
Reducing Context Uncertainty for Robust
Pervasive Workflows

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik der
Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Hannes Wolf
aus Cottbus

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Mitberichter: Prof. Dr. rer. nat. Paul Lukowicz

Tag der mündlichen Prüfung: 30.11.2015

Institut für Parallele und Verteilte Systeme (IPVS)
der Universität Stuttgart

2015

Acknowledgements

First of all, my most sincere gratitude belongs to my supervisor Prof. Dr. Kurt
Rothermel, who provided me with the unique chance to be a member of the dis-
tributed computing research group at the University of Stuttgart. The time and ef-
fort he spent to keep my research on track and the encouraging and fruitful discus-
sions, have been invaluable for the scientific contributions presented in this thesis.
But apart from this personal guidance, I enjoyed being a member of his research
group providing me a cooperative, helpful environment and a chance to broaden
my view on computer networks and distributed systems.

In addition to that, I am very grateful towards Prof. Dr. Paul Lukowicz who ac-
cepted the role as second supervisor of my thesis. Moreover, he provided me with
a very different, pragmatic and constructive view approaching my scientific chal-
lenges.

I also want to thank Dr. Klaus Herrmann for providing advice and guidance to
develop the right set of skills required for research. Further, as a supervisor of my
diploma thesis he paved the way for me joining academic research and made all
this possible.

Special thanks go also to Stefan Föll, Christian Hiesinger, Agnes Grünerbl, Kai
Kunze, Gernot Bahle, Tobias Unger, Hanna Eberle, Srdjan Marinovic and Bashar
Altakrouri for good cooperation during the ALLOW research project. It has been
a very valuable experience for me to work and research in an international team
distributed all over Europe.

Finally, I would like to thank my wife and family for enduring the much to long
time period while I slowly managed to get this thesis written. Your patience and
support have been a significant contribution to make this process complete suc-
cessfully, eventually.

3

Abstract

Mobile computing devices equipped with sensors are ubiquitously available, to-
day. These platforms provide readings of a multitude of different sensor modal-
ities with fairly high accuracy. But the lack of associated application knowledge
restrains the possibility to combine this sensor information to accurate high-level
context information. This information is required to drive the execution of appli-
cations, without the need for obtrusive explicit human interaction.

A modeled workflow as formal representation of a (business) process can provide
structural information on the application. This is especially the case for processes
that cover applications with rich human interaction. Processes in the health-care
domain are characterized by coarsely predefined recurring procedures that are
adapted flexibly by the personnel to suite specific situations and rich human in-
teraction. In this setting, a workflow managment system that gives guidance and
documents staff actions can lead to a higher quality of care, fewer mistakes, and
a higher efficiency. However, most existing workflow managment systems enforce
rigid inflexible workflows and rely on direct manual input. Both is inadequate for
health-care processes.

The solution could be activity recognition systems that use sensor data (e. g. from
smart phones) to infer the current activities by the personnel and provide input to
a workflow (e.g. informing it that a certain activity is finished now). However, state
of the art activity recognition technologies have difficulties in providing reliable
information.

In this thesis we show that a workflow can aid as source of structural applica-
tion knowledge for activity recognition and that the other way around, a workflow
can be driven by context information in a way reducing the need for explicit in-
teraction. We describe a comprehensive framework – FlowPal– tailored for flexi-
ble human-centric processes, that improves the reliability of activity recognition
data. FlowPals set of mechanisms exploits the application knowledge encoded
in workflows in two ways. ?Con (StarCon) increases the accuracy of high-level
context events using information from an associated workflow. Fuzzy Event As-
signment (FEvA) mitigates errors in sequences of recognized context. This way
FlowPal enables unobtrusive robust workflows.

We evaluate our work based on a real-world case study situated in the health-care
domain and show that the robustness of unobtrusive health-care workflows can be

5

increased. With ?Con we can improve the accuracy of recognized context events
up to 56%. Further we enable the successful execution of flows for a uncertain
context events large range of uncertain context events, where a reference system
fails. Overall, we achieve an absolute flow completion rate of about 91% (com-
pared to only 12% with a classical workflow system). Our experiments also show
that FEvA achieves an event assignment accuracy of 78% to 97% and improves the
performance of dealing with false positive, out-of-order events and missed context
events.

6

Deutsche Zusammenfassung

Die letzten zwei Jahrzehnte waren geprägt durch die rasante Entwicklung des
mobilen Internets und der allgegenwärtigen Verfügbarkeit von mobilen Smart-
phones. Dieser Entwicklung haben wir es zu verdanken, dass Menschen jederzeit
und überall miteinander Informationen austauschen und kommunizieren können.
Allerdings hat sich die Art und Weise, wie wir mit mobilen Endgeräten inter-
agieren, weitaus langsamer entwickelt. Das Nutzungskonzept konzentriert sich
auf das Anzeigen von Informationen auf einem Display und die direkte Einga-
be via einer (virtuellen) Tastatur. Ausnahmen dazu sind das Aufnehmen von Bil-
dern oder die teilweise verbreitete Anwendung von Spracheingabe. Dennoch wer-
den diese Interaktionen alle unmittelbar durch den Nutzer ausgeführt und erfor-
dern einen großen Teil seiner Aufmerksamkeit um die (mobilen) Anwendungen
zu steuern.

Ein weiterer Trend, der bereits dabei ist, mobile Endgeräte deutlich zu verändern,
ist die hohe Verfügbarkeit von immer besseren und immer kleineren Sensoren.
Sie erlauben es nahezu jedem mobilen Endgerät Informationen aus seiner direk-
ten Umgebung und über seinen Nutzer zu sammeln und auszuwerten. Heutige
Sensoren sind in der Lage eine große Vielzahl von unterschiedlichen Informatio-
nen zu sammeln. Die geläufigste Informationsquelle ist die Position des Gerätes
(bzw. Benutzers), die im Freien mit dem Global Positioning System (GPS) leicht
ermittelt werden kann. Weiterhin gehören sowohl Kameras als auch Mikrophone
zur Grundausstattung moderner mobiler Endgeräte. Zusätzlich zu ihren Haupt-
aufgaben, wie der Aufnahme von Bildern oder Videos inklusive Ton, können diese
Sensoren auch dafür genutzt werden, Objekte oder Personen zu erkennen oder
Anwendungen mit Gesten bzw. der Stimme zu steuern.

Moderne mikromechanische Sensoren erlauben das Erfassen von Beschleunigun-
gen, die das Smartphone erfährt, und damit das Erkennen von Änderungen in der
Bewegung, dsm freien Falls des Gerätes oder der Position relativ zum Boden. Ei-
ne einfache Anwendung für diese Daten ist das Drehen der Anzeige relativ zur
Lage des Gerätes. Für weitergehende Anwendungen, die auf der absoluten Lage
des mobilen Endgerätes im Raum angewiesen sind, stehen Drehraten und Ma-
gnetfeldsensoren zur Verfügung. Außerdem werden immer häufiger auch Druck-
sensoren verbaut, mit denen es möglich ist, die geographische Höhe auch anhand

7

des Luftdrucks zu ermitteln. All diese Sensoren erleichtern die Positionsbestim-
mung und Navigation des mobilen Gerätes sowohl im Freien wie auch in Gebäu-
den.

Aber werden die einzelnen Sensorinformationen nur isoliert betrachtet, geben sie
nur ein beschränktes Bild auf die tatsächliche Situation des Gerätes oder Nut-
zers wieder. Ein wesentlich größerer Informationsgewinn ergibt sich, wenn man
die Sensorinformationen miteinander kombiniert und auch noch implizites Wis-
sen oder Anwendungswissen hinzunimmt. Auf diese Weise kann abstrakteres und
komplexeres Wissen über den aktuellen Kontext gewonnen werden. Als Beispiel
betrachten wir einen Krankenpfleger, der für einige seiner Tätigkeiten zusätz-
liche Informationen von einer Anwendung auf einem mobilen Endgerät benö-
tigt. Damit die Anwendung ohne direkte Eingaben des Pflegers funktioniert, muss
sie über durchgeführte Tätigkeiten des Pflegers per Kontexterkennung informiert
sein. Dazu gehören zum Beispiel die richtige Ausstattung des Pflegers (Handschu-
he), die gerade durchgeführte Tätigkeit (Medikamenteneinnahme kontrollieren)
oder die Art und Weise wie diese Tätigkeit durchgeführt wurde. Es ist offensicht-
lich, dass der Pfleger diese Informationen nur schlecht eingeben kann, während
er die Tätigkeit durchführt. Auch ist es kaum möglich, die nötigen Informationen
vorab genau zur Verfügung zu stellen, da es notwendig werden kann, den Ablauf
kurzfristig anzupassen. Daher kann eine solche Anwendung nur durch indirekte
Interaktion mit dem Nutzer effektiv verwendet werden. Durch die Verwendung
von abstrakten Informationen aus der Kontexterkennung können Anwendungen
durch den Menschen effektiver und mit weniger direkter Interaktion genutzt wer-
den.

Leider sind jedoch alle Sensorinformationen bei der Messung mit einer Messunsi-
cherheit behaftet. Diese Messunsicherheit kann durch Genauigkeit und Präzision
näher definiert werden. Die Genauigkeit gibt an, wie nah der aktuell gemessene
Wert einen Referenzwert widerspiegelt. Die Präzision der Messung gibt die statis-
tische Abweichung von diesem Referenzwert bei wiederholter Messung unter glei-
chen Bedingungen an. Je höher die Genauigkeit und Präzision einer Messung ist,
desto weniger unsicher ist die ermittelte Information. Die Sensoren, die in moder-
nen mobilen Endgeräten zur Verfügung stehen, haben eine weitgehend akzeptable
Genauigkeit. Eine hohe Präzision kann durch hohe Abtastraten und die Mittlung
von mehreren Einzelmessungen erreicht werden.

Damit ergibt sich für einzelne Messwerte eine vertretbare Messunsicherheit. Je-
doch multiplizieren sich diese Unsicherheiten bei der Kombination von Sensorin-
formationen, so dass die Gesamtunsicherheit stark zunimmt.

Um über die Unsicherheit eines einzelnen abstrakten Ereignisses genauer argu-
mentieren zu können, werden neben der Information das ein Ereignis stattgefun-
den hat auch Informationen über die Unsicherheit übertragen. Dazu ist ein ge-
eignetes Unsicherheitsmodell erforderlich. Üblicherweise wird diese Unsicherheit

8

unter Verwendung von einfacher Wahrscheinlichkeitstheorie durchgeführt und
auch die weitere Verrechnung von diesen Ereignissen geschieht unter Berücksich-
tigung dieser Wahrscheinlichkeiten. Doch je geringer die Signifikanz eines Ereig-
nisses ist und je weiter es verarbeitet wird, desto schwerwiegender wirkt sich die
Unsicherheit aus. Die abstrakten Ereignisse sind dann nur noch schlecht zu er-
kennen und potenziell mehrdeutig. Daher stellt die robuste Erkennung von ab-
strakten Nutzertätigkeiten immer noch eine herausfordernde Aufgabe dar. Wei-
tere Gründe, die dieses Problem verdeutlichen, sind die Auswahl der geeigneten
Sensoren, mangelndes Wissen über die Aktion aus der Anwendung, Probleme bei
der geeigneten Platzierung von Sensoren und natürlich die Kosten [BTJ+10]. Un-
ter diesen Bedingungen können verschiedene Fehler auftreten. Zunächst kann es
zu sogenannten falsch positiven Ereignissen kommen, die zwar erkannt werden,
aber nie wirklich stattgefunden haben. Eine zweite Art von Fehlern sind sogenann-
te falsch negative Ereignisse die passiert sind, aber nicht erkannt werden. Auch
können erkannte Ereignisse aufgrund der Unsicherheit falsch interpretiert werden
und daher ungewollte Reaktionen der Anwendung hervorrufen.

In einem gänzlich anderen Bereich gab es in den letzten Jahrzehnten einen ähn-
lich prägenden Trend. Mit der immer stärkeren Verbreitung von Computern haben
Unternehmen begonnen, standardisierte Geschäftsfälle so weit wie möglich zu au-
tomatisieren. Diese Entwicklung setzte sich zunächst in den klassischen “Papier-
fabriken” durch. Typische Vertreter sind Banken, die regelmäßig standardisierte
Anträge zur Kontoeröffnung durchführen, und Versicherungenm die Schadens-
meldungen bearbeiten müssen. Diese Automatisierung von Geschäftsprozessen
wurde schnell auch in anderen Branchen wie dem produzierenden Gewerbe über-
nommen [LR00]. Durch die konsequente Anwendung konnten die Unternehmen
eine größere Anzahl von standardisierten Geschäftsfällen mit weniger Personal
bewältigen.

Als Folge dieser Veränderung sind abstrakte Modellierungssprachen entwickelt
worden, um Geschäftsprozesse formal zu beschreiben und diese Beschreibung
soweit möglich maschinell mit einer Prozess-Engine auszuführen. Grundsätzlich
definiert jede Prozessbeschreibungsprache Sprachelemente um einzelne Prozess-
schritte (Aktivitäten) zu beschreiben und ihren Ablauf anhand von logischen oder
daten-basierten Abhängigkeiten zu steuern. Auf diese Weise ist es möglich eine
große Zahl von Geschäftsfällen teil- oder vollautomatisch auszuführen.

Historisch bedingt sind die meisten dieser Modellierungssprachen jedoch für die
Automatisierung von hoch standardisierten Abläufen geschaffen worden. Daher
sind solche modellierten Prozesse in der Regel nur schlecht in der Lage, auf kurz-
fristige Änderungen im Geschäftsvorfall zu reagieren. Außerdem wird die Interak-
tion von Menschen mit automatisierten Geschäftsprozessen ebenfalls stark stan-
dardisiert und beschränkt sich typischerweise auf das Bereitstellen und Bewerten
von Informationen sowie das Treffen von Entscheidungen. Die Entwicklung mo-

9

derner Prozessbeschreibungssprachen orientiert sich jedoch auch an komplexeren
Arbeitsumgebungen und der damit notwendigen höheren Flexibilität beim Aus-
führen der Geschäftsprozesse. Beispiele hierfür sind Prozesse, die in Forschung
und Entwicklung eingesetzt werden (vgl. [BH08]). Mit der Erweiterung der An-
wendungsfälle sind jedoch auch die Anforderungen an Geschäftsprozesse gestie-
gen, direkte Tätigkeiten der menschlichen Anwender in komplexen Situationen
zu unterstützen. Besonders is dies der Fall in Anwendungsgebieten bei denen In-
teraktion zwischen Menschen den Arbeitsalltag prägen. Ein Beispiel dafür ist der
medizinische Bereich, in dem Ärzte und Pfleger am und mit dem Patienten ar-
beiten. Zeitgleich gibt es jedoch strukturierte Prozesse, die eingehalten werden
müssen und umfangreiche Richtlinien, die zu beachten sind. Einerseits könnte ein
automatischer Geschäftsprozess Unterstützung bei der Durchführung und auch
beim Einhalten der Richtlinien geben. Andererseits muss er möglichst vollstän-
dig durch die Interaktion der Anwender (Ärzte, Pfleger) mit den Patienten bzw.
geeigneten Werkzeugen gesteuert werden.

Im Rahmen des ALLOW Projekts [HRKD08] sind daher sogenannte “adaptive per-
vasive flows” (APF) als modernes Programmierparadigma vorgeschlagen und un-
tersucht worden, um als Basis für die Modellierung von Anwendungen zu dienen,
welche die oben genannten Anforderungen erfüllen können. Dabei ist ein APF
ein Prozess der im Hintergrund läuft und die Anwender durch das Vorbereiten,
Bereitstellen oder Anpassen von Ressourcen und Werkzeugen unterstützen kann
(z.B. Konfigurieren einer Anwendung).

Einer der Gründe dafür, dass solche Prozesse heute noch nicht möglich sind, ist
die erwähnte Unsicherheit bei der Erkennung von Kontextinformationen. Bisheri-
ge Versuche dieses Problem zu lösen, hatten nur beschränkten Erfolg, weil beim
Erkennen des richtigen Kontextes zu wenig strukturiertes Wissen über die An-
wendung bzw. das Anwendungsumfeld vorhanden waren [BTJ+10]. Dieses An-
wendungswissen steuert wichtige Informationen über die gerade durchgeführten
Aktivitäten bei. Daher kann dieses Wissen dafür genutzt werden, die Probleme
bei der Kontexterkennung zu reduzieren und bei der richtigen Interpretation von
unsicheren Informationen über den Nutzerkontext zu helfen.

Im Rahmen dieser wissenschaftlichen Ausarbeitung ist das Kernthema die Erfor-
schung des Zusammenspiels zwischen automatisch ablaufenden, kontextgetrie-
benen Geschäftsprozessen und der Erkennung von komplexen menschlichen Tä-
tigkeiten mit unsicheren Sensorinformationen auf (mobilen) Endgeräten. Dabei
stehen zwei Arten der Interaktion zwischen Prozess und Kontext im Fokus. Zum
Einen steuert der menschliche Anwender den Geschäftsprozess weitgehend, ohne
dass der Anwender aktiv mit dem Prozess interagieren muss. Zum Anderen profi-
tiert die Erkennung der menschlichen Tätigkeiten deutlich durch die gespeicherte
Prozesslogik und die Anwendungsstruktur.

10

Ganz konkret wird untersucht, auf welche Weise die Struktur des modellierten
Prozesses genutzt werden kann, um die Unsicherheit und Mehrdeutigkeit beim
Erkennen von abstrakten Kontextinformationen zu reduzieren. Diese werden wie-
derum gebraucht, um die Anwendung stabil auszuführen. Die Untersuchung die-
ser Fragestellung führte zu den folgenden konkreten Beiträgen.

Zunächst wurde das (1) “Hybrid Flow Model” (HFM) [WHR11] entwickelt, wel-
ches eine Prozessbeschreibungssprache darstellt. Das HFM erlaubt die Verwen-
dung der beiden gängigen Prozessmodellierungskonzepte (imperativ und dekla-
rativ) im selben Prozessmodell und damit auch auf derselben Abstraktionsebene.
Mit dem HFM kann man einerseits stark strukturierte Prozesse modellieren, wie
sie in klassischen Anwendungsszenarien vorkommen. Dabei werden die Aktivitä-
ten anhand von festen Transitionen mit geeigneten Kontrollbedingungen geord-
net. Andererseits unterstützt es auch die Beschreibung von Prozessen mit lose ge-
koppelten Aktivitäten, deren Struktur nur über deklarative Bedingungen (“Cons-
traints”) vorgegeben sind. Dabei sind deklarative Prozesse besser geeignet, um
Menschen bei ihren Aufgaben zu unterstützen, da sie lediglich vorgeben was getan
werden muss, aber nicht genau wie und wann. Weiterhin ist das HFM dafür aus-
gelegt, Anwendungen zu modellieren die hauptsächlich durch Kontextereignisse
gesteuert werden. Dabei stellt die unmittelbare Kombination der Modellierungs-
konzepte und die damit einhergehende höhere Flexibilität beim Modellieren und
Ausführen einen neuen Beitrag dar.

Basierend auf dem HFM wurden eine Reihe unterschiedlicher Mechanismen ent-
wickelt, welche Informationen aus der Struktur eines Prozesses nutzen. Diese Me-
chanismen sind in der (2) “FlowPal”-Architektur [WHR13] zusammengefasst. Sie
bietet den Rahmen, um die verschiedenen Mechanismen zu bündeln und ihre ge-
meinsame Funktionsweise und gegenseitige Unterstützung darzustellen. Außer-
dem können durch “FlowPal” die Methoden flexibel als zusätzliche Komponenten
einer Prozess-Engine eingesetzt werden.

Der erste entwickelte Mechanismus ist das (3) “Flow Context System” (FlowCon).
FlowCon [WHR10] ist ein Plug-In für eine Prozess-Engine, das speziell für die
klassischen hoch-strukturierten Prozesse ausgelegt ist. Die Anwendung von “Flow-
Con” ist insbesondere dann sinnvoll, wenn die Ausführung der Prozesse stark
durch Kontextinformationen getrieben wird. “FlowCon” nutzt dabei die vorhan-
denen strukturellen Informationen aus einem Geschäftsprozess, um statistische
Abhängigkeiten der Kontextinformationen zu ermitteln, die für die Ausführung
des Geschäftsprozesses relevant sind. Dazu geht “FlowCon” zweistufig vor. Zu-
nächst werden in einem ersten Schritt die Transitionen des Prozessmodels und
die zugehörigen Kontextinformationen analysiert. Mit diesen Informationen wird
dann die Struktur eines Bayeschen Netzwerkes aufgebaut, welches die beding-
ten Abhängigkeiten der Kontextinformation anhand des Prozessmodels wiederge-
ben kann. Aus historischen Daten über bereits erfolgreich ausgeführte Instanzen

11

des Geschäftsprozesses können dann im zweiten Schritt die Gewichte im Baye-
schen Netzwerk angepasst werden. Diese entsprechen dann den bedingten rela-
tiven Häufigkeiten der Kontextinformationen wie sie in den historischen Daten
vorkamen. Das Netzwerk kann nun aber auch, unter Verwendung eines aktuellen
Ausführungszustandes des Geschäftsprozesses, dafür genutzt werden, die aktuel-
len vorliegenden Kontextinformationen hinsichtlich ihrer statistisch historischen
Häufigkeit zu bewerten. Mit dieser Bewertung kann die Interpretation der Kontex-
tinformationen unmittelbar beeinflusst werden. In Experimenten wurde nachge-
wiesen, dass “FlowCon” in der Lage ist unter bestimmten Bedingungen die Genau-
igkeit von Kontextinformationen um bis zu 50% gegenüber der Ausgangsgenau-
igkeit zu steigern. Auf diese Weise kann die robuste Verarbeitung von unsicheren
Kontextinformationen deutlich gesteigert werden. Außerdem war es möglich, die
Rate der erfolgreich ausgeführten Prozesse unter diesen Bedingungen signifikant
zu steigern.

Das Konzept von FlowCon ist anschließend erweitert und angepasst worden, um
auch auf den flexibleren Geschäftsprozessen des “HFM” vollständig anwendbar
zu sein. Das Ergebnis ist (4) “FlexCon” [WHR11]. Da das grundsätzliche Prinzip
von “FlexCon” ist mit dem von “FlowCon” vergleichbar ist, werden beide auch
als “?Con” (StarCon) bezeichnet. Auch bei “FlexCon” wird das Model des Ge-
schäftsprozesses analysiert. Allerdings müssen nun ebenfalls aus den Constraints
entsprechende Abhängigkeiten zu den Kontextinformationen gewonnen werden.
Außerdem kann die bisherige statische Struktur des Bayeschen Netzwerks den
dynamischen Ablauf des Geschäftsprozesses nicht mehr richtig abbilden. Daher
muss auch für das statistische Schließen auf Dynamische Bayesche Netzwerke als
flexibleres Werkzeug zurückgegriffen werden. Mit diesen Anpassungen ist “Flex-
Con” fähig eine ähnliche Verbesserung wie “FlowCon” auch für Geschäftsprozesse
auf Basis des HFM zu liefern. Die Experimente zeigen hier eine Steigerung der Ge-
nauigkeit von Kontextinformationen um bis zu 73%. Gleichzeitig kann auch die
Rate der korrekt ausgeführten Prozesse im Vergleich zum Referenzsystem wie-
der gesteigert werden. Allerdings fällt dieser Sprung wesentlich kleiner aus, da es
nicht in allen Fällen möglich ist zusätliche Informationen aus “FlexCon” zu ge-
winnen.

Beide Mechanismen, “FlowCon” und “FlexCon” wurden weiter verbessert. Neben
klassischer Wahrscheinlichkeitstheorie wurden dazu auch fortgeschrittenere Un-
sicherheitsmodelle untersucht, um die unsicheren Kontextinformationen darzu-
stellen und zu kombinieren. Zum einen wurde mit Subjektiver Logik ein Mo-
dell untersucht, dass die explizite Darstellung von Unsicherheit in zweiter Ord-
nung unterstützt und eine vollständige Arithmetik für den Umgang mit unsiche-
ren Aussagen bietet. Basierend auf subjektiver Logik lässt sich auch der Umfang
genauer steuern den “StarCon” auf Kontextereignisse im konkreten Fall ausüben
soll. Weiterhin wurde Vierwertige Logik verwendet, um bei der Auswertung von
Bedingungen an den Transitionen auch explizit widersprüchliche Informationen

12

zu verwenden und zur Auflösung von Unsicherheit zu nutzen. Das Ergebnis dieser
Untersuchungen ist (5) “HyperFlowCon” [WHR13] welches mit der Anwendung
von subjektiver Logik und einigen weiteren Optimierungen noch einmal signifi-
kante Verbesserungen bis hin zu 97% hinsichtlich der Rate der korrekt ausgeführ-
ten Prozesse erreicht. Außerdem kann die Sicherheit mit der die Prozess-Engine
Entscheidungen trifft durch die Anwendung von “HyperFlowCon” ebenfalls deut-
lich gesteigert werden.

Die bisher vorgestellten Methoden zielen alle auf die Verbesserung der Genauig-
keit eines einzelnen Ereignisses im Zusammenhang bei der Prozessausführung. Im
Gegensatz dazu wurde mit dem (6) “Fuzzy Event Assignment” (FevA) [WHP11]
einen Mechanismus entwickelt, der Fehler in einer Sequenz von Kontextereig-
nissen, die beim Ausführen eines Geschäftsprozesses auftreten können, erkennen
und beheben kann. Dazu erweitert “FEvA” den Zustandsraum der Aktivitäten, um
rechtzeitig über Kontextinformation für zukünftige Aktivitäten informiert zu sein.
Außerdem werden die Ereignisse in einem sogenannten Ereignis-Container zwi-
schengespeichert, der dann mit Hilfe von zwei entwickelten Algorithmen die Kon-
textereignisse der richtigen Aktivität zuordnen kann. Dazu wird zunächst durch
den “Candidate Selection Algorithm” mittels Fuzzy Logik eine linguistische Ab-
bildung der Kontextereignisse auf die möglichen Aktivitäten errechnet. In einem
zweiten Schritt bildet der “Event Assignment Algorithm” die Ereignisse mit der
besten Entsprechung auf die richtige Aktivität ab. Dabei ist “FEvA” in der Lage
sich adaptiv auf das Eintreffen neuer Ereignisse anzupassen und die Zuordnung
entsprechend zu optimieren. Die durchgeführten Versuche zeigen, das “FEvA” die
Ereignisse in bis zu 94% der Fälle richtig zuordnen kann. Für falsch positive Er-
eignisse liegen die Werte darunter aber immer noch um 16 bis 30 Prozentpunkte
über dem Referenzsystem.

Die bisher genannten Ergebnisse wurden alle im Rahmen einer zweistufigen Eva-
luationsmethode gewonnen. Zunächst wurde eine intensive (7) Szenarioanalyse
im medizinischen Pflegebereich durchgeführt [KBNL11]. Ein Ergebnis davon wa-
ren konkrete Anwendungsfälle und Strukturen für Prozesses die den formulier-
ten Anforderungen an die Anwendung genügen. Auf Basis dieser Szenarioanalyse
wurde eine Studie entwickelt, bei der auch umfangreiche Kontext-Informationen
erhoben und ausgewertet wurden. Diese Daten lieferten wiederum wertvolle Im-
pulse für die Gestaltung der weiteren Experimente. Um die entwickelten Mecha-
nismen an einer hinreichend großen Anzahl von Geschäftsprozessmodellen zu
testen, musste die Datenbasis weit über die gewonnenen Informationen aus der
Studie erweitert werden. Dazu wurden Informationen aus anderen Studien, sowie
über sogenannte “Workflow-Activity Patterns” [CITR08] verwendet um maschi-
nell ähnliche Geschäftsprozesse zu erzeugen [WHR11]. Diese konnten dann als
Basis für umfangreiche Simulationen dienen. Weiterhin konnten die gesammelten
Kontextinformationen genutzt werden, um die Simulation mit praxisnahen Daten
über die Kontexterkennung zu versorgen.

13

Diese Beiträge und die gewonnen Erkenntnisse stellen einen deutlichen Wissensn-
gewinn im Bereich der kontextbezogenen prozessbasierten Anwendungen dar.

14

Contents

I. Introduction, Background and System Model 31

1. Introduction 33
1.1. Motivation . 33
1.2. Contributions . 36
1.3. Structure . 39

2. Background 41
2.1. Business Process Management . 41

2.1.1. Flow Life Cycle . 42
2.1.2. Flow Modeling . 46

2.2. Context Information and Context Management 49
2.2.1. Abstract Context Information 51
2.2.2. Representation of Context Information Uncertainty 52

2.3. The ALLOW Project . 55
2.3.1. Flows and Adaptation . 55
2.3.2. Adaptive Flow Control . 56
2.3.3. Scenarios . 56

3. System Model 59
3.1. Basic Assumptions . 59

3.1.1. Process Management Execution Environment 60
3.1.2. User Behavior . 60
3.1.3. Device and Network Model 60
3.1.4. Sensors and Mobility . 61

3.2. Context Model . 62
3.2.1. Context Information and Events 63
3.2.2. Event Instances and the Uncertainty Model Abstraction . . . 64

3.3. Discussion . 65

15

Contents

II. Concepts and Algorithms 67

4. Concept Overview 69
4.1. FlowPal System Architecture . 69

5. The Hybrid Flow Model 73
5.1. Preliminaries . 73

5.1.1. Human interaction in workflows 73
5.1.2. Context in workflows . 75

5.2. The Basic Imperative Flow Model . 77
5.2.1. Basic Execution Principle . 80
5.2.2. Petri Net Similarity . 82

5.3. Hybrid Flow Model Extensions . 83
5.4. Discussion . 86

6. Probabilistic Reduction of Context Event Uncertainty 87
6.1. Preliminaries . 87
6.2. Related Work . 88
6.3. ?Con Algorithmic Principle . 89
6.4. FlowCon . 90

6.4.1. Flow Structure Analysis . 92
6.4.2. Bayesian Network Training 94
6.4.3. Runtime Information Combination with Bayesian Networks 95

6.5. FlexCon . 96
6.5.1. Dynamic Bayesian Network - Structure and Learning 97
6.5.2. Flow Analysis and DBN Construction 98
6.5.3. Dynamic Bayesian Network Training 100
6.5.4. Clustered Particle Filtering with Dynamic Bayesian Networks 102

6.6. Uncertainty Model Variants . 104
6.6.1. Subjective Logic Condition Evaluator 105
6.6.2. Integrating SL in the CE . 106
6.6.3. Minimal event ignorance . 108
6.6.4. Adaptive Navigation Threshold 109
6.6.5. Four-Valued Logic Condition Evaluator 109

7. Adaptive Fuzzy Event Assignment 113
7.1. Preliminaries . 113
7.2. Related Work . 114

7.2.1. Workflows and Fuzzy Logic 114
7.2.2. Fuzzy Petri Nets . 114
7.2.3. Event Sequence Error Model and Problem Statement 115

7.3. Algorithm Overview . 116
7.4. Flow Activity State Space Extension 118

16

Contents

7.5. Candidate Selection Algorithm . 119
7.6. Candidate Assignment Algorithm and Conflict Resolution 121
7.7. Discussion and Conclusions . 122

III. Evaluations 125

8. Methodology 127
8.1. Health-Care Scenario Case Study . 128

8.1.1. Study Setup . 129
8.1.2. Flow Mining . 131

8.2. Pattern-based Flow Generation . 136
8.2.1. Flow Generation . 137
8.2.2. Event Sequence Generation 145
8.2.3. Discussion . 147

8.3. Simulation Setup . 148
8.3.1. Performance Metrics . 148
8.3.2. System Parameters . 151

9. Simulation Results 155
9.1. Event Change Rate . 155
9.2. Flow Completion Rate . 159
9.3. Flow Certainty . 172
9.4. FEvA results . 179

9.4.1. Correct Event Assignment Rate 179

IV. Conclusions and Outlook 189

10. Conclusions 191

11. Outlook 193

Bibliography 195

17

List of Figures

2.1. control flow of the credit card application workflow [YAW13] 43
2.2. Graphic illustration of accuracy and precision [Wik] 50

3.1. Network Model and Deployment given only infrastructure devices . 61
3.2. Network Model and Deployment given only a single mobile device

with sensing capabilities . 62

4.1. Generic Flow Engine Architecture . 70
4.2. FlowPal Architecture Plugins . 71

5.1. Flow snippet showing all modeling elements of a basic imperative
flow . 77

5.2. Example workflow from a hospital scenario 85

6.1. Architecture overview . 89
6.2. Blood Sample Flow . 91
6.3. Bilattice of four-valued logic . 110

7.1. Event Container . 117
7.2. Activity State Machine . 118
7.3. Blood sample flow execution states according to FEvA 119

8.1. Floorplan of the Mainkofen Ward . 130
8.2. Workflow mined as Petri Net from the traces 134
8.3. Workflow mined as Fuzzy Transition System 134
8.4. BPMN Workflow . 135
8.5. Morning examination activities modeled with the Hybrid Flow Model

(HFM) and constraints . 135
8.6. Approval Pattern . 138
8.7. Bi-Directional Performative Pattern 139
8.8. Decision Pattern . 139
8.9. Information Request Pattern . 139
8.10. Notification Pattern . 140
8.11. Question-Answer Pattern . 140
8.12. Unidirectional Performative Pattern 141
8.13. Flow generation: pattern distribution verification 144

19

List of Figures

8.14. Flow generation: average generated vs. target split degree 144
8.15. Flow generation: split distribution verification 145

9.1. event change rate of Flow Context (System) (FlowCon) for a chang-
ing navigation threshold tn . 156

9.2. Comparison of event change rate for Flexible Flow Context (System)
(FlexCon) and FlowCon . 158

9.3. Flow Completion Rate for basic flow engine ENG(f ,S) 160
9.4. Flow Completion Rate for the basic FlowCon system ENG(f ,S)[FC] 162
9.5. Flow Completion Rate for FlowCon with Subjective Logic Condition

Evaluator (SLCE) . 163
9.6. Flow Completion Rate for FlowCon with SLCE and the significant

event type input . 164
9.7. Flow Completion Rate for FlowCon with four-valued logic (4V) Condition

