 13.1.1. Sub-

sections 13.1.2 and 13.1.3 present and discuss the results for quality metrics (cf.

Section 11.1) and efficiency metrics.

13.1.1. Simulation Setup

We implemented our sensor selection algorithms for the OMNeT++ network

simulator [Var] using the INETMANET extension. For the ad-hoc WiFi com-

munication we used the 802.11 implementation from INETMANET. To improve

the runtime of our simulation we restricted the maximum WiFi communication

range to 150m. For the mobile internet connection we created a simple model of

a 3G network with a data rate of 386 kbps shared amongst all devices and a de-

lay modeled according to empirical measurements [CGGPC06]. Device mobility

was generated using CanuMobiSim [Ste] on a 1 km2 street graph fragment of the

city-center of Stuttgart.

For the Task Dissemination component, we use a multi-hop clustering algorithm
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Number of participating devices #devices 200, 500, 1000
Standard deviation of sensed positions σ [m] 0, 1, 3, 5, 10, 30, 50

Radius of v-sensor area δmax [m] 5, 25, 50
Timeout for grouping devices t0 [s] 3

Maximum backoff for CNNC tCNNC [s] 1

Maximum backoff for DCNN tDCNN [s] 0.5

Device speed range [m/s] 0.5 . . . 1.7

Readings per v-sensor k 1

Table 13.1.: Values for the variables changed in our simulations

[HFP12]. It provides a routing layer between the gateway and all mobile devices.

In each cluster, only the cluster head (CH) uses its mobile data connection for

internet access. Tasks are sent to the CH and then relayed via WiFi broadcast.

Readings from cluster members are collected at the respective CH and then sent

via the mobile data connection. Intra-cluster routing is done using a standard

ring-based routing approach. Cluster membership of a device is determined by

the hop count from the device to a CH. Devices always join the cluster of the

closest CH, if that CH is closer than some system defined maximum hop count.

If no CH is available, unclustered devices form a new cluster and elect a new CH.

To create uncertain position fixes, we generate an offset by picking a direction

uniformly at random and drawing a distance from a normal distribution with

standard deviation σ. This offset is then added to the real position of a device.

Our simulations ran for roughly 10 simulated minutes each. In all simulations

we introduced about one query per minute, yielding 10 queries per simulation. At

most one query was active at any given time during a simulation run. V-sensors

were placed on roads only. The minimum distance of v-sensors was set to 2 ·δmax,
as the area of each v-sensor v was defined as a circle with radius δmax centered

at −→v . The parameters chosen for our simulation are presented in Table 13.1. For

every set of parameters we repeated the simulation ten times.

Simulations with a varying number of devices and different values for δmax
showed the expected behavior: Coverage goes down when there are fewer devices

and the mean distance goes up when δmax grows. Since these results are obvious,

we will not consider different device numbers and δmax values in the following

simulations, and use the following values instead: #devices = 1000, δmax =

100m. k was fixed to 1.
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13.1.2. Quality of Query Results

The first quality metric we consider is the distance of readings to v-sensor loca-

tions. To get a more accurate impression of how well our algorithms perform, we

calculate the distance of each reading based on its true position rtrue rather than

the sensed position that would be recorded in a real system. Our measurements

are shown in Figure 13.1. Note that each data point is averaged over all readings

returned for any query of the corresponding parameter set. The average distance

of the basic task execution algorithm (“basic”) for σ = 0m defines the optimum

average distance of 14.4m for our scenario.

The overall increase in average distance of all algorithms is a direct consequence

of location uncertainty. With a growing error in positioning, the actual distance

of the device reporting to be closest to the v-sensor location may increase for

varying position uncertainties σ. The distance-based algorithms, which always

use the reading that was reportedly taken closest to the v-sensor location—basic

task execution, DNN and DCNN—yield the smallest distance for any σ. For the

probabilistic approaches the average distance of readings quickly increases as σ

grows. Since the nearest-neighbor set grows with σ, these approaches basically

select any covering device at random for large σ.

Second, we look at the task coverage of queries. Figure 13.2 shows our mea-

surements for the task metric. Each data point is averaged over all queries for the

corresponding parameter set. The basic task execution algorithm again defines

the optimum task coverage at a stable percentage of 79%. Thus 21% of v-sensors

were not covered by any device.

Compared to the basic task execution algorithm, the task coverage of all

our algorithms degrades as σ increases. Apart from NNC, the reason for this

degradation is that for the task coverage we did not include readings where

δ(rtrue,
−→v ) > δmax. As the location uncertainty increases, there is a chance

for taking a reading at a distance larger than δmax, which is what happens for

DNN. DCNN improves over DNN because, as we will see later, it does take a

large amount of redundant readings. It is, therefore, likely that at least one of

the readings for each v-sensor was taken at a distance smaller than δmax. The

task coverage of CNCC is even lower than that of DNN since CNNC generally

picks readings at a larger distance, as can also be seen in Figure 13.1. NNC

151



13. Evaluation

10
15
20
25
30
35
40
45
50
55

0 10 20 30 40 50

D
is
ta
nc
e

[m
]

σ[m]

CNNC
NNC
DNN
DCNN
basic

Figure 13.1.: Mean distance of true reading positions to v-sensor locations

45%
50%
55%
60%
65%
70%
75%
80%

0 10 20 30 40 50

Fr
ac
ti
on

of
V
ir
tu
al

Se
ns
or
s

σ[m]

basic
DCNN
DNN
CNNC
NNC

Figure 13.2.: Mean task coverage

0%
10%
20%
30%
40%
50%
60%
70%
80%

0 10 20 30 40 50

Fr
ac
ti
on

of
V
ir
tu
al

Se
ns
or
s

σ[m]

basic
DCNN
NNC
DNN
CNNC
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clearly shows the worst task coverage. As explained in Section 11.3.1, there is a

significant probability p∅ that no device in a coverage group will take a reading.