Evaluator (CE) . 165
9.8. Flow Completion Rate for FlowCon with SLCE and a maximal trust

of 60% . 166
9.9. Flow Completion Rate for FlowCon with SLCE, a maximal trust of

60% and an adaptive navigation threshold 167
9.10. Flow Completion Rate for FlowCon with SLCE, a maximal trust

of 60%, an adaptive navigation threshold and the significant event
type input . 168

9.11. Flow Completion Rate for FlowCon with 4V CE, a maximal trust of
60% and an adaptive navigation threshold 169

9.12. Flow Completion Rate for FlexCon with SLCE, a maximal trust of
60% and an adaptive navigation threshold 170

9.13. Flow Completion Rate for FlexCon with 4V CE, a maximal trust of
60% and an adaptive navigation threshold 171

9.14. Average Flow Certainty of the basic reference System 174
9.15. Flow Certainty for the basic FlowCon system 175
9.16. Flow Certainty for the FlowCon with SLCE, a maximal trust of 60%

and an adaptive navigation threshold 176
9.17. Flow Certainty for the FlowCon with SLCE, a maximal trust of 60%

and an adaptive navigation threshold and reduced input information 177
9.18. Flow Certainty for FlexCon with SLCE, a maximal trust of 60% and

an adaptive navigation threshold . 179
9.19. Correct Event Assignment Rate comparison of reference system and

FEvA for false positive context events 180
9.20. Flow Completion Rate of FEvA for false positive context events . . . 182
9.21. Correct Event Assignment Rate comparison of reference system and

FEvA for out of order context events 183
9.22. Flow Completion Rate of FEvA for out-of-order context events . . . 184

20

List of Figures

9.23. Correct Event Assignment Rate comparison of reference system and
FEvA for deleted/missing context events 185

9.24. Flow Completion Rate of FEvA for deleted context events 186
9.25. Flow Completion Rate comparison of reference system and FEvA

for individual sequence errors . 187

21

List of Tables

6.1. Mapping and Interpretation of 4V values for condition evaluation . 111

8.1. workflow activity pattern co-occurrence probability matrix 152

9.1. Simulation Result Overview: Flow Completion Rate 159
9.2. Flow Completion Rate for the basic FlowCon system 161
9.3. Flow Completion Rate for FlowCon with SLCE 162
9.4. Flow Completion Rate for FlowCon with SLCE and the significant

event type input . 163
9.5. Flow Completion Rate for FlowCon with 4V CE 164
9.6. Flow Completion Rate for FlowCon with SLCE and a maximal trust

of 60% . 165
9.7. Flow Completion Rate for FlowCon with SLCE, a maximal trust of

60% and an adaptive navigation threshold 166
9.8. Flow Completion Rate for FlowCon with SLCE, a maximal trust

of 60%, an adaptive navigation threshold and the significant event
type input . 167

9.9. Flow Completion Rate for FlowCon with 4V CE, a maximal trust of
60% and an adaptive navigation threshold 169

9.10. Flow Completion Rate for FlexCon with SLCE, a maximal trust of
60% and an adaptive navigation threshold 170

9.11. Flow Completion Rate for FlexCon with 4V CE, a maximal trust of
60% and an adaptive navigation threshold 170

9.12. Simulation Result Overview: Flow Certainty 173
9.13. Flow Certainty for the basic FlowCon system 174
9.14. Flow Certainty for FlowCon with SLCE, a maximal trust of 60% and

an adaptive navigation threshold . 176
9.15. Flow Certainty for FlowCon with SLCE, a maximal trust of 60% and

an adaptive navigation threshold and reduced input information . . 177
9.16. Flow Certainty for FlexCon with SLCE, a maximal trust of 60% and

an adaptive navigation threshold . 178

23

List of Algorithms

6.1. Structure Analysis . 94
6.2. DBN Node Mapping . 99
6.3. DBN Transition Model Mapping . 101
6.4. Clustered Particle Filter Algorithm 103

7.1. Candidate Selection Algorithm . 120

25

List of Acronyms and Symbols

The following acronyms are used throughout this document:

4V four-valued logic

APF Adaptable Pervasive Flow

bba basic belief assignment

BN Bayesian Network

BPEL Business Process Execution Language

BPM business process management

BPMN Business Process Modeling Notation

CE Condition Evaluator

CMS Context Management System

CPT conditional probability table

DS Dempster-Shafer Theory of Evidence

DBN Dynamic Bayesian Network

FEvA Fuzzy Event Assignment

FlexCon Flexible Flow Context (System)

FlowCon Flow Context (System)

HyperFlowCon Hyper Flow Context (System)

HFM Hybrid Flow Model

PN Petri Net

PT Probability Theory

RV random variable

SOA Service Oriented Architecture

SL Subjective Logic

27

List of Algorithms

SLCE Subjective Logic Condition Evaluator

WS Web Service Stack

WSDL Web Service Definition Language

YAWL Yet Another Workflow Language

List of Symbols

α fraction of false positive events in an event sequence
A a set of activities
a an activity
c a transition condition
C a set of transition conditions
γ fraction of out-of-order events in an event sequence
D set of dependencies in a (dynamic) Bayesian Network
δ fraction of deleted events in an event sequence
e an instance of a context event
E an event type set
IeE interpretation of an context event instance e of event type set E
κ fuzzy activity weighting function
l a flow constraint
L a set of constraints
λ fuzzy event type weighting function
N a set of Nodes (random variables) in a Bayesian Network, the joint

probability distribution is described by the Bayesian Network
M a set of marked transitions
µ fuzzy membership function
PD prior distribution of a dynamic Bayesian Network
S a sequence of context Events
t a transition
T a set of Transitions
T a flow trace
T M transition model of a dynamic Bayesian Network
Θ a frame of discernment/universe of events
u a certain event type
U the univers of all possible event types
φ a function selecting mandatory activities
Φ the set of all mandatory activities in a flow
X discrete random variable
X̄ set of random variables, their joint probability distribution can be

represented in a (dynamic) Bayesian Network

28

List of Algorithms

X̄t random variable X defined for time slice t in a dynamic Bayesian
Network

χ a function for mapping any activity - event type set pair to a sin-
gle random variable in a Dynamic Bayesian Network, part of the
FlexCon Dynamic Bayesian Network construction algorithm

Z set containing all activity states
ω activity state function

29

Part I.

Introduction, Background and
System Model

31

1. Introduction

The most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguish-
able from it.

Mark Weiser [Wei91]

1.1. Motivation

One of the most distinct success stories of the last decade has been the rapid devel-
opment and broad availability of mobile computing systems. Devices like smart
mobile phones or tablets have become ubiquitous and allow humans to communi-
cate and share information almost any-time and everywhere in ways rarely imag-
inable ten years ago. While this has greatly influenced when and where people use
information technology, the means of interaction with mobile computing systems
have adapted much slower. Interaction is mostly focused on viewing information
on some portable display and entering commands using a keyboard, touch screens
or even voice activation. This interaction is explicitly driven by the users and they
have to control applications directly.

There is another trend ongoing that is on its way to shape the next decade of infor-
mation systems and interaction with them. Sensors are becoming an integral part
of basically every smart mobile device, making the device aware to its surround-
ings and also to the users current context. A multitude of different modalities can
be sensed today, already . The most common context information are position in-
formation that can be acquired outdoors using the global positioning system (gps).
Furthermore cameras and microphones are standard sensing devices in smart mo-
bile devices. In addition to their obvious usage to take pictures, create videos and
record and transmit audio, they can be used to identify objects and people, or to
control the device by gestures or voice commands. Also, features like noise cancel-
lation and background noise detection require a microphone sensor. Next, there
are sensors to measure acceleration of the mobile device, which can be used to de-
tect changes in movement, free fall or position of the device relative to the ground.
A simple application for acceleration data is the change of display orientation. For

33

1. Introduction

more advanced movement detection, which enables full inertial navigation, addi-
tional gyroscope sensors are available that detect yaw rates applied to a device.
Magnetic field sensors are used for compass applications and can in general be
used to detect changes in the magnetic surroundings of the device. A relatively
new type of sensors for mobile devices are pressure sensors, which can be used to
estimate the barometric height, aiding both indoor and outdoor navigation solu-
tions.

Being used on their own the sensors provide only a limited view on the device and
user context. The range of possible applications becomes much larger as more of
these sensor modalities are combined and used to cross check the plausibility of
sensor readings. This way, much more complex and abstract high-level context in-
formation can be derived. For example, imagine a maintenance worker, that wants
additional information for some of his tasks. In order to guide the maintenance
worker an application needs events such as, getting the correct tool, using that tool
for a specific action and how this action has been performed. If the maintenance
worker has to enter each step on the fly, or has to describe all the steps before the
actual task, the usability of the application would be low. Relying on explicit user
interaction, prevents such an application to be effectively used. Using high-level
abstract context information to guide the human user, allows for more expressive
and less obtrusive interaction (cf. [KWK+09]).

Sensor data is always uncertain, but can be quantified by accuracy and precision.
While accuracy defines how close the current reading represents the actual mea-
sured value, precision denotes the statistical deviation when the measurement is
repeated under unchanged conditions. The more accurate and precise the mea-
surement is the less uncertain the measured information is. The sensors used in
commodity smart mobile devices have a pretty fair accuracy and a good precision
can be achieved by averaging between multiple measurements. Hence, raw sensor
data represents a valid measurement. But the more the data is processed to rec-
ognize high-level abstract context information, the more assumptions have to be
included. Typically, those recognition results suffer from added uncertainty and
ambiguity. Robustly detecting human activities in the real-world is still a very
challenging task. The reasons are the difficulty of selecting appropriate sensors,
the lack of application knowledge, the difficulty of sensor deployment, and low
cost of deployed components [BTJ+10]. This leads to different types of errors like
false positives (activities that are detected even though they never happened), false
negatives (activities that remain undetected), or misclassifications (activities that
actually happened but were assigned a false meaning).

In a very different area of computer science another trend has been ongoing for
about twenty years. Starting in the early nineties, companies began to automate
the execution of standard cases in their businesses processes in a large scale. First,
this happened in typical "paperwork factories" like insurance companies and fi-

34

1.1. Motivation

nancial industry for processes such as processing of damage reports and credit
applications. They have been quickly adopted for manufacturing related automa-
tion of business processes [LR00]. Automating their workflows companies aimed
for higher throughput of cases and a lower human resource consumption in work-
place environments for repetitive tasks.

Abstract languages to describe such a workflow have been developed. Basically, a
workflow language defines modeling elements to describe an structured applica-
tion based on a set of tasks that are executed due to some additional logical and
data dependencies. Due to their origin, most workflow languages are tailored to
automate business processes, which are standardized and have low flexibility but
a large number of cases to be processed. Human interaction with those type of
workflows is usually limited, to entering or editing documents and data as well as
decision making and approval.

As business process automation tried to capture more complex workplace envi-
ronments, the workflows had to deal with greater flexibility in their execution.
Nowadays, workflows are also used to coordinate creative engineering processes
as well as scientific research. (c.f. [BH08])

But as the application areas of workflows increase, the requirements to integrate
the human real-world interaction tightly into their execution becomes more chal-
lenging. This is especially the case in domains with rich human interaction, such
as health-care [DRK00] (e. g. patient treatment, surgery, hospital care) or service
industries (e. g. repair shops, logistics support). In this areas humans directly in-
teract with each other or with goods and by their interaction drive the execution
of a business process.

In the ALLOW project, we have proposed the so-called Adaptable Pervasive Flow
(APF) (in short: flow) [HRKD08]. A flow is a programming paradigm to model
real-world processes executed by humans. Running in the background a flow can
document the work process for legal reasons or for subsequent analysis and opti-
mization. It can provide guidance when users deviate from its definition. Further,
a flow can support users by preparing, providing, or adapting resources (e. g. set-
ting up required applications in a computer, or controlling applications for the
user).

One of the reasons that all of this is not already a reality today is the aforemen-
tioned unreliability of current activity recognition technology. Attempts tackling
this problem had limited success due to little or no structured knowledge about
the application or its domain. Structured application knowledge provides seman-
tic information about the activities in the real world. Therefore, this source of
information can help to identify the described errors and interpret uncertain con-
text information correctly.

35

1. Introduction

1.2. Contributions

The key topic of this thesis is to explore the space of interaction between a flow,
as structured workflow-like application that relies on tight interaction with a hu-
mans real-world actions, and the recognition process of high-level abstract context
information from available sensors in mobile computing systems. We focus on two
different ways of interaction between workflows and context information. First, a
workflow that is enacted by a human should be automated solely using context in-
formation without obstructing the human in his behavior. Second, the recognition
of uncertain context information benefits from information about business logic
and application structure encoded in workflows.

More specifically we investigate in which ways structural information encoded in
a flow can be used to reduce uncertainty and ambiguity in the context information
that are required by the application. The research of this interaction space has led
to the following individual contributions.

We have developed our Hybrid Flow Model (HFM) (1) [WHR11] for describing
process-based applications. We investigated existing workflow languages and the
modeling paradigms used for creating process-based applications. The Hybrid
Flow Model combines the two widely used modeling paradigms, imperative(e. g.
[AH03]) and declarative[PSA07]. On the one hand, it allows to model highly struc-
tured workflows that have been used for the classical applications such as those in
insurance companies or manufacturing that we mentioned earlier. On the other
hand, the HFM supports the creation of workflows using declarative expressions.
These are much more suited supporting a human in his daily routine, as they
mostly describe what to do and not exactly how and when. Using the HFM we
can cover both highly structured and human-centric declarative flows. It is also a
generic model that we use as foundation to build further process-context interac-
tion mechanisms.

While researching the interaction space of context information and workflows we
developed a number of mechanisms. All of them have been classified and sub-
sumed under a common system architecture. This overall system architecture is
FlowPal (2) [WHR13]. It provides us with the necessary framework to plug-in each
of the mechanisms and show how they work together and complement each others
function.

The Flow Context (System) (FlowCon) (3) [WHR10] is the first mechanism. It is a
flow engine plug-in that is tailored to classical highly structured workflows that
rely on context information for their successful execution. FlowCon extracts in-
formation from the flow structure to derive dependencies between context infor-
mation which drive the flow execution. The gained knowledge is used to train a
Bayesian Network (BN). The information stored in the BN is allows FlowCon to

36

1.2. Contributions

increase the recognition accuracy of the related human activities, thus decreasing
their uncertainty. This way the flow execution becomes more robust. That means,
even when the original accuracy of the available context information is low, the
flow executes correctly. We show that FlowCon can increase the accuracy of the
context information delivered to the application up to 49%. This way, the overall
robustness of the system can be increased significantly, even when faced with very
low accuracy activity recognition results.

The concept of FlowCon has been extended and we applied its general idea also
to the more flexible HFM. The result is Flexible Flow Context (System) (FlexCon)
(4) [WHR11], a mechanism that leverages a combination of imperative (rigid) and
declarative (flexible) flow models, Dynamic Bayesian Networks (DBN), and parti-
cle filters to reduce the uncertainty of context events. FlexCon builds probabilis-
tic models of the dependencies between events and uses this in a similar way as
FlowCon to improve the processing of probabilistic context events. Evaluation
results of FlexCon show that it decreases the context event uncertainty by up to
73%. While standard flow technology exhibits a high flow failure rate of 82%
when executing hybrid flows under uncertain context information, the failure rate
of FlexCon is only 65% on average of all flows.

As both, FlowCon and FlexCon share the same principle we refer to both of them
as ?Con (StarCon). We spent additional effort on both, FlowCon and FlexCon,
adopting them to use more sophisticated models to represent uncertainty. The re-
sult is Hyper Flow Context (System) (HyperFlowCon) (5) [WHR13] using our novel
Subjective Logic Condition Evaluator (SLCE) to combine two sources of context
information in FlowPal in a systematic and effective way. One source of informa-
tion are the real-world context events FlowPal receives, the second consists of the
likelihood of these measured events as it is indicated by FlowCon and FlexCon.
Combining both into a more meaningful piece of information that can guide the
execution of flows more robustly is non-trivial. The SLCE allows us to solve this
problem. With HyperFlowCon we also introduce a number of mechanisms to fur-
ther decrease the impact of uncertain context information. We provide evaluation
results for the HyperFlowCon and show that it outperforms a system that relies on
FlowCon alone by up to 25%.

The methods mentioned so far aim to reduce the uncertainty of a single context
event. In Contrast, the Fuzzy Event Assignment (FEvA) (6) [WHP11] method of
FlowPal resolves errors in a sequence of context events. It enables workflows to in-
terpret incoming uncertain context events and assign them to the correct activities
in a robust fashion. FEvA exploits the structural and contextual relation of work-
flow activities and the current execution state of the workflow as additional infor-
mation for dealing with false positive, out-of-order, and missing events. This leads
to a notable improvement of the robustness. On average 91% of the context events

37

1. Introduction

are correctly assigned, and the number of successfully completed flows increases
on average by 52% over a reference system without FEvA.

Finally, the evaluation results of all of the proposed methods have been achieved
using a two-tier evaluation approach. The first approach is based on a real-world
case study that we conducted in a geriatric nursing hospital. We collected con-
text information as well as the workflow based application in-situ and used both
later to conduct offline experiments that show the effectiveness of FlowPals meth-
ods with respect to real-world data. The second approach founds on the pattern-
based generation of artificial workflows (7) to drive a large scale simulation. This
way, we could create a statistically significant number of structurally different
flows that exhibit similar properties than the one observed in the hospital sce-
nario. Using this set of workflows allows us to evaluate the performance of Flow-
Pals methods independently of a specific workflow structure found in the sce-
nario.

The contributions of the thesis author in the cited publications are the follow-
ing.

In "Robustness in Context-Aware Mobile Computing" [WHR10] I first described
FlowCon, analyzed the related work, set up the formal context and flow model as
foundation to design, implement and evaluate FlowCon based on the highly struc-
tured blood-sample flow observed in a geriatric nursing ward.

With the next paper, "FlexCon – Robust Context Handling in Human-oriented
Pervasive Flows" [WHR11], I provided a deeper insight on the flexible execution
of flows in the geriatric nursing home. I extended the flow model to accommodate
imperative as well as declarative modeling components within the same model.
While both modeling components have been discussed earlier, their combination
in a single model is an original contribution. Based on this extensions, I modified
the FlowCon algorithm to deal also with less structured flows, leading to better
human support when flows provide more flexibility. The result is the FlexCon
algorithm which I designed, implemented and evaluated.

The contributions of "Fuzzy Event Assignment for Robust Context-Aware Work-
flows" [WHP11] are mostly joint work with Jonas Palauro, whom I supervised dur-
ing his diploma thesis. I provided the general idea of having a flexible and adap-
tive mapping of events to respective flow activities with fuzzy logic, supervised the
algorithm design, made some modifications to improve handling of deleted events
and performed the evaluation and analysis of the published results.

Finally, in "Dealing with Uncertainty – Robust Workflow Navigation in the Health-
Care Domain" [WHR13], I summarized the already published concepts under a
common architecture – FlowPal– and provided analysis and results on the impact
of the used model of uncertainty to represent context information. For the inte-
gration of Subjective Logic (SL) and 4V in FlowCon I was supported by Michael

38

1.3. Structure

Trunner, supervising his diploma thesis. The extensions of minimal event ig-
norance and the adaptive navigation threshold have been proposed by him. I
have further integrated SL and FlexCon and performed the evaluation and analy-
sis.

The data from the geriatric nursing home required to perform the evaluation have
been collected mostly by Agnes Grünerbl and processed by Gernot Bahle, To-
bias Unger and myself. I contributed to the study setup and collected some of
the data first hand. For each publication Klaus Herrmann supervised and im-
proved my work, guiding me to define the contributions in precise and cohesive
way.

1.3. Structure

Overall, the thesis is structured in four parts. In Part I we present background
information (Chapter 2) that is relevant in the scope of this thesis. In Chapter 3
we introduce our system model that is the formal foundation for the concepts and
algorithms developed. They are described in detail in Part II of this thesis. First
we introduce the system architecture of FlowPal in Chapter 4 and the Hybrid Flow
Model in Chapter 5. After that we present the algorithms to reduce uncertainty,
?Con and its variants, in Chapter 6 and then FEvA and its algorithms for adaptive
event assignment in Chapter 7.

Having described all the theoretical information on the concepts and algorithms,
we evaluate their quality and performance in Part III. Chapter 8 describes our two
way evaluation strategy, that is based on a real world scenario in the health-care
domain and thorough simulation experiments. The actual results are presented
and discussed in Chapter 9. Finally, we conclude and summarize our findings and
finish with an outlook on future work in Part IV

39

2. Background

As the focus of this work is placed between the area of business process man-
agement and context-aware mobile applications, we want to further introduce the
relevant background for each of these areas. We present a basic overview on the
state of the art in each area, clarifying the most relevant terms and principles.
Then, we address the relevant problems in the scope of this thesis. This way the
relation of FlowPal and its mechanisms to each field of application will become
clear in the following chapters. We start giving a general overview on the area of
business process management (BPM). This includes the general life-cycle of a flow,
the modeling languages to create them and the paradigms behind those languages.
After that we focus on context information in modern mobile computing systems,
with a special focus on two topics. The first one covers abstract high-level context
events, which are suitable to drive the execution of an equally abstract business
process. The second topic is the representation of uncertainty for this kind of con-
text events.

As the results presented in this thesis have been developed as part of the ALLOW
project, we also relate them to the project goals. ALLOW aims to promote so called
adaptable pervasive flow as next generation programming paradigm for pervasive
applications. Based on this vision we conclude the chapter discussing the applica-
tion domains and challenges tackled in ALLOW.

2.1. Business Process Management

We have already seen that the classical application scenario for automated exe-
cution of business processes is in the "paperwork industries", such as insurance
companies and financial industry. Before BPM became a standard technology in
these domains, there used to be a number of software tools to support the business
cases, application forms and other documents. Each of these tools had been used
for individual tasks in the overall business process. They were optimized for these
tasks and worked mostly independent of each other.

By introducing the workflow programming paradigm two goals were pursued.
First, to bridge the gap between the tools allowing them to be orchestrated to
achieve a common higher goal. Second, to automate the processing steps between

41

2. Background

the tools and even automate some tasks to full extent. This way business processes
could be executed spending less human resources. In general, the workflow con-
cept is suited best for applications that exhibit a low flexibility but require a high
throughput for individual cases.

The workflow describes how the tools should "play together" (orchestration) and
what has to happen in the environment to achieve the goal of the application (e. g.
for an insurance to process a customers damage report). But a workflow does not
implement algorithms or user interfaces. These are (usually) already provided
by the available tools. Hence programming with workflows is considered to be
programming in the large. The workflow is just for structuring tasks, automat-
ing tools (services) and also to control the involvement of certain stakeholders in a
company (i. e. the involvement of humans in its execution). As automated process-
ing of workflows became state of the art in technology a large number of models
and concepts have been developed.

2.1.1. Flow Life Cycle

In order to structure these concepts, we start to explain the overall life-cycle of a
workflow-based application. It is generally divided in four distinct phases. These
are 1. the modeling phase, 2. the deployment phase, 3. the execution phase and
4. the auditing phase. To further elaborate on each phase of the life cycle, we
will have a closer look at a standard sample application, namely a credit card
application workflow [YAW13].

First, we need a domain expert that acts as workflow modeler. He creates a flow
model F of the workflow in the modeling phase. The flow model F – formally
introduced in Definition 5.2.1 – is a template for a specific type of workflow. The
modeler uses some workflow modeling language to create the flow model. Actual
modeling languages and their properties will be discussed later in this chapter.
The flow modeler starts to describe the behavior of the workflow application by
breaking it down into several activities. An activity represents some computa-
tional task, that is either executed directly within the workflow, is performed by
using a (Web) Service/Software-Tool or can be completed by a human (with tool
support) in the real world. Then, the modeler structures the activities according
to the desired application behavior.

Typical flow modeling languages provide two ways to structure the activities: con-
trol flow and data flow. The control flow defines the ordering of the activities from
a business point of view. It is required to achieve the desired application seman-
tics. Modeling the data flow explicitly defines data dependencies between existing

42

2.1. Business Process Management

activities. These dependencies may be totally different from the control flow. Usu-
ally the data flow provides less structure for the workflow, because some of the ac-
tivities do not share data and therefore are not ordered logically. While either type
of structuring activities is valid, modern flow languages usually rely on explicit
control flow only. The data flow is derived from the data dependencies, which are
defined by the control flow implicitly.

For the example application the flow modeler creates the following list of activi-
ties:

• receive application

• get more information

• check application

• check loan amount

• check for small loan amounts

• check for large loan amounts

• make decision

• start approval

• notify acceptance

• deliver credit card

• complete approval

• notify rejection

Then, the flow modeler structures the activities according to the desired appli-
cation behavior. Figure 2.1 shows the control flow of the credit card application
workflow, only. The data flow is not modeled explicitly. In this example the activ-
ity "deliver credit card" has a data dependency – the address where to send the card
– to the application form activity "receive application" but it has no data depen-
dency to either of its predecessors, the checks for the loan amount.

Figure 2.1.: control flow of the credit card application workflow [YAW13]

Also this example does currently not depend on context information. The work-
flows we focus on in this thesis are all context-aware. Therefore, the integration
of context information in the flow model is very important. We will discuss this
issue in more detail in Chapter 3, where we introduce the formal context model.
In conclusion, besides the domain expert another expert for context management
should be involved in the flow modeling phase to design the workflows. At the end
of the modeling phase the result – the flow model – is a complete template for an
flow-based application that can be executed. The flow models are usually stored

43

2. Background

in repositories, where companies manage and maintain their intellectual property
on business processes.

In the deployment phase the flow model is installed in a sufficient IT infrastruc-
ture, so that the flow can be executed. A flow engine is required to coordinate the
execution and all the services defined in the activities must be bound to the flow
model. In order to facilitate the reuse of processes the modeling languages usually
allow to abstract the actual binding of a service from the flow model. This allows
to decouple the actual services used by the workflow at run-time from its deploy-
ment environment and the available services. Before the flow can be executed,
the external service requirements must be solved. This can either be achieved by
binding the process statically to services at deployment time or by providing the
flow the necessary functionality to discover and bind the services at run-time (late
binding) [CK10]. For both methods an enterprise service bus is required to pro-
vide a basic communication and collaboration infrastructure for the workflow and
the services.

Considering our sample application, we would need things such as:

1. a flow engine to execute the credit card application flow,

2. a tool, such as a web application, for the applicant to enter all the data for
the application form,

3. a web services capable to make automated decisions (to perform the make
decision activity) or inform the applicant on the result.

As we focus on running workflows and their interaction with context information,
the deployment of a workflow is only of minor importance. However, there is one
more aspect of the deployment that should be discussed here. In classical deploy-
ment scenarios there is usually only one highly available flow engine for a given
application landscape. For the execution of workflows in mobile and context-
aware computing scenarios different other deployment variants can be considered.
To achieve a high responsiveness the workflows can be deployed directly on one
users mobile device. A suitable flow engine– Sliver – has been introduced and
evaluated by Hackmann et al. [HHGR06, HGR07]. Furthermore, the deployment
of the workflow could be adapted at run-time in order to improve the experience
of a human user interacting with it. Appropriate algorithms to achieve this has
been investigated by Hiesinger et al. [HFF+11].

Whenever a workflow has to be executed in the execution phase, a runnable flow
instance of the flow model (e. g. for a specific case of the flow) must be created.
Then this flow instance can be executed by a flow engine. To create a flow instance
f of a certain flow model F we define an instancing operator f = I (F). While exe-
cuting a flow instance the flow engine is responsible for handling the data flow and

44

2.1. Business Process Management

control flow and further executes the individual activities. To do that, it uses in-
formation stored in the flow instance, user input, external events and information
from the services.

To coordinate the data flow consists the flow engine must convert the results from
some activities to match the input format of following activities. The control flow
is handled by the flow navigator. It uses the available information to make naviga-
tion decisions, that lead to different execution paths in the flow instance. In our
example the results of the check loan amount and make decision activities have
influence on the execution path. But the flow navigator is responsible to perform
that decision while executing the workflow.

Activities are either executed directly in the flow engine or by invoking the re-
spective service. The flow engine keeps track of each activities execution state.
The execution of a workflow completes when the last activity completes its exe-
cution. We provide more detailed information on the activity execution and the
activity execution states in Chapter 5.

The execution of an activity can also require tasks that have to be performed by
human users. State of the art workflow-technology uses the concept of so-called
work-lists to schedule tasks for humans. Work-lists are either individual for each
person or can also be shared based on the role of the human in the organization.
When a human user is involved into the execution of an activity, the flow engine
creates a work-item and this item is pushed in the respective users work-list. De-
pending on the use case, it is also possible for the user to request tasks explicitly
for his work-list (pull). A work-list always requires the human to have some device
and the user must also spent some attention to interact with it. Therefore, we con-
sider it a rather inefficient tool for the kind of applications discussed in this thesis.
We elaborate on this topic further in Section 5.1 of Chapter 5.

Also, the information described here provides only a general overview on the exe-
cution semantics of a flow-based application. We discuss flow navigation and flow
execution semantics in more detail in Section 5.2 of Chapter 5, where we introduce
the formal flow model we use in this thesis.

In the final auditing phase of the workflow information on the execution of flow
instances is archived. This auditing information is used for a number of different
purposes. First, it documents the execution of the flow instance. Second, it can be
used to perform posterior checks on the business case, such as compliance rules.
Third, the information can also be used create business reports on the handled
cases. In the scope of this thesis, the auditing information is used to inform Flow-
Pals methods on previous executions of the same flow model, but otherwise is of
little importance.

45

2. Background

2.1.2. Flow Modeling

As the flow model later is the key source of information for FlowPal, we want to
elaborate on the flow modeling concepts. We introduce the general flow modeling
paradigms used today to create workflow-applications. For each type of modeling
language we will also show common representatives. After that, we cover briefly
workflow-patterns as means to assess the capabilities of a workflow modeling lan-
guage.

A workflow modeling language is basically used to structure the partial execution
order of activities. The flow modeling paradigm defines essentially how this struc-
ture can be created. First workflow modeling languages used the imperative work-
flow modeling paradigm. This paradigm is informed by imperative programming
languages. It provides strict control on the execution order of each activity. Each
transition between any two activities must be modeled explicitly. Only if a control
flow dependency between any two activities is defined explicitly, a subsequent ex-
ecution of the second activity is permitted. To some degree, imperative modeling
languages allow fully unconstrained execution of activities. To do this the activi-
ties must be grouped together explicitly without any form control flow. The imper-
ative workflow modeling languages usually cover the modeling of data and control
flow, where the data flow can also be modeled implicitly.

Two common representatives for imperative workflow modeling languages are
the Business Process Execution Language (BPEL) and Yet Another Workflow Lan-
guage (YAWL). BPEL is the de facto industry standard to model automatically ex-
ecuted business processes. It is part of the Web Service Stack (WS) and commonly
used for orchestration in Service Oriented Architecture (SOA). Hence, BPEL is a
heavy-weight very feature rich and standardized workflow modeling language. It
supports transactional behavior during workflow execution. BPEL also provides
expressive fault, error and exception handling, and allows to compensate activ-
ities. The modeling semantics of BPEL can be mapped to Petri Net (PN)s as a
suitable formal foundation (cf. [LVOS09]). BPEL is open for extensions so that
further modeling elements may be added. To interact with external services it
relies on the appropriate protocols from the WS such as the Web Service Defini-
tion Language (WSDL). YAWL [AH03] is an open source scientific alternative. It
is the most expressive language to model workflows, supporting detailed model-
ing of control flow and data flow. YAWL has a well defined formal foundation
based also on PNs, that allows an unambiguous and automated formal verifica-
tion of the created workflow models. Furthermore it provides exception handling
for design time as well as run-time errors. To cope with flexibility in workflow
models, YAWL has been extended multiple times. One additional feature are the
so-called worklets designed by Adams et al. [AHEA06]. A worklet represents a
number of variant sub-processes for a task that can be exchanged dynamically at
run-time.

46

2.1. Business Process Management

YAWL also has been extended with a declarative workflow modeling language –
DECLARE – by Pesic et al. [PSSA07]. In contrast to the imperative paradigm, it
allows the modeler to provide guidance instead of explicit orders. Other exam-
ples of declarative workflow modeling can be found in Leymann et al. [LUW10]
with a focus on person-centric flows and Lu et al. [LSPG06] with a focus on timely
scheduling of activities. Using a declarative workflow model basically any exe-
cution order between the activities is allowed. The modeler defines constraints
that prohibit the execution of invalid activity sequences. The constraints can also
enforce some transitions during the execution. A model can be structured well
using just a few constraints. On the downside it is hard for the flow modeler to
predict undesired execution sequences at design time that would require further
constraints to prevent them.

There is another paradigm that has to be mentioned in the scope of workflow mod-
eling paradigms. Workflows are modeled naturally by business experts who are
not necessarily IT-specialists as well. Profound domain knowledge is a key re-
quirement for precise modeling results. Therefore, flow modeling must be made
accessible to the available experts. This is achieved by providing tools that enable
the modelers to create the workflows using a graphical notation. By providing
expressive tools, the domain experts can develop flow models more easily. Vi-
sual flow modeling allows to design workflow-models based on a well defined
visual representation. This representation can then be translated automatically
into an executable flow model representation. The Business Process Modeling No-
tation (BPMN) is a state of the art graphical modeling languages for workflows.
It allows non IT-specialists to create workflows using a graphical language rather
than designing the process manually. Models designed in BPMN can also be con-
verted to BPEL or YAWL.

We already motivated in the introduction that modern workflows must become
more flexible, so that human real-world interaction can be coupled with workflow
execution. Workflow modeling languages must provide the respective tools to fa-
cilitate this. For imperative modeling languages this is difficult to achieve because
the designer must provide the required flexibility and execution alternatives at de-
sign time already. Although, the worklet approach in YAWL allows a modeler to
provide certain flexibility in an expressive way.