This probability grows with the number of devices to pick from. This grows with

δlimit, which, in turn, is dependent on σ.

13.1.3. Efficiency of Query Execution

To analyze the efficiency of our algorithms, we use three performance metrics:

The number of redundant readings, the sensor load, and the network load.

The first measure of efficiency we consider is the amount of redundant sensor

readings. Redundant readings occur when there are more than k readings taken

for a v-sensor in a single query execution. They increase the energy consumption

on devices and put additional load on the network for transmitting these readings.

Thus an algorithm taking fewer redundant readings is more efficient. Figure 13.3

shows the fraction of all v-sensors where more than one reading was taken for a

query execution. As we set k = 1 in our simulations, each additional reading that

was taken is redundant. The basic task execution algorithm shows redundant

sensor readings at about 70% of v-sensors which is the worst case. Comparing

this to the results for the task coverage metric in Figure 13.2 we see that about

9% of v-sensors were covered by exactly one device.

Of all our optimized approaches, DCNN clearly shows the largest fraction of v-

sensors with redundant readings. The cause of this is the selection of the backoff

time tDCNN . As tDCNN is directly proportional to the reported distance, devices

with a similar reported distance will choose tDCNN so that they will obtain a

sensor reading before overhearing each others notification messages. Figure 13.4

shows an analysis of the amount of v-sensors with redundant readings for dif-

ferent backoff times in DCNN. Increasing the maximum backoff from 0.1 s to

0.5 s reduces the amount of v-sensors with redundant readings by up to 20%.

Increasing the maximum backoff further is beneficial only in cases of low position

uncertainty.

DNN shows an almost constant amount of v-sensors with redundant readings.

Redundant readings are due to devices having different views on the number of

devices n′ and the distances δ(−→v ,
−→
n′i sens) in their coverage group vNNC , most

likely caused by message collisions during the grouping phase.
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Figure 13.4.: Influence of maximum backoff time on the fraction of v-sensors with
redundant readings in DCNN.

Redundant readings in NNC are caused by multiple devices choosing to take a

reading for the same v-sensor due to the statistical independence of the devices

decisions. Looking at CNNC we can see that coordination improves this problem,

as the overall fraction of v-sensors with redundant readings is lower. Redundant

readings in this case are caused by devices choosing similar backoff times. This

is shown in detail in Figure 13.5. If the maximum backoff time is increased,

the chance for two devices choosing a similar backoff time is drastically reduced,

and, in turn, the number of redundant readings is also reduced. Increasing the

maximum backoff time does, however, have a negative impact on the average

distance of readings and, therefore, the quality of the result, as devices have more

time to move away from their corresponding v-sensor.

Next, we look at the sensor load. Sensor load is defined as the number of sensor

readings a mobile device has acquired during the whole simulation. It is used as

an indicator for the amount of on-device resources that are used during query

execution, e.g., energy for sampling the sensor and CPU time for processing the

reading. Similar to the number of redundant readings, the basic task execution

algorithm also shows the highest sensing load (see Figure 13.6). About 90%

of devices had to acquire a reading 10 times. As we introduced 10 queries in

each simulation and set k = 1, we can conclude that 90% of devices took part

in every query. All of our approaches show a much lower sensing load. In our

approaches, 90% of devices took part in only one query except for DCNN, where
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Figure 13.7.: Cumulated number of messages sent. Plot is truncated at 600 mes-
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95% of devices took part in three queries. The large amount of redundant sensor

readings taken by DCNN does also show in the sensor load. Since more readings

are being taken per query, each individual device also has to take more readings.

Last we look at the network load (see Figure 13.7). Network load is defined as

the number of messages sent by each device over both the WiFi interface and the

mobile data connection. Note that this includes all application messages as well

as all protocol messages for, e.g., grouping and clustering. Values are cumulated

over all simulations where σ = 0m. By comparison, the basic task execution al-

gorithm causes the highest network load, where 90% of devices had to transport

up to 250 messages each, as a reading is reported for every single device in the

system. In each of our algorithms the network load was reduced to less than 200

messages for 90% of the devices, thus yielding a 20% increase in efficiency. Also

note that under the basic task execution algorithm, devices had to transport up

to 1300 messages, whereas in our approaches no device had to transport more

than 550 messages. We can see that reducing the number of redundant readings

does also pay off with respect to network load. The increased number of mes-

sages required for grouping and coordinating devices is easily compensated by

the reduced effort for collecting and transmitting the resulting readings.

We performed a brief analysis of energy consumption for communication, us-

ing empirical energy models for communication [BBV09, XSK+10] and built-in
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Figure 13.8.: Cumulated Energy Consumption for WiFi and mobile data. Plot
shows fraction of devices where energy usage < total energy used.
Image is truncated at 50 kJ .

sensors [PLL10]. We can see from Figure 13.8 that as with the network load, the

added messages for grouping and coordinating devices are fully compensated by

the reduced number of transmitted results. Currently, the energy savings result-

ing from our algorithm are relatively small. This is due to the ring-based routing

algorithm that we use, which in itself produces duplicate messages. In the future,

using a more efficient multi-hop-routing algorithm will allow our algorithms to

reduce energy usage even further.

13.1.4. Discussion

Our evaluation showed that the distance-coordinated nearest-neighbor algorithm

(DCNN) yields the same average distance as the basic algorithm and shows 88%

task coverage in the worst case compared to the optimum value. However, the

independent deterministic nearest-neighbor (DNN) performs better than DCNN

under all efficiency metrics, e.g., up to 80% reduction of redundant readings over

DCNN, while still providing 78% of the optimal task coverage in the worst case.

The probabilistic approaches, based on nearest-neighbor candidates, show a sig-

nificant reduction in quality, however, they show an improved efficiency over the

corresponding distance-based approaches. In more detail, the evaluation showed

that the proposed set of algorithms allows the user to define the trade-off between

quality and efficiency by choosing a suitable algorithm from the proposed ones.
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13. Evaluation

Figure 13.9.: Public Sensing Testbed

13.2. Global Optimization

In this section, we evaluate the performance of the global optimization. We

first show our real-world proof-of-concept testbed for the quality-based v-sensor

selection in the following section. To get more insight about the behavior of

our system for large-scale tasks, we implemented both the quality-based and the

adaptive v-sensor selection algorithms in a simulated environment as presented

in Section 13.2.2. Results for the quality-based and adaptive v-sensor selection

algorithms are discussed in Sections 13.2.3 and 13.2.4, respectively.

13.2.1. Testbed Evaluation

Our testbed, depicted in Figure 13.9, consists of a laptop, serving as the gate-

way and presenting a user interface for submitting queries and browsing obtained

data. While it is possible to use our implementation to run a full-scale PS system,

an experiment with hundreds of people participating is not feasible. Therefore,

we select an evaluation scenario that can be handled by two people. Two smart-

phones are used for taking light intensity readings. Furthermore, we use a light

source with predetermined movement to mimic the changing position of the sun

over a day. Two v-sensors are placed directly under the initial position of the

light source, two are placed at a distance, and another two are placed behind an

obstacle shadowing the v-sensors from the light source. The smartphones then

move among these v-sensors.
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Figure 13.10.: Output of the testbed evaluation. 15 s sampling period.

Figure 13.10 shows the output of our testbed evaluation. DrOPS runs for

roughly three minutes in a basic operation phase to learn a model of the light

intensity at the v-sensors. Note that in the basic operation phase in each sam-

pling period only readings for available v-sensors are included in the mean light

intensity. Thus, device mobility leads to shifting availability causing readings

to appear fluctuating. During the optimized operation phase, readings for all

v-sensors are included, yielding a smooth mean. Up to 900 s, we do not change

system conditions. Thus, the model remains accurate and readings are inferred

with low error except for outliers. At 900 s the light source is moved, causing

the existing model to become inaccurate. At this point, the error briefly goes up

before MOCHA recognizes the model as inaccurate. After an additional 100 s, a

new model is available and readings are again inferred with low error.

13.2.2. Simulation Setup

While our real-world testbed allows for insight into the operation of a model-

driven PS system, it is far too small to provide information on the overall per-

formance of the global optimization. Therefore, we extend our evaluation to a

large-scale system using an implementation of the global optimization in a simu-

lated environment implemented in the OMNeT++ network simulator.

To make our evaluation comparable to a real deployment, we use two real-world

datasets as input: Ten days from the Intel Lab data set (LAB) [DGM+04] and
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13. Evaluation

Parameter LAB LUCE
Error Threshold Q.QoS.T 1 ◦C 1 ◦C
Max. Variance Q.QoS.σ2

max 0.1 0.1
Window Size Q.QoS.win 10 10
Violations Q.QoS.violations 3 4
Control Readings Q.QoS.ctrl 3 1
Max. Learning Time Q.QoS.totalWaitTime 1 hour 1 hour
Maximum Age Q.QoS.maxAge 3 days 3 days

OLA Paramters
Q.QoS.minRdg 5 5
Q.QoS.minSens 49 98

Number of Rounds Q.QoS.rounds 1,2,3 1,2,3
Readings per v-sensor Q.QoS.k 1 1

Table 13.2.: Quality parameters used in the simulation

three non-consecutive weeks of data from the Lausanne Urban Canopy Experi-

ment (LUCE) [NBP+09]. Both data sets contain environmental readings, e.g.,

temperature reported by a large set of fixed sensors.

We generate queries by placing a v-sensor for temperature data at the position

of every real sensor in each data set in order to generate a temperature map of

the area. We again use a circular model for the area of each v-sensor, where the

radius of the area is half the distance to the closest other v-sensor. The sampling

period is adapted to match the interval at which data is provided by the data

set. Other quality parameters used in the evaluation are shown in Table 13.2.

To generate device mobility for the LAB data, we place 200 mobile devices on an

abstract representation of the lab’s floor plan. They move around randomly along

the available paths. For the LUCE data, we use CanuMobiSim [Ste] to generate

random mobility traces for 400 devices on a road graph of the deployment area.

We also run our algorithms in a static sensor network to analyze how close our

approach is to optimum performance. Simulations run for 6 h each, with an offset

between simulations increasing in steps of 3 h from the start of the data set.

To independently evaluate the properties of the global and local optimizations,

we use an abstracted version of the local optimization in this simulation. We

assume all positions to be accurate, as dealing with inaccurate positions is the

task of the local optimization. Other aspects of the local optimization are not

reflected in the simulation.
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13.2. Global Optimization

Note that inaccurate positions will not affect the performance of our system

as long as mobile devices can correctly determine which v-sensor area they are

located in, i.e., as long as effective readings can be assigned to the correct v-

sensor. In our experiments this requires positions to be accurate to within 2.8m

for the LAB data and 4.8m for the LUCE data. When position accuracy de-

grades further, the probability for assigning an effective reading to the wrong

v-sensor increases. As any effective reading assigned to the wrong v-sensor is

effectively a reading with a large error, this will reduce the benefit of the global

optimization. On the one hand, the model constructed in the basic operation

phase will no longer accurately represent the correlations of values in the under-

lying phenomenon, e.g., correlations may appear weaker than they are. This, in

turn, increases the number of effective readings requested during the optimized

operation phase. On the other hand, the increased error in effective readings

collected during the optimized operation phase reduces the quality of inferred

readings. While this can be detected by MOCHA, it will frequently cause the

system to switch to a basic operation phase, even though the current model could

still provide accurate inferred readings when given accurate effective readings.