Declarative flow modeling allows greater flexibility. But this kind of flow models
are harder to control. Modeling a workflow using only constraints can allow an un-
expected execution sequence easily. In order to overcome these drawbacks YAWL
further facilitates to use both modeling paradigms in an interchanging fashion.
Parts of the flow that require more flexibility are modeled using DECLARE, for
the more rigid parts YAWL and worklets are used. In this case, it is up to the mod-
eler to decompose the model into different application layers and choose for each
layer which paradigm is suited best to structure the application and describe the

47

2. Background

business process. This is a very challenging task, especially when decomposing the
workflow yields an application that is not natural for the interacting human user.
In Chapter 5, where we introduce our Hybrid Flow Model (HFM) we show that
it is possible to combine both modeling paradigms directly, getting the best from
both of them. The HFM allows to provide more flexible case handling for humans
when compared to basic imperative modeling but also more structure and simpler
modeling when compared to purely declarative flow models.

In order to assess the capabilities of flow modeling languages independently so-
called workflow patterns are used. They allow to make the different languages more
comparable. The patterns also provide some framework to do performance bench-
marks of flow engines. A workflow pattern expresses functionality on different as-
pects of flow modeling in a grouped representation. They relate to workflows like
design patterns to traditional imperative programs. In order to implement a given
pattern, a workflow modeling language must be able to express the semantics of
the pattern using its own modeling elements1. There are a number of different
types of workflow patterns described in literature, where the following ones are
relevant to this work.

1. control flow patterns describe common structures in process control such as
sequences, branching, parallelism and synchronization patterns. [RHAM06]
As the control flow contains most of the structural information of a workflow
application it provides a common solution to the most common problems
found in workflow modeling.

2. service interaction patterns [AMSW09] describe common inter-process inter-
action focusing on large scale complex interactions. Aspects covered by this
patterns are service exposition, service refinement and service integration.
But also the common patterns to integrate human users as proposed by some
standards (e. g. WS-HumanTask [AAD+07]) are covered by those patterns.

3. data flow patterns represent the other way data is utilized in workflow lan-
guages. This covers concepts such as data visibility, definition of data blocks,
data dependencies and interaction between activities [RHEA05]. But these
data flow patterns are based on certain data only. Any evaluation of un-
certain information has to be performed before the data is used in the flow
either to complete activities or to control the execution of further tasks based
on the existence of some event or data item.

In this thesis we will make use of workflow patterns as part of our evaluation
strategy. The details on this usage are described in Section 8.2.1 in Chapter 8
where we describe our evaluation methodology.

1Please note that YAWL was designed specifically so that the common workflow patterns could
be rebuild easily. Hence, YAWL claims to be the most expressive modeling language.

48

2.2. Context Information and Context Management

2.2. Context Information and Context Management

In general context information provides information of its relevant surroundings
to an application. The most common and widely accepted definition of context
has been expressed by Dey and Abowed [DA99].

Context is any information that can be used to characterize the situa-
tion of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including
the user and applications themselves.

Context information can be divided in primary and secondary context [RDD+03].
Primary context information is used to identify an entity uniquely in a concrete
situation. It consists of three pieces of information:

1. the location of an entity, yielding where it is,

2. the time, when that entity occupied this location,

3. the identity, who or what entity

In combination the primary context information can be used as a basic index to
query the who when and where of an entity. Secondary context information then
contains any derived or additional information, which is available for a given en-
tity in a situation coarsely defined by the primary context. Examples for secondary
context information are speed of an entity, its mode of locomotion and its current
activity. E. g. there is a pedestrian crossing the street while using his smart-phone
(2m/s, walking, surfing the web), and at the same time a co-located driver in a car
(20m/s, driving, actively driving the car).

Further, we distinguish between basic and abstract high-level context information.
For example, a microphone provides basic context information on sounds in the
environment. But it is not capable to recognize speech on its own. In order to do
that, a lot of additional information is required.

Basic context information is measured from any kind of sensor or is directly avail-
able on a mobile device. The basic context information from sensors can be af-
fected by the uncertainty of the measurement system. Also, there are no addi-
tional assumptions included in the sensor data. A GPS sensor providing outdoor
position information provides basic location information and velocity, but can-
not determine the actual mode of locomotion by position and velocity information
alone. There are some exceptions due to physical constraints, which can be derived
with little additional knowledge. For example, it is unlikely that a human travels
at speed greater than 10m/s without a car or similar technical aid. But considered
strictly, this is already additional information and a combination of information
has already occurred.

49

2. Background

The data provided by sensors is always uncertain to some degree. This is rep-
resented in terms of accuracy and precision. A good and reliable measurement
system must be accurate and precise. Accuracy determines the deviation to a ref-
erence value (i. e. the true position) and the precision as metric for the standard
deviation of repeated measurements. That means, the lower the standard devia-
tion of a repeated measurement the more precise the measurement system. This is
also illustrated in Figure 2.2. For example, the GPS-signal achieves avg. accuracy
of 2-3 meters depending on the exact method used. The precision of the system
varies depending on the actual situation. In urban areas with very high buildings,
the precision of a GPS-signal can be rather low.

Figure 2.2.: Graphic illustration of accuracy and precision [Wik]

In addition to basic context information form sensors there is also the mobile de-
vice and its internal state as source of information available. Examples are the
user account logged in, the active energy profile and the state of running applica-
tions. Overall, basic context information can only guide the adaptation and exe-
cution of an application to a limited degree. It usually has not the right level of
abstraction to be useful for the more abstract context an application is executed
in.

50

2.2. Context Information and Context Management

2.2.1. Abstract Context Information

In order to provide more abstract high-level context information to an application
it is combined using any source of basic context information. Combining several
modes of basic context information with available background knowledge allows
to achieve higher-level semantics. The fusion of the GPS-position with map data
can yield additional information such on the users context such as his location is
’at home’ or ’at work’. Enriching the sound recorded by a microphone with infor-
mation on syntax, semantics and phonetics of human language allows for speech
recognition. The combination of context information becomes more difficult the
more abstract the information is. Small deviations due to uncertainty in basic sen-
sor information then can lead to different results in the combination process and to
ambiguous results. Also the possible result space for combined information grows
rapidly. Therefore, the availability of enough additional information to limit this
growth can lead to different results.

There are numerous applications and scenarios that require abstract context infor-
mation which have to consider the uncertainty in the basic context information.
One application domain is the area of complex event processing. There, (context)
information from different sources are combined using a set of rules to derive more
abstract information. As these sources also can include uncertain sensor informa-
tion, uncertainty aware solutions to complex event processing have been proposed
(e. g. [KKR08]).

Another area is activity recognition, that tries to reconstruct the actual activities
that humans performed in the real world, based on available sensor data enriched
with additional knowledge. The health-care application domain would benefit
largely from activity recognition and numerous studies (e. g. [BBA05, NAPI+03,
BTJ+10, AKG+10]) support this. The focus here is also on combining (context)
information from different sources with respect to reduce the uncertainty in the
resulting abstract recognized activities.

The major factors for decreasing the uncertainty in the recognition results are
the selection of appropriate sensors and exploiting available application models.
Biswas et al. [BTJ+10] remark specifically that the recognition process can benefit
from the knowledge of domain experts. A workflow is a very detailed representa-
tion of expert application knowledge, that FlowPal uses in various ways to improve
activity recognition. Barger et al. [BBA05] studied a health status monitoring ap-
plication that learns behavioral patterns of a user from his daily activities using
a number of motion sensors. But their system lacks an application model too,
leading to missed events and false positives and a rather low recognition accu-
racy for uncommon situations. Najafi et al. [NAPI+03] have built a monitoring
system for elderly people using one acceleration sensor, and detecting position
transitions and mode of locomotion. While this approach performs very well for

51

2. Background

single transitions in a specific test scenario, the sensing quality decreases over ex-
tended periods of time due to the lack of an application model. The presented
approaches all use sophisticated activity recognition techniques, but do not con-
sider the kind of application knowledge a workflow provides, thus, neglecting the
huge potential.

A number of general metrics to judge the quality of (abstract) context informa-
tion has been proposed by Buchholz et al. [BKS03]. They describe four phases of
context information processing. The phases are the sensing (1) of basic context in-
formation, the combination of context information to higher-level abstract context
information in the phase of context refinement (2) , its dissemination (3) to a con-
suming application and its actual usage (4) . According to their work the quality
of context information can be classified in five dimensions: 1. precision, 2. proba-
bility of correctness, 3. trustworthiness, 4. resolution and 5. up-to-dateness. Buch-
holz et al. define precision as metric how closely the measured value matches
reality. As discussed earlier, in modern terms this includes the accuracy of the
measurement system. The probability of correctness and trustworthiness assign
a probability for its usage on the actual information and on the provider of the
information. The resolution provides meta-information on the possible range of
values and if it is relevant for the consumer of the context information. Finally,
up-to-dateness yields a time-stamp for the context information for the consumer
to judge whether it is still relevant.

In this thesis we focus specifically to improve the accuracy of the used context
information and the probability of correctness. A respective context model must
provide appropriate means to represent them both. We elaborate on this in the
next section. Trustworthiness could be also factored in FlowPal but is not covered.
The resolution of context is not addressed as the high-level context information
for workflows is considered to be discrete (cf. Section 3.2 where we introduce the
used context model). The up-to-dateness of the context information is also out of
scope as only current context information are used in FlowPal. We will clarify this
in the assumptions of our system model in Chapter 3. A comprehensive overview
on additional aspects of context information and models can be found in the work
of Baldauf et al. [BDR07], Kjaer [Kja07], Henrickson et al. [HR06] and Strang et
al. [SLP04].

2.2.2. Representation of Context Information Uncertainty

The uncertainty of abstract context information can be represented using vari-
ous approaches. For example the uncertainty of (continuous) position information
can be described using probability density functions, or geometric representations
with attached probabilities. A detailed overview on generic location uncertainty
has been presented by Lange et al. [LWG+09].

52

2.2. Context Information and Context Management

We consider abstract context information as events that represent certain discrete
situations. A situation is either occurring right now, or has been occurring during
a well defined frame in time bound to the event. In both cases we refer to the un-
certainty of this single event. The most prominent model to represent uncertainty
for a single context event is Probability Theory (PT). To apply PT we must define a
universe or frame of discernment Θ that contains all possible events. Then a single
probability is assigned to the event θ ∈ Θ, with the requirement that the sum of
probabilities for all possible events sums up to 1.

0 ≤ pΘ(θ) ≤ 1,
∑
θ∈Θ

pΘ(θ) = 1 (2.1)

The function pΘ : Θ → [0,1] used to assign the probability to the events is also a
probability distribution function. PT can be used to assign a degree of uncertainty
to discrete as well as continuous context information. The degree of uncertainty
on different context events can also be combined using the appropriate operators
from PT, probabilistic and (∨), probabilistic or (∧) and probabilistic not (¬). Also
PT has low requirements on the Context Management System (CMS) as probabil-
ities can be made up easily from relative frequencies of the occurring events. But
while this approach is relatively simple it also has some drawbacks. The combi-
nation of multiple events leads eventually to a reduced significance of the events
especially when the ∨-operator is applied multiple times. Also PT cannot han-
dle ignorance, i. e. the lack of information. Even when there is no evidence for
any event θ ∈ Θ a valid probability distribution must provide a then arbitrary
value for each event. In this case usually an uniform distribution is chosen but
the probability of an individual event then only depends on |Θ| and not on any
evidence.

Already in the 1960/70-ies Arthur Pentland Dempster and Glenn Shafer created
the Dempster-Shafer Theory of Evidence (DS) [Bar81]. As a generalization on clas-
sical PT it allows also to express ignorance on some situation θ. Therefore, not one
but two values are assigned. These values represent the minimal belief in Bel(θ)
and its maximum plausibility P l(θ). For each situation these two values define
an probability interval for this situation. Belief and plausibility are both defined
based on a basic belief assignment.

Definition 2.2.1 (Basic Belief Assignment) Given a frame of discernment Θ, the
function mΘ : P (Θ) 7→ [0,1] defines a basic belief assignment (bba) under the following
conditions.

mΘ(∅) = 0,
∑

x∈P (Θ)

mΘ(x) = 1 (2.2)

53

2. Background

Here P (Θ) denotes the power set of Θ and x ⊆Θ.

Having a bba the belief function is defined as

Bel(x) =
∑
y⊆x

mΘ(y) (2.3)

with x,y ∈ P (Θ). Effectively, the belief function adds up all evidence that is con-
tributing to the situation x. Hence, the belief is the lower limit of the probability
interval.

The plausibility function is either defined as

P l(x) =
∑
y∩x,∅

mΘ(y), y ⊂Θ (2.4)

or simply as P l(x) = 1 − Bel(x̄) with x̄ = Θ \ x. It defines the upper bound of the
interval, i. e. summing up all evidence that does not contradict the given situation.
When there is no ignorance in the bba, the result of P l(x)−Bel(x) equals zero and
the result is a classical probability distribution, which also shows that DS is a
generalization of PT. However, there is still discussion on the interpretation and
the width of a probability interval (cf. [Sha92, RN02]).

DS also provides operations to combine the evidence from multiple situations
that are based on the same frame of discernment Θ. This combination rule is
known as "Dempster’s rule of combination" [Bar81]. But the rule has some draw-
backs. The effort to combine two bbas grows exponentially with the size of Θ, so
the rule quickly becomes computationally infeasible. It also can lead to counter-
intuitive results if there is a high degree of conflict in the situations combined (c.f.
[Zad86]).

Subjective Logic (SL), a modern and even more generalized approach in repre-
senting and reasoning on uncertain information has been developed by Audun
Jøsang (cf. [Jøs97, Jøs11]. It extends the classical PT with a concept to model ig-
norance explicitly in so called subjective opinions. Furthermore, it defines a set of
combination and implication rules to reason on these subjective opinions. As we
will use SL later in for FlowCon and FlexCon, we provide the details in Chapter
6.

Each of the discussed models provide us with means to express the uncertainty
on a single context event. To some degree they also allow reasoning and combi-
nation of situations described by the context events. Finally, we also want to refer
to a model that can be used to reason on the (possibly contradicting) situations
multiple context events describe. The four-valued logic (4V) originally created by

54

2.3. The ALLOW Project

Belnap Jr. [BJ77] is a generalization on binary logic, that also takes missing or con-
tradicting information into account. Again, we refer to Chapter 6, where we also
use 4V to reason in FlowCon and FlexCon.

2.3. The ALLOW Project

The ALLOW project propose the Adaptable Pervasive Flow (APF) [HRKD08] as
suitable programming paradigm for workflows running in pervasive computing
environments. An APF is basically similar to a classical workflow. But it is de-
signed so that it is also situated in the real world and adaptable. A situated flow
is logically or physically connected to some real-world entity like a human user
or a mobile object. To adapt its behavior to the real-world entity the APF must be
aware of its own and the entities context. As human users as well as mobile objects
change their context often and unexpectedly a flow has to adapt to frequently. But
due to the structure of the flow, containing information on future tasks and ac-
tions, adaptation can be proactive and hence more stable and predictable from the
perspective of the user.

2.3.1. Flows and Adaptation

To guide the adaptation an APF has additional meta-data defining the goals and
constraints of the flow. In order to achieve its goals, the flow can partially change its
execution behavior, with respect to the defined constraints2.

The adaptation of the flow model can either only influence the execution of the
current instance (short-term adaptation) or change the flow model for all later in-
stances (long-term adaptation). An example for short-term adaptation would be
the replacement of a service in a running flow instance, with a different version
or even a different sub-process. As this kind of change affects only individual
activities, it is generally referred to as vertical adaption. When also a structural
change of the flow is required to adapt it to the user’s needs, this is considered a
horizontal adaptation. If specific short-term adaptations are applied frequently,
this can lead to long-term adaptation of the flow model, where the most suitable
parts of the flow are used to create an optimized model in an evolutionary fash-
ion.

2Please note that these constraints are different from the constraints described for declarative flow
modeling.

55

2. Background

2.3.2. Adaptive Flow Control

The flow instance is frequently interacting with both, mobile human users and
services at the same time. While being executed by a flow engine, it must also
adapt its own execution to changes in the environment.

Therefore, adaptive flow control pursues two things. First, the execution of the
flow in a dynamic environment must be maintained. Usually, mobile users and
other real-world entities change their state quickly and unexpectedly for the sys-
tem. Also a failing service or a deteriorated network link may require changes to
the execution and additional vertical adaptation. Second, the interaction with the
user must be as smooth as possible and basically all adaptations must be trans-
parent from the human users perspective. In order to gain the flexibility to cope
with these changes, a flow instance cannot be executed in a central system. The
execution of single activities must be distributed to multiple devices. This distri-
bution can then be adapted according to utility metrics, such as energy consump-
tion [FFHR11] on the mobile devices or the latency perceived by the human user
[HFF+11].

Another aspect that is relevant in this context, is the actual task list of a specific
human user. A human user tends to organize his work differently than defined in
a process description. Usually, the user groups a number of similar but small tasks
together to execute them in a batch. For other more complex tasks they may prefer
to split them. This kind of operation can be used to adapt task lists and modify
the sequence of tasks – the person-centric flow – of a human user. This as well as
task list management in pervasive environments have also been considered in the
scope of ALLOW [UELW10].

Performing no explicit interaction with the user is another means to reduce the ob-
trusiveness of an APF. Therefore, the activities of the user have to be sensed using
activity recognition and processed by a CMS. Sensing the users activities accu-
rately to control the execution of the flow and adapt it accordingly when required.
FlowPal is providing the tools to do this.

2.3.3. Scenarios

The ALLOW project researched two different application scenarios in detail. The
first scenario covers a logistics workflow in an oversea port responsible for car
shipments. The scenario involves unloading, storing, maintenance task such as
repairing or cleaning, and customization of the cars. The cars arrive in large quan-
tities in a just-in-time logistics flow. This scenario provides a lot of challenges for

56

2.3. The ALLOW Project

flow adaptation as there may be sudden changes in the process (e. g. due to a dam-
aged car so that additional maintenance is required) or a missing services (e. g. a
train for further transportation is late).

The second scenario is situated in a geriatric nursing home, where caretakers sup-
port patients, which require full-time care. The scenario is suitable for a flow-
based approach as it is repeated on a daily basis per patient, in a structured fash-
ion. In this scenario humans are in focus of the flow execution and especially the
interaction between humans drives the execution of the flow. This makes activity
recognition of the human tasks the most important information to keep the flow
informed on its entities context. The scenario is cost sensitive so that only few and
cheap sensors can be applied to recognize activities. The possible gain using a flow
is significant. It could accomplish the documentation of the process and check the
adherence of care guidelines, while saving some time of the caretakers, usually
spent for manual documentation. This is also the scenario, we evaluated Flow-
Pal against. Hence, a more detailed description, our findings and the evaluation
methodology are all elaborated in Chapter 8.

57

3. System Model

Before we start to describe the details of FlowPal, we have to clarify the system
model it is based on. In the next section we cover all the assumptions we make,
including the general types of application, the user behavior, the available de-
vices and their means of communication as well as the means of sensing and user
mobility. This way, we clarify the focus of the work presented in this thesis fur-
ther, and give the foundations to introduce the system architecture in Chapter
4.

The abstraction, modeling and availability of context information have been dis-
cussed already. As the usage of context information is also a part of the system
model we introduce the formal context model used in the remainder of this thesis
in Section 3.2. The model aims to achieve two goals. First, it tailored for the rep-
resentation of high-level abstract context information that drive the execution of
a workflow. Second, it provides a flexible abstraction of context information un-
certainty that we later use to investigate the usage of different uncertainty models,
besides probability theory.

3.1. Basic Assumptions

First of all we consider applications that support real-world processes or activities.
More specifically, if an application containing a mixture of real-world activities
and computational activities can be modeled using the the workflow program-
ming paradigm, we support it. The general goal of those applications should be
1. to structure the activities in the real world and 2. support the users to adhere to
the defined process. The usual execution environment we consider, is a workplace
such as the ones in health-care and logistic domain described in the scenarios in
Section 2.3.3. There, one or more human users are supported by the flow-based
application in their daily workplace routine. The users can be considered profes-
sionals at their respective workplace, e. g. doctors or caretakers in the health-care
domain. Applications used in a private context such as in smart homes or for
shopping malls are also possible but not elaborated on.

59

3. System Model

3.1.1. Process Management Execution Environment

The basic assumptions also define the primary services required by the system
model. In the previous chapter we have seen that workflows are subject to a com-
plex life-cycle and have high requirements on their execution environment. In
order to execute a flow-based application, the basic components of a workflow
managment system must be available. There must be some repository where exe-
cutable flow models are stored. Furthermore, there must be flow engine available
which can retrieve and execute a workflow. We assume that there is exactly one
flow engine responsible for an application. If the actual execution of a flow in-
stance is distributed on multiple flow engines the distribution must be handled
transparent from the application point of view. When a flow requires an addi-
tional service for its execution, the service must be available.

3.1.2. User Behavior

The overall scope of flow-based applications is reduced by the kind of user behav-
ior and interaction. For each application we assume that a significant amount of
human interaction with the flow is required, to complete its execution successfully.
This interaction can be either direct, using a device for example to enter data and
fill forms. The interaction can also be indirect, where the flow is guided by context
information of the user. We assume that the majority of interaction is indirect as
FlowPal aims to allow a more unobtrusive user experience and hence indirect in-
teraction. We will elaborate more on the topic of human-workflow interaction in
Section 5.1.1 of Chapter 5.

3.1.3. Device and Network Model

In order to execute the applications in the defined environment, we require com-
puting resources and devices. Based on the actual user behavior and role, each
user may have a personal device to interact with. A device can either be mobile or
static. In general each device provides computing resources. We assume that these
resources are sufficient on personal devices to host the required clients for the ap-
plication (system). Further, the infrastructure provides sufficient resources to host
all services required for the running applications. The devices are all connected
to a local infrastructure, such as a single LAN or a corporate network. The mo-
bile devices are connected wireless. This local infrastructure spans a geographic
region such as a single building or a company site, but at least the scope relevant
for the application. We do not consider limited network resources or network and
communication problems such as node failures, malicious behavior or network

60

3.1. Basic Assumptions

separation for FlowPal. They are out of the scope of this thesis, because the fo-
cus lies on the robust interpretation of uncertain context information. Further,
we assume that the current user of a device is always known by means such as a
personal account.

Figure 3.1.: Network Model and Deployment given only infrastructure devices

We describe two corner cases that demonstrate viable network setups. In the first
case depicted in Figure 3.1.3, there are only infrastructure devices. Here the user
interacts either with a stationary device also connected to the network (not shown)
or indirectly, through his context recognized by the sensor nodes and processed
by the CMS. The CMS can also be federated or distributed using an appropriate
middle-ware. The workflow managment system here is hosted on a single server
in the infrastructure, including the flow engine and flow repository. FlowPal is
deployed as plugin to the flow engine. In the second case, depicted in Figure 3.1.3
there is a single mobile personal device with sufficient resources to run the appli-
cation and all relevant services i. e. processing sensor data, providing them via a
locally deployed CMS, that the locally deployed workflow managment system can
access. Depending on the application and the actual number of humans involved
in the execution, the actual setup will be somewhere between the two corner cases
containing multiple mobile devices and infrastructure devices. The core of these
assumptions are the following. First FlowPal stays with the actual flow engine (and
may be replicated). Second, the information required to support the execution of
a flow instance with FlowPal originates from the flow repository, where also the
flow model is stored.

3.1.4. Sensors and Mobility

As FlowPal targets at an unobtrusive application experience, we assume that the
users want to interact with the application mostly in an indirect fashion. There-
fore, we assume the availability of sensors in the environment of the application

61

3. System Model

Figure 3.2.: Network Model and Deployment given only a single mobile device
with sensing capabilities

that provide the necessary input to recognize the actions of the user. This can cover
RFID-Readers at doors, mobile devices such as smart-phones with multi-modal
sensing, or cameras in certain locations. The actual placement of the sensors and
their specific type is not considered. The sensors considered to be connected to the
local network infrastructure and the current readings can be obtained in a timely
fashion for processing by the CMS.

The users are mobile in the geographic area defined by the application and pur-
sue the application goal. We assume that the sensor coverage in the area is suffi-
cient for some form of activity recognition. This way context information for the
application can be measured. But this context information may be wrong, little
accurate, or out-of-date. A personal device carried by a user all the time, or a an
otherwise sufficient coverage of workplace are assumed as typical scenarios. A
mixture of different setups may be present. This also requires that there is a CMS
available in the local infrastructure, which processes the sensor data and provides
high-level abstract context information to the application. As context information
are the primary input for FlowPal and the respective context model, which we
use in the remainder of this thesis, is of fundamental relevance, we define it more
formally.

3.2. Context Model

As flows should not obstruct users in their daily routine, they are mostly or solely
driven by context events. Context events are provided by the CMS. We assume
that it exists as part of our flow execution environment. The CMS measures and

62

3.2. Context Model

detects events in the real world (e.g. the caretaker entering a specific room) and
provides these context events to FlowPal. However, state of the art activity recog-
nition systems have some drawbacks. Either, they require the precise deployment
of (expensive) sensors, or the setup and training of the system is tedious. Cheaper
activity recognition systems, e.g. based on standard smart phones, only provide
moderate recognition rates, at best (c.f. Section 2.2.1). While the former tech-
nology might be applicable in high-cost environments such as an operating room
in the health-care domain, we have to rely on the latter kind in most real-world
situations.

3.2.1. Context Information and Events

In the scope of our scenarios, we assume that in practice the set of possible types
of events is finite.

Definition 3.2.1 (Event Type) A type of situation that can be recognized in the real
world is referred to as an event type u ∈ U , where U denotes the universe of all event
types that the CMS can measure.

An event type describes the abstract semantics of an context event. For example,
person walking could be an event type. Events of this type are created whenever
a person changes her mode of locomotion to walking. Event types that represent
semantically similar context and have the same level of abstraction can belong to
a common event type set, and each event type belongs to at least one event type set.

Definition 3.2.2 (Event Type Set) An event type set E ⊂ U contains a number of
event types E B {u1, . . . ,um},m > 0. A single event type can be a member of different
event type sets.

The event type set containing all event types for a persons locomotion modes could
be, e. g. Eα = {person walking, person sitting, person standing}. The purpose of an
event type set is twofold: First, it allows an application designer to select the most
appropriate context a certain part of the application should respond to in a sim-
ple fashion. In terms of flow modeling, a single activity in a flow can react to one
or more event type sets as the flow modeler seems necessary. Also the granular-
ity and composition of event type sets can be adjusted to a specific application.
We present the formal usage of event type sets in flow models and the integra-
tion of context information later when we introduce the flow model in Chapter
5.

63

3. System Model

The second purpose of an event type set founds on the grouping of the event types.
Due to the related semantics of all event types in an event type set they allow
for a more accurate recognition: Event types that are not contained in one of the
expected event type sets of the current flow activity are likely to be out of scope.
When an flow-based or other application is executed, it can register for different
event type sets of interest.

3.2.2. Event Instances and the Uncertainty Model Abstraction

Whenever the CMS recognizes an appropriate situation in the real-world it notifies
the register application by sending an event instance.

Definition 3.2.3 (Event Instance) An event instance e ∈ Ue is an instance of a spe-
cific event type u ∈U . Ue is the universe of all possible event instances occurring in the
system. e belongs to a specific event type u ∈ E and the uncertainty about which exact
event type in E e belongs to, is given by a probability distribution IeE : E 7→ [0,1], where∑
u∈E I

e
E(u) = 1.

This also means, for an event type set E, the event instance e can represent any
event type u ∈ E. As the recognition relies on (uncertain) sensor readings, pro-
cessing and composition of low-level context information, an event e is always
uncertain. IeE is our basic model of uncertainty. Instead of saying that an event
instance is of type u, the CMS provides the distribution IeE , and IeE(u) is the proba-
bility that e is of type u ∈ E. As we use this definition for our CMS we assume that
it can provide a probability distribution for a given event type set E. For example
if u = personwalking and u ∈ E then IeE(personwalking) = 0.52 indicates that the
probability of e being of type person walking is 52%. Please note that this is only
one possible way of representing uncertainty.

The definition of the event instance also yields the basic model to represent un-
certainty in the context model. As the events originate from uncertain sensor data
and are processed based on assumptions in the CMS they cannot be distinguished
with absolute certainty. Therefore, the uncertainty must be expressed using an ap-
propriate uncertainty model. While an event instance e on its own indicates only
that some context event occurred, the actual interpretation of that context event
from the CMS is defined by the abstract mapping IeE . In the given example, we
have used probability theory, where IeE is a probability distribution for the event
type set E and IeE(u) is a probability. This interpretation can be changed to differ-
ent uncertainty models and also depends on the capabilities of the CMS. Hence,
the event e can be also seen as sample from the frame of discernment denoted by
the respective event type set E. The interpretation IeE is then used as abstract met-
ric to map the event to some representation of uncertainty, but not necessarily a

64

3.3. Discussion

probability distribution. But, whatever model we choose to represent uncertainty,
there is a risk that result of the interpretation IeE contradicts the actual real-world.
One job of FlowPal is to minimize this risk by augmenting the interpretation with
information from the flow.

At first, we assume for the interpretation a probability distribution based on prob-
ability theory. This allows us to reason – using probabilistic logic – on the event
types of E for the given event instance e. However, this interpretation can be ex-
changed in a flexible fashion allowing us to study different uncertainty models
later (cf. Section 6.6). For now, we will stick to PT for two reasons.

First, the interpretation of other uncertainty models (i. e. DS, SL) is not trivial and
can cause unwanted side effects, such as counter-intuitive results when combin-
ing uncertain events. PT is simpler, but it leaves little space for interpretation,
thus simplifying decision making. Secondly, the other uncertainty models pro-
vide additional information. But they have also stricter requirements regarding
the context system, with respect to the information the CMS must provide. We
will discuss this in more detail in Section 6.6, where we introduce study the use of
other uncertainty models for the use in FlowPal.

Finally as the flow is executed based on a sequence of event we define it as fol-
lows.

Definition 3.2.4 (Event Sequence) Let E B {E1, . . . ,Ej} be the set set of all event type
sets used for a flow model. An event sequence S = (e1, . . . , ek) is an ordered list of k event
instances, where each ei ∈ E and 1 ≤ i ≤ k.

An event sequence S represents a list of context events and the temporal order in
which they are received by the flow engine. This sequence is used later as formal
input to a flow instance running on a flow engine. Based on the parameters of the
given flow engine and the accuracy of the events in the sequence S , the successful
execution of the flow can be determined. We call S a valid event sequence if it
leads to a successful execution of a given flow. The specific conditions that make
an event sequence valid with respect to a flow model are given later in Chapter
5.

3.3. Discussion

In this chapter we have provided all the details to understand the system and the
algorithms we introduce in Part II of this thesis. The network and device model
allows for a broad range of setups for pervasive applications in professional work-
places. The used application model founds on the well known workflow principle

65

3. System Model

and has been extended to suit the needs for pervasive applications. We have de-
fined the basic structure of workflows and their life-cycle so that we can describe
exactly the places where FlowPals algorithms fit in existing systems. Finally, the
context model gives us a formal frame to argue on context information in gen-
eral. We have defined the event instances as the finest granularity of a context
information piece. And it gives us the abstraction on the notion of context infor-
mation uncertainty. With this foundation we can now describe the concepts and
algorithms we developed.

66

Part II.

Concepts and Algorithms

67

4. Concept Overview

In the previous chapter we have identified and formalized the representation, in-
terpretation and sequence issues for uncertain context information. In order to
reduce the impact of these issues on the successful execution of flow-based perva-
sive applications we built our system, FlowPal, that implements the concepts we
developed in the scope of this thesis.

FlowPal is structured like a toolbox. Each of its components tackles one of the
mentioned issues of uncertain context information. They can be used individu-
ally or all together. Basically, FlowPal observes the incoming context events and
influences their processing in the flow engine in order to reduce the effects of un-
certainty. The basic principles of the components are described later in this chap-
ter.

Each FlowPal component uses some form of flow knowledge. It is all kind of infor-
mation that can be extracted or learned from a flow-based application. Using flow
knowledge to reduce the presented issues of uncertain context information is the
main idea of this thesis. We use three different ways to get flow knowledge. First, a
flow model encodes information on the application semantics and temporal behav-
ior in its structure (flow model). Second, historic data that has been collected from
previously executed flow instances (flow traces and history). Third, a running flow
instance provides some execution state (activity states).

The actual mechanisms to extract flow knowledge and instrument it for our pur-
pose, depend on the tackled issue. As they are different for each component we dis-
cuss them in greater detail in later chapters, along with the concepts.

4.1. FlowPal System Architecture

In the following we present the architectural overview on FlowPal. We start with
the generic flow engine architecture we presented in Chapter 2 and put it into
the context of our system model (cf. Section 3.1.1). After that, we describe the
basic functionality of FlowPals components and their dependencies to the existing
components.

69

4. Concept Overview

Flow Engine

Context Management
System

other (complex)
Business Events

Flow Instance

Navigator Flow Model DB

Task/Activity
Manager

Event Cache

a1

a2

a3

a4

a5

Figure 4.1.: Generic Flow Engine Architecture

The flow engine and its components, as shown in Figure 4.1, are derived from the
generic flow engine architecture we introduced in Section 2.1.1, where we also in-
troduced their functionality and the life-cycle of a flow-based application.

The first new components are the external sources of information which may either
be complex business events or context events. The main difference between the
two is, that the former do not suffer from uncertainty but are produced by a tech-
nical system, or represent manual human input at workstation or using a mobile
device. Hence, these events are always exact. They may be wrong due to technical
failures or human error, but this is out of the scope of this thesis.

The context events are all received from the Context Management System (CMS).
We assume that context events are always to some degree uncertain (cf. Sections
3.2 and 2.2.1). Therefore, the CMS always provides some means to assess this
degree of uncertainty.