For task dissemination, we use the 3G internet connection on every participat-

ing device as modeled by Frosch [Fro11]. Initially, participating devices register

with the Task Dissemination component, which then forwards tasks via unicast

to each registered device. Readings are transmitted via unicast to the Data Col-

lection component.

We use empirical energy models for a 3G radio [BBV09] and built-in sensors

[PLL10] to model the energy consumption of simulated mobile devices. Energy

for positioning is not taken into account, since none of our algorithms change the

number of position fixes taken by each device with respect to the basic sensing

algorithm. Exploiting the additional potential for saving energy by reducing the

number of position fixes is part of future work.

13.2.3. Evaluation of the Quality-Based V-Sensor Selection

We analyze the performance of global optimization using the quality-based v-

sensor selection with regard to several metrics. Effectiveness is the fraction of

tasks executed in an optimized operation phase, thus characterizing the time
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spent where the model-driven sensing algorithm is used. Good Tasks is the frac-

tion of tasks where QoS-constraints are met, thus characterizing the data quality

an application can expect. In addition, we compute the average duration of ba-

sic operation phases. Finally, the Relative Energy Consumption (REC) classifies

the energy consumption. As the absolute energy consumption varies greatly for

different time offsets, e.g., due to a varying number of sensing tasks, the REC is

computed by normalizing the energy consumption for each device in a simulation

to the average energy consumption per device using the basic task execution al-

gorithm for the same simulation parameters. Note that the energy drain is nearly

uniformly distributed among all devices in a simulation. The maximum difference

between devices in a simulation was 14.4 percentage points.
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13.2. Global Optimization

Effectiveness & Good Tasks

Figure 13.11 depicts the results for effectiveness and good tasks, shown as the

average and the median of all simulations, and the average of the reference sim-

ulations. For effectiveness, results for both data sets are almost identical to the

reference values from the sensor network whereas for good tasks, average values

are 10 to 13 percentage points below the reference values. This indicates that the

overall performance of our approach is basically similar to the reference system,

except for a larger number of individual outliers caused by unavailable v-sensors

both while learning a model and while optimizing execution. Note that for the

LUCE data, in only 5% of cases good tasks is below 50%. For the Intel Lab data,

in less than 5% of cases the error threshold is violated by more than 0.2 ◦C. On

average, basic operation phases last for 7.5 minutes for the Intel Lab data and 16

minutes for the LUCE data, showing that DrOPS can learn a model in a matter

of minutes.

Relative Energy Consumption

Finally, we analyze the energy consumption of our system. The fact that the

energy consumption for all devices in each simulation is nearly uniformly dis-

tributed indicates that the energy consumption is dominated by the reception of

tasks, especially by the size of task messages, which in turn depends on the num-

ber of v-sensors selected for effective readings. We can see from Figure 13.12 that

energy savings up to 80% compared to the basic sensing algorithm are achieved

in 3% and 6% of simulations (LAB data and LUCE data, respectively). On

average, 59% of energy is saved for the Intel Lab data, and 74% for the LUCE

data. In a few extreme cases, next to no energy is saved. This happens when

effective readings for most or all v-sensors are requested even in an optimized

operation phase, i.e., when no correlation could be identified.

13.2.4. Evaluation of the Adaptive V-Sensor Selection

We analyze the performance of the Adaptive V-Sensor Selection by taking a

closer look at the operation during the optimized operation phase. We now use

two more detailed metrics: Successful Tasks and Empty Tasks. The Successful

Tasks metric is defined as the fraction of tasks in which the QoS-constraints are
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Figure 13.13.: Results for Successful Tasks metric. Fraction of tasks in which the
QoS constraints are met.

met out of all tasks for which at least one effective reading was received, i.e.,

Good Tasks with at least one effective reading. The Empty Tasks metric denotes

the fraction of tasks for which no effective readings were received at the Data

Collection component, i.e., characterizing how an approach performs at finding

available v-sensors. Furthermore, we analyze the energy consumption using the

Relative Energy Consumption metric as before. We compare the performance

of our adaptive approach (labeled “2 rounds”, “3 rounds” in figures) to the basic

task execution algorithm without optimization, i.e., Veff = V always, and the

quality-based v-sensor selection for dense networks (labeled “quality”).

Successful Tasks

Results for the Successful Tasks metric are depicted in Figure 13.13. Values

are averaged over all simulation runs for each number of mobile devices. Under

the quality-based selection, the number of successful tasks is good at just under

90% for both datasets in a dense system, i.e., when using the maximum number

of devices, but quickly degrades to under 60% for 100 devices or less. Using

our adaptive approach, the number of successful tasks increases to over 90% in

a dense system. Furthermore, it is far more robust to a decreasing number of

devices. In the LUCE data, for example, using 3 rounds we can still provide 81%
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Figure 13.14.: Results for Empty Tasks metric. Fraction of tasks for which no
effective readings were obtained.

quality using 50 devices, whereas the quality-based approach requires 400 devices

to match this performance.

Empty Tasks

Next, we analyze results for the empty tasks metric. Evaluation results are de-

picted in Figure 13.14. Again, values are averaged over all simulation runs for

each number of devices. Similar to the quality metric, the number of empty tasks

under the quality-based approach drastically increases for a decreasing number

of devices, while our extended algorithm is much more robust. Under the LAB

data, for a single round the fraction of empty tasks increases to 5% for 140 devices

whereas using 3 rounds, we can provide 7% of empty tasks with only 40 devices.

For the LUCE data, the quality-based approach cannot match the fraction of

empty tasks when using 3 rounds and at least 100 devices.

Relative Energy Consumption

We again use the relative energy consumption (REC) metric to characterize the

energy consumption. Figures 13.15 and 13.16 show the cumulated average REC

per simulation for the LAB data and LUCE data, respectively.

We see that additional communication for additional rounds increases the en-
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Figure 13.15.: Cumulated relative energy consumption, LAB data

ergy consumption. The difference is greatest in a sparse setting, where few effec-

tive readings are collected in early rounds, i.e., most work is done in later rounds.

In a denser setting, the difference diminishes, as later rounds add fewer readings,

and thus less energy is used in later rounds. Note the sharp increase in REC

for the quality-based selection in Figure 13.15a. For about 90% of simulations,

hardly any data is collected, i.e., only few available v-sensors are found and thus

little energy is spent (cf. Figure 13.13a, 13.14a), whereas for the few cases where

available v-sensors are found, only a weak model can be derived, i.e., Veff is very

large. As the round-based approach is better at finding available v-sensors, it

does not exhibit this behavior. Using our round-based approach, we still can save

up to 77% of energy (compared to 81% for quality-based selection in the LAB

data, 80% in the LUCE data). When the system contains at least as many de-

vices as v-sensors, energy consumption is at most that of the basic task execution

algorithm. When fewer devices are present, the round-based approach may use

up to 6% more energy.

In summary, using our round-based adaptive v-sensor selection strategy will

vastly improve the robustness of the system regarding a reduced number of par-

ticipating devices by increasing the number of opportunities to gather data. Thus,

it allows for operation in sparse networks. Even in a dense network, the qual-

ity of results returned to the application is improved. Furthermore, in a sparse
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network much of the energy consumed under the quality-based selection goes to

waste, as no data is obtained for that energy. In the adaptive approach, the in-

creased energy consumption results in many more useful data readings and thus

less wasted energy. Finally, robustness and result quality further increase when

using additional rounds, while the energy cost for using additional rounds only

increases when the additional rounds provide an actual benefit.

13.3. Summary

In this chapter we have demonstrated the effectiveness and efficiency of DrOPS,

a system for the model-driven optimization of Public Sensing systems. We first

presented the results for the local optimization. Our evaluations show that all of

our algorithms noticeably decrease the workload of each mobile device, i.e., the

number of readings a device has to acquire. Furthermore, a user can define the

trade-off between quality and efficiency by choosing a suitable algorithm from the

proposed ones.

Next, we presented the results from our evaluations for the global optimization

in a dense network setting. Experiments in a real-world testbed show the gen-

eral feasibility of our approach. In several simulated settings we analyzed the

properties of our v-sensor selection approaches in more detail. Our evaluations

show that using our online learning algorithm, we obtain optimization models in

a matter of minutes on average. Furthermore, using the quality-based v-sensors
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selection algorithm for optimizing the data acquisition, we can save up to 80% of

energy for communication and sensing and provide inferred readings for uncovered

positions matching an error-bound of 1◦C up to 100% of the time.

Finally, we evaluated the performance of the global optimization in a sparse

network setting. The evaluations show that the round-based adaptive v-sensor

selection strategy successfully increases the robustness of the system regarding a

reduced number of participating devices. At the same time we can still save up

to 77% of energy for communication and sensing.
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Research interest in Public Sensing has grown over the last years. There are

numerous applications such as detecting potholes in roads [EGH+08], tracking

mobile objects [LLSC11, AML+10] and people [SMBL12], estimating the density

of crowds [WL11], and sharing a participants’ current activity and social context

[MLEC07] or gathering information on social events happening all over a city

[MPL+11]. However, as our focus is on environmental monitoring, we limit our

analysis to related work from this area.

In the following, we begin by presenting a number of approaches addressing

general systems challenges, before moving on to the problem of selecting a subset

of participating devices and the application of data models in PS. Furthermore,

we present other approaches for improving the energy efficiency of PS. Finally, we

present related work concerning privacy-issues in PS as well as other optimizations

for data acquisition systems geared towards static and actuated sensor networks.

Public Sensing Systems for Environmental Monitoring Several prototype

systems demonstrated the feasibility of using PS for, e.g., monitoring of CO-levels

[SM08], air pollution [MPLM11, BEH+06], noise pollution [MSN+09, SBS+11,

DSJ13], and Seismology [Kra14]. Furthermore, end-user studies by Willett et

al. [WAK+10] and Kanjo et al. [KBRL09] showed how people benefit from the

information provided by PS. However, these systems are each built for a single

specific task and require energy-intensive constant sampling by all participating

devices.

To enable more flexible opportunistic PS systems, Campbell et al. [CEL+08]

and Kansal et al. [KNLZ07] identified several systems challenges. These include

the heterogeneity of sensor hardware on mobile devices, identifying appropriate

sensing context, e.g., whether a sensor is currently exposed to the phenomenon

to be observed, varying coverage of points of interest by mobile devices, and the
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need for query languages to configure the system for heterogeneous sensing tasks.

To address the challenge of heterogeneous sensing hardware and device context,

Eisenman et al. let neighboring devices share their sensing hardware, so that all

devices gain access to data for which they do not possess the correct sensing

hardware or for which they are in the wrong context to obtain a data reading

[ELC08]. In contrast, MobGeoSen focuses on augmenting participating devices

with additional external sensing hardware [KBP+08], giving all devices access to

uniform hardware that is always exposed.

Several other systems consider the problem of how to submit heterogeneous

tasks to the system. Campbell et al. [CEL+06] specified several types of v-sensor

abstractions after which our v-sensors are modeled. To specify relevant data using

simple spatial, temporal and contextual predicates, formal notations [DZP+14]

and SQL-like query languages [HBZ+06, RB07] have been proposed. For a more

flexible solution, other approaches present APIs for mobile code that can evaluate

arbitrary predicates on mobile devices [DMP+10, BL12, RB07].