The amount of uncertainty the application has to deal with becomes higher with
the level of abstraction. While plain sensor data can be combined to reduce issues
of the measured modality using assumptions on physics and the measurement sys-
tem, this becomes impossible when activities must be distinguished on their high
level semantics which are not known to the CMS. On the one hand, there can be
a simple temperature reading from temperature sensor with a well known failure
model, that can describe accurately the quality of the sensor reading and may even
provide information whether the sensor has failed. On the other hand, there can
be a complex real world event like a mechanic performing a maintenance task at a

70

4.1. FlowPal System Architecture

machine, a nurse giving medication to a patient, or an electrician assembling some
home automation. This kind of events become the more relevant the more humans
are integrated into the execution of a flow-based application. As we argued in Sec-
tion 2.2 it is difficult, if not impossible, to provide an accurate failure model for
this kind of events. Therefore, we have to deal with a high amount of uncertainty
directly at the application.

To extract flow knowledge from a flow-based application we need access to the
flow model data base, where the flow engine stores the flow models. As flow
models change rarely compared to the number of flow instances created from
that model, it would be sufficient to retrieve the model once until it is changed
and extract the flow knowledge. Retrieving the information from the flow en-
gines auditing component to access the flow history and traces is basically similar.
When a flow instance is completed and its auditing information becomes avail-
able, FlowPal should be notified about this. But, as this historic information be-
comes only gradually available, the flow traces should be processed incrementally
by FlowPal. Finally, when FlowPal accesses the execution state of a running flow
instance, it must be obtained directly from the flow engine which it is executed
on.

Because FlowPal requires this deep access into the flow engine and its influence
on the processing of context events also happens directly within the flow engine,
the components of FlowPal are designed as flow engine plugins. The relationship
of the individual plugins with respect to the generic flow engine architecture is
shown in Figure 4.2.

Task/Activity
Manager

Condition Evaluator

?Con

Fuzzy Event
Assignment

Event Cache

Figure 4.2.: FlowPal Architecture Plugins

71

4. Concept Overview

Overall there are three components that may be added or altered by FlowPal. First
there is the Condition Evaluator (CE). Its main objective is to provide the neces-
sary means to evaluate the context conditions, which in turn instrument the flow
navigator to make its decisions. The CE provides the operators to reason on dif-
ferent event instances and to perform also the required interpretation of the event
instances. A basic CE which provides this functionality is required by every flow
engine for reasoning on context events. We extend this basic CE in two ways.
First, when using ?Con, the CE must also provide operations to fuse the informa-
tion from an event instance with the information provided by ?Con on that event.
Second, we employ various sophisticated models to represent uncertainty which
leads to different fusion operators and also changes the logic operators to reason
on the context events.

The second component is ?Con (StarCon) that aims to resolve interpretation issues
for received context events. ?Con receives a copy of the incoming event instance
and, based on the actual state of execution of the running flow instance, provides
a second source of information for the actual context information. Basically, it
judges whether the received event instance fits statistically to the current combi-
nation of execution state, user and context. We provide the full concept and all the
required details later in Chapter 6. The information from ?Con can then be used
by the CE and combined with the event instance. The means for this combination
are provided by the CE.

The third plugin is the Fuzzy Event Assignment (FEvA) that provides resilience
against false positive, missing or out-of-order context events. FEvA enables the
flow engine to interpret incoming context events robustly and assign them to the
correct activities. To achieve this FEvA, extends the state space for the activities
and provides an additional cache for the context events called the Event Container.
Using a two step algorithm, that relies on flow knowledge and the current exe-
cution state of flows as additional information, allow FEvA to deal with errors
in the event sequence. This leads to a notable improvement of the robustness of
context-aware applications.

In the next chapter we will introduce the formal generic flow modeling language
that we used to build FlowPals components. Following that, we introduce ?Con
and its variants in Chapter 6. There we will present also our approach optimizing
the representation of uncertainty of context events. In Chapter 7 of Part II we
describe FEvA in detail, and how we tackle sequence errors.

72

5. The Hybrid Flow Model

5.1. Preliminaries

Workflows are an adequate means for modeling the functionality and the tempo-
ral flow of complex activities. While modeling a workflow the modeling language
provides abstraction from existing IT-infrastructure. This way a flow modeler can
be rather a domain expert than an IT-specialist. The modeler works in his area
of expertise and can focus on the business logic instead of all the technical de-
tails. This also allows to model the processes using the right layer of functional
abstraction e.g. for the business model or service interaction. To further ease the
modeling process a wide variety of workflow modeling languages have been cre-
ated and for a lot of them there are graphical editors to create workflows with little
effort.

But as the areas of application for workflow technology have increased, so also
have the requirements to the modeling languages. For example, today’s workflows
have to support transactional processing [Gre02]. Furthermore workflows can be
executed flexibly crossing the borders of different companies seamless [LGB05]
and can be created on the fly using techniques for automatic service composition
(e. g. [DS05]).

5.1.1. Human interaction in workflows

Workflows also have been proposed as useful tool for environments with intensive
human interaction. However, workflows must deal with the great flexibility in
human behavior. In general we can distinguish between two kinds of interaction
between a human user and a workflow.

First, the human interacts with the workflow directly using some electronic de-
vice. For this kind of flow control, the workflow must be capable to tolerate the
deviations in human behavior. Case handling in workflows as described by van
der Aalst et al. [AWG05], is one way to improve support for human users. Based
on the circumstances a human can decide which predefined variant of a flow is
executed. However, the variants have to be modeled in advance and a decision

73

5. The Hybrid Flow Model

cannot be changed later if the situation has changed unexpectedly requiring an-
other case to be executed instead. More flexibility is required to integrate human
tasks in workflows.

One way is to integrate the human task directly in the workflow as kind of "human-
service". WebService-HumanTasks is one well known specification for this kind of
services [AAD+07]. It provides features to describe tasks for people, notify them
and bind people to certain tasks based on their organizational role. These fea-
tures are complemented by WS-BPEL4People [IKM+10]. BPEL4People supports
humans to perform tasks in business processes based on their role in an organiza-
tion and manages aspects like delegation of tasks, the four-eye principle, and esca-
lation of overdue tasks. The means of interaction are not defined directly, and the
human-service implemented is atomic for each task. Hence, a human can perform
one or more atomic tasks in a workflow, depending on the roles and process struc-
ture. But there is no way to structure the execution of those tasks, as their order
and assignment is controlled by the executed workflow, alone.

Furthermore the workflow requires the human to be ready to interact with a hu-
man task anytime and anywhere. The PerCollab system developed by Chakraborty
et al. [CL04] solves this by determining the best device to notify and interact
with the human user. They use static and dynamic information on the user’s
context such as instant messaging online status, calender entries, position data,
etc. But again, while PerCollab facilitates the interaction, the workflow is in con-
trol.

Vice versa, the human is in full control of the workflow. There are some works
for this kind of workflow interaction, which can be summarized as personal work-
flows. An early work on the idea of personal workflow and the interaction with
them, was presented by Hwang and Chen [HC03]. They provide a model to spec-
ify queries to a personal process, that give control on the process and provide
feedback to the user to execute it further. On the downside, the modeling of the
personal workflow and the monitoring of its execution state rely mostly on direct
user input.

The sentient processes presented by Urbanski et al. [UBR06] are based on a pro-
prietary workflow modeling language for personal workflows, which are suited
for pervasive computing. Such a process is tailored to a single user that wants to
execute a sequence of tasks in a pervasive environment. The later extension, Per-
Flows [UHW+09], allows the user to decide in which order he executes his tasks
flexibly. They can be executed automatically, rolled back, skipped and are con-
text aware to the behavior of the owner. However, the sentient processes as well
as the PerFlows allow only the assignment of a single user to the flow. The user
is static and the flow can react only on context information of that user or direct
input.

74

5.1. Preliminaries

The personal workflows allow the human to control the workflow, but he has still
to interact actively with it. As a consequence the user requires a lot attention to
control the workflow.

The alternative way for a human is to control a workflow indirectly. To do that,
the human interacts naturally with his environment and the workflow is executed
according to this interaction. To adapt to this kind of interaction workflow ex-
ecution has become even more flexible and supporting. This flexibility can be
achieved using a declarative flow modeling approach [PSSA07], which we have al-
ready defined in Section 2.1. Currently, there is no flow model that allows seamless
integration of both modeling approaches in the same language. The HFM enables
the flow modeling expert to use both approaches simultaneously. The flexibility
gained is one of the critical factors for humans to interact seamlessly with work-
flows. The other one is a workflow being context-aware.

5.1.2. Context in workflows

A workflow is context-aware if it has access to context information and can reacts
to it in a meaningful way. However the level of abstraction of the context infor-
mation that a workflow can process can vary greatly. The most basic level is again
represented by raw sensor data, while on a high-level of abstraction a context event
indicates that a human has performed a certain action in the real world relevant to
the flow. As workflows are modeled on a high-level of abstraction the latter type
of context information is much more useful for them. The context information can
be accessed either directly or using a separate CMS.

The PerCollab system, discussed earlier, already uses context information to deter-
mine the best way to interact with a human user, but the human cannot control the
execution of the workflow by his actions alone. An early approach based on BPEL
and web services was proposed by Han et al. [HCC05]. Their ubiquitous workflow
description language (uWDL) adds triples consisting of subject, verb and object to
the transitions in a workflow. When the context is matched the respective tran-
sition is activated. The context information can originate from various sources
and are organized in a common ontology. The authors also provided a context-
aware extension to integrate services in this kind of flows with uFlow [HCKC06].
The direct integration of context information in workflows was first introduced by
Wieland et al. [WKNL07]. The authors provide a set of operators to access context
provided by a CMS. These operators include so-called "context events", "context
queries" and "context decisions". While the "context event" and "context query"
operators allow passive notification and active querying of context information,
the "context decision" changes the path of a Workflow execution based on the cur-
rent context. In follow up work the authors investigated further the right level of
abstraction that context information must provide for workflows [WKN08]. They

75

5. The Hybrid Flow Model

also proposed an architecture that allows to integrate uncertain context informa-
tion in workflow but no concrete algorithm or method that aims at improving the
uncertainty of thecontext information [WKL+09]
The PerFlows [UHW+09], mentioned earlier, are context-aware workflows and pro-
vide flexible activity scheduling and processing. But they still rely on direct user
interaction to work properly. This is disadvantageous in scenarios where the work-
flows shall run in the background in order not to obstruct the user. Further we pro-
posed our own method, to make situated APFs context-aware and ready for adap-
tation based on this context information [EFH+09, WHR09].

As the uncertainty of context information is of major interest later in this the-
sis, please note that none of the above mentioned approaches using context in-
formation in workflows considers the uncertainty of context information in any
way.

Having both, a very flexible flow model and a workflow that is context aware, pro-
vides a solid foundation to support a human in his activities without obstructing
his actions where not strictly required by the application. The HFM that we in-
troduce in this chapter is a step towards this goal. It allows a seamless usage of
both - the imperative and the declarative - modeling paradigms within the same
workflow model. Thus it provides even better balancing than described by van
der Aalst et al. [APS09]. The HFM can be modeled using exactly the right layer of
abstraction for the user. Using the HFM a flow modeler can focus not only on the
business process but also strongly on the human users involved in the flow. The
modeler can provide the greatest amount of freedom and flexibility to the human
stakeholder where it is allowed and the necessary guidance where it is required,
e. g. for an inexperienced user. This leads to flow models that allow a human
flexibility in their execution, where groups of declarative activities are used and
a seamless transition to parts of the flow, where procedures have to be performed
to the letter, using the restrictive imperative modeling of structured activity se-
quences. These kind of processes can be tailored directly for the execution by
one or more human stakeholders. Therefore, they are very well suited to model
person-centric flows.

The HFM has been developed in different steps. We started with a basic imperative
variant to show that the mechanisms of FlowPal– especially FlowCon and FEvA–
are feasible for imperative workflow languages. Then we extended it to the final
HFM, allowing more flexibility and also adapting the mechanisms. In order to
keep the HFM simple and focused, we neglected a number of standard features
e. g. exception handling and transactional behavior. But as we keep the HFM
simple, we can easily show that its modeling capabilities are equivalent to the
most basic and most formal flow modeling language based on PNs. Furthermore,
the HFM also builds the formal foundation for the mechanisms of FlowPal we have
developed in this thesis.

76

5.2. The Basic Imperative Flow Model

In the remainder of this chapter we introduce the HFM gradually. First, we de-
scribe the basic imperative variant of the HFM and its execution semantics. This
provides the foundations to understand the working principles of FlowCon and
FEvA later on. After that we extend the model to the final HFM, defining the
additional modeling elements. Based on those we explain the execution seman-
tics of a flow. Then, we can also clarify the relation between event sequence
(cf. Section 3.2), error model (cf. Section 7.2.3) and the successful execution
of a hybrid flow instance. We conclude the chapter with a discussion of the re-
sults.

5.2. The Basic Imperative Flow Model

Imperative flow models are directed acyclic graphs with activities as vertexes and
transitions as edges. The application programmer defines all the activities and
their partial ordering using transitions. Conditions, that are annotated to the tran-
sitions, further influence their order of execution. This basic model can be mapped
to a Petri Net (PN) and vice versa just like other workflow models. A sketch of this
mapping is given at the end of the section. Subsequently, we define each of its
components and the basic execution principle of the created flow instances. As
a running example we use the small flow snippet depicted in Figure 5.1. A full
example flow is shown later in Section 6.4.

a1

a2

a3

E1 E2

c = (u1 ∧u2)

Figure 5.1.: Flow snippet showing all modeling elements of a basic imperative flow

Definition 5.2.1 (Flow Model) A flow model F is a 5-tuple
F B (A,T ,C,Φ ,M), consisting of a set of activities A, a set of transitions T , and a set
of conditions C, where Φ is the set of mandatory activities and M is the set of marked
activities.

F defines the directed acyclic graph G = (A,T) with activities a ∈ A as nodes and
directed transitions t ∈ T ⊂ A × A as edges. Each transition t = (ax, ay) can be
annotated with a logical condition c that depends on the context events received by
the source activity ax. If c evaluates to true, the flow navigates the transition from

77

5. The Hybrid Flow Model

ax to ay . Some activities are mandatory, and must be completed for a successful
flow execution. The flow model F acts as a template for an application. It can be
used to create a flow instance that can then be executed.

Definition 5.2.2 (Activity) An activity a represents an atomic piece of work within a
flow. The activity is atomic in a sense that it must either be completed correctly or not at
all for the flow to execute successfully. Activities include tasks such as includes invok-
ing web services, internal computations, notifying a human about a task, or receiving
context events indicating changes in the real world.

The set A B {a1, . . . , an} defines all activities of a flow. For the example this are
A = {a1, a2, a3}. An arbitrary number of event types can be added to each activity.
Let

εaBN 7→ P (U) (5.1)

be the event type set assignment function for a, where P (U) denotes the powerset
over the universe of events types. Further, let k be the number of event type sets
associated with a, then εa(i) yields the i-th event type set for i ≤ k, and ∅ for i > k.
We write εa for short when referring to the set of all event type sets assigned to the
activity a. The example shows two event type sets E1 and E2 being mapped to the
activity a2, hence εa2

(1) = E1 and εa2
(2) = E2.

Furthermore activities may be marked as mandatory. For a given flow F , Φ ⊆ A is
the set of mandatory activities. Further, the mandatory activity function φB A 7→
[true, f alse] is defined as

φ(a) =
{
true ⇔ a ∈ Φ
f alse ,otherwise

(5.2)

The example has two mandatory activities Φ = {a2, a3}, which can be distinguished
from the non-mandatory activity a1 that is drawn with a dashed circle.

Finally, when an activity is executed it assumes a number of distinct states. These
are in their order of execution Z = {inactive, ready, active, complete}, where Z de-
notes the overall activity state space. Further, let ω be the function that retrieves
the current state of an activity a.

ω : A→ Z (5.3)

More complex models for activity states exist e. g. for compensation or excep-
tion handling but for the focus of this thesis the simple approach is sufficient. In
Section 7.3 we will discuss the influence of uncertain context information on the
activity states in greater detail.

78

5.2. The Basic Imperative Flow Model

The activities are structured and ordered by transitions.

Definition 5.2.3 (Transition) Given a set of activities A, the set of all transitions
within a flow is T ⊆ A ×A. A transition t = (ax, ay) represents a directed control flow
dependency from ax to ay with ax, ay ∈ A. A transition is annotated with exactly one
transition condition, that is referred to as c(t).

Further, we define

din(ai)B |{(ax, ay) ∈ T |ai = ay}| (5.4)

and

dout(ai)B |{(ax, ay) ∈ T |ai = ax}| (5.5)

as degree of incoming and outgoing transitions for an activity. The transitions
allow certain control flow variants: linear sequences, parallel branching, joins
and combinations of those. In the example there are two transitions (a1, a3) and
(a2, a3).

Conditional decisions on transitions can be made taking the context conditions
into account.

Definition 5.2.4 (Context Condition) A context condition c is inductively defined
as c→ u|(c1 ∨ c2)|(c1 ∧ c2)|¬(c1) with u ∈ U and c1, c2 are already valid conditions and
the common semantics for the probabilistic logical operators.

A transition t = (ax, ay) can be annotated with exactly one condition ct. This con-
dition ct is evaluated when ax has received an event instance e for every εax . We
apply the received event instances to ct and check

ct[u/I
e
E(u)] ≥ tn (5.6)

against the navigation threshold 0.0 ≤ tn ≤ 1.0 of the flow engine. In the example the
condition at the transition (a2, a3) is c = u1 ∧ u2. The condition is evaluated when
a2 has received an event instance for E1 and E2, where the event type u1 ∈ E1
is part of the event type set E1 and also u2 ∈ E2. The actual value the condition
uses for evaluation is given by the interpretation of the event instance as denoted
in Equation 5.6. After the substitution the condition can be tested against the
navigation threshold.

At this point the flow engine makes the actual navigation decision and removes
further uncertainty for that decision. Please note, that the flow engine defers this
decision to the latest time possible before actually navigating the flow.

79

5. The Hybrid Flow Model

If the equation is fulfilled, the condition evaluates to true, the transition is acti-
vated and the activity a3 is executed. According to definition 5.2.4 and defini-
tion 3.2.3 (event instance) we use PT to evaluate a condition. However, in Section
6.6.1 we will elaborate on the used uncertainty model and present alternative ap-
proaches to the basic one defined here.

Finally we introduce the transition marker as means to control the join of multiple
flow branches where not all branches must or can be executed during a single flow
execution. This way the execution of the activity is possible, when at least one of
the previous activities has been completed.

Definition 5.2.5 (Transition marker) LetM ⊆ T be the set of all transitions in a flow
F that have a transition marker. The transition marker function µB T 7→ [true, f alse]
assigns markers to all transitions in an imperative flow, where µ(t) = true. If a transi-
tion has a marker, the execution of this transition is not required to be active in order to
start the target activity of the transition.

In flow diagrams, the markers are denoted as additional dots at the origin of tran-
sitions. The example shows a transition marker at (a1, a3). So in order to execute
a3 it is sufficient that only a2 has been executed and the condition c has been eval-
uated to true. If the mark would be missing, also a1 is required to complete its
execution before a3 can be started. This would also make a1 (transitively) manda-
tory.

5.2.1. Basic Execution Principle

Having all the basic components of the flow model defined, we can continue to
describe the way it is executed.

First, we need to create a flow instance f of the flow model. Second, there must be
some event sequence S that can drive the execution of the flow instance. Finally
we have to define the flow engine that actually executes f .

We can create a flow instance f from F using f = I (F) and execute f using a basic
flow engine, that is defined in the following.

Definition 5.2.6 (Basic Flow Engine) A basic flow engine ENG(f ,S) 7→ [true, f alse]
can execute a flow instance f = I (F) of the flow model F given an event sequence S .
This execution results in a number of completed activities, and either in a successful
execution (true) or unsuccessful execution (f alse).

80

5.2. The Basic Imperative Flow Model

The event sequence S yields the necessary input for the flow instance and is "pro-
vided" over time by the CMS as individual event instances. The activities sub-
scribe for their event type set as soon as they become active during the flow ex-
ecution. They can then consume events from the event sequence S which may
also be cached already in the flow engine event cache (cf.. Figure 4.1). When an
activity a has received an event instance for each of its event type sets E ∈ εα all
outgoing transitions are evaluated to either true or false following Equation 5.6.
Subsequent activities are then executed when all incoming transitions without a
transition marker have been evaluated to true. If all have a marker at least one
has to be true. Eventually most of the activities should be executed until no more
events in S remain to be consumed or no further activities are ready for execu-
tion. In order to determine whether the execution of the flow instance has been
successful, the following expression is evaluated.

ENG(f ,S) = true⇔∀a ∈ Φ :ω(a) = complete ∧∀a < Φω(a) , active (5.7)

Where Φ = {a ∈ A : φ(a) = true} are all mandatory activities. This means, all
mandatory activities in the flow must have been executed (in the HFM at least
once) and no other activity is still allowed being executed i. e. violates the atomic
property of the activity. Details of the execution result can be obtained from the
completed activities an e. g. their data output. However this application output is
not relevant in the scope of this thesis.

When processing uncertain context information, the flow engine must be param-
eterized with the navigation threshold tn (cf. Equation 5.6) so that the conditions
can be evaluated, leading to the execution of subsequent activities. If the stimulus
provided by the full sequence S yields a state of the flow where the completion
criteria is fulfilled (cf. Equation 5.7), the execution is successful (true). When the
sequence S is wrong for the given flow instance, has errors regarding the event
instances or the uncertainty prohibits a correct interpretation the flow execution
fails (f alse). Please note that in this thesis, we do not cover failures caused by
a combination of the given event sequence and another source, such as a failing
service, as this is out of scope.

The basic flow engine ENG is capable to execute either basic flow models or the
HFM defined later. As the mechanisms we propose in this thesis can be plugged
into the basic flow engine we allow the flow engine ENG to be extended in the
following way.

Definition 5.2.7 (Flow Engine Extensions) A basic flow engine ENG[] can be ex-
tended with additional algorithms that FlowPal provides. These extensions are noted

81

5. The Hybrid Flow Model

as generic algorithmic plugins p ∈ P , where P = {FlowCon,FlexCon,FEvA} contains all
algorithmic extensions of FlowPal.

For example, we can execute the flow f with the sequence S with the basic flow en-
gine ENG(f ,S) or using one with FlowCon ENG[FlowCon](f ,S).

Each executed flow model yields a flow trace. When an activity is completed, this
is recorded in the flow trace along with the event instances it received.

Definition 5.2.8 (Flow Trace) A flow trace T is a sequence of completed activities
T B (a1, . . . , aj) in ascending order of completion times. The event instances each activ-
ity has received are also stored within the trace. Let τ(T , a,u) 7→ e be a function that
yields the event instance e ∈ u associated with activity a in trace T .

From a single trace, it is possible to reconstruct the actual execution of a flow in-
stance and which context information, i. e. event instances, lead to this execution.
All traces are stored in a flow history documenting the executions for later analy-
sis. We use the flow history of a flow model as the data set for training probabilistic
data structures in our algorithms.

Definition 5.2.9 (Flow History) A flow historyH is an ordered sequence of flow traces
H = (T1, . . . ,Ti).

Usually we refer to a flow history only in the context of a specific flow model F
so that the history only contains traces of this model, although in practice it can
contain all traces for different flow models.

5.2.2. Petri Net Similarity

To show that the basic imperative flow model is comparable to other workflow
modeling languages such as BPEL, we sketch that it can also be mapped to to Petri
Nets. A Petri Net (cf. [Rei10]) is a five-tuple PN = (Pp,Tp,Fp,Wp,mp) consisting of
places Pp, transitions Tp, a flow relation Fp ⊆ (Pp×Tp)∪(tp×Pp), a weighting function
Wp : Fp→N and an initial markingmp. In order to map a flow (F) to a Petri Net, we
would map the activities A to the places Pp, the transitions T to transitions Tp, the
logical expression of each condition c ∈ C would be mapped to an individual Petri
Net and included for evaluation. As the flow model is missing an input similar
to the initial marking mp, we have to create it from the event sequence S but this
also requires a new place p ∈ Pp for each event type set, which is attached with a
transition t ∈ Tp to the place of its original activity a. The initial marker placement
is then chosen that it starts the execution of the flow at its starting activity/place

82

5.3. Hybrid Flow Model Extensions

and provides further markers for each of the events in the event sequence and their
respective place in the Petri Net. Finally, we would have to define the flow relation
Fp in such a way that it enables the activities similar to the condition evaluation
and further enables the consumption of the markers from the initial placement
when the respective activity becomes ready for execution.

5.3. Hybrid Flow Model Extensions

We extend the basic flow model to allow the modeling of more loosely structured
flows, i. e. declarative flows describing constraints on the execution rather than an
explicit execution path. It contains transitions as well as constraints between activ-
ities and, thus, is a mixture of classical imperative production workflows [LR00]
and declarative flexible workflows [PSA07]. The transitions are annotated with
boolean conditions over the possible set of context events, as defined earlier. Con-
straints consist of linear temporal logic expressions that describe the acceptable tem-
poral relation of two or more tasks (e. g. a must be executed before b). If a flow
modeler currently wants to use a mixture of both modeling paradigms he is re-
quired to add this flexibility in a hierarchical way [AAH+09]. He must decompose
the application into a number of hierarchical layers, usually representing a differ-
ent level of abstraction and choose the best modeling paradigm for each layer. In
contrast, our hybrid flow model allows the use of both paradigms directly on all
abstraction levels and can also be applied to applications where the hierarchical
decomposition is not possible or introduces further complexity, such as person-
centric flows. While the modeling paradigms on its own are already known, the
way to compose them in a single coherent flow model is a novel contribution in
this thesis.

Definition 5.3.1 (Hybrid Flow Model) A hybrid flow model F B (A,T ,C,L,Φ ,M)
is a 6-tuple, consisting of a set of activities A, a set of transitions T , a set of conditions
C, and a set of constraints L, where Φ is the set of mandatory activities and and M is
the set of marked activities.

The activities in hybrid flows are defined as before with the following additions.
In a hybrid flow, activities may be executed arbitrary often and in any order. This
means that an activity that meets all requirements again to change its state from
inactive to ready, may also change its state from complete to ready again. The ex-
ecution semantics are adjusted accordingly. A flow can complete its execution
successfully when all mandatory activities have been executed at least once, i. e.
are also in the state complete. Transitions and constraints limit this flexibility and
impose structural ordering on the flow activities. While the transitions remain
unchanged a constraint is defined in the following.

83

5. The Hybrid Flow Model

Definition 5.3.2 (Constraint) A constraint l is an expression in linear temporal logic
(LTL) that defines the temporal ordering of one or more activities in the flow. l is induc-
tively defined as l→ a|(l1∨ l2)(logical or)|(l1∧ l2) (logical and)|¬(l1) (logical negation)|
(l1 → l2) (logical implication)| � (l1) (eventually)| �(l1)(globally)| l1Ul2(strong until),
where a ∈ A and l1, l2 are already valid constraints. The literals given in the expression
l denote the completion of the respective activity a in the flow.

The constraints are used only in hybrid flows. They can be grouped in different
classes such as existence, (negative) relation, (negative) order [PSA07] and pro-
vided in a graphical representation (cf. Figure 5.2). At run-time they are converted
to final state machines (FSM) [GH01] and can be checked online for violations. If
the FSM is in an accepting state the constraint is valid. When the FSM is not in an
accepting state the constraint is temporary violated. The subsequent execution of
further activities can eventually lead to a valid constraint. A constraint is perma-
nently violated if the FSM reaches an error state and no sequence of activities can
fulfill the constraint anymore. A flow can successfully complete its execution iff
all constraints are valid. The completion criteria is then changed accordingly so
that in addition to equation 5.7 it also fulfills the constraints. Φ again denotes the
set of all mandatory activities.

ENG(f ,S) = true⇔∀a ∈ Φ :ω(a) = complete∧∀a < Φ :ω(a) , active∧∀l ∈ L : l = valid

(5.8)

The definition of flow trace and flow history are suitable also for flows modeled
with the HFM.

An example for and hybrid flow from the health-care scenario we studied (cf. Sec-
tion 8.1) is depicted in figure 5.2. This example is only a fragment of a larger flow.
Solid boxes depict mandatory activities that need to be executed unconditionally
while dashed boxes are optional. For example, a2 and a3 are optional activities.
The execution of a flow instance is valid if, one of the optional activities, both or
non of them have been executed, while a1, a4, and a6 need to be executed for the
flow to complete successfully. Solid arrows are transitions that imply a strict or-
dering between the activities: a1 must be followed by either a2 or a3 and a4 must
follow both a1 and a2. The dashed lines are constraints that define restrictions on
the execution order of the related activities. The figure depicts two examples: the
semantics of the not succession constraint between a3 and a5 is that a valid flow
execution must not contain both activities. It may contain either one or none of
them, and if one is executed, it can be executed arbitrarily often. This constraint
can be expressed as term in linear temporal logic, and this constraint belongs to

84

5.3. Hybrid Flow Model Extensions

TransitionOptional
Activity

Mandatory
activity

Not succession
constraint

Response
constraint

…… a1 Note
results

a2 Wash at
sink

a4 Dress
patient

a3 Wash in
Bed

a6 Disinfect
hands

a5 Change
Bedding

Figure 5.2.: Example workflow from a hospital scenario

the group of a negative relationship as the execution of one activity prohibits the
execution of the other.

The overall semantics of the example are the following: When a caretaker arrives
at this fragment, the results of preceding steps must be documented (a1), which
include some regular morning examinations, such as measuring blood pressure.
As these examinations are carried out without assistance of an electronic device,
the flow ensures that the caretaker will not forget the results during the follow-
ing steps. Then the caretaker has to take a decision: wash the patient at the sink
(a2) or in his bed (a3), depending on the patients condition and mood. Based on
the incoming context events the flow decides if either one or both are executed.
If the caretaker decides to wash the patient in his bed (a3), the bedding cannot
be changed (a5) since the patient never leaves the bed during the whole proce-
dure. After the caretaker has completed the washing activity, the patient needs
to be dressed (a4). When finished, the caretaker must disinfect his hands (a6) at
some later point in time, possibly after a number of other intermediate activities.
But while being executed, the flow allows also to execute the disinfect hands ac-
tivity at any point in time. This is beneficial in two ways. First, the caretaker
can flexibly decide to disinfect hands multiple times, e. g. during washing the pa-
tient, also allowing the system to keep track of her personal hygiene as well as

85

5. The Hybrid Flow Model

the patients. Second, the flow can guide the caretaker to disinfect hands before
he continues to care for another patient, this way enforcing the hospitals hygiene
rules.

5.4. Discussion

We have seen that flows are becoming integrated into daily working routine in an
increasing way. The basic imperative flow model we presented, is a suitable tool to
describe processes with a well defined semantic and great focus on the integration
of abstract context information. Compared to existing flow models that also incor-
porate context information, it represents mostly an alternative that eases the de-
scription of the following methods of FlowPal. But for a high degree of integration
with humans, the flows must also be flexible enough to reflect the routine exhib-
ited by different human stakeholder executing the same flow model. Our HFM is
a novel original approach towards this flexibility as it supports directly the usage
of both modeling paradigms in the same flow model. For standardized, yet critical
tasks a hybrid flow provides strong guidance based on rigid structures that stem
from imperative modeling (parts of the model which are imperative). But using
the HFM, activities may also be structured by constraints that introduce a much
loser coupling between them. These hybrid flows offer much more flexibility to
the user. Along with this flexibility, they also potentially offer less information for
FlowPal to improve flow navigation.

86

6. Probabilistic Reduction of Context
Event Uncertainty

6.1. Preliminaries

In the previous chapter we have seen that a flow – given the right flexibility –
is a suitable tool to support users in processes with rich human interaction. To
achieve this with minimal explicit input, the flow system monitors what the user
does in the real world in order to synchronize automatically with its actions and
drive the flows execution forward respectively. This monitoring, which provides
the majority of the input to the flow, is done by means of activity recognition (cf.
[KL08, BKL10]). The respective data is provided to the flow by the CMS as context
events. As we have discussed in Section 2.2.1, context events always suffer from
uncertainty in their recognition especially when they get more abstract. There-
fore, the flow must process and interpret the uncertain context events robustly, in
order to be controlled effectively in an indirect fashion and complete its execution
successfully.

The acceptance of pervasive applications depends on its capability to deal with
these uncertain information in a transparent or at least graceful way. Events are
be noisy with respect to their interpretation. This issue occurs irrespectively of
the flexibility in the flow models [WHR10]. Further, due to the gained flexibility,
it may not be completely clear which activity is actually executed next and thus
awaits a respective event. Given the limits in time and cost to deploy a suitable
context recognition system, this is a very challenging problem.

We have also discussed in detail the various approaches that include context in-
formation in workflows in Section 5.1.2. Please note again, that none of the ap-
proaches considers the uncertainty of context events when processing context in-
formation. One of the factors that can aid overcoming this limitations, is struc-
tured application knowledge. A flow provides information about its target domain
and application, the activities to perform, and their temporal ordering. This infor-
mation, which we introduced as flow knowledge, is encoded in the flow and can
be used to improve application quality and adaptability.

87

6. Probabilistic Reduction of Context Event Uncertainty

?Con (StarCon) uses flow knowledge to decrease the uncertainty of single context
events. This leads to an improved accuracy of the recognition by the flow engine
and hence to a more robust execution of flows given uncertain context informa-
tion.

In the next section we discuss related approaches, before we introduce the com-
mon algorithmic principle of ?Con in Section 6.3. After that, we introduce both
its algorithmic variants, FlowCon in Section 6.4 and FlexCon in 6.5. Subsequently
we study the influence of the uncertainty model on ?Con in Section 6.6, where we
introduce HyperFlowCon.

6.2. Related Work

A combination of uncertain context information and workflows has found little to
no attention in research, yet. Furthermore, we already discussed abstract context
recognition (cf. Section 2.2.1) and context integration in workflows (cf. Section
5.1.2). But, there is one area which is basically related to what we achieve with
?Con. In order to create a flow either a domain expert creates the process model
or a technique called workflow mining is applied recorded data to extract the work-
flow from the observations made. This workflow mining is also used as part of our
evaluation strategy and we will cover more details on the concrete case study in
Chapter 8. In general, a flow mining algorithm performs an analysis on certain
event logs that record the execution of activities, which should be covered by the
created flow model. Without knowing the structure of a flow model, a flow trace
T is a good representation for such an event log.