Selection of Participating Devices The systems presented so far offer predi-

cates to obtain readings only from devices that will provide relevant data. Several

other works deal with the problem of implementing such predicates. Reddy et.

al. [RSB+08, RSB+09, RES10] developed a reputation system for selecting the

most suitable devices for long-running tasks. The reputation is built over a long

time (e.g., several days) from geographical and temporal availability, derived from

mobility information and from past participation in sensing tasks. However, the

purpose of the system is to aid a human operator in device selection. While the

work of Zhao et al. [ZMLZ13] and Zhang et al. [ZXWC14] extended this idea

to an automatic selection of devices for probabilistic coverage, they require the

same lengthy training phase. Boutsis and Kalogeraki [BK14] pursue a similar ap-

proach of selecting participants for task execution in a participatory PS system,

so that the chances of task execution are maximized and the cost for compensat-

ing participants is minimized. Kravets et al. [KAC+13] propose a probabilistic

selection of devices similar to our local optimization, but with the goal of select-

ing devices uniformly distributed in space moving in a dense crowd of people,

rather than close to specific locations. All of these approaches are device-centric,

i.e., select devices for continuous sensing, potentially gathering a large amount
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of data outside the area of interest. Furthermore, the lengthy training phases re-

quired for these approaches make them unsuitable to address the challenge energy

consumption in flexible PS systems.

In our DrOPS system, device selection is location-centric. Closest to this, Lu et

al. proposed a first method for the location-centric selection of devices at a single

v-sensor [LLEC09]. However, their aim is to select devices with maximum dwell

time in the area of a v-sensor rather than minimizing the distance of readings from

the v-sensor. Kansal and Zhao [KZ07] propose to compensate for an inaccurate

or unavailable positioning system by extracting proximity information from the

data itself. Their approach is geared towards clustering images from smartphone

cameras by location through content matching and is thus not easily applicable

to the problem of environmental monitoring.

Applications of Data Models in Public Sensing The use of data-driven mod-

els in PS has been considered under several aspects. Rana et al. [RCK+10] and

Wisniewski et al. [WDMCM13] use interpolation models specifically designed for

noise measurements to compute inferred readings for times and locations where

no device was available to take an effective reading. Focusing on other environ-

mental variables, Mendez et al. and Sluiter showed that multivariate Gaussian

distributions are well suited for computing inferred readings [MLR13, Slu08]. Fur-

thermore, they use multivariate Gaussian distributions to detect outliers in mea-

surements [ML12b] and propose an online-approach to optimize the placement a

set of v-sensors to provide the most informative input data [ML12a, VLML14].

None of these approaches considers using the model for actively reducing the

effort for data acquisition.

Little work has been done regarding online learning of models. The work of

Lane et al. [LLEC08] and Miluzzo et al. [MCR+10] deals with the construction of

models for event classification, e.g., speaker recognition or classification of social

encounters. However, their goal is simply to maximize the amount of input data

to build more accurate classifiers without regards for training duration.

Energy-Optimizations for Public Sensing Several works consider the energy

consumption in PS regarding individual devices, effort for communication, and

the system as a whole.
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A common approach to reducing the energy consumption on individual devices

is duty-cycling of sensors and processing units. Lu et al. [LYL+10] and Rachuri

et al. [RMM12] adjust the sampling rate of sensors based on device context

and the history of interesting observations. As a reduced sampling rate may

lead to missed observations, Kim et al. [KKES10] and Shin et al. [STKC09]

focus on continuous monitoring using energy-efficient sensors, e.g., to determine

device context, and enable energy-intensive hardware only when more detailed

data from other sensors is required. In a hardware-based solution, Priyantha

et al. [PLL10, PLL11] propose to use an energy-efficient, dedicated coprocessor

to continuously analyze all sensor data. However, this approach requires that

smartphones are modified specially for PS tasks, which would exclude a significant

part of the devices already deployed from participating in the system.

To save energy for the transmission of readings, Baier et al. [BDR13b] restrict

communication to piggybacking PS messages on other data traffic, thus explicitly

amortizing the energy-consumption for putting the communication interface in

a transmit-state to other applications. Taking points of interest into account,

Baier et al. also focused on offloading communication from energy-intensive mo-

bile networks to more energy-efficient WiFi connections [BDR12b] and on limiting

communication to devices that are in the correct location to execute a sensing

task [BDR12a, BDR13a]. Devices are identified based on a simple mobility model

assuming a maximum speed. Xiong et al. [XZWC14] propose a similar approach,

additionally taking call times and call locations into account to build the mo-

bility model and to predict when messages can be transmitted. However, their

approach focuses on continuous sensing and thus does not respect potential points

of interest. Furthermore, none of these approaches consider the potential for op-

timization by taking user-specified quality information into account.

Another challenge is the availability of the communication channel. Halo

[ELC10] and CarTel [HBZ+06] lift the assumption of a continuously available in-

ternet connection by applying techniques from delay-tolerant networking (DTN).

By substituting DTN for the cellular network connections, they improve both the

amount of data delivered to the consumer when a device is in an area with low

network coverage and the energy consumption for communication, even when a

device has internet access.

Focusing on the overall energy consumption of the PS system rather than on
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individual devices leads to approaches for scheduled device selection. Weinschrott

et al. [WDR09, WDR10], Sheng et al. [STZ12], and Eberle et al. [EYA13]

solve a problem similar to our local optimization, where each device is assigned

a schedule when to take a reading. However, their goal is complete spatial k-

coverage, without regard for specific points of interest. Weinschrott et al. also

considered the case of obtaining sensor data at specific locations [WDR09]. In

this case, however, locations were represented by fixed sensors that can be read

via RFID. Thus, the position of devices was not taken into account.