Workflow mining comes in two different flavors. On the one hand, a new workflow
is created from event logs [DMV+05] of different applications in order to visualize
the actual flow of work and automate the created workflow using classical work-
flow management techniques. On the other hand, existing workflows can be used
to extract knowledge. While we extract also knowledge from flows, there are no
approaches that improve context processing this way. Buffett and Geng [BG09]
have proposed to label the activities of workflows by learning from event logs.
This approach is somewhat similar to ours. It uses learning with Bayesian Net-
works (BNs), resolves the ordering of activities in the generated workflows and
analyzes the paths taken in workflow execution. However the algorithm is ap-
plied to already collected event logs and the workflows are mined with an offline
algorithm. Furthermore, it assumes that the log data contains no uncertain infor-
mation, i. e. no real-world context information is taken into account. In contrast,
we know the flow structure and learn the event dependencies at run-time, also
taking uncertain context information into account.

88

6.3. ?Con Algorithmic Principle

6.3. ?Con Algorithmic Principle

The goal of ?Con (StarCon) is to decrease the uncertainty of an event instance e.
This means, if e is of type u, then ?Con shall collect additional evidence for this
fact and increase the probability p = IeE(u) for the event type u in the given dis-
tribution. To achieve this, we use the flow as additional source of information.
The flow model provides information concerning the structure (activities, transi-
tions, constraints) of the flow and, thus, about the expected temporal relation of
respective context events. The flow instance provides information given by its exe-
cution state, i. e. the current state of the activities and the already received context
events. We already classified this information as flow knowledge. As the human
user in charge of executing the flow is aware of the flow and tries to complete his
work successfully, we can assume that the context information generated in the
real world depends on the current flow state.

Let us assume that the flow engine has started the execution of an activity a1, and
receives the events εα(a1) of the types associated with a1, including Eα (cf. Sec-
tion 3.2.1). In a system without ?Con, the flow engine would simply compare the
probability p = IeEα (u) with the engine’s navigation threshold tn and execute the re-
spective transition if p ≥ tn. This simple approach is depicted in Figure 6.1 on the
left (also cf. Section 5.2). In contrast, ?Con uses the information encoded in the
flow model and the flow instance to infer additional evidence for the fact that e
is actually of type u. Thus, it improves the interpretation IeEα . This interpretation
represents a probability distribution in the basic case. The results of this interpre-
tation are then used again for the threshold comparison, leading to more reliable
decisions and, thus, a more robust flow navigation.

?Con uses Bayesian Network (BN) to interpret context events depending on the
current state of the flow. A BN is a probabilistic data structure that is flexible
enough to represent the current flow state, the already received context events,

Research Group “Distributed Systems”

Universität Stuttgart, IPVS

Flow Engine

Events

Flow Engine

~
p = IeE(u)

p‘= I’eE(u)

p‘‘= I’’eE(u)

a) simple event usage b) flow‐based event usage

p = IeE(u)

DBNEvents

HistoryFlow Structure

Figure 6.1.: Architecture overview

89

6. Probabilistic Reduction of Context Event Uncertainty

and the relation between the events according to the transitions and constraints
of the flow model. ?Con builds the structure of the BN from the flow model and
trains the BN using traces from the flow history of previously executed flows. This
is shown in Figure 6.1 on the lower right.

When a flow instance is executed, every incoming context event e is sent to the BN.
Any such event is associated with an interpretation/probability distribution IeE (cf.
Definition 3.2.3). The BN infers an additional conditional interpretation/proba-
bility distribution I ′eE for e over E. IeE given by the CMS and I ′eE given by the BN
are combined, yielding an overall interpretation I ′′eEα , which is then used by the
flow engine to make its navigation decision. Our evaluations show that if e ∈ u
then, on average, I ′′eE (u) > IeE(u). Hence, ?Con reduces the uncertainty contained
in the original distribution such that the flow engine can make correct threshold
decisions more often.

We have applied the principle of ?Con (StarCon) in two different variants. The
first one, Flow Context (System) (FlowCon) was designed to operate on impera-
tive flows where the ordering relations between activities are given by transitions,
leaving little room for flexible execution. In this case, we use a normal Bayesian
Network. The details of FlowCon are described in the next section. In contrast
to this, the second variant FlC! (FlC!) was built to handle hybrid flows that also
contain constraints and, thus, allow for much more freedom and flexibility in the
flow execution. To deal with this flexibility, FlexCon uses Dynamic Bayesian Net-
work (DBN) that can handle dynamically changing dependencies between context
events. Using exact inference to get I ′eE from a complex DBN, is computationally in-
feasible. Therefore, we use an approach based on particle filters [RN02] to increase
the performance. We adapted the standard particle filter approach to reduce the
computational effort, which allows us to use more particles on a more sparse DBN
network and achieve more accurate inference results. We present a detailed de-
scription of the inference algorithm in Section 6.5.4.

6.4. FlowCon

In this section we describe the details of FlowCon algorithm. In order to use
FlowCon the following requirements have to be met. The application must be
specified as a flow model that is highly structured and uses the basic imperative
flow model that we introduced in Section 5.2. Further, this flow model must re-
main static, in order to collect flow traces of the execution of this flow model. The
traces are used to train FlowCon and when the flow model changes this training
should be started again.

A reasonable example for this type of flow based application can also be found as
part of the morning hygiene example we already mentioned in Section 5.3. But

90

6.4. FlowCon

in order to limit the flexibility of the application, we focus on a blood sample ex-
amination process. This process can be modeled using the basic imperative flow
model only, which is the type of flow FlowCon is capable to handle. In the follow-
ing, we describe the process guideline in detail and point at the possible execution
variations that may happen. Those variations are important for our algorithm de-
sign because the knowledge we extract is influenced by the habits of the respective
caretaker executing the flow.

The caretaker performs a blood sample examination when it is scheduled for a
patient. This is documented in the patient record. A reusable butterfly needle
is used, because there are taken up to four blood samples in a row. A formal
representation of the flow is depicted in Figure 6.2. To obtain a blood sample
the caretaker has to perform the following activities. First, she (a1) fastens a
cuff to the upper arm of the patient. She then starts (a2) searching a vein for
setting the butterfly. After that, she (a3) unpacks the butterfly and (a4) disin-
fects the elbow pit. She punctures the patient (a5) setting the butterfly and (a6-
a9) takes the samples. Finally, she (a10) labels each sample with the patients cre-
dentials.

While getting the blood sample from the patient, the caretaker basically has two
variation options. She can either disinfect the elbow pit first and then unpack the
butterfly or the other way around. However she must complete both activities be-
fore she can set the butterfly. Moreover, she is free to choose the order in which the
individual samples are taken after she has set the butterfly.

These variations lead to interesting questions. When the activity a2 – search vein
– has been recognized, the context system cannot know which will be the next
activity that the caretaker executes. Because of this it is much harder to recognize
the context information for the following activity compared to a scenario with a
predefined fixed sequence of activities. Each context may appear and from the
point of the CMS there is no way to tell which one is more likely. In this case,
FlowCon is able to increase context recognition performance, because it can learn
this from flow knowledge. Furthermore, when the flow execution waits for an

a1 a2

a3

a4

a5

a6

a7

a8

a9

a10
c1

c2

c3

c4

c4

c4

c4

Figure 6.2.: Blood Sample Flow

91

6. Probabilistic Reduction of Context Event Uncertainty

activity such as a5 – set butterfly – which depends on more than one previous
activity, the recognition of the preceding activities (a3, a4) increases the probability
that the next recognized activity will likely be a5.

The correct flow execution leverages automatic documentation of the blood sample
taking and relives the caretaker of some of the paperwork. But this is a tough task
because it requires to recognize the activities for every single step just using the
uncertain activity recognition results to drive the workflow execution. FlowCon
aims to increase the accuracy of the context events the flow execution relies on.
More specifically, we adjust the probability distribution given by the interpreta-
tion of an event instance IeE , so that the statistically most probable event will be
favored. The probability of this event is increased, while simultaneously the prob-
abilities of the possible other events are decreased. This way the accuracy of the
events expected by the application will be increased and their uncertainty is de-
creased. We train a Bayesian Network (BN) [RN02] to extract the information from
the flow and assess which event currently is the most probable. The training of the
BN consists of two phases: structure learning and parameter learning. While pa-
rameter learning can be achieved efficiently from a set of given observations (flow
traces), learning the optimal structure of a BN from such data is NP-hard. FlowCon
avoids the structure learning problem completely. It basically works in three steps.
First, it analyzes the flow structure and generates a BN structure from that analy-
sis. The structure of the BN is reusable as long as the flow remains unchanged. In
the second step, it uses the observed data from the flow history to do the parameter
learning. While both of these steps can happen offline before the actual instantia-
tion of a certain flow instance, it is possible to perform both online. The creation
of the BN structure can be computed fast from the given flow model. Training the
parameters online can further make use of the newest available flow traces and
hence favor a changed human routine in fast fashion.

The third step – the information combination – must executed at run-time (cf.
Figure 6.1. Usually the application has to deal with the provided probability of
an event (e1,p), but FlowCon queries the BN for the current event, using the ac-
tual execution state of the flow and the already received event instances. It then
combines the event with its derived statistical probability from the BN (e1,p

′) and
generates a new probability for the event (e1,p

′′). The probability p′′ will be higher
than p if e1 is statistically more probable for the application in the given con-
text.

6.4.1. Flow Structure Analysis

To build the structure of the BN from the flow structure we assume that there
exists a dependency between the events associated to two activities ax and ay if
there exists a transition t = (ax, ay). For example, in terms of our blood sample

92

6.4. FlowCon

flow (cf. Figure 6.2), the occurrence of the event e1—apply cuff—necessitates the
occurrence of the event e2—search vein—afterwards. While this dependency is
simple, there are more difficult cases. When we consider forks dout(a2) = 2, it is
not clear if there is a dependency between the events of a2 and the events of a3,
a4. A single caretaker could disinfect the arm first every time and then unpack
the butterfly. This does of course change the statistical dependency between the
events. The one between e2—search vein—and e3—unpack butterfly— will be low,
while the other between e2 and e4—disinfect elbow pit— will be high. When we
further consider the activities with din(a) > 1 we see that the occurrence of an
event may depended on more than one previous event. Some of the preceding
events may have a strong statistical dependency, while others have no effect at
all. However, we create each of the possible dependencies in the beginning and
adapt their strength later in the parameter learning phase, this way dealing with
changing behavior of caretakers.

We use a Bayesian Network BN B (N,D) to represent the statistical dependen-
cies from the flows, where n ∈ N is a node and d ∈ D is a conditional depen-
dency. Each node n of the BN represents a discrete random variable (RV). The
state space of a node n is equal to the event type E adding a null class. For ev-
ery event type of an activity we create a node n = a.E identified by the name of
the activity and the event type. After that, we add the dependencies as arcs be-
tween those nodes where the activities also have a directed dependency, or more
formally:

((ax, ay) ∈ T)∧ (∃i : εax(i) = Ex)∧ (∃j : εay (j) = Ey)⇒ (6.1)

((ax.Ex), (ay .Ey) ∈D)

Algorithm 6.1 shows the pseudo code for creating the BN structure from the flow.
First, we create all the nodes by assigning them the combined identifier of activity
and event type they refer to (Lines 2-8). After that, we create directed depen-
dencies between those nodes where the activities also have a directed dependency
(Lines 10-16). This completes the structure learning of the BN.

Please note that the structure learning has been very simple – effectively only a
mapping – because we have the flow structure which provides us with a realistic
assumption which events are related to each other. Usually, learning the optimal
structure of a BN from a set of observed values is NP-hard and suitable heuristics
need a large training set to perform well. Furthermore, the structure is fixed for
a specific flow model. Therefore, this step can be performed offline right after the
modeling phase. However, there may be multiple instances of the BN (with the
same structure) in use for different locations where the flow is actually deployed
and executed, or for different actors that are associated with the flow (having a dif-

93

6. Probabilistic Reduction of Context Event Uncertainty

Algorithm 6.1 Structure Analysis
N ⇐ {}

2: for each a ∈ A do
IdPrefix⇐ a.ID

4: for each Ei ∈ εa do
IdSuffix⇐ Ei .ID

6: N ⇐N∪ createBNNode(IdPrefix + IdSuffix)
end for

8: end for
D⇐ {}

10: for each t ∈ T do
for each Ei ∈ t.ax do

12: for each Ej ∈ t.ay do
D⇐D∪ createArc(ax.ID +Ei .ID,ay .ID +Ej .ID)

14: end for
end for

16: end for

ferent set of learned parameters). For example, there could be a single BN trained
for every caretaker to take personal habits into account when executing the flow
and processing the context information.

Usually, the number of events grouped together in an event type is rather small. A
practical example for an event type may be Ealpha which groups together different
modes of locomotion, as defined in Section 3.2.1. The size of the event type is
important because the number of entries in the conditional probability table (CPT)
of a BN grows exponentially with the number of values a single node can have,
and the number of dependencies. So if there would be a large number of events
grouped in an event type and there would be multiple dependencies between event
types of similar size, the space necessary to represent the BN may become to large.
However, for the observed events in the traces and practical considerations, BN
are suitable to represent the dependency structure.

6.4.2. Bayesian Network Training

The next step is to train the BN with the actual statistical dependencies that have
occurred. At first the CPTs of each node are initialized with an uniform distribu-
tion. Then, we use a common maximum likelihood estimator with a uniform prior
and update the values in the BN (cf. [BFH+09] p. 123). Therefore, we need a train-
ing data set with observations for the value of each node. The flow traces that are
collected for each execution of a flow are ideally suited as a data set for training. As

94

6.4. FlowCon

the event instances are stored together with the flow trace, it can be converted to an
observation for each event represented by a node in the BN.

As an example, we look at a trace T from our blood sample flow. For activity
a1 there is an event instance IEb = θa1

(εa(1)) stored in the trace. The probability
distribution of this event instance IEb indicates that e1 is the most significant event,
i. e. the one with the highest probability. So for training from this trace we would
set the observed value for the corresponding node a1.Eb to e1.

The event types associated to activities that have not been executed in a trace
cannot provide event instances, thus the corresponding nodes are set to the null

state for this trace. In the mentioned trace the activity a7 may not have been ex-
ecuted because the corresponding blood test was not scheduled. So the value for
the corresponding node a7.Eb would be null. The BN can be trained incremen-
tally with the traces, as they become available. This way the CPTs are adjusted
until the dependencies are appropriately represented. As we demonstrate in the
evaluations a rather small training set of 25 to 50 traces is sufficient for train-
ing.

6.4.3. Runtime Information Combination with Bayesian
Networks

The third and final step is to retrieve the information from the BN and com-
bine it with current context information to increase accuracy. Querying a BN
usually means to initialize some of the variables with observed values and com-
pute the conditional probabilities of the unknown variables. The observed values
for the Flow instance that is currently executed, are the past events that have al-
ready been recognized. We take all available context events as evidence into ac-
count.

When the next event instance IE arrives, we compute the conditional probabil-
ity for this event using the previous event instances as current observations. This
means we can use the executed trace of the flow as evidence and hence, reduce
the search space in the BN. This also effectively counters the problem having
very small probabilities after a number of inference steps. The result from the
BN is also a probability distribution function I ′eE for the event type E. We com-
bine this result with the probability distribution function IeE of the actual event
instance e. We compute the average probability for each event in the distribution
and normalize the results afterwards to make the probability distribution valid
again.

95

6. Probabilistic Reduction of Context Event Uncertainty

I ′′eE (u) =
I ′eE (u) + IeE(u)

I
(6.2)

I =
∑
u∈E

I ′eE (u) + IeE(u)

This combination adjusts the probability of each event by the amount of its sta-
tistical probability under the given context of the previously occurred events. We
used this method for FlowCon at first due to the lack of a better intuition of what
to do with the results from the BN. As we will show later in Section 6.6, a much
more meaningful combination of information can be achieved, when we change
the representation of uncertainty of the context events. Here we actually adjust
the context measurement. The probability of an event that occurs more often is
increased, while the other way around, its probability gets lowered. Note that
higher probability also means a higher accuracy for the measured event. The re-
sulting probability distribution is stored in the event instance. The event instance
is then sent to the flow instead of the original one, and processed according to the
flow execution behavior.

6.5. FlexCon

FlexCon is targeted for flows modeled with the Hybrid Flow Model (HFM), suit-
able for more flexible scenarios. It uses the same algorithmic principle but has to
deal with more flexibility when executing flows. But this forces us to rethink also
on the use of BNs to represent the statistical dependencies between context events.
As the HFM allows the repeated execution of activities in flows, BNs are no longer
possible. If activities are repeated there would be additional nodes required in
the BN for each execution. But it remains unclear until the concrete execution of
the flow instance how often an activity is executed. Further, in case the order of
execution is left to the user it may be unclear, which activity is conditionally de-
pendent on the other. This may also change form instance to instance. As there
may be statistical dependencies in both ways this would cause a cycle to occur in
the structure of the BN as constructed by FlowCon (cf. Algorithm 6.1). For exam-
ple in the flow shown in Figure 5.2 the activities a3 and a5 are tied together by a
not succession constraint. But while a3 is embedded strongly with other activities,
a5 may be executed either before or after a3. So we cannot assign a directed condi-
tional dependency between the two activities, without introducing a cycle in the
BN. But a cycle invalidates the BN structure and would make the result useless. To

96

6.5. FlexCon

tackle this issue we have to take the execution time of an activity as an additional
factor into account.

FlexCon uses Dynamic Bayesian Network (DBN)s to interpret context events de-
pending on the current state of the flow. A DBN is a probabilistic data structure
that is flexible enough to represent the current flow state, the already received
events, and the relation between the events according to the transitions and con-
straints of the flow model. It also has a time dimension and each time slice does
only take into account a part of the the flows execution state. Its structure is ba-
sically identical the BN of FlowCon but unrolled over time. FlexCon builds the
structure of the DBN from the flow model and trains the DBN using traces of pre-
viously executed flows. This is shown in Figure 6.1 on the lower right. We explain
the details of the construction algorithm in the next section.

When a flow instance is executed, every incoming context event e is sent to the
DBN. Any such event is associated with a probability distribution IeE (cf. Defini-
tion 3.2.3). The DBN infers an additional conditional probability distribution I ′eE
for e over E. The distribution IeE given by the CMS and I ′eE given by the DBN are
combined, yielding an overall distribution I ′′eEα which is then used by the flow en-
gine to make its navigation decision. Our evaluations show that if e ∈ u then, on
average, I ′′eE (u) > IeE(u). Hence, FlexCon reduces the uncertainty contained in the
original distribution such that the flow engine can make more correct threshold
decisions.

Using exact inference to get I ′eE from a complex DBN, such as the one built from
the flow model with an online algorithm, is computationally infeasible [Mur02],
as its complexity has a lower bound of Ω(Km+n+1). Here, any event type set has
at most K discrete values, m may in worst case be the sum of all event type sets
used in the flow model and n is the number of parent nodes for the inference in
question. Therefore, we use an approach based on particle filters [RN02] to increase
the performance. We adapted the standard particle filter approach to reduce the
computational effort, which allows us to use more particles on a more sparse DBN
network and achieve more accurate inference results. We present a detailed de-
scription of the inference algorithm in Section 6.5.4.

6.5.1. Dynamic Bayesian Network - Structure and Learning

A Bayesian Network BN = (X̄,D) is a directed acyclic graph representing a joint
probability distribution over a number of random variables {X1, ...Xn} = X̄, where
X̄ represents all the nodes. The edges d ∈D ⊆ X̄ × X̄ of the BN define a conditional
dependency from the source random variable (RV) to the target RV. In FlowCon,
we used BNs as the flows were based on imperative models that specify the com-
plete execution order. Therefore, the simple static BNs were sufficient. However,

97

6. Probabilistic Reduction of Context Event Uncertainty

the HFM for FlexCon allows the user more freedom to execute activities. There
can be more than one connected component in the flow model and the execution
order of some activities is only defined by constraints. Further the user is also
allowed to exectue some activities more than once. The static BN model cannot
represent this kind of user behavior as it would introduce cycles in the structure.
Therefore, FlexCon employs DBNs which are tailored for dynamically changing
systems.

In a DBN [RN02, Mur02], the values of the RVs changes over time. Further, the
observed values for the RVs in the current time slice X̄t can depend on the obser-
vations of one or more previous time slices. This dependency is expressed by the
transition model T M = P (X̄t |X̄t−1). When we write X1,0, we refer to the RV X1 in the
time slice t = 0. Additionally, a DBN has a prior distribution PD = P (X̄0) for time
t = 0, such that the definition of a DBN is given as follows:

Definition 6.5.1 (Dynamic Bayesian Network) A DBN = (X̄,T M,PD)1 consists
of a set of random variables X̄, a transition model T M and an initial prior distribution
PD.

The structure of the transition model T Mmust be derived from the available HFM
and its parameters must be tuned according the available flow history, similar to
FlowCon. Further we must also provide suitable values for prior distribution PD
in order to start with the reasoning in the DBN when the flow execution starts. In
the following we describe the algorithm FlexCon uses to construct each of these
components.

6.5.2. Flow Analysis and DBN Construction

FlexCon creates the random variables X̄ in the DBN based on the event type sets
and activities of the corresponding flow. Let F1 = (A,T ,C,L,Φ ,M) be the flow
model from our example in Section 5.3. For each a ∈ A and each E ∈ εa, FlexCon
creates a node in the DBN. More formally, the function χ : A×P (U)→ X̄ maps an
activity a and an event type set E to a unique RV X of the DBN. Let further χ̄(a,εa)
be the set of all RVs associated with activity a. Each RV X = χ(a,E) with E ∈ εa is
discrete and can assume the same values present in the event type set E plus a null
class, represented by ⊥. For example, let us consider a1 and Eα ∈ εa1

(cf. Section
3.2.1). The respective random variable χ(a1,Eα) = Xα can assume any value from
{person walking, person sitting, person standing,⊥}. χ(a,E)t (the RV of the event type
set E assigned to activity a) and χ̄(a,εa)t (all event type sets for activity a) refer to

1Since FlexCon has no hidden variables, there is no need for a sensor model as it is usually found
in the DBN definition

98

6.5. FlexCon

the respective time slice t. In order to construct the set X̄ of random variables for
the DBN we use the algorithm depicted in Algorithm 6.2.

Algorithm 6.2 DBN Node Mapping
X̄⇐ {}

2: for each a ∈ A do
IdPrefix⇐ a.ID

4: for each Ei ∈ εa do
IdSuffix⇐ Ei .ID

6: X̄⇐N∪ createDBNNode(IdPrefix + IdSuffix)
end for

8: end for

The time slices in our DBN are defined with respect to the execution state of the
flow: Every time an activity completes its execution and the flow state is changed
accordingly, we enter the next time slice in the DBN. FlexCon creates the tran-
sition model (i. e. the time dependencies) from the transitions and constraints
in the flow model. Both of them enforce an execution order on the set of activi-
ties. We map these order relations to the transition model, introducing directed
edges (dependencies) from one time slice to the next. The strength of these de-
pendencies is learned from flow traces in a subsequent step. In the following,
we describe the construction and learning phases first for transitions and then for
constraints.

A transition t = (ax, ay) ∈ T between two activities represents a very strong de-
pendency as ay can only be executed when ax has been completed. Therefore, we
create a dependency in the network for a pair of RVs if a transition exists between
the respective activities as follows.

(χ(ax,Ex)t,χ(ay ,Ey)t+1) ∈ P (X̄t+1|X̄t) ⇐⇒ ((ax, ay) ∈ T)∧ (Ex ∈ εax)∧ (Ey ∈ εay).

For example, consider the activities a1 and a2 in Figure 5.2: They have a transition
and, therefore, each X ∈ χ̄(a2,εa2

)t+1 would have χ(a1,Eα)t as parent node, because
Eα ∈ εa1

.

As constraints usually provide a less strict ordering of activities it is more difficult
to derive the correct dependencies for the transition model. These dependencies
can be different for each execution trace of the same flow. Let l1 = �(a3→¬(�(a5)))
(cf. Definiton 5.3.2)represent the not-succession constraint in the example in Figure
5.2. First, FlexCon assumes that there is a bidirectional dependency between all
the activities that are contained as literals in the expression (a3 and a5 in the exam-
ple). Hence, FlexCon adds (X3,t,X5,t+1) and (X5,t,X3,t+1), with X3 ∈ χ̄(a3,εa3

) and
X5 ∈ χ̄(a5,εa5

) as dependencies in the DBN. In a second step, FlexCon determines
the type of dependency that has to be included in the transition model T M. If
the sequential execution of the originating activity a3 and the target activity a5 of

99

6. Probabilistic Reduction of Context Event Uncertainty

the dependency permanently violates the constraint (as is the case in the example),
FlexCon marks this dependency as negative. Negative dependencies are handled
differently in the learning process as described below. If the sequential execution
leads to a valid or temporarily violated constraint (cf. Section 5.3), the dependency
is handled like a transition. If the subsequent execution of the two activities has
no influence on the constraint, we do not add a dependency at all. The latter is
the case for the response constraint between a4 and a6 in Figure 5.2, where the ex-
ecution of a6 has absolutely no dependency on the execution of a4. Algorithm 6.3
shows the mapping of the constraints more formally, where Σl denotes the alpha-
bet, Zl the set of states and

a
⇒ the respective transition relation given the activity

a ∈ Σl for the final state machine for constraint l. Further permanentlyV iolated
is a predicate that becomes true if the given state z denotes that the respective
constraint l has become permanently violated.

6.5.3. Dynamic Bayesian Network Training

In order to learn the strength of dependencies in the DBN, we use the flow history
as training data, counting the occurrences of all context event pairs and learning
their joint probability distribution. Again the flow trace acts as a suitable source
for the required evidence and again we use a maximum likelihood estimator for
the training [BFH+09]. The portion of the flow history that is relevant for the
learning is controlled by a sliding window algorithm taking only a number of re-
cent traces into account. We determined this size experimentally, and found that
25 to 50 flows are sufficient to provide a stable behavior of the DBN. This helps
controlling the effectiveness of the learning procedure when facing a changing be-
havior of the flow system.

For dependencies originating from flow transitions, the simple counting of context
events and computing their relative frequencies as described at the beginning of
this section is sufficient. For constraints, we have to apply a different mechanism:
In order to learn the strength of negative relations, we increase the count of the
null-class for every trace where no such event sequence could be observed. This
leads to a reduced probability of any other event type of the respective event type
set. As an example, consider the not succession constraint of a3 and a5 again. The
execution of a3 will indicate that a5 is never going to happen in any valid execu-
tion of this flow instance. Therefore, we reduce the belief of the DBN that any
of the context events associated with a5 is likely to be recognized. An inexperi-
enced nurse may execute the activity sequence a3, a5 nonetheless, but the flow can
provide guidance for this case, preventing the nurse from violating the constraint
l1.

Finally, we need to initialize the DBN for t = 0, and provide the prior distribu-
tion PD = P (X̄0). This distribution is also extracted from the flow history: We

100

6.5. FlexCon

Algorithm 6.3 DBN Transition Model Mapping
T M⇐ {}

2: for each t ∈ T do
for each Ei ∈ t.ax do

4: for each Ej ∈ t.ay do
T M⇐ T M∪ createArc((ax.ID +Ei .ID)t, (ay .ID +Ej .ID)t+1)

6: end for
end for

8: end for
for each l ∈ L do

10: for each ax ∈ Sigmal do
for each ay ∈ Sigmal do

12: if ∀z ∈ Zl : Z
ax⇒ Z then

skip
14: end if

if ∃z ∈ Zl : z
ax⇒ z′ ∧ permantnlyV iolated(z′) then

16: for each Ei ∈ ax do
for each Ej ∈ ay do

18: T M⇐ T M∪ createNegArc((ax.ID +Ei .ID)t, (ay .ID +Ej .ID)t+1)
end for

20: end for
else

22: for each Ei ∈ ax do
for each Ej ∈ ay do

24: T M⇐ T M∪ createArc((ax.ID +Ei .ID)t, (ay .ID +Ej .ID)t+1)
end for

26: end for
end if

28: end for
end for

30: end for

search for traces of the respective flow model and create individual distributions
for all the activities the flow has been started with at least once. For F1, this in-
cludes a1, a5 and a6, and the distribution for Eα ∈ εa1

could have the following
values: P (person walking) = 0.05, P (person standing) = 0.18, P (person sitting) = 0.65,
P (person disinfect) = 0.01 and P (⊥) = 0.12. In most of the cases the caretaker is
sitting while writing the results. In some cases, they do it while standing. At
other times, there was no meaningful evidence at all (⊥). The rates for the uncom-
mon mode of locomotion (person walking) is even lower. Please note that these are
the results observed by the flow application regarding previously executed flow
instances, not the actual readings from the CMS for Eα. The result are individ-

101

6. Probabilistic Reduction of Context Event Uncertainty

ual probability distributions for each of the past starting activities for this flow
model.

6.5.4. Clustered Particle Filtering with Dynamic Bayesian
Networks

In order to exploit the knowledge encoded in the DBN for a specific flow model, a
process called inference has to be executed. That is, the posteriori distribution of
the RVs (nodes) has to be calculated given real evidence. In our case, the evidence
are the real context events received from the CMS in time slice t, and the infer-
ence is done by computing all the conditional probabilities for the RVs in time
slice t + 1. Exact inference is infeasible for complex DBNs like the ones gener-
ated by FlexCon. Even more so, as this process is running in parallel to the flow
execution: Whenever new evidence is available, the inference has to be done to
get the probability distributions for the upcoming context events. FlexCon uses
a heuristic approach that is based on particle filters [RN02]. Therefore, we use a
large number of random samples (the particles) from the distribution of the DBN
at a certain time slice t and propagate them through the DBN to approximate the
individual distributions associated with each node in the following time slice of
the DBN. A single particle is a sample taken at random from the distribution of
the DBN at a certain time t. A particle filter approximates the exact joint prob-
ability distribution by generating a set of particles N (X̄) for all random variables
X̄. The higher the number of particles the better the approximation of the real
distribution. But the computation time grows linearly with the number of parti-
cles.

To propagate and calculate probabilities in the DBN the filter executes the follow-
ing four steps. To initialize the filter, it first generates an initial particle set N (X̄0)
sampled from the prior distribution PD = P (X̄0) given by the DBN. In a second
step each particle is propagated to the next time slice (t = 1 in this case) according
to the distribution given by the conditional probability table. In the third step, the
particles are weighted with the evidence available at the current time slice. Each
particle is multiplied with the probability of the current observation. In the final
step, the set of particles is resampled according to the weight of the individual par-
ticles. A detailed description of the basic principles has been published by Russel
and Norvig [RN02].

We modified this standard algorithm as explained in the following, to accommo-
date it to the needs of FlexCon. The result is a clustered particle filter that is similar
to the F3 filter presented by Ng et al. [NPP02]. Algorithm 6.4 depicts the standard
particle filter algorithm including the changes introduced by FlexCon. The input
to the algorithm includes the DBN , the currently completed activity a and the set
of event instances e[], a has received.

102

6.5. FlexCon

First of all, a single particle in FlexCon does not represent a full sample of X̄ but
only a sample of a subset of the variables

⋃
E∈εa χ(a,E), i. e. all variables of a single

activity. Therefore, we call it clustered particle filtering, where each cluster can
also be identified by N (χ̄(a,εa)). This is an useful abstraction for a number of
reasons. Each time slice in the DBN covers the completion of a single activity in
the flow. Therefore, it is enough to process particles of that activity. All other
particles are only propagated as they may be needed later on. This allows us to
increase the total number of particles as the average processing load per particle
is decreased. The unprocessed particles can be directly transferred to the same
node in the next time slice, without the need for a dependency between these
nodes.

Algorithm 6.4 Clustered Particle Filter Algorithm
Input: DBN = (X̄,T M,PD), a, e[]

2: if N (X̄) = ∅ then
N (χ̄(a,εa))← createInitialP articleSet(PD)

4: end if
for all e ∈ e[] do

6: weightEvent(e, IeE ,χ(a,E))
weightP articles(N (χ(a,E)), IeE)

8: N (χ(a,E))← resampleP articles(N (χ(a,E)))
end for

10: propagateP articles(N (χ̄(a,εa)),T M)

For example, consider the trace T1 = (a1, a6, a3, a4, a6) for the process depicted in
Figure 5.2. After executing a1, the particles from χ̄(a1,εa1

)0 are propagated to
χ̄(a3,εa3

)1 since there is a transition (a1, a3), while χ̄(a6,εa6
)0 are just passed to

χ̄(a6,εa6
)1, without further processing. a6 is executed next, relying on the prior

distribution (and thus the particles) from χ(a6,εa6
)1. While the particles χ(a6,εa6

)1
are propagated normally, all other particles N (x̄)1 \ χ(a6,εa6

)1 are propagated to
time slice t = 2, without further processing.

The second modification changes the propagation and weighting steps. Usually
the full set of evidence, i. e. P (χ̄(a′,εa′)t+1|X̄t), is available for propagating the par-
ticles in time slice t. As we only process the particles for a single activity a and
only observe the received events for this activity as evidence, we can only rely on
the conditional probability P (χ̄(a′,εa′)t+1|χ̄(a,εa)t), instead. This means that we
cannot use the evidence of events that have been observed "outside" of the current
cluster N (χ̄(a,εa)t) i. e. evidence from other activities. As a consequence, we intro-
duce an error in the inference. When there is a conditional dependency between
χ̄(a′,εa′)t+1 and any X ∈ (X̄ \ χ̄(a,εa))t, this evidence can not be taken into account.
However, the majority of X ∈ (X̄ \ χ̄(a,εa))t will be independent from the variables
in χ̄(a′,εa′), because there is no dependency defined by the flow. Furthermore, at
time t + 1, we have an actual observation available – the navigation decision of

103

6. Probabilistic Reduction of Context Event Uncertainty

the flow – and will use this evidence for further inference when weighting the
particles (cf. line 7). Therefore, the introduced error will be compensated in the
next time slice and we actually discuss in Section 9.1 that not using this evidence
makes FlexCon a bit more robust. To avoid this problem, we could also sample the
evidence from the current distribution N (X̄ \ χ̄(a,εa)) of the other activities, but
this also introduces inference errors, as this distribution only represents the global
state of the particle filter, but not real evidence.

After the propagation phase (Line 10), the actual observations (i. e. the received
event instances) become available to the DBN. We can then weight the particles
multiplying the number of particles |N (χ(a,E) = u)| for a specific event type u
with the actual probability of the event type given by IeE(u) (Line 7). Based on
the computed weights all the particles for χ̄(a,εa) are resampled according to the
distribution of the weighted particles (Line 8).

The third modification is the actual processing of the received event instance e in
order to decrease its uncertainty. This step is accomplished after the propagation
of the particles and before they are weighted for the next resampling. We compute
the conditional probability weights for I ′eE from the particles in χ(a,E), where the
weight

p′ =
|N (χ(a,E) = u)|
|N (χ(a,E))|

for I ′eE (u) is just the relative particle frequency, as the distribution in the sample
N (χ̄(a,εa)) represents a sufficient approximation of the correct conditional prob-
ability distribution. With p′ the DBN provides us again with a second source of
information similar to FlowCon. This information can then be combined with the
actual result from the received event instance. In the basic case, just averaging be-
tween the two sources of information, all probabilities p = IeE(u) are added to the
respective p′ and the resulting distribution is normalized again, yielding I ′′eE (u)
similar to FlowCon (cf. Equation 6.2). After the event instance has been modified
it is processed normally by the CE and the flow engine.

6.6. Uncertainty Model Variants

Up to now, we used ?Con in both its variants to alter the interpretation IeE of a
received context event. We derived a second interpretation form ?Con and com-
bined it with the context event assuming both contributing the same amount of in-
formation (cf. Figure 4.2). But so far, we only used a basic version of the Condition
Evaluator (CE) using probabilistic logic to reason on the resulting interpretation
I ′′eE (cf. Definition 5.2.4). Basically the CE provides two features. First, it checks
the final interpretation of the event for the desired context information. Second, it
combines this context according to the evaluated condition using the appropriate

104

6.6. Uncertainty Model Variants

operators (i. e. and ∧ , or ∨, not¬). But this combination may suffer from greatly
reduced probabilities, when a complex condition with multiple and operators is
used. As a result even with very accurate results from the CMS (and/or ?Con) the
flow engine may have problems when evaluating the condition against the naviga-
tion threshold (cf. Equation 5.6).

We now investigate two alternative approaches, aiming for a more suitable repre-
sentation of uncertain context information for the flow so that the processing of
context events becomes more robust. On the on hand, we want to combine the
information from ?Con with the real evidence in a more meaningful way than
just averaging between the two. On the other hand, we want to make the rea-
soning process better using stable operators for reasoning on uncertain context
information that do not increase uncertainty again during condition evaluation.
The reasoning could in theory be used on its own to evaluate the context condi-
tions but the combination requires the use of either variant of ?Con in order to
have a second source of information. We investigated two alternative approaches
and both complement the use of ?Con in any combination. The first approach is
introduced in the next section and covers the integration of Subjective Logic (SL)
in the Condition Evaluator (CE) as well as the representation of uncertainty. The
second approach investigated the use of four-valued logic (4V) as suitable replace-
ment for Probability Theory (PT) to reason on the conditions and is presented in
Section 6.6.5.

6.6.1. Subjective Logic Condition Evaluator

The novel Subjective Logic (SL) Condition Evaluator (CE) [WHR13] is a sophisti-
cated method for combining the two sources of information discussed above: the
probability distribution IeE measured by the CMS for the real-world event instance
and the probability distribution I ′eE inferred for the same context event from ?Con.
In our original approach we just averaged between the IeE and I ′eE , thus using a
fixed amount of 50% from each information source (cf. Equation 6.2). In order
to combine both sources in a meaningful way, we propose the use of Subjective
Logic (SL) (cf. [Jøs11]) for two reasons. First, we can dynamically adapt and con-
trol the amount of information we use from IeE and I ′eE , based on the amount of
ignorance attributed to the incoming context event. Second, it allows us also to
reason on the result of a condition using 2nd order probabilities. SL is a type of
probabilistic logic taking uncertainty on probabilities and incomplete knowledge
into account. A belief in a certain situation is expressed as so called subjective
opinion, that describes the subjective belief of an observer for a given proposi-
tion. In general a subjective opinion is composed of belief, disbelief and ignorance.
Belief is the evidence that supports the proposition, disbelief is evidence that op-
poses the propositions and ignorance represents the observers uncertainty on the

105

6. Probabilistic Reduction of Context Event Uncertainty

evidence given available for the proposition. We will use this representation to
describe the uncertainty of the context events and adapt the way we combine the
its information with the one from ?Con. As we will present in the evaluation
this approach leads to a reduced dependency on ?Con giving more weight to the
information from context event. Further, we make some modifications to add a
minimal amount of ignorance when combining both information sources and ren-
der the actual navigation threshold adaptive to the current event to increase the
robustness of the navigation decisions even further.

We will start introducing the basic principles we used from SL and how they are in-
tegrated into SL CE. Following that, we discuss the details of the minimal amount
of ignorance and the navigation threshold adaptation. In Sections 9.2 and 9.3, we
will discuss our evaluation results.

6.6.2. Integrating SL in the CE

In order to apply SL with the CE, we first have to extend the definition of the event
instance and our model of uncertainty with terms for belief, ignorance and a base
rate. Then we can construct subjective opinions and reason on them.

In terms of SL, an event type u represents a single atomic event in the real-world
for a given situation and the event type set represents our frame of discernment
θ = E. The belief mass of a subjective opinion is assigned to a reduced power set
of θ that we refer to as R(E) = 2E \ {E,∅}. The full opinion E is not a valid subset
because this value represents full ignorance and hence we have no belief in this
situation. The ∅ is not regarded as well, as E is assumed complete i. e. it already
contains a null class.

Given R(E) we can now define any basic belief assignment (bba) (cf. Equation
2.2.1) for E as ~bE that distributes the belief mass over the sets of R(E). We could
use the distribution of the event instance IeE(u) and map the probabilities to an bba
for an event instance e. However this would lead to so called dogmatic beliefs as
a probability distribution is additive to 1 (there is no ignorance). In order to add
an amount of ignorance we use a simple approach that is based on the significance
S = û − 1

|E| of the current event instance, where û = argmax
u∈E

IeE(u). I. e., the higher

the largest probability û in IeE deviates from the uniform distribution probabil-
ity 1

|E| , the higher the significance of the event e. This definition assumes that a
large amount of probability for a single event type indicates a valid measurement.
However, if all values in the distribution are close to a uniform distribution, thus
the significance of the event instance is low, we assume a higher amount of igno-
rance. We reflect this when creating ~bE by multiplying each probability with û .
The remaining mass 1 − û is then assigned as ignorance iE . Please note that this
transformation step could also be defined for CMS that provides less information.

106

6.6. Uncertainty Model Variants

For example, if the CMS gives an event instance containing e = (u,E,p) where p
is the probability of event type u, which is part of the event type set E. Then we
could assign this probability as belief to {u} ∈ R(E) and keep the remaining belief
1 − p as ignorance iE . As long as this kind of transformation can be well defined
SLCE can support basically any kind of CMS interface.

Finally, we introduce the base rate that expresses the observers expectation for an
event type. If no information on this expectation is available, we have to use a uni-
form expectation value for any element of R(E). However if we have some source
of information how to handle uncertainty we can assign use the base rate to project
the uncertainty back to a probability based using the base rate. ?Con provides us
with exactly this biased expectation and allows a meaningful and practical assign-
ment of base rates. Let ~aE(u) denote the base rate for event type u for a given event
instance. Then we assign I ′eE (u) as base rate ~aE(u) for this u.

Again, note that the amount of ignorance iE directly determines the amount of the
base rate used to reason on this situation. I. e., the higher the ignorance, the more
we use information from ?Con, because the reading from the CMS contained less
useful information and vice versa. If the ignorance is low, we can rely on the mea-
sured event from the CMS and have to use less information from ?Con. This is
of huge importance to applying ?Con as our evaluations in Chapter 9 will show.
Using this representation we can balance in an adaptive and fine grained man-
ner what source of information to trust more in order successfully execute the
flow. When we have a very accurate context measurement we can use ?Con just
as a validation tool whether the received context event actually fits in the over-
all statistics of the executed flow. Given a very inaccurate CMS or just having
a temporary degradation in context event accuracy ?Con will take over most of
the responsibility an provide more information to aid in successful flow execu-
tion.

Having all the individual components we can now construct the subjective opinion
ωAX , where A is the observer and X is the frame of discernment. There exist three
different classes of subjective opinions, binomial, multinomial and hyper-opinions.
The latter are the most general, but we only need the simple binomial opinions.
They are restricted to frames of discernment where |X | = 2. At first this seems to
contradict with event type sets with more than one element. However, according
to Definition 5.2.4, we always check against one single event type. Therefore we
can create a binomial subjective opinion ω∗Conu = (b,d, i,a), with the observer ?Con
and using the basic belief assignment ~bE , the ignorance iE and the base rate ~aE . As
we have a binomial opinion we only take the information into account that this
event represents u or not. The values are for the binomial opinion are computed
as follows. The belief in the opinion is just its value from the belief vector b = ~bE .u,
that has been created from IeE using û. The disbelief is all contradicting evidence

107

6. Probabilistic Reduction of Context Event Uncertainty

we have in the belief vector d = (
∑
i

~bE .i)−b. The ignorance is given by the remaining

probability mass i = iE and finally the base rate is given by the probability of ?Con
on the event type u as follows a = I ′eE (u).

As the basic expressions of the condition are now binomial subjective opinions
we change the way our basic CE works accordingly. Instead of using probabilistic
logic to assess the condition we apply their SL counterparts. Only before we check
against the navigation threshold tn, we project the final opinion back to probability
space.

6.6.3. Minimal event ignorance

We mentioned before that FlowPal used averaging to combine incoming event in-
stances with information from ?Con. By applying SLCE we can limit the amount
of information used from ?Con depending on the significance S of the event in-
stance. Our first experiments with SLCE showed two things. First, in general the
ignorance iE is less than 0.5, thus we use less information from ?Con than in the
original approach. This is beneficial because we actually rely more on real input
than on its statistical relevance. Second, when FlowPal with SLCE is exposed to
a context system that provides wrong information with a high significance, i. e.
û ≥ 0.5 but for the wrong event, FlowPal with SLCE is prone to believe this wrong
information more easily. The high significance leads to a lower usage of ?Con than
compared to the version without SLCE, and thus provides less help detecting this
wrong information. This did not happen before due to the fixed averaging be-
tween IeE and I ′eE . In general, we have observed a lower usage of ?Con in FlowPal
with SLCE. Therefore, in order to counter the mentioned wrong behavior, we arti-
ficially increased the amount of uncertainty for an event instance to double check
it in every case with ?Con to some degree. We adjusted iE such that the uncertainty
is always above the minimal event ignorance ǐ, i. e. the ignorance in the binomial
opinion i =max(iE , ǐ) is either the minimal event ignorance or the ignorance given
by the event instance, whichever is greater. As a result we still use less informa-
tion from ?Con in most of the cases but still have a fair chance to detect wrong
events, that have a high significance. In general, the more likely the CMS provides
high significant wrong events, the higher ǐ should be. For our experiment setup a
value of ǐ = 0.4 has been optimal. When deploying a real-world system it would
also be possible to monitor the performance of the CMS over time and develop a
meta-heuristic that adapts ǐ based on the observations.

108

6.6. Uncertainty Model Variants

6.6.4. Adaptive Navigation Threshold

Having applied the minimal event ignorance ǐ, we noticed that the flows failed
more often when processing an event instance with |E| > 3, because the threshold
of important conditions could not be met despite a fairly accurate context event.
This effect was due to the still static navigation threshold tn = 0.4. This threshold
has been introduced in previous work [WHR09]. It is tailored for the scenario and
the average recognition probabilities we achieved in the hospital scenario. How-
ever, it does not take the size of the event type set into account. For |E| = 2 a
probability of 0.4 represents a rather low significance (expectation value = 0.5) ,
while for |E| = 4 (expectation value = 0.25) a significance of 0.4 is harder to achieve.
Therefore, we adapt the threshold to the size of the event type set in question for
each condition evaluation as the conditions are automatically generated in our
simulations (cf. 8.2). We started with a threshold that is equal to the expected
value of the given event type set and added a certainty margin. In general the cer-
tainty margin should be higher the better and more reliable the CMS provides the
correct context recognition and vice versa. In the experiments that we conducted
28% have been determined as optimal value for the certainty margin. As for the
minimal event uncertainty ǐ given enough observation of the CMS performance
in a real-world deployment a meta-heuristic adapting certainty margin becomes
feasible.

6.6.5. Four-Valued Logic Condition Evaluator

In a second approach we investigated the use of four-valued logic as a replacement
to standard PT. The four-valued logic (4V) [BJ77] is founded on the basic princi-
ple that queries are send to knowledge database. As this kind of databases tend
to contain incomplete and also contradicting information, there are more mean-
ingful answers to a query of that database system than “true” (t) and “false” (f)
but also ignorance ⊥ (no knowledge) and contradiction > (evidence for true and
false). M. L. Ginsberg [Gin88, Gin90] generalized 4V and introduced the concept
of a bilattice in conjunction with two partial orderings. The first one is ≤k, the so
called knowledge order, that allows to compare values in the bilattice against their
knowledge level. The second one ≤t is the truth order, that allows to compare val-
ues regarding their truth. Please note that t and f are not comparable by ≤k and
vice versa > and ⊥ by ≤t. Figure 6.3 illustrates the relationship of the four values
and their partial ordering.

The main idea behind that approach was to explicitly represent the possible con-
tradictions from uncertain context information during the reasoning process. Us-
ing 4V the CE can evaluate the event instances also with respect to possibly con-

109

6. Probabilistic Reduction of Context Event Uncertainty

tradicting information and use this contradiction to reason on the condition re-
sult.

N.D. Belnap Jr. [BJ77] has also defined logical operators to reason on the results
of a statement in 4V including conjunction ∧, disjunction ∨ and a complement ∼.
The complement negates the truthfulness as well as the knowledge of a statement.
But as a true negation operator should not create new knowledge, there was an
additional operator defined for 4V to implement a negation ¬. This negation only
affects the truth value but not the knowledge value.

In order to integrate 4V in the CE we have to do three things. First, we must
map the information from the event instance and also ?Con to a form that can be
represented as value in 4V. Second, we have to exchange the PT operators in the
CE with its 4V counterparts. Finally we have to decide how to handle contradiction
and ignorance results so that the navigator can make an appropriate navigation
decision.

To map the information to SL we use pair of “queries” to the event instance which
is comparable to the analogy first used for describing 4V. We again construct the
binominal opinion for each literal in a condition ω∗Conu , where u represents a de-
sired event in the flow for that literal. The 4V CE evaluates the opinion directly
against the navigation threshold ω∗Conu ≥ tn. Please note that the inclusion of ?Con
is again adapted by the use of SL with the subjective opinion. This way we do not
loose this elegant mechanism. The result of this first “query” is the basic infor-
mation we use to construct a suitable representation of the context event in 4V.
The first column in Table 6.1 lists the possible results. But this result on its own
leaves no space for contradiction or ignorance. Therefore, we have to apply a sec-
ond query that can make the result more plausible. Therefore, we ask if in the
original unmodified event instance the event type u also was the most significant

k

t

tf

>

⊥

Figure 6.3.: Bilattice of four-valued logic

110

6.6. Uncertainty Model Variants

one u = û where û = argmax
u∈E

IeE(u). If u , û, i. e. it was not the most significant one,

then we would have rejected the condition without the use of ?Con. For example
consider the event type set Eα (cf. Section 3.2.1) that defines the mode of locomo-
tion of a person. Let IeEα be the interpretation for the current event instance of this
event type set. u = person running is the event type in question and its probabil-
ity is 0.42 = IeEα (u). If this is the highest probability in the event instance û = u,
then the result is true. If there is another event type e. g. u′ = person walking with
0.46 = IeEα (u), then û , u and the result is false.

We interpret this as a suitable contradiction in order to map the context event to
a statement in 4V. The second column in Table 6.1 shows the possible results of
this second “query”. Based on this two query results we define the mapping of the
event instance to a 4V value as depicted in Table 6.1 column three.

Table 6.1.: Mapping and Interpretation of 4V values for condition evaluation
ω∗Conu ≥ tn u = û value of 4V result of the transition

true true t true true
true false > contradiction true
false true ⊥ ignorance true
false false f false false

Having the values of 4V for the literal values of the conditions we can now con-
tinie with the second step. In order to use 4V to reason on the values we have
to replace the logical operators with their appropriate counterparts from 4V as
well.

Finally, we have to decide how to handle the final result of this logic, when ac-
tually making the navigation decision for the condition. Therefore, we have run
a few experiments with different interpretations. The one that performed best
was the relaxed execution semantics where the flow navigator could successfully
navigate transitions even when the associated condition had final results of > or
⊥. This interpretation is also shown in Table 6.1 in column four. This decision
is reasonable because the uncertainty of CMS is still the major factor that can
break the successful execution of the flow. Allowing also contradicting or miss-
ing information states to contribute to the flow execution, helps to reduce this
influence.

We will show this in detail in the evaluation in Chapter 9. Especially the third case
⊥ (ignorance), where we have a lack of information or ?Con is not helpful (e. g. for
a system still in the training phase), the overall system can benefit from this inter-
pretation. On the downside we again have to discuss the possible influence of this
interpretation on producing successful false positive flow executions. The overall
quality of the decisions made with 4V do not suffer and a possibly wrong decision
is detected in most of the cases (≥ 96%) during the next activity. Furthermore,

111

6. Probabilistic Reduction of Context Event Uncertainty

when combined with FEvA this kind of errors could be detected and resolved in a
graceful and transparent fashion.

112

7. Adaptive Fuzzy Event Assignment

7.1. Preliminaries

While the mechanisms in Chapter 6 focused on the uncertainty of a single event,
we will now consider sequences of events. Context information perceived by an
application always has a temporal dimension: A stream of events is detected and
propagated by a CMS over time. Since the class of applications we regard here is
tightly coupled to a real-world process that produces events in real-time, there is a
need to detect these events as they occur and assign them to the right activity. As
the focus in this thesis it on the uncertainty of the event we do not cover failures
caused by node failures, link or network failures and communication errors. Those
errors can be resolved by standard mechanisms. When a flow executes an activity
a it greedily subscribes all its event type sets εa at the CMS. While the activity is
being executed appropriate context events are submitted to the flow engine with
exactly one copy and stored in the event cache of the flow engine (cf. Figure 4.1).
But the assignment of the event to the right activity is not always straight forward.
Consider that two activities have subscribed for the same event type set but are
interested in a different situation. While the event instance for one activity fits to
its execution, the other may greedily consume the “wrong” context event as it has
no means to distinguish if its instance was wrong or just has been classified with
a low probability by the CMS due to the uncertainty in the recognition. Further
the CMS itself is prone to not detecting an context event at all (e. g. due to noise
or failure of components in the CMS) or even false positives that did not happen.
Thus, the flow system receives an event sequence that does not necessarily match
the sequence expected by the receiving flow based on the partial ordering of its
activities.

In this chapter, we present Fuzzy Event Assignment (FEvA) as a means for ro-
bustly interpreting incoming sequences of context events and assigning them to
the correct flow activities. FEvA deals with errors in the event sequence that lead
to wrong decisions and missing information during the flow execution. The main
idea is to assign the events in fuzzy and delayed fashion that reflects the uncertain
nature of the received context events. First we will briefly introduce related work
with respect to workflows and decisions under uncertain information. Then we
describe FEvAs goal more formally giving an overview on its working principle.

113

7. Adaptive Fuzzy Event Assignment

After that, the main algorithms are presented and the chapter is concluded with a
discussion.

7.2. Related Work

With respect to the integration of context information in workflows we already
mentioned the work of Wieland et al. (cf. Section 5.1.2). The authors later ex-
tended their work to handle the integration of uncertain context in workflows
with a special focus on the different levels of abstraction that context informa-
tion is provided. However, they do not actually present a concrete algorithm for
matchmaking between uncertain context information and the workflow activities,
as we do with FEvA1. In fact we found no matchmaking algorithm in literature
that shows how uncertain context information can be attributed to the right activ-
ities in the context of BPM.

7.2.1. Workflows and Fuzzy Logic

Adam et al. [ATV05, ATM03] proposed to use fuzzy logic to enable so called soft
decisions in workflows based on the input provided to the workflow. They pro-
pose operators for workflows that allow the transformation of input information
to fuzzy values and allow for a more robust and soft decision making. The ap-
proach aims to make business decisions not on arbitrarily chosen values. For ex-
ample consider a process that gets the the budget and headcount as input and has
to perform the necessary actions to setup the project organization as matrix or hi-
erarchical. Basically there is no simple mapping for the combination of budget and
headcount required to go for a matrix or hierarchy but it can be only formulated
as crisp decision, e. g. budget ≥ 20k and headcount ≥ 5. With the soft decision
makeing these values could be used to express the transition from one project or-
ganization to the other in an elegant fashion. This approach is also targeted for
better and more natural decisions from the business perspective of the workflow.
This is also the intution we have used to design FEvA. However, the authors do
not consider uncertainties or ambiguities in the input information or context in-
formation in particular.

7.2.2. Fuzzy Petri Nets

Another area of related work comes from the research on Petri Net (PN). There are
plenty of workflow models based on PNs (e.g. [AHH94]), and also fuzzy petri net

1We assume a homogeneous level of abstraction in the context information

114

7.2. Related Work

variants have been proposed [PG94] and applied to workflows [RCMR01]. Basi-
cally all elements of a PN – places, markers and transitions – can be fuzzified and
integrated into a fuzzy reasoning process. A fuzzified markers in a PN is similar
to the way we fuzzify our event instances. But the context events represent exter-
nal input, which has not been considered in terms of fuzzy PNs. When further
compared, we avoid having a fuzzy execution state, whose semantics are difficult
to define with respect of the concrete real-world application scenarios the pro-
cesses are designed for. While we keep a crisp execution state and clearly defined
and documented execution state, we still allow soft decisions when navigating the
flow as more context events become available.

7.2.3. Event Sequence Error Model and Problem Statement

Having the necessary background information we can now formally define the er-
ror model we assume. As we already explained a flow can successfully execute if
the accuracy of the events in the sequence S is sufficient. But there is a second
condition. The events also must be also be consumed by the right activities so that
the flow can execute successfully. As our uncertainty model only represents the
uncertainty of one event instance we also need a model for expressing errors in
the event sequence S that can affect the mapping of context events to the activi-
ties.

As explained at the beginning of the chapter, each activity follows a greedy schema
and consumes events of the correct event type set it receives. This is fine as long as
there is a clear mapping of event type sets available and the flow engine does not
receive any erroneous events. In order to explain each error, we use a running ex-
ample based on the following sequence SF = (e1, e2, e3), with the real-world values
of e1 = person sitting, e2 = person reading, e3 = person walking. e1 and e3 belong to
the “mode of locomotion” event type set Eα, while e2 belongs to the event type set
“desk activity” consisting of person reading and person writing.

The first error type are false positives that occur when the CMS notifies the appli-
cation about an event that did not happen in the real world. We define α as the
fraction of false positive events added to a sequence S . For example, an alpha of
0.25 means that for four real events in the event sequence there is one additional
false positive event. |S0,1,0| ∗ (1 + α) = |Sα,1,0|, where |S| denotes the number of
events in the event sequence. We assume that added event instance are uniformly
distributed over the sequence. The event type set of the false positive is randomly
picked from the other valid event type sets E used in the flow, so that it can be
received similar to real event instances, given the right subscription. The proba-
bility distribution of a false positive is similar to that of the other event instances
in S , i. e. they cannot be distinguished from correct events in S when inspecting
the distribution. When adding a false positive to SF the resulting sequence can

115

7. Adaptive Fuzzy Event Assignment

look like SFα = (e1, e2, eF , e3) with α = 0.33, where the false positive eF indicates
with medium significance that the person is running.

The second error type are out-of-order events. These become relevant, e. g. when
variation in sensor data acquisition triggers the recognition of a certain context
earlier at a different point in time than originally modeled within the flow. For
example in the sequence SF it is denoted that the person is sitting and then starts
writing. However if the recognition of e1 = sitting gets delayed (user started writ-
ing halfway on the move), then the event instance e2 may arrive before e1. We
define γ as the fraction of events that have not been affected by a sequence shift.
The affected events are shifted according to a normal distributionN (0,σ). We use
a normal distribution here because we assume that most events will only be de-
layed for a small period in time and only very few events will suffer from a large
shift. For example, given γ = 0.60, 60% of the events have not been affected, but
the remaining 40% are shifted in time (either way) according a normal distribu-
tion N (0,σ). The σ is chosen such that 1−γ = 40% of the samples are larger than
±1. The integer part of the sample indicates the shift and direction in the event se-
quence relative to its original position. Given these numbers the sequence SFgamma
can be altered like this (e2, e1, e3).

Finally, there are missed events or false negatives that happened in the real world
but have not been recognized by the CMS. The most likely cause for this is an
error in the CMS or a temporary sensor failure. Let δ denote the fraction of events
in a valid event sequence that have been missed. So a value of δ = 0.1 results in
|Sδ| = |S| ∗ (1 − δ). In the example SFδ with δ = 0.33 the sequence may become
(e2, e3).

A single event sequence can be subject to all three error types and we write Sα,γ,δ
to express its error properties. Each error type is applied and only considers the
events in the original sequence. So first the false positives are added for α > 0.0 ,
then the original events are shifted if γ < 1.0, and finally for 0.0 < δ < 1.0 some of
the original context events are removed.

7.3. Algorithm Overview

The main idea behind FEvA is to exploit the structural and contextual relation
of flow activities and the current execution state of flows as additional informa-
tion for dealing with errors in the event sequence as defined above. The errors
in an event sequence S are critical as they can quickly drive the flow into fail-
ure and require user attention, because some event instance has been mapped to
the wrong activity. However, the fact that a flow is a temporal model that also de-
scribes the possible sequences of events helps us in dealing with this problem. The
goal of FEvA is to interpret an incoming, erroneous event sequence Sα′ ,γ ′ ,δ′ with

116

7.3. Algorithm Overview

α′ > 0,γ ′ < 1,δ′ > 0 for a flow f into the error-free original valid sequence S0,1,0
. FEvA operates inside the flow engine and monitors the flow execution closely,
exploiting the knowledge about preceding and succeeding activities to detect the
described errors for the current activities, flexibly correcting the event assignment.
First, we explain the so-called activity state space and how it is extended to catch
out-of-order events correctly. Then, we describe the assignment of context events
to the correct activities. An event instance e can become a candidate for any activity
that is currently subscribed to an event type set E with e ∈ E. Of course, multiple
activities may subscribe for E, and we will describe the mechanism for resolving
the resulting competition for e. The candidate selection algorithm fuzzifies the in-
coming context events and provides them as possible candidates to the activities.
An activity then decides if the event becomes a candidate and waits for further
events. During the execution of a single activity, it will eventually have candidates
for all the event type sets it is registered for. Then it can complete its execution
and the event assignment algorithm finalizes the assignment of the candidate events
and resolves possible conflicts with other activities.

Hence FEvA consists of two algorithms, one for event candidate selection and one
for event assignment. Both algorithms are plugged into the event cache of the
flow engine. The combination of FEvA and the event cache is referred to as event
container (cf. Figure 7.1).

Event Container

Event
Container

Event Instance e

Candidate
Selection

Algorithm

Candidate
Assignment
Algorithm

a1

E ∈ ε(a1)

a2

E ∈ ε(a2)

Figure 7.1.: Event Container

117

7. Adaptive Fuzzy Event Assignment

7.4. Flow Activity State Space Extension

During flow execution, an activity a can be in six different states that indicate its
completion progress. These states are in their order of execution Z = {inactive,
prepare, ready, active, can-complete, complete}. Let ω : A→ Z be the function that
retrieves the current state of an activity a (cf. Section 5.2). The state machine for an
activity is depicted in Figure 7.2. While the continuous lines represent the original
execution states and transitions, the items with dashed lines denote the states and
transitions added along with FEvA.

When a flow instance is created, all activities are in the inactive state. An activity
a that meets all prerequisites for being executed switches to the ready state. The
flow engine then registers a’s event type sets at the CMS. After a has been in-
formed of the arrival of the first event instance with an appropriate event type set,
a reaches the active state. When a has been informed that for all registered event
type sets, event instances have arrived, the conditions of the outgoing transitions
(a,ax) ∈ T are evaluated and a reaches the complete state. The target activities ax
of the outgoing transitions, whose conditions have been evaluated to true, are set
to the ready state. The execution of the whole flow instance is considered success-
ful if no activity is currently running (i. e. in the active state) and all activities
that are mandatory for the successful execution have reached the complete state.
The prepare and can-complete states have been added during the development of
FEvA. But while the state space has been extended, there is no change made to the
execution behavior of the flow model (cf. Section 5.2).

First, if the state ω(ay) of each preceding activity ay with (ay , a) ∈ T is < {inactive,
prepare}, then a switches from the inactive to the prepare state. The event type
sets of an activity in the prepare state are registered at the CMS ahead of time.
Therefore, the risk of missing an out-of-order event that arrives earlier is reduced,
because the activities also register early for their event type sets. This is necessary
as the flow engine only registers event type sets at the CMS when the execution of
an activity has already been started. If an event is recognized and the flow engine
has not yet registered the event type sets at the CMS, it will not be forwarded to

inactive ready

activecomplete

prepare

can-
complete

Figure 7.2.: Activity State Machine

118

7.5. Candidate Selection Algorithm

the flow engine. Due to this change, events can now be caught by the flow engine
until the prepared activity actually becomes ready.

Second, before switching from active to complete, an activity a reaches the can-
complete state first. This state indicates that a has found candidates for all its event
type sets but the preceding activities have not yet reached the complete state. This
can happen when events have been missed or arrived out-of-order. Waiting for
the completion of the preceding activities, we avoid that a consumes events that
are possibly more suitable candidates for the predecessors while a better event
for a might still arrive. However, the conflict resolution mechanisms, which we
will introduce along with the event assignment algorithm, will occasionally by-
pass this rule to handle missed events (cf. Section 7.6). To illustrate the exten-
sions to the state space better, Figure 7.3 depicts the structure of the blood sam-
ple flow including the activity states and the appropriate sets defined by FEvA.
Here the activities a1, a2 are already complete, the activities a3 and a4 are active,
while a5 is prepared. The activities a6 to a10 are still inactive and waiting for execu-
tion.

7.5. Candidate Selection Algorithm

The event container is notified whenever an activity a registers its event type sets
ε(a) at the CMS. The event container also updates the set of competing activities
CE = {a ∈ A | (ω(a) < {inactive, complete} ∧ E ∈ ε(a)} for each event of type set
E. Furthermore, the event container stores a list of candidate events for each a and
E denoted as candidates(a,E). All new event instances, the flow engine is notified
about, are cached in the event container.

complete
active and

competing Ce inactive

a1 a2

a3

a4

a5

a6

a7

a8

a9

a10
c1

c2

c3

c4

c4

c4

c4

Figure 7.3.: Blood sample flow execution states according to FEvA

119

7. Adaptive Fuzzy Event Assignment

The candidate selection algorithm, depicted in algorithm 7.1, computes which
event instances are added to the list of candidates of an activity. It notifies the ac-
tivities of incoming event instances of the correct type and receives a fuzzy weight-
ing of the event instance in return.

Algorithm 7.1 Candidate Selection Algorithm
Input: CE , e

2: for u ∈ E do
f uzzyWeights(u)← λ(IeE(u))

4: end for
for a ∈ CE do

6: for u ∈ E do
if κa(f uzzyWeights(u)) then

8: candidates(a,E)← candidates(a,E)∪ {e}
end if

10: end for
emax←max(candidates(a,E))

12: issue_assignment_request(a,emax)
end for

Since we only get the probability distribution IeE for every event e, there is no
hard criterion for deciding which activity e can be mapped to, but only proba-
bilities. Therefore, we use fuzzy set theory (cf. [Zad65]) to value every event,
assign them to event types, and finally to activities. First, the algorithm com-
putes a fuzzified representation of e. We use fuzzy sets, each containing a number
of membership classes, defining the fitting quality of e for a single event type
u ∈ E. The individual fuzzy membership functions are defined as µx : [0,1]→ [0,1]
where x ∈ {VL,L,M,H,VH} is one of the membership classes "very low", "low",
"medium", "high", "very high". Each function µx maps the probability IeE(u) for
e being of a single event type u to a fuzzy membership value for the respective
membership class. We use the same membership functions µx based on the stan-
dard triangular fuzzy functions [Ped94] for all combinations of activities and event
type sets. For example, u ∈ E is the event type representing that the caretaker has
measured the pulse of the patient and IeE(u) = 0.375 then µM(IeE(u)) = 0.75 and
µH (IeE(u)) = 0.25.

As each event is weighted by every membership function, we further introduce the
fuzzy event type weighting function:

Definition 7.5.1 (Fuzzy Event Type Weighting Function) A concise version, which
includes all the membership function results, is the fuzzy event type weighting func-
tion λ : [0,1] → [0,1]5. Given u ∈ E , λ(IeE(u)) yields the mapping of the individ-
ual probability of the event type to the fuzzified membership in all five fuzzy sets, i. e.
(µVL(IeE(u)),µL(IeE(u)),µM(IeE(u)),µH (IeE(u)),µVH (IeE(u))).

120

7.6. Candidate Assignment Algorithm and Conflict Resolution

For λ the maximum membership values for each variable are given as follows:
µVL(0.15) = 1.0, µL(0.25) = 1.0, µM(0.35) = 1.0, µH (0.45) = 1.0, µVH (0.55) = 1.0.
For p < 0.15, µVL = 1.0 and for p > 0.55, µVH = 1.0. These values have been
chosen empirically to match the overall performance of the CMS (cf. Section
8.3.2).