Privacy concerns in Public Sensing A general concern in the use of large-

scale data acquisition systems is privacy, as participating in PS should not re-

veal adverse information about participants. Thus, several approaches focus on

hiding the identity of participants through mixing of readings either in-network

[CKK+08] or by a trusted third party [DBF12]. As the presence of readings in

an area may be sufficient to identify the source, other works focus on blurring the

location of a reading or on providing k-anonymity, i.e., plausible deniability for

each participant [KTC+08]. For cases where a participant can not trust any other

entity of the system, Drosatos et al. propose the use of homomorphic encryp-

tion to compute aggregated results out of individual measurements without ever

revealing individual information about measurements [DEA+12]. Pidcock et al.

additionally considered the privacy requirements of subjects monitored using PS,

e.g., non-participating people that are in an area of interest. They developed a

notification system to warn bystanders of an impending data collection campaign

[PSHG11].

Optimizations in Sensor Networks Using models for optimizing data acqui-

sition has a long history in static sensor networks.

Device-centric approaches for optimization use time-series models. The data

sink computes a time-series model of observations to predict future readings.

These predictions are verified by sensor nodes by either performing the prediction

on the sensor nodes in parallel or by transmitting predictions from the sink to

the sensors. Sensor nodes then only need to spend energy for communication

if the measured value deviates from the prediction [LGS06, SR06]. However,

these models are location-centric and can only be applied when the location of
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each device is fixed. This method transfers to the PS setting for truly device-

centric models only. For example, Musolesi et al. used a Markov model to reduce

the number of message transmissions required for keeping information about the

current state of a participating device up to date on a gateway [MPF+10].

Other approaches for optimization focus on identifying points of interest, i.e.,

where sensors should be deployed, or, given an existing deployment, which subset

of sensor nodes should perform the data acquisition work. Assuming a known

sensing range, Abrams et al. [AGP04] propose an algorithm to select varying

subsets of sensor nodes for full spatial coverage in a round-robin fashion, thus

distributing the load of a sensing task. Assuming an infinite sensing range along

the line-of-sight, Gonzalez-Banos et al. [GB01] maximize spatial coverage with

a minimum number of devices. However, these approaches require control over

the placement of sensor nodes (or at least knowledge thereof), and are thus not

applicable to PS without a sensor network abstraction layer. Furthermore, they

maximize spatial coverage with no regard for actual points of interest.

Most relevant to PS are approaches for identifying most interesting positions

using spatial models. Das and Kempe present metrics for selecting sensors so

that the error in predicted aggregate functions is minimized [DK08]. In the BBQ

system, Deshpande et al. use a multivariate Gaussian distrubution, extended to

a spatio-temporal model using markovian models, to compute inferred readings

and reduce the number of effective readings taken in a sensor network [DGM+04].

However, they assume the multivariate Gaussian distribution to be available a

priori and thus do not address the challenge of learning and monitoring said

model. The Greedy algorithm used in our approach was a follow-up result of

this work [GKS05, Kra08].

Works in actuated sensing [BSBK09, SFRJ09, BKS13] focus on informative

path planning for networks of mobile devices. The main difference to PS is that

robots are used as mobile sensors. Thus, their movement is controlled by the

system. These systems achieve the benefit of using fewer sensors to cover a large

area at the additional cost of having to deploy specialized mobile sensor nodes.
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Public Sensing is a new paradigm for sensor data acquisition. In Public Sensing,

data is gathered using commodity smartphones, containing a wealth of sensors,

carried and maintained by participants, i.e., ordinary people willing to share their

spare resources with the public. It improves over the state-of-the-art approach of

using fixed sensor networks as data is provided without the administrative prob-

lem of having to deploy sensor nodes and the associated upfront-monetary cost.

Furthermore, it allows for a much greater service area as participants move about

during their daily life. Thus, Public Sensing allows for the construction of flexi-

ble, large-scale data acquisition systems that can be spontaneously queried. This

easy access to data enables application developers to shift their focus from ob-

taining input data to the actual development of novel applications. Furthermore,

it can improve peoples’ everyday quality of life by increasing their awareness of

environmental problems and thus enabling people to address these problems.

In building such systems, we face several challenges. As Public Sensing relies

on volunteers, data collection should be performed opportunistically to avoid

driving participants from the system. Furthermore, the system must conserve

the shared resources, e.g., energy, as much as possible. Another challenge is

the mobility of participants, which makes querying the system and using the

resulting data more complicated. We addressed these challenges in the context

of two applications: Creating indoor maps and monitoring of large-scale spatially

distributed environmental phenomena.

In the area of indoor mapping, we presented the MapGENIE system that au-

tomatically infers indoor maps from pedestrian traces and structural building

information. First, we presented a trace-based mapping approach, which is then

improved by structural knowledge encoded in a formal indoor grammar. To

analyze its performance, we conducted a large-scale experiment by collecting

pedestrian indoor traces. The results show that MapGENIE enhances the indoor
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mapping process significantly, i.e., producing detailed indoor maps from only a

small set of traces.

Furthermore, we presented a quality model for indoor maps that classifies parts

of the map into accurately mapped and inaccurately mapped, according to the

amount of information that is available about these areas. Using a combination

of an accurate but energy-intensive inertial positioning system (IMU) and a less

accurate but more energy-efficient WiFi Position Tracking system (WPT), we

showed that up to 15% of energy can be saved when the trace recording is disabled

in accurately mapped areas, i.e., WPT is used instead of IMU.

In the area of environmental monitoring, we presented the DrOPS system. To

provide applications with a mobility-independent view on the system, we intro-

duced our v-sensor concept as a mobility-independent abstraction and showed

how the deployment of a static sensor network can be converted into queries

for a Public Sensing system. In addition, we defined Request-Driven Execution,

where participating devices acquire data only when it is actually requested by an

application.

To further improve the efficiency of the data acquisition process, we presented

our local optimization. To this effect we developed four coordination algorithms

to select mobile devices for executing a query in the face of uncertain location

information. The selection of devices is done in a way that the quality of the

result is maximized while the necessary effort w.r.t. redundant readings, number

of readings, and communication, is minimized. We analyzed the performance of

our algorithms subject to metrics for result quality and efficiency. The evaluation

showed that the proposed set of algorithms allows the user to trade an increase

in quality for a decrease in efficiency by choosing a suitable algorithm.