For all u ∈ E, the candidate selection algorithm weights u with the fuzzy event
type weighting function λ(IeE(u)) and notifies the activities in CE , i. e. those that
have subscribed for E, about the result. Using the fuzzy activity weighting function
κa : [0,1]5→ [true, f alse] of the activity a, the decision is made whether e becomes
a candidate for a or not. κ is derived from the structure of the conditions of a
applying fuzzy logic. It might be modified per activity by the flow modeler, but
we only use the automatically defined κ for a.

To explain how the result of κa is computed, let u ∈ E denote the pulse measuring
event type again. Further, a has a condition that requires u ∈ E to have happened,
so that the respective transition can evaluate to true. The result of κa becomes
true if and only if the lowest non-zero membership class in λ(IeE(u)) is "high" or
"very high". Thus, µH ((IeE(u)) ≥ 0.0 ∨ µVH (IeE(u)) ≥ 0.0). This also represents the
minimum candidate threshold for an event to be accepted as a candidate for any
activity. Given this equation is fulfilled, the result of κa(λ(IeE(u))) yields true and
e is stored as a possible candidate for the activity a and the event type set E in
candidate(a,E).

If e becomes a candidate for an activity a, FEvA further checks if e has the best
overall fitting of the candidates available in candidates(a,E). Let u ∈ E be the
event type that a is interested in. We denote the event instance with the highest
fitting as emax where ∀e ∈ candidates(a,E) : µx(I

emax
E (u)) ≥ µx(IeE(u)) for the highest

non-zero linguistic membership value of emax. Given that the new event instance
e is the new best fitting one (e = emax), the algorithm issues an assignment request
for e that is later handled by the event assignment algorithm.

7.6. Candidate Assignment Algorithm and Conflict
Resolution

When an activity a is eventually notified that for all registered event type sets
suitable candidates have been found, its state changes to can-complete. Now the
activity must consume a single candidate for each event type set from the event
container, before it can commit its execution and reach the final complete state.
The event assignment algorithm is responsible for processing the issued event as-
signment requests of the activity. However, in the assignment of an event instance
e to a, conflicts might occur because it could also have been requested by another

121

7. Adaptive Fuzzy Event Assignment

activity ao. The event assignment algorithm is also responsible for resolving such
conflicts.

If there is an ao ∈ CE that has also issued an assignment request for e ∈ E, we search
for an alternative candidate in candidates(ao,E). If this alternative is available, i. e.
(candidates(ao,E)\e) , ∅, then a consumes e and the algorithm computes emax again
for ao and its changed set of candidates. When there is no other candidate avail-
able in candidates(ao,E), we check if only one of the activities is mandatory, and
prefer to assign the event to the mandatory activity. If a cannot assign an event
using these two mechanisms, then we try to re-evaluate candidates that have been
rejected earlier. In order to do so, we relax the candidate threshold for the miss-
ing event, if at least one of the other event type sets has a very good candidate
assigned. This is the case, if there is an assignment request for one event type
set of ε(a) \ E, that exceeds the candidate threshold, having a nonzero "very high"
fuzzy weight. In more formal terms E′ ∈ (ε(a) \E) : ∃u ∈ E′,∃e′ ∈ candidates(a,E′) :

µVH (Ie
′

E (u)) ≥ 0.0. Given this e′ is available, the equation is fulfilled and the thresh-
old for the missing event type set E is reduced to "medium". Then other events
in candidates(a,E), which are still cached, could now become also candidates for
a.

If this also does not yield a suitable candidate, the activity may be completed with-
out having been assigned an event for E, under the assumption that the event in-
stance for E was missed. But in order to do this, a number of strict criteria have to
be fulfilled. First, there is a fixed maximum number of allowed missing events per
activity. As the average number of event type sets per activity in our flows is ≈ 3,
we accept only one missing event, so that the number of missing events is always
below or equal to the number of received events per activity. This way a major
quorum of real context events have been consumed by the activity before FEvA
decides to declare the other events as missing. Second, the preceding activities of
a must be complete and the succeeding activities must be in can-complete, because
this indicates that all other events before and after the activity in questions have
been identified or already assigned. Third, the succeeding activities must have at
least one candidate with a very high fitting value. These rules contribute enough
evidence to decide, that the activity can be completed without the missing event.
In this case, we violate the transition rule for the can-complete state given in Sec-
tion 5.2.

7.7. Discussion and Conclusions

With FEvA, we have presented a new system for robustly providing context events
to a workflow-based system. FEvA exploits the flow knowledge encoded in a flow

122

7.7. Discussion and Conclusions

in order to assign noisy and erroneous incoming context events to the correct ac-
tivities in the workflow. We have explained the mechanisms of FEvA under the
given error model. As we will show in Section 9.4 FEvA achieves a high robust-
ness when faced with a large number of false positive events. It also works very
well in the presence of out-of-order events, and it limits the impact of missing
events.

FEvA is a major step towards robust workflow-based pervasive systems as it allows
workflow to be executed with minimal human intervention. This is particularly
relevant in application domains like health-care where workflow can support the
personnel and make its work more efficient.

FEvA would be a very useful supplement for systems and environments where a
lot of context information drives structured applications, such as the health-care
documentation scenario we already mentioned (cf. Section 6.4 and later Chap-
ter 8). In this scenario, FEvA significantly improves the perceived dependability
of the application, advancing their user acceptance. In summary, FEvA repre-
sents a unique approach bridging the gap between activity recognition and con-
text aware applications, dealing with ambiguities when consuming the recognized
events.

123

Part III.

Evaluations

125

8. Methodology

In order to assess the effectiveness of FlowPals mechanisms, we used two differ-
ent approaches. The first approach is based on a real-world case study that we
conducted in a geriatric nursing hospital. This health-care scenario provides us
a number of conditions that are relevant for the assessment of FlowPal. It in-
cludes real-world activities, a structured work environment from which we can
derive a flow and rich human interaction. Furthermore we can apply real con-
text recognition technology to recognize the activities with all involved accuracy
issues. Hence, this scenario provides us with all the challenges a FlowPal wants to
tackle. On the downside we can only perform a rather limited number of exper-
iments in the real world and some of the experimental conditions remain fixed.
This is especially unfavorable as we only observe one distinct flow-based applica-
tion and hence only a single flow structure. As FlowPal aims for improvements
independent of a certain flow structure this would introduce a major bias for the
evaluation results.

To overcome this limitation, we tried to come up with a large number of flows
in our second approach, that have the same basic properties as the one observed
in the health-care scenario but a different structure. Therefore, we used so called
workflow activity patterns to generate flows that in general have the same properties
and can be compared to the real flow from the health-care scenario. The workflow
activity patterns (or simply patterns) have been identified in a number of work-
flows from different application domains and can be divided in human-intensive
and system-intensive patterns, where we focused on the human-intensive ones.

The two stage approach is beneficial, as we can perform evaluations in both set-
tings. On the one hand, we have a very specific and realistic scenario with real-
world context data. On the other hand, we can execute a large number of synthetic
experiments using the generated flows. Therefore, we can thoroughly analyze the
performance of Flow Pals mechanisms.

In the remainder of this chapter we first present a detailed description of the
health-care scenario in Section 8.1, including scenario setup, recorded sensor data,
and modeling the respective flow based application. In the following Section 8.2
we introduce the workflow patterns and our method to generate a large number of
synthetic test flows. After that we compare both evaluation strategies and discuss

127

8. Methodology

their individual contribution to our evaluation results. Finally, we describe our
simulation setup and the relevant metrics in Section 8.3.

8.1. Health-Care Scenario Case Study

The health-care case study was conducted in the medical hospital in Mainkofen,
Germany. We visited a closed ward for geriatric nursing. The ward is an inten-
sive care station for elderly people suffering from dementia and similar old-age
diseases. Each of the patients needs care around-the-clock. The treatment usually
includes an individual therapy, drug treatment and possibly assistance for basic
daily routine tasks such as eating, dressing and personal hygiene. There are usu-
ally up to two physicians and up to six caretakers at duty. The ward has a capacity
of up to 20 patients.

First of all we studied what real-world processes are executed in the hospital and
which one process is suitable for the case study. The process we wanted to ob-
serve should met the following three requirements. It should have a basically
fixed structure so that it can be easily represented as a flow-based application.
Furthermore the process should exhibit a relatively high repetition rate so that
we can observe a sufficiently large number of instances executed during the case
study. Finally, the process execution should include rich human interaction, that
is necessary for its completion. On the one hand this interaction is challenging for
activity recognition, but on the other hand the process can be documented directly
and time-saving in comparison to the current way, where the caretaker is manually
updating the patient records at the end of the shift.

Treatment plans have been a good candidate process but as they cover time spans
of weeks to months it has been infeasible to study them in the health-care sce-
nario. So due to the time constraints of the study we chose to investigate the daily
morning-routine of the patients. This way we could guarantee to observe a suf-
ficient number of process executions yielding statistically relevant results for the
observation. Furthermore considering the range of tasks for each patient, the pro-
cess structure is quite stable and has only slight variations, when compared to the
individual treatment plans. The execution of the morning routine involves inten-
sive interaction between the patient and the caretaker. Therefore, the morning
routine process satisfies all the aforementioned requirements. However, it was not
available as a modeled workflow but only as the sum of all guidelines, working
routine descriptions and experiences of the caretakers.

A single instance of the morning routine flow covers the wake-up of the patient,
helping the patient getting washed, dressed, having breakfast and the administra-
tion of the individual medication. One caretaker is usually responsible for three

128

8.1. Health-Care Scenario Case Study

to five patients per shift. As the caretaker is involved in each of these patient pro-
cesses and the caretaker is the more active part during process execution, we chose
to observe the caretakers and recognize their activities when interacting with the
patients. This way the recognized activities are ordered with respect to the – pos-
sibly intertwined – execution of the morning-routine processes of the individual
patients.

The process execution has to adhere to the medical guidelines in force. All activ-
ities performed (e.g. treatment, medication) stringently have to follow the guide-
lines and the hygiene standards must be kept. Furthermore, the results of some
activities, like examinations and medication must be documented. As we were at
the hospital these guidelines could only be kept on a best effort basis and the docu-
mentation was patchy, manually and potentially error-prone.

Applying a system using adaptable pervasive flows in this institution pursues two
purposes: First, the activities performed during the morning routine process shall
be automatically documented for the records for quality control, process improve-
ment, and legal reasons. Second, the flow system shall give guidance in case the
standard procedures are not followed in order to avoid mistakes and help inexpe-
rienced personnel in learning the procedures.

To demonstrate that these goals are achievable with today’s context recognition
technology and the methods provided by FlowPal we performed the following
steps, which we describe in the next two sections. First, we defined how to record
context data observed on site during the study (c.f. Section 8.1.1). Then, we pro-
cessed the collected data off-line to determine the overall quality of activity recog-
nition that is possible with our chosen recognition approach. This is not an origi-
nal contribution of this thesis but work from our colleagues Gernot Bahle, Agnes
Grünerbl and Kai Kunze. Thus, we will only give a brief summary here and refer to
the original work [KBNL11] for the full details. The results have directly informed
our evaluations and we will discuss this in Chapter 9. Finally, we had to to derive
an executable process model. There are two options to do this. Either a domain
expert creates the process model or a technique called workflow mining is applied
to recorded data to extract the workflow from the observations made. As we are
no health-care domain experts we opted for the second solution. The results of the
flow mining are presented and discussed in Section 8.1.2.

8.1.1. Study Setup

The traces we obtained from the nursing ward represent the daily morning routine
of individual caretakers. Each caretaker was supplied with a commodity smart-
phone that we use as sensor platform for the data collection. The smartphones
were carried in the coat pocket. The sensor readings available in the resulting

129

8. Methodology

traces are (1) received WiFi signal strength, (2) magnetic field strength, (3) accel-
eration, (4) inertial movement and (5) sound. The WiFi readings, inertial move-
ment and magnetic field information were used to estimate the indoor position of
the caretakers on a room-level granularity and facing direction. We further added
location hotspots to the rooms where applicable, e.g. each patient room had an
extra location hotspot for the en-suite bathroom and the breakfast area had a loca-
tion hotspot for each table. Overall we had 33 locations to distinguish. Some of the
locations were further grouped together to an area, where each area represents the
patient rooms and including hotspots that a caretaker on duty is responsible for.
The layout information on the ward are depicted in Figure 8.1. The most relevant
sites for the morning routine flow are the patient rooms Z1, . . . ,Z10, for washing
and dressing, the breakfast room SR and the recreation room A for waiting pe-
riods. The ward office P S is also important for the official documentation tasks.
The area 1 and area 4 are also highlighted in the floor plan. Please note that the
necessary WiFi infrastructure was already present in the hospital, so there was no
need to deploy further infrastructure.

Figure 8.1.: Floorplan of the Mainkofen Ward

The acceleration data were used to do activity recognition like mode of locomo-
tion. The recorded sound snippets were also used to classify activities according
to typical background noises like the sound of a shower when a nurse is helping a
patient taking a shower. For more complex context information, multiple of these
modalities were combined.

As each of the caretakers on duty carried a smartphone, we could record all avail-
able data for a given day. Further, we manually labeled two or more traces each day
with annotations describing the respective real world activities and also flow activ-
ities. Therefore we had two distinct sets of traces. The unlabeld traces were used
as a test set for the activity recognition. The labeled traces were used for two pur-
poses: categorization of context information for the recognition and tagging flow
activities (cf. Section 8.1.2). A training set was created from the context recogni-

130

8.1. Health-Care Scenario Case Study

tion labels, that allows us to classify the sensor data. This set includes labels that
specify the beginning and ending of sounds in the environment (e. g. “shower”,
“electric shaver”). Further the location of the nurse based on symbolic hot spots,
as well as her basic movements (e. g. “pick up something”, “shave the patient”) are
noted. Finally, we kept track of the nurse’s resource usage (e. g. “towel”, “stetho-
scope”).

The training set has been used to train the classifiers for indoor positioning and
activity recognition on the traces. For the indoor positioning we achieved a cor-
rect recognition rate of 75,19%, e. g. in three of four cases the classifier is able to
discern the location of the caretaker correctly for the described hotspots. For the
activity recognition we achieved only an average recognition rate of 48%, so that
the classifier was able to discern the correct activity in one of two cases. How-
ever, the activity recognition rate varies greatly depending on the specific activity.
In particular, activities that can be associated with a specific background sound
(e. g.. “shower the patient”) could be recognized far more accurately (with recog-
nition rates up to 83%). However activities lacking this sound signature have been
be recognized with much lower accuracy ranging from 31% to 56%. While the
activity recognition methods and techniques are no contribution in the scope of
this thesis we refrain from presenting more detail on the methods here but refer
to the original work of our colleagues and the respective publication. [KBNL11]1

However, the overall data collection (setup, preparation, tool provisioning) and
especially the post processing described in the next section have been designed
and conducted by the author of the thesis.

The results on the context recognition rates from this part of the study provide
us valid assumptions on the data quality a robust flow system has to deal with
in order to execute the workflows correctly. Therefore, we used the values to
inform our evaluations with realistic input information (cf. Section 8.3 on page
148).

8.1.2. Flow Mining

As we started with our study, there was no explicit step-by-step process descrip-
tion (e.g. executable workflow model) available for the hospital personal. They
have guidelines which they interpret according to their skills, knowledge and ex-
perience. Further, each caretaker adheres to the medical regulations and hygiene
guidelines but each one also exhibits some individual daily routine. This leads to
the following implications. First, there exists a lot of structural knowledge in the
scenario that can be used to model an explicit flow definition. Second, we have

1This work has been accomplished in collaboration with researchers from the Embedded Systems
Lab, University of Passau.

131

8. Methodology

to extract and define the flow because there exists no written process definition
yet.

In order to come up with an executable process model we need a formal represen-
tation of the performed workflow. Usually a domain expert is responsible for cre-
ating this formal representation in a given workflow modeling language but there
was no suitable expert available for our study. Therefore, we used tools for process
mining to derive an executable workflow model for our evaluations2. In general,
a flow mining algorithm performs an analysis on certain event logs that record the
execution of activities that should be covered by the created flow model. The basis
to create these event logs were the flow activity tags from the labeled traces we
recorded during the study.

The labels for flow activities are fixed and have been predefined during the prepa-
rations of the case study with on site testing. In each trace we labeled a caretaker
had to care for a total of three to five patients. The basic support for every patient
is very similar and consists of four distinct steps: (1) The morning examination
includes measuring the pulse and the blood pressure of the patient. Blood sam-
ples are taken regularly once or twice a week per patient. (2) During the morning
hygiene, the caretaker helps the patient with getting up, washing and dressing.
(3) Following that the caretaker helps the patients having their breakfast. (4) Fi-
nally, the caretaker supervises and assists the patient taking his daily morning
medication according to the patients capabilities.

The caretakers perform the first two steps of this patient flow usually in a sequen-
tial manner for every patient. This changes during the breakfast where a lot of
interleaved patient handling can be observed. This greatly depends on each of
the patients autonomy and thus the degree of support a caretaker has to provide.
Due to this behavior we assigned the flow activity labels to the respective patient,
which results in a sequence of activities that have been performed on a per patient
granularity. These sequences of activities have been used as so-called event logs
as input for the flow mining algorithms. In total, we labeled 32 datasets from 15
different caretakers, where each dataset covers the care of 3 to 5 patients, yielding
a total of 135 observed patient flow executions.

In order to extract the workflows from the event-logs we applied two different flow
mining algorithms that are provided with state of the art process mining software
[DMV+05].

The first algorithm is based on PNs and is suited for highly structured processes
that exhibit low flexibility. It tries to generate a PN from the event log that can
capture all the sequences, which occur in the recorded event trace. PNs are a

2This work has been accomplished in collaboration with researchers from the Institute of Ar-
chitecture of Application Systems, University of Stuttgart, who supported us with details on
generic workflow miners and tools

132

8.1. Health-Care Scenario Case Study

well standardized and formalized representation for workflows (cf. Section ref-
subsec:flowModeling). However, the mined flow model from the full data set re-
sults in a very large and complex net. This net essentially captures every execution
path performed by one of the caretakers during the study. A visualization of full
PN did not provide us with any insights on the overall flow structure and the nec-
essary flexibility. This shows that the process we want to model indeed exhibits
a very high variability for the following reasons. First, each caretaker has its own
individual routine. When these routines are mixed together – this is what this
mining algorithm tries to capture – the result can be expected to be very complex.
Second, for some caretakers the manual labeling could be accomplished more ac-
curately than for others, which of course leads to issues with data quality. When
the mining was performed on a subset of the traces for a single caretaker in a sin-
gle area only, the results became somewhat better, especially for the hygiene and
examination tasks. However we had only a very small overlap of caretakers and
regions. There were at most two traces (e.g. 10 patient flow executions) where the
same caretaker was on duty in the same area.

As this first flow mining approach could not come up with a reasonable result
flow we focused the mining activities on a highly structured and standardized
part of the morning routine. Therefore, we reduced the number of tasks cov-
ered in the event logs and focused our efforts on eight different activities from
the morning examination. These activities include measuring pulse and blood
pressure of the patient and noting the results of booth examinations. Please note
that we again used the event logs of the mentioned activities from all 135 recorded
traces.

The resulting PN is depicted in Figure 8.2. For each activity we tagged, there are
two transitions in the PN, one denoting the start, the other the end of the activity.
The Graph basically shows us two things. The process starts (left-hand side of the
diagram) and forks directly into one of the three main routines, either applying
the cuff first or searching the pulse for the pulse measurement (feeling by hand) or
searching the pulse for the BP measurement (using the stethoscope). The process
ends after the “write results” activity has been completed. In-between a lot of
different paths have been recorded and only for the beginning and ending of a
specific activities.

This reduced set of activities still leads to a complex PN, providing us with little
aid understanding the scenario. This illustrates that standard mining techniques
based on classical workflow and highly structured models lead to large and basi-
cally unreadable workflow descriptions in our scenario.

The second mining algorithm we applied, is a so called Fuzzy Miner [Pro], that has
been especially designed to mine processes with less structure. This also includes
processes with unstructured or even conflicting behavior. Both can be observed in

133

8. Methodology

Figure 8.2.: Workflow mined as Petri Net from the traces

the traces we recorded due to variations in daily routine, interruptions and repeti-
tions of activities. The mined flow from the fuzzy miner is depicted in Figure 8.3.
It shows the activities and transitions between activities that have been observed
in the traces. The thickness of the arrows represents the relative transition proba-
bility to the next activity. This provides us with a much clearer understanding of
the usual execution of the examinations. For the sake of clarity, we have omitted
transitions with less than 5% significance. In the figure, the basically sequential
structure of the process as well as the flexible execution order can be observed
more easily. We see that the process starts either in the blood-pressure or in the
pulse measuring sequence. Writing down the results happens either after each ex-
amination or at the end of the process. Further, there is no noteworthy interleaving
between these two examination sequences. The self transitions denote that some
steps have to be repeated. This is especially obvious for the activities “apply cuff”
and “search pulse for blood pressure”. However, as we have removed some of the
transitions this figure does not capture all the execution paths that were taken
during our observations.

Research Group “Distributed Systems”

Universität Stuttgart, IPVS

apply cuff remove cuffinflate cuff

search pulse for
blood pressure

measure blood
pressure

Search Pulse measure pulse write results

Figure 8.3.: Workflow mined as Fuzzy Transition System

Finally, adopting the gained insights on the process structure, we modeled the pro-
cess ourselves using BPMN as state of the art graphical process modeling notation.

134

8.1. Health-Care Scenario Case Study

The resulting process is depicted in Figure 8.4. This model is complete with re-
spect to the performed activities and captures the most common path through the
mentioned activities. However, this flow does not allow any deviations from the
modeled behavior. Therefore, it could not be used in practice in the hospital as ba-
sically every caretaker is executing the same process in his own way and with some
variations each day. This clearly shows that we have to apply more flexible model-
ing techniques, that can handle these variations at run-time.

Morning examinations- completed 2.3 as mined per patient

patient awake

write results

inf late cuff remove cuff

seach pulse measure pulse

measure successfull

apply cuff measure BP
search pulse

for blood
pressure

Agnes Gruenerbl 1 of 1 25.11.2011

Figure 8.4.: BPMN Workflow

The HFM that we presented in Chapter 5 on page 83 provides us with a useful
tool for more flexible modeling of our scenario process. The flow model of the
morning examination activities is depicted in Figure 8.5. In this representation
the process captures the two individual examinations and allows for the repetition
of single or multiple activities in each of examination paths. Further, it allows
multiple executions of the “write results” activity. On the one hand, we are able
to represent most of the execution paths that have been observed. On the other
hand, we still maintain some structure in our process definition. Of course, this

Apply cuff

Inflate cuff Remove cuff

Measure Blood Pressure

Measure PulseSearch Pulse Write results

response

precedence

response

not succession

response

responseprecedence

precedence

Figure 8.5.: Morning examination activities modeled with the HFM and
constraints

135

8. Methodology

structural information can be used to inform FlowPal and thus aid in providing
more accurate context information.

Based on this final process we have a suitable real-world scenario modeled as an
executable hybrid flow model that we can test the FlowPals algorithms against.
However, we also have to show, that the FlowPal algorithms are independent of
the structural information encoded in this specific scenario. Therefore, we will
describe how we could create a large number of structurally different workflows
as test stimulus for FlowPal.

8.2. Pattern-based Flow Generation

As we have seen in the previous section, we had to spend a great effort to analyze
just one scenario. As a result we came up with a satisfactory flow model for the
application scenario that covers all the requirements, which we defined in Section
8.1.

At the start of the chapter we motivated, that we would need a large number of
structurally different flows to assess FlowPal. But a case study is not a feasible tool
for creating a large number of structurally different flows. So we tried to create
them in an automatic fashion.

The key for this creation have been so called workflow activity patterns. They have
been identified as building blocks for flows in various application domains, which
are also centered on human activities. First, we use these patterns to inform a
flow generator to compose executable flow models that cover a wide range of dif-
ferent structures. In a second step, we generate a so called execution model for
a single generated flow model. The execution model provides us with an arbi-
trary number of valid event sequences to drive the execution of the respective flow
model.

In the remainder of this section we will first introduce the workflow activity pat-
terns in more detail. After that, we describe the working principle of the flow
generator and then explain the creation of the execution model in Section 8.2.1.
We conclude the section with a comparison and discussion on the properties of
the flows we generated with the generator and the flow (including traces) that we
captured in the geriatric ward.

136

8.2. Pattern-based Flow Generation

8.2.1. Flow Generation

We have seen in Section 2.1.2 that from a technical perspective workflow patterns
can be used to describe the capability of flow modeling languages. We briefly
discussed three types of patterns relevant for this thesis.

1. The control flow patterns that provide common control flow structures.

2. The service interaction patterns that cover inter-process as well as human
interaction.

3. The data flow patterns that describe common data dependencies found in
flows.

According to Russel et al. [RAHE05, RHEA05], the patterns are useful to measure
the expressiveness and modeling capabilities of existing workflow languages and
workflow management systems. So basically these patterns could be also applied
to the flows and the flow model used for FlowPal.

However, for our purpose we are in need for patterns, which represent typical hu-
man behavior that is encoded in workflows. Fortunately, there has been a study
that has studied exactly those kind of patterns in this research area. Thom et
al. [CITR08] conducted a study where they investigated the existence of work-
flow activity patterns workflows. The authors analyzed about 200 different work-
flow models. The patterns they found could be classified as human-intensive and
system-intensive. The human-intensive patterns cover activity sequences that in-
volve one or more human participants and in general interaction human inter-
action with the workflow, while the system-intensive patterns basically represent
interaction within the workflow managment system itself and between other work-
flows.

Overall the existence of seven different human-intensive patterns has been proven
by the authors. Based on these seven patterns, all of the studied workflows could
be reconstructed, i. e. for the analyzed flows the patterns are complete.

In the following we will briefly introduce each pattern and present its structure
using the imperative flow model we introduced in this thesis in Chapter 5. The
description of the patterns is informed by the original authors [TRI09]. For illus-
tration purposes we highlight the main path of execution of the process with an
additional dashed transition where appropriate.

These seven patterns are:

• Approval: The Approval Pattern describes a pattern of activities that cover
a human decision approving some document or action in a process. For ex-
ample a doctor wants to conduct a surgery. Therefore the doctor needs the
consent of the patient. When the patient has approved his consent he in turn

137

8. Methodology

informs the doctor who documents the success of the approval and takes
further actions. The structure of the approval pattern based on the example
description is depicted in Figure 8.6.

• Bi-directional Performative: The pattern covers sequences containing an ac-
tivity request for a different actor that receives and full-fills the request and
then answers to the request. The recipient may start additional activities (or
patterns) to complete the request. In the meantime the original actor must
wait for a response. As example we consider a blood sample analysis labo-
ratory as service provider for a doctor. The doctor has a blood sample that
he needs analyzed and initiates the request at the laboratory. The laboratory
receives the request (and the blood sample) and performs the request (pos-
sibly asking for additional patient data). Finally, the laboratory notifies the
doctor on the analysis completion and the doctor can continue with its orig-
inal sequence of activities. Please note that the doctor can spawn multiple
bi-directional performative actions at the same time, waiting for all of the
requests to complete. The pattern is depicted in Figure 8.7.

• Decision: The decision pattern is one possible extension of the aforemen-
tioned Bi-directional performative pattern. After the original actor has re-
ceived the results of the started actions, there may be a number of condi-
tional paths to choose depending on the received results. For example after
the results of the blood sample analysis have been passed to the doctor, he
could conclude that the patient is either healthy (no further treatment) or
that subsequent follow up checks or preventive or curative actions have to
be started. The decision pattern is depicted in Figure 8.8.

• Information Request: The information request pattern is quite similar to the
bi-directional performative pattern. Here the originating actor is requiring
only some information from a human or software agent before he continues
its own process execution. In comparison to the bi-directional performative

Send request
for consent

Approve surgery Send approval
decision

Receive approval
decision

Xor Notify the involved
on the result

Store approval in
patient record

Figure 8.6.: Approval Pattern

138

8.2. Pattern-based Flow Generation

Send request for
blood sample analysis

Receive request for
blood sample analysis

blood sample
analysis*

*Any pattern or flow required
to perform the analysis

Report completion of
blood sample analysis

And-join

Figure 8.7.: Bi-Directional Performative Pattern

Bi-Directional Performative
Pattern

OR-Split

Figure 8.8.: Decision Pattern

pattern no additional activities may be performed by the recipient of the
information request. This would be the case, if the doctor would be review-
ing the results of a blood sample analysis conducted in the past. He issues
the information request and receives the response by arbitrary means (mail,
web-service, phone-call) but without the requirement to perform additional
actions at the laboratory side. The information request pattern is depicted in
Figure 8.9.

• Notification: The notification pattern informs one or more actors of the re-
sults of certain actions e. g. the completion of an activity or process. In our
example the doctor could notify a ward and the patient to inform them both
that an inpatient treatment has to be conducted. Figure 8.10 depicts the No-
tification pattern.

Send request for
blood sample analysis result

Receive request for
blood sample analysis result

Report result of
blood sample analysis

Receive information

Figure 8.9.: Information Request Pattern

139

8. Methodology

Send notification on
inpatient treatment

Receive notification on
inpatient tratment

Figure 8.10.: Notification Pattern

• Question-Answer: The question-answer pattern allows the actor to query one
or more recipients for additional information that the original actor requires.
Before the actual questions are communicated, he first identifies the correct
role of the expert to send the question to. Given the blood sample analysis
again, the doctor may require information how long the analysis will take
before he can send the blood sample. So, first he will identify the organi-
zational unit that can answer the question and then acquire the information
using the same pattern structure as in the information request pattern. The
full pattern is depicted in Figure 8.11.

• Unidirectional Performative: This pattern covers the start of a new sequence
of activities. Therefore, the original actor requests the recipient to perform
this request. The doctor has completed his patient treatment process and
now requires the billing department to perform the billing process for the
hospital. As the doctor is not directly involved in this process or its outcome,
he is free to perform other activities. the pattern is depicted in Figure 8.12.

On their own these patterns provide little use for the generation of workflows.
But in following work, the authors [TRCI08, TRC+08] came up with a recom-
mendation system for a process modeling expert. While the process modeler de-

Define time frame for
blood sample analysis result

Check capabilities of
blood sample analysis providers

Send request for
blood sample analysis result

Receive request for
blood sample analysis result

Report result of
blood sample analysis

Receive information

Figure 8.11.: Question-Answer Pattern

140

8.2. Pattern-based Flow Generation

Send notification for
billing process

Receive notification on
billing process

Start billing process*

*Any pattern or flow required
to perform the billing

Figure 8.12.: Unidirectional Performative Pattern

signs a new process the recommendation system suggests patterns that will most
likely be added next, thus simplifying the overall modeling. To build this rec-
ommendation system the authors analyzed the workflows again and extracted the
co-occurrence probability of the identified patterns. For each of the seven pat-
terns the co-occurrence probability yields the probability distribution which of
the seven patterns will statistically follow. Based on these probabilities they could
make educated suggestions to the process modeler. We use them in a similar
way.

Having both the set of human-oriented flow patterns and their co-occurrence prob-
abilities relative to each other, we have enough information to inform the auto-
mated flow model generator. We built a probabilistic grammar to compose work-
flow models using the presented activity patterns. Furthermore we added some
additional control parameters. These parameters are

• the number of activities in the flow to control its overall size, given by an
lower activity bound that must be reached and an upper activity bound that
the generated flow should not exceed.

• the nesting probability to add additional activity patterns at the internal ex-
tension point of the bi-directional performative pattern.

• the normally distributed average degree of decision splits in decision pat-
terns.

Based on a given configuration of these values the workflow generator works as fol-
lows. A random pattern is chosen according to the overall occurrence probability
of the patterns. Most of the patterns are single-entry single-exit patterns, provid-
ing us with a single extension point to add further patterns. The exceptions are the
unidirectional performative and the bi-directional performative patterns, which
provide two extension points, thus forking the generated workflow. For the uni-
directional performative pattern we allow growth on both extension points. For
the bi-directional performative, we restrict the nesting of patterns within using
the nesting probability. Another exception is the decision activity that explicitly
introduces a split activity, where a large number of parallel execution paths may

141

8. Methodology

originate. The number of paths the generator creates is determined by the nor-
mally distributed average split degree. The higher the split degree is, the larger
becomes the number of parallel execution paths in the workflow, which the gener-
ator creates. Each path that does not join the back eventually with some other, has
to be interpreted as one outcome of the process that is independent of the others.
The number of these loose ends have to be decreased to a reasonable amount at the
end of the generation process. To achieve this, the generator adds join activities.
The join activities are created when the workflow in generation already contains
more activities than the lower activity bound specifies, but there is still space for
more activities until the higher activity bound is reached. Each of the join activi-
ties connects two of the still open extension points. When only a single extension
point is left, the generation is finished.

Equipped with this basic version of the generator, we consider the validity of the
generation process. The workflows are generated by activity patterns only, as they
have been observed in over 200 real-world flows. The scenarios, which the patterns
originate from, cover flows of companies from different application domains such
as insurance, banking, medical and industry. The selection of patterns has been
informed by real-world co-occurence distribution of the patterns. Each of the used
patterns has been classified as "human-intensive" [CITR08] pattern, denoting that
this kind of activity structure involves human interaction. These arguments pro-
vide us a good foundation.

We verified the quality of the generated flows, with respect to the activity pattern
distribution and the other system parameters by creating a large number of them.
We started to vary the flow size from flows with five activities (minimum to create
all patterns) up to flows with 250 activities (large upper bound on observed traces
in case study). In total we generated 10.000 flows for each flow size. Then, we
checked three properties of the flows.

First, the generated flows must not violate the activity bounds, which can simply
be achieved. Also the average flow size is closer to the upper activity bound the
larger the target flow size is. As the number of total activities increases, so does
the number of possible extension points that can be affected during the last phase
of the generation, where then more join-activities are added.

Second, the flows must adhere to the given pattern distribution. The results are
depicted in Figure 8.13. There, average and stacked percentages for each pat-
tern type in the generated flows are shown. On the left side are the pattern fre-
quency distributions for the flow sizes ranging from 5 to 250 activities. On the
right side is the reference frequency distribution as presented by Chiao et al.
[CITR08].

The graph shows that for an increasing flow size we get slightly more approval
and bi-directional performative patterns compared to the reference distribution.