Moreover, we showed how to transfer optimization techniques from static sensor

networks to the Public Sensing domain. Our global optimization uses a model-

driven sensing approach based on multivariate Gaussian distributions. On the one

hand, we can compute inferred readings to compensate for missing readings due

to unavailable v-sensors. On the other hand, we can select the most interesting

v-sensors to observe. By not requesting effective data readings for all other v-

sensors, we again reduce the effort required from participating devices, and thus

reduce the energy consumption. Furthermore, we introduced OLA, an online

learning algorithm to learn multivariate Gaussian distributions over short time
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periods, and MOCHA, an online model validity check algorithm to determine

whether a given multivariate Gaussian distribution fits current sensor readings.

Our evaluations show that we obtain optimization models in a matter of minutes

on average. Using the model-driven approach for optimizing the data acquisition,

we can save up to 80% of energy for communication and sensing and provide

inferred readings for uncovered positions matching an error-bound of 1◦C up to

100% of the time.

We also extended the global optimization with an adaptive extension to enable

operation in sparse networks, where most v-sensors are unavailable. In model-

driven sensing, a minimum number of effective readings is required to provide

sufficient result quality. With our round-based adaptive v-sensor selection algo-

rithm, we can find the required readings even when the majority of v-sensors is

unavailable. Our evaluations show that we can enable the system to work with a

greatly reduced number of smartphones and that result quality is improved by up

to 41 percentage points compared to the non-adaptive algorithm. Furthermore,

we can save up to 81% of energy for sensing and communication while providing

inferred readings matching an error bound of 1 ◦C up to 96% of the time.

15.1. Future Work

Apart from direct optimizations of the algorithms presented in this work, our

concepts may be extended to include additional information in their decisions

and to provide additional functionality as follows.

For our grammar-based mapping approach we require an input grammar pro-

vided by an expert to derive a grammar-based indoor model. When this system

is widely used, manual specification of such grammars becomes infeasible. Thus,

MapGenie could be extended to automatically derive and improve the grammar

from trace information. The ultimate goal would be a closed-loop system in

which the traces feed the grammar derivation, while the knowledge stored in the

grammar supports the recording of traces.

As MapGenie relies on inertial sensors for trace data acquisition, it obtains

information only about the exact positions that participants walked through.

Through the use of image data from smartphone cameras or wearable devices,

e.g., Google Glass, information about the immediate surroundings of a participant
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can be included. On the one hand, using image data would enable MapGenie

to distinguish between impassable areas due to obstacles such as furniture and

actual walls. On the other hand, this would decrease the number of independent

observations required to complete a floor plan, as each individual observation now

covers a larger area.

Furthermore, with the availability of consumer devices with built-in 3D sensors,

e.g., Google Tango Phone [pro15], a full 3D model of the interior can be provided.

MapGenies’ energy-efficient approach can be adapted to improve the efficiency of

the 3D mapping process. First, the quality model needs to be modified for 3D

observations. While a single observation may be sufficient to detect the presence

of an object, this observation is incomplete with regard to information about

the object itself. For instance, a single object contains information about only

one side of the object, which may be insufficient to determine the type of the

object. Thus, multiple observations from different directions may be required.

Second, the Scheduler must consider additional information such as the field of

view of the 3D sensor, which may be independent from the walking direction of

the participant, and the resource-intensive task of processing image data and 3D

data.

Using our quality model for floor plans, MapGenie can optimize the trace data

acquisition process over time. MapGenie can be extended with algorithms for

distributed coordination to also provide energy-efficient operation for crowds of

participants moving together along a path, recording their movement all at the

same time. As most people in a crowd will provide similar information, gathering

observations from a subset of participating devices will likely be sufficient. The

coordination algorithms would then limit the set of devices that record trace data,

allowing all other devices to switch to the more efficient WPT.

In the area of environmental monitoring, our local optimization approach may

be extended to consider additional information in its decision. One example

of such information is resource information, e.g., the current battery level of

participating devices. While we assume that mobility is high enough so that in

every sampling period, another device fulfills the role of a v-sensor, devices may

still have to sample several times for different v-sensors in subsequent sampling

periods, when the density of selected (interesting) v-sensors is high. When taking

resource information into account, the v-sensor selection can identify such cases
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and temporarily select a larger set of less interesting v-sensors located elsewhere

to reduce the load of devices in the vicinity of the most interesting v-sensors.

Furthermore, the selection of v-sensors may be optimized for better efficiency

of positioning. For example, devices can use low-accuracy low-power positioning

systems for a preliminary position fix [GLC+08]. If they are well out of the

vicinity of any selected v-sensor, even given the uncertainty of their position,

they do not need to sample a more energy-intensive positioning system, unless

another smartphone app requires a position fix with higher accuracy. Thus, the

overall energy consumption for positioning caused by Public Sensing may be

reduced by, on the one hand, selecting v-sensors for effective readings so that the

number of devices that can stop query execution after a low-power position fix is

maximized. On the other hand, when areas emerge where participants already use

other smartphone apps that require high-accuracy positions, v-sensors in these

areas may be preferred, as in such areas, high-accuracy positions are available at

no additional cost.

Privacy is an issue for all Public Sensing systems. As DrOPS is designed

to be privacy-friendly, i.e., to require as little information about participants

as possible, it may be extended with standard privacy techniques such as k -

anonymity. In contrast, MapGenie requires full disclosure of trace information

from participants. While participants might choose to improve their privacy

through, e.g., mixing of trajectories, the question whether this has an impact

on our trace correction algorithms, and thus the accuracy of the generated floor

plan, remains an open problem.
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