142

8.2. Pattern-based Flow Generation

This overweight is compensated by a reduced number of decision patterns, which
occur 5% less often than predicted by the reference distribution. This is due to the
two extensions we made to control the flow generation. While appending patterns
adheres the co-occurrence distribution, nesting a pattern uses the distribution for
selecting the first pattern of a flow. And this distribution favors approval and
bi-directional performative patterns, while decisions are less likely to occur as a
first pattern. The other patterns occur within 2% of the predicted frequency. The
closest match to the reference distribution can be observed at a flow size of about
35 to 40 activities. There, approval and bi-directional performative are still less
than one percent of the target. Also the decision pattern contributes more than
15% to the overall patterns compared to the target of 20%. This documents that
the flow generator matches the structure of the analyzed real-world flow models
quite closely, but has minor deviations due to lack of data on probabilities for
nested patterns.

Third, we investigated the degree of the decision splits, which the generator pro-
duces in the flows. The results are depicted in Figure 8.14. It shows the average
number of parallel execution paths that originate after a decision for an increasing
flow size. The benchmark degree of the decision splits is four and also depicted
in the figure. The choice is arbitrary, but is somewhat close to typical variations
that we observed in the healthcare scenario. The graph shows that the generated
flows are slightly below the target for flow sizes of less than 50 activities. Due to
the limited size, the generator has not the required degrees of freedom to fully
achieve the average. The lower activity bound is usually reached before any large
split can be generated. For larger flows up to 90 activities we stick very close to the
target. When the flow size is increased even further, the average decreases slightly
similar to the occurrence of the decision pattern in the overall pattern frequency
distribution.

When we look in more detail at the split degree distribution for a specific flow size,
we see the expected normal distribution, that is centered at the target split degree.
The distribution for a flow size of 50 activities is depicted in Figure 8.15.

Overall, we can conclude that the workflow generated by the flow generator are
structurally similar to the investigated flow of the hospital scenario and also ex-
hibit a basic amount of choices.

In this state, the generator provides us highly structured flow models that consist
only of strictly connected activities. In order to have also workflows that are cou-
pled more loosely and cover at least a part of the design space of the hybrid flow
model, we extended the generator. We added an additional creation step that al-
lows us to add so-called constraint based activities that are only tied to the generated
flow by constraints. As we will see in the next section, the creation of an execution
model for the hybrid flows is computationally very expensive. This is due to the

143

8. Methodology

5 50 100 150 200 250 Reference
Frequency

Distribution

Approval

Bi-directional

Decision

Inform. Req.

Notification

Question

Uni-directional

Figure 8.13.: Flow generation: pattern distribution verification

0

1

2

3

4

5

6

7

10 25 50 75 100 125 150 175 200 225 250

Sp
li

t
D

eg
re

e

Target Lower Activity Bound

Target Split Degree
Average Split Degree

Figure 8.14.: Flow generation: average generated vs. target split degree

144

8.2. Pattern-based Flow Generation

0

0.1

0.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13

R
el

at
iv

e
Fr

eq
u

en
cy

Split Degree

Figure 8.15.: Flow generation: split distribution verification

the automatic verification of randomly created constraints, which dictates a feasi-
ble limit of just a few constraints. Because we wanted overlapping constraints for
those additional activities, their number had to be even smaller. In order to keep
the ratio of constraint-based activities reasonable to the rest of the activities, we
also limited the overall flow size.

The range of values we used for the generation of the workflows is discussed in
Section 8.3.2 where we also introduce all other system parameters of the evalua-
tion.

8.2.2. Event Sequence Generation

Having flow models for our experiments, we are still in need to drive individual
executions of these flow models. Therefore, a number of event types and respective
conditions must be defined for the generated flow models and an event sequence
S must be simulated that fits to the event types and conditions. To achieve this we
build a so-called execution model EM that can provide an arbitrary number of valid

145

8. Methodology

sequences S for its respective flow model. Note that the event types and conditions
are fixed for an single execution model.

To build an execution model EM, we use a generated flow structure and a split
distribution Psplit for the decision patterns. The execution model then can generate
event sequences S, which represent a successful execution of the given flow model,
choosing some random execution path.

But not only the execution model must be capable to execute the flow, but also
emulate some kind of "human habit". The split distribution introduces some bias
when executing a decision pattern using the same execution model. Thus, some
execution paths and combinations are executed more regularly. The same split dis-
tribution is also used to favor the approval or reject path in the approval pattern,
but the effect on the overall flow execution is limited there, because the approval
pattern is single-entry single-exit.

The mechanism to control the "human habit" in a given execution model works
as follows. We use the split distribution to determine for each decision the taken
execution paths based on an individual probability window.

More formally, let ψ denote the number of outgoing execution paths after a deci-
sion pattern. Then the split distribution function Pspilt yields an ordered ψ-tuple
with probability windows for each execution path.

Psplit B ddecison()→ ((low,high)1, . . . , (low,high)) (8.1)

Furthermore, let Psplit(ψ)i denote the i-th pair of the associated ψ-tuple. When
the execution model decides which events need to be generated for a decision
pattern, it draws a random number R in range R = [0.0,1.0]. Then, the execu-
tion model generates events for the i-th execution path iff Psplit(ψ)i .low < R <
Psplit(ψ)i .high.

The execution model does not know the details of the activity patterns following
the actual decision. Thus, there is no real semantic involved in this biased deci-
sion path selection. Therefore, the behavior the execution model creates does not
match to the behavior described in the flow activity pattern descriptions. How-
ever, it does match the observations made in the hospital. I. e. in the real world we
observed that the same patient is treated similar each day and the same caretaker
is treating all patients in a similar way.

This observed behavior is effectively mimicked by the case dependent decision
using the split distribution. Each decision on its own is unique and dependent
on the concrete case. The course of actions taken however adheres to the range
prescribed by the individual split distribution.

146

8.2. Pattern-based Flow Generation

8.2.3. Discussion

In order to show that the flows from the generator can be used instead more flow
models from other scenarios we compare their structure and the general execution
behavior of both.

The workflow activity patterns have been shown to be complete [CITR08] with
respect to the processes they were created from. These processes explicitly in-
clude human-intensive workflow that involve human interaction with the work-
flow.

The concrete process we have investigated at the hospital can also be represented
based on the workflow activity patterns. Most of the observed activities match
the uni-directional and bi-directional performative patterns. This depends on the
habit of the caretaker and the capabilities and situation of the patient. Usually, the
caretakers try to integrate the patients as much as possible, thus creating parallel
execution from the perspective of the flow. Also the notification pattern is present
in the case study, when information on examinations or medications are recorded
for a patient. Some activities however do not fit into the patterns easily as for
example the disinfect hands task. It is regularly executed whenever a caretaker is
switching between two patients especially when performing the morning hygiene
(mandatory activity). But these activities (or a pattern of them) can be represented
using constraint based activities.

As we can basically reconstruct the structure of the real-world flow from Mainkofen
with the workflow activity patterns, we conclude that the generated flows have a
similar structure. This conclusion is further supported by the fact that the patterns
themselves have been derived from a larger set of real-world examples.

For the general execution behavior of the generated workflows and the respective
execution model we stated that we cannot create any semantic habit. But based on
the knowledge from the case study we know variations on decisions and also the
variance and accuracy values of recognized events. Therefore, the event sequence
generated by an execution model has the same properties in terms of flexibility
and preference compared to the preference of the single caretakers observed in
the case study.

Based on these two properties we conclude, that the generated flow models are
comparable to the one studied in Mainkofen. This allows us to use the generated
Flow Models as valid foundation for simulation experiments to assess FlowPals
mechanisms.

147

8. Methodology

8.3. Simulation Setup

For performance evaluation we executed a large number of flows in our simulation
environment. In order to do so, we require a flow engine component and a CMS
component.

A real workflow engine is usually part of some corporate infrastructure. As it is
difficult to set up this kind of environment, we tried to simplify the environment
where possible, removing most of the services that are not relevant to assess the
performance of FlowPal. We used a modular flexible flow engine based on a basic
flow navigator, a single instance flow model and a basic CE. The flow engine allows
further to plug in each FlowPal mechanism and compare them directly with the
basic versions.

Furthermore we did abstract from a real CMS as strongly as possible in order
to have fine-grained control on the properties of context event presented to the
flow engine. These properties are mainly the uncertainty given by basic accuracy
of the CMS and the variance in recognition quality. To keep the CMS simple,
we focused on the necessary interfaces to drive the execution of flows based on
context events. The CMS used in the simulation acts as discrete event genera-
tor, where each event is received by the flow engine. Furthermore the CMS is
capable to modify the recognition accuracy of each event of a given context event
sequence.

The required input for the simulation is created by the workflow generator. It pro-
vides a sufficient number of structurally different flow models and the respective
execution models can create valid sequences of context events. We have already
discussed the validity of this approach.

In the next section we describe the performance metrics that we use to assess the
actual performance of the mechanisms. After that we describe the system param-
eters that we used to adjust the simulation environment in order to challenge the
proposed algorithms of FlowPal.

8.3.1. Performance Metrics

In order to measure the performance of the mechanisms that FlowPal proposes
we introduce four performance metrics. Each of them focuses on different aspects
that are relevant to complete a flow execution successfully. First, the event change
rate captures the changes ?Con makes on a single event instance. Second, we use
the flow certainty to estimate the confidence of the flow engine, when making nav-
igation decisions. Third, we investigate the overall flow completion rate for a given
experimental setup. The flow completion rate is the most important performance

148

8.3. Simulation Setup

metric as it directly shows the frequency of direct human interaction required to
possibly correct some executed flow. Finally, we use the correct event assignment
rate to measure the effectiveness of FEvA when a flow system has to deal with the
event sequence failures we described(cf. Section 7.2.3). In the following, we will
introduce each metric in detail.

Event Change Rate The event change rate measures the change to the correct
event type that FlowCon or FlexCon apply. This way it can show whether the
application of either algorithm provides a benefit. To compute it we measure the
probability of the correct event type (i. e. the one from the real-world sequence S)
before (p) and after (p′′) the processing of the corresponding event instance by the
algorithm (cf. Section 6.3). When we measure p = IeE(u) we preserve the original
probability for u. When the probability has been modified, we record p′′ = I ′′eE (u)
after ?Con has finished but before the event instance e is processed by the CE. The
event change rate is defined as ecr = p′′

p . Hence it yields the relative change of the
probability of the correct event that the flow engine should recognize and process.
This relative definition is used as event type sets of different cardinality would
prevent a direct comparison of absolute changes.

The lowest value that the event change rate can assume is ecr = 0.5. When ?Con
contributes no probability mass at all to the correct event its value can be halved at
most. At the other end of the scale, there can be a very low original probability and
a very high probability from ?Con. The lowest original probability can go as low
as p = 0.05 for the simulation setup, while ?Con might contribute probabilities
of about 0.9. This allows for event change rate values of ecr = 9.5 e. g. for p =
0.05,p′′ = 0.475.

The event change rate is only used to compare FlowCon against FlexCon indepen-
dently of the used CE. For the variants of HyperFlowCon the amount of informa-
tion we use from ?Con is adapted dynamically. If we would also use the event
change rate on a variant of HyperFlowCon the results would not be comparable.
Therefore, the relation is different for each event and the event change rate does
not capture the sole benefit of ?Con for experimental setups using HyperFlowCon.

Flow Certainty The flow certainty is the metric used to measure and compare also
the effect of the CE on the result of the flow execution. When the event instances
for a condition are processed by the CE the result is a single belief value. If this
value is higher than the navigation threshold, the flow engine acts accordingly
and the condition becomes true (cf. definition 5.2.4). The average of the belief
values for all conditions of a flow is the flow certainty. That means the resulting
average value represents the average confidence of the flow engine with respect

149

8. Methodology

to its navigation decisions. Please note that this metric includes the effects of any
event processing by ?Con as well as the CE.

Let F be a flow model with the set of conditions C = {cj}. When we execute the
flow using the event sequence S each event type ui in all conditions cj gets the
belief value assigned that is the result after processing by ?Con denoted as I ′′eE (u).
That means each ui is replaced by its final belief value and the condition evalu-
ated c[ui/I

′′e
E (ui)] = vj . Hence, we get a single belief value for each condition, that

we call transition belief v. When the transition belief is higher than the naviga-
tion threshold tn, the respective transition is also activated. The higher the belief
value, the more certain the flow engine is to navigate the flow using this transition.
Therefore, we define flow certainty f c as the overall average transition belief for
an executed flow instance.

f c =
j∑
i=1

1
j
vi (8.2)

The range of the flow certainty reaches from 0.0 indicating the very unlikely sit-
uation that there was no evidence at all for any condition evaluated by the flow
engine to 1.0 where for every evaluated condition there has been complete cer-
tainty.

Flow Completion Rate For all evaluated mechanisms the most important metric
is the actual flow completion rate f cr. The flow completion rate is measured for a
given experiment setup. In each experiment setup we execute a single flow model
with k different event sequences, where k is also used as reference for the flow
completion rate. Further, let s denote the number of flow instances of F that have
been successfully executed ENG((I)(F),S) = true in that experiment. It is then
defined as f cr = s

k . This step is repeated for all available flow models executed
under the same conditions.

By definition the flow completion can range from 0.0 to 1.0. The lower value de-
notes, that not a single flow completed its execution successfully for that experi-
mental setup. The higher value means that every flow could be successfully ex-
ecuted in that experiment. Please note, that we used a large number of different
flow models for each data point in our evaluation. Hence, the shown flow com-
pletion rates represent the average result for all executed flow models of a certain
simulation setup.

Correct Event Assignment Rate The final metric we need is the correct event
assignment rate cear. This metric is used for the evaluation of FEvA to assess

150

8.3. Simulation Setup

whether the right events have been processed and consumed by the correct activ-
ities. The generated event sequence S from the execution model is analyzed for
each executed flow instance. Using knowledge from the simulation data, we know
the correct activities that should process the respective events. This yields pairs
of correct events and activities (a,e). When the flow instance has been executed
we compare the information from the flow trace (T) with the pairs containing the
correct assignment and count the correct ones as S̄, where a correct assignment
is given by τ(T , a,u) = e for the pair (a,e). The correct event assignment rate is
then defined as cear = S̄

|S | , where |S | denotes the overall number of events in the
sequence.

The correct event assignment rate has a range of 0.0 to 1.0 where the lower value
shows that no event has been processed as intended and 1.0 that all events have
been processed by the correct activity.

8.3.2. System Parameters

The system parameters we use, can be divided in two distinct groups. The first
one are the parameters used to generate the flows and control the behavior or the
flow engine during the execution. The ones for creating flows were mentioned
earlier in Section 8.2.1. While we already described their use, we will provide
the absolute numbers used in the simulations in this section. The second group
controls the CMS component of the simulation, adjusting the properties of single
context events and also event sequences.

Flow-based Parameters

The first flow generation parameter is the flow size, that we target when gener-
ating the flow. As we have discussed, the size is given by an upper and lower
activity bound and the flow generator fulfills these bounds. We choose the flow
size for all experiments between 30 and 50 activities as lower and upper activity
bound limit. Generated flows of this size have the most similarities in terms of
activity count when compared to the flow monitored in the Mainkofen scenario.
Flows of this size contain 4 to 5 patterns on average and hence provide a wide
variability in possible structures. The flow size also determines the number of
context events a flow must process during its execution and so with larger flows
also the event sequence length and the flow history grows. As the effort for train-
ing larger flow traces (offline) increases, we did not generate flows of larger size.
This is valid because all variants of ?Con are independent of the flow size and
only depend on the complexity of the flow model (e. g. incoming transitions of an
activity). Therefore, there is only a small risk for unexpected results given larger
flow sizes.

151

8. Methodology

The second and most important factor for the flow generation are of course the
relative pattern frequencies and the co-occurence distributions. We did not vary this
parameter in order to not break the chain of argument for the comparison to the
real-world flow example. We have already shown the overall reference frequency
distribution in Figure 8.13. The values for the used co-occurence probabilities can
be found in Table 8.1. These values closely match the ones published by Thom
et al. [TRCI08]. Some missing probabilities had to be filled in, as not all were
available and the original authors of the study could/would not provide them.

Another parameter that is relevant for the simulation is the navigation threshold we
defined in Chapter 5 (cf. definition 5.2.4 and 5.2.6). The navigation threshold is
the minimum belief that the flow engine must have before it evaluates conditions
based on context information and executes the the following activities. When the
CMS on average provides context events with higher belief values than the naviga-
tion threshold, a stable flow execution is possible. We chose navigation thresholds
between 0.4 and 0.65 for the simulation. The lower limit is given by the fact that
for event type sets with only three or less event types, a lower threshold would
allow kind of arbitrary choices. This is because for event instances with low sig-
nificance, the actual occurrence of each event type is in the range of 0.3 or higher.
The upper limit is given for a similar reason, as for event types sets with a larger
number of event types, even low noise on multiple events makes it very difficult
for the significant one to achieve the threshold of 0.65. We also introduced the
adaptive threshold with the more sophisticated versions of HyperFlowCon where
the threshold is adapted online to the significance of the event instances and the
size of the event type set.

CMS parameters

The parameters that we use to control the uncertainty of a single event instance
are ground truth and variance. The ground truth GT denotes the overall average

Table 8.1.: workflow activity pattern co-occurrence probability matrix
Co-occuring Pattern 1 2 3 4 5 6 7
1 Approval 2% 33% 30% 4% 14% 0% 17%
2 Bi-Directional 16% 13% 12% 11% 18% 5% 25%
3 Decision 26% 15% 12% 5% 28% 0% 14%
4 Informative 12% 8% 28% 16% 17% 1% 18%
5 Notification 24% 18% 28% 3% 2% 2% 23%
6 Question 30% 6% 20% 12% 15% 1% 16%
7 Uni-Dirctional 30% 10% 10% 12% 20% 5% 13%

152

8.3. Simulation Setup

accuracy of the CMS. I. e. on average the belief value a user of the CMS can ex-
pect is equal to GT . This represents the case when the same single event is rec-
ognized over and over again. Given a perfect CMS that always identifies a real
world event correctly would lead to a ground truth GT = 1.0. A CMS that informs
the application always with the wrong event (with perfect certainty) would have
GT = 0.0.

In practice we have chosen values for GT between 0.4 and 0.6. These values have
been used due to the results of the study in Mainkofen [KBNL11], where basic
recognition rates between 14.3% and 83.3% could be achieved for individual real-
world activities. On average the recognition rate was 48% and most of the activities
had recognition rates between 35% and 60%. Hence, the chosen ground truth val-
ues represent the situation found in the real-world scenario closely.

While the ground truth does only represent the average recognition rate of the
CMS, the individual context events are affected by the variance V in their recog-
nition. We define the variance as the possible deviation range that an single event
may suffer during recognition. Hence, the variance alters the average precision
of the used CMS for each event instance so that it becomes GT ± V . We chose a
range of variance values between 0.05 for a very stable CMS and 0.75 for very
unstable ones. So given a CMS with GT = 0.5 and V = 0.5, a single context
event can achieve a recognition accuracy between 0.25 = GT − V /2 and 0.75 =
GT +V /2.

Both parameters together determine the recognition quality of the CMS. Please
note that this definition of ground truth is different to the usual definition in litera-
ture. We use this altered definition in order to vary the overall quality of the recog-
nition independently of the actual situation for a single experiment.

Finally, we have the parameters for controlling the sequence errors that we intro-
duced with the error model for FEvA (cf. Section 7.2.3).

For the false positive events denoted by α, we used values between 0.0 and 1.0.
While the lower value indicates that the CMS does not produce any false posi-
tive events, the higher value describes a CMS where for each "real" event there is
one false positive. We did not consider more false positive events as such a CMS
produces more counterproductive events that real ones.

For the out-of-order events given by γ , we chose values between 1.0 and 0.65.
Again 1.0 indicates that the CMS does not produce context events with a different
real world order. For lower values 1−γ events arrives out of order, with an "offset"
of at least one event. For larger values of γ the offset increases further. Again we
did not chose larger values because each out of order event affects the occurrence
of two context events, the one arriving early, and the then delayed one (or vice
versa). Hence, with values of 0.5 basically each event in the sequence would be
affected by an out-of-order shift.

153

8. Methodology

For the deleted context events determined by δ, values between 0.0 and 0.25 have
been used. The value of 0.0 means no events are missed and the sequence contains
all events required to execute the flow. The higher limit indicates that about one
quarter of the events in the sequence are missing. As FEvA targets to resolve issues
with only a single missing event it becomes impossible and also questionable to
mitigate problems with multiple missing events as they can occur more frequently
for larger values.

154

9. Simulation Results

In this chapter we present our simulation results for each of the four performance
metrics we introduced. First we show that ?Con yields an improvement on the
accuracy of events compared to the basic reference system based on the event
change rate. Then we show and discuss the achievable flow completion rates for
the ?Con variants and changes to the CE. After that, we will put the results of the
advanced techniques used in HyperFlowCon and FlexCon into perspective with
respect to the flow certainty metric. Finally, we conclude the chapter with the per-
formance results of FEvA against false positive (α), out-of-order (γ) and missing
events (δ).

9.1. Event Change Rate

The event change rate shows to what degree ?Con can make the recognition of a
single context event more accurate, when the event is processed in the context the
executed flow. First, we show an early result from this thesis, where we investi-
gated the basic conditions that are required by FlowCon in order to contribute to
the accuracy when executing a flow. Second, we compare the event change rate
that FlexCon achieves, based on the more flexible flows modeled with the HFM in
comparison against FlowCon and the more rigid flows based on the basic impera-
tive flow model.

FlowCon We used a flow engine with FlowCon ENG(f ,S)[FC], for the first eval-
uation. We created 100 structurally different flow models with the workflow gen-
erator. These flow models adhere to the basic imperative flow model and do not
contain any constraints. Further we generated 200 individual event sequences for
each flow model. The flows have been executed with each of these sequences. We
always started with FlowCon freshly initialized and no training data available in
the flow historyH i. e. the parameter learning phase of our algorithm is performed
online. The number of available traces for training then increases with every com-
pleted flow instance until the learning frame is full. So in total we executed 20.000
flows for each data point in our results. We chose values forGT = 0.45 as suggested
by the case study results. The used navigation threshold values are in a similar

155

9. Simulation Results

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

E
ve

nt
ch

an
ge

ra
te

Variance V

FlowCon t = 0.40
FlowCon t = 0.50
FlowCon t = 0.60
FlowCon t = 0.65

Figure 9.1.: event change rate of FlowCon for a changing navigation threshold tn

range starting from tn = 0.4 up to tn = 0.65. This way given the lowest tn of 0.4
and a low noise CMS (V ≤ 0.05), the basic flow engine is capable finishing most
of the flows successfully. This however becomes very challenging for increased
navigation thresholds.

We selected values for the variance V of the CMS ranging from V = 0.05 and a very
stable recognition (probability of the correct event 0.45±0.025) to a very unstable
one with V = 0.7 (probability of the correct event in 0.45±0.375). Please note that
a variance value of V = 0.4 basically introduces the same amount of noise in the
distribution that is already present given by the ground truthGT = 0.45. When we
increase the variance up to V = 0.7 this can be interpreted as feeding significantly
more noise into the flow compared to the given recognition probabilities. As a
result of this unstable recognition there are some events which have much better
than average recognition rates, but also the opposite is true.

The results of this simulation setup are depicted in Figure 9.1. For the thresholds
tn = 0.4 and tn = 0.5 we observe a very good accuracy improvement performance
between 49% and 39%, for variance values up to v = 0.4. These conditions indi-
cate a CMS that usually meets the requirements of the flow engine. Furthermore

156

9.1. Event Change Rate

we can deal with a significant amount of noise quite well. However when we in-
crease the variance up to v = 0.7 the average event improvement slowly degrades
to only 7%. But we still manage to improve the recognition probabilities a little.
When we increase the navigation threshold tn = 0.6 and tn = 0.65 the performance
degrades much faster. While FlowCon is still able to achieve a good improvement
for small variance values up to v = 0.15, we quickly get counter productive results
for an increasing variance. The break even point, where we actually make things
worse using FlowCon, is v = 0.45 for a threshold tn = 0.6 and v = 0.25 for a thresh-
old tn = 0.65. This strong degradation can be explained as we train the BN online
during the experiments. The correct training gets more difficult and finally im-
possible with higher variance values, because we have fewer correct traces and the
navigation threshold to achieve a correct trace is very high.

In conclusion the use of FlowCon is beneficial, when the threshold of the flow en-
gine is not exceeding the average recognition rate of the CMS, and the variance
is not the most controlling influence. Given these conditions, FlowCon is capable
to learn the behavioral habit of the human involved in the process. So FlowCon
significantly improves the event accuracy and aids in the correct and robust recog-
nition of context events in imperative flows. But if the conditions for the CMS are
not met, FlowCon can be beneficial. When the human user corrects the context of
the flow explicitly, this leads to correct flow traces that can be used for training of
FlowCon and later usage.

FlexCon We also performed the experiment with FlexCon, In order to compare
the performance to FlowCon in terms of event change rate. The flows for FlowCon
are purely imperative, i. e. activities are connected by transitions and there are
no constraints. Thus, the task of FlowCon is much easier than that of FlexCon
which also has to deal with constraints that leaves the decision about the ordering
of some activities completely to the user.

We used the study results for a comparative setup given similar conditions. So for
the FlexCon experiment we assume a navigation threshold tn = 0.4 and a GT =
0.45. The variance V is also in the same range between V = 0.05 to V = 0.75.
We used the extended flow generator and came up with 200 structurally different
flow models with 25 to 50 activities containing also constraints and respective
constraint-based activities. Again 200 traces have been executed per flow and the
learning phase of the DBN is also included.

In Figure 9.2 we show the results of this comparison. The average event improve-
ment is better for almost all variance values. Even for the higher variances of
V ≥ 0.4, where the improvement of FlowCon declines, FlexCon is able to maintain
a good improvement, mainly due to the changed method of accuracy improve-
ment: While FlowCon uses all the observed event instances as evidence for calcu-
lating the probability of the current event, FlexCon only applies the evidence for

157

9. Simulation Results

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

E
ve

nt
ch

an
ge

ra
te

Variance V

FlexCon t=0.4
FlowCon t=0.4

Figure 9.2.: Comparison of event change rate for FlexCon and FlowCon

the current particle for particle propagation, i. e. independently from other parti-
cles. When we misinterpret an event instance from a preceding node, this has less
impact on the particle filter, as only the propagated particles from this node are in-
fluenced, but not the particles from other preceding nodes. Where in FlowCon the
whole conditional probability for the current event can be distorted, in FlexCon
only a partial result suffers from the misinterpretation. However, if only one par-
ent exists for a given node in the DBN, FlexCon is also sensitive to this kind of mis-
interpretation, leading to ecr < 1.0 making the result worse.

The high standard deviation for the event change rate on the flows can be ex-
plained by the flows’ flexible structure. If two subsequently executed activities
are not connected by a constraint or transition, we cannot improve the event in any
way as there will be no connection in the DBN between the respective nodes. Due
to the fixed combination of information in this setup we end up with a ecr = 0.5
for those events. Using a CE with adaptive information combination reduces this
problem. So according to the flow structure, we have a very high improvement
for the dependent events but none for the independent ones. Overall we achive a
decent improvement.

158

9.2. Flow Completion Rate

9.2. Flow Completion Rate

The flow completion rate as performance metric indicates the overall robustness
of the used flow engine variant. As the metric is always calculated in reference to
the overall number of flows executed per experiment, an optimal system would
be achieved, when we would reach f cr = 1.0. In this case every flow could be ex-
ecuted successfully without the need for user interaction to correct some events.
For each result the same assumptions as before are valid. We generated 200 struc-
turally different flow models with the respective flow generator either with the
basic imperative model for FlowCon or the HFM for FlexCon. For each model 200
traces have been executed. As before, the learning of the respective data structure
in ?Con is included in the experiments. Hence, we do not achieve the result of
f cr = 1.0. But given the learning frame window of 20 flow instances any f cr ≥ 0.9
can be considered a stable configuration where every other sequence for the given
flow would also lead to a successful execution, given the sequence itself is cor-
rect.

We show all the results of FlowPal configurations as we developed improvements
for the algorithms. An overview on them is depicted in Table 9.1, where each
column represents a property that we modified during the evaluation. The first
column denotes whether the CMS provides a full probability distribution for the
event type set E as information to the flow engine or only the most significant
context event type u with its associated probability. The parameter in the second
column denotes the trust the flow engine has in the event from the CMS. For
the basic system there is no other source, so the trust equals 100%. For the basic
FlowCon where we did just average there is a fixed trust of of 50%. Given a more
sophisticated CE, the trust value is also controlled by the uncertainty of the event

Table 9.1.: Simulation Result Overview: Flow Completion Rate
Fig.# context event input trust nav. threshold ?Con CE
9.3 distribution 100% tn = 0.4 none BinCE
9.4 distribution 50% tn = 0.4 FlowCon BinCE
9.5 distribution 100% tn = 0.4 FlowCon SLCE
9.6 significant event 100% tn = 0.4 FlowCon SLCE
9.7 distribution 100% tn = 0.4 FlowCon 4V CE
9.8 distribution 60% tn = 0.4 FlowCon SLCE
9.9 distribution 60% (tn = 1/ |E|+ 0.28) FlowCon SLCE
9.10 significant event 60% (tn = 1/ |E|+ 0.28) FlowCon SLCE
9.11 distribution 60% (tn = 1/ |E|+ 0.28) FlowCon 4V CE
9.12 distribution 60% (tn = 1/ |E|+ 0.28) FlexCon SLCE
9.13 distribution 60% (tn = 1/ |E|+ 0.28) FlexCon 4V CE

159

9. Simulation Results

as we explained in Section 6.6.3. So 100% trust for SLCE and 4V CE means to use
the uncertainty of the event, while the 60% value indicates to use at most 60% of
the information from the context event, even if its uncertainty is much lower than
40%. In the third column the used navigation threshold is given, where we switch
from the default "fixed" one based on the Mainkofen Scenario of tn = 0.4 to the
"adaptive" one with a value of tn = (1/ |E|) + 0.28. The last two columns indicate the
used variant of ?Con and the CE.

The individual results are the following. First we discuss the flow completion rate
of the basic flow engine as reference system. Then, we show the results of the basic
FlowCon with the simple CE. The next results are then FlowCon with the more ad-
vanced SLCE, the SLCE with only the most significant event as input and FlowCon
using the 4V CE. After that, we extend the SLCE with its two improvements, the
minimal event uncertainty and the adaptive navigation threshold. We discuss the
results with these improvements then for SLCE with only a single event and the
4V CE. Finally, we transferred our results to FlexCon and show its performance
with the SLCE and 4V CE.

All the figures with the results use the same scale and metrics for comparability.
Each shows the flow completion rate (z-axis) for combinations of ground truth
(y-axis) GT = 0.4 to GT = 0.6 and the variance (x-axis) V = 0.25 to V = 0.75. For
the range of selections the same assumptions are valid as discussed for the event
change rate.

0.92
0.85
0.66

0.5

0.25
0.4 0.5 0.6 0.66 0.75Variance

0.4
0.45

0.5
0.55

0.6

Ground Truth

0
0.2
0.4
0.6
0.8

1

Fl
ow

C
om

p
le

ti
on

R
at

e

0.1
0.3
0.5
0.7
0.9

Figure 9.3.: Flow Completion Rate for basic flow engine ENG(f ,S)

160

9.2. Flow Completion Rate

In Figure 9.3, we show the results of the basic reference system not using any form
of FlowPal. The basic flow engine performs well (FCR = 0.96) for the most stable
and accurate CMS (GT = 0.6,V = 0.25) but for all other values its performance de-
creases rapidly. For lower ground truth values and higher variance values at most
18% of the flows can be completed. Given the fixed navigation threshold any event
with a recognition accuracy of less than 0.40 most likely breaks the flow execution
and the user is required to interact with the flow directly.

FlowCon as first proposal to make the execution of flows more robust, performs
much better at first glance as depicted in Figure 9.4. The respective numeric values
are shown in Table 9.2, where the cells show the flow completion rate, the column
header the variance and the row index the ground truth. There, we observe a
major improvement for most of the variations of CMS. FlowCon is capable to aid
in the completion of more than 50% of the flows for all cases and 66% for most
of them (GT ≥ 0.50). This value increases the better the recognition of the CMS
becomes. However we also see that the flow completion rate becomes not as high
as with the basic system, for the best CMS with GT = 0.6 and V = 0.25. There the
flow completion rate is reduced from FCR = 0.96 to FCR = 0.86. This is mainly
due to the training phase included in the results. Early in the experiment the BN
in FlowCon does not have any information on the habit of the user executing the
flow and thus does not perform well also achieving event change rates ecr ≤ 1.
As we also use a fixed rule of combination applying 50% trust to the event and
using FlowCon to the same degree, the system cannot benefit fully from a highly
accurate CMS.

Using SLCE we overcome the limitations of the strict combination of events and
get a finer control. The results of FlowCon using SLCE are depicted in Figure 9.5
and the respective values in Table 9.3. Overall we see a significant boost of the
flow completion rates for the more stable CMS between eight and ten percentage
points for GT ≥ 0.55. This improvement can be explained due to the use of the
uncertainty of the event. When converted to a binominal opinion in SL we use the
significance of the event instance to control the amount of information used from
FlowCon. For a higher ground truth this leads to less usage of FlowCon which is

Table 9.2.: Flow Completion Rate for the basic FlowCon system

Ground Truth Flow Completion Rate for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.86 0.83 0.81 0.78 0.77 0.75
GT = 0.55 0.82 0.79 0.77 0.76 0.75 0.73
GT = 0.50 0.77 0.75 0.74 0.72 0.71 0.68
GT = 0.45 0.73 0.68 0.67 0.64 0.64 0.61
GT = 0.40 0.58 0.56 0.56 0.56 0.56 0.54

161

9. Simulation Results

0.85
0.66

0.25
0.4 0.5 0.6 0.66 0.75Variance

0.4
0.45

0.5
0.55

0.6

Ground Truth

0
0.2
0.4
0.6
0.8

1

Fl
ow

C
om

p
le

ti
on

R
at

e

0.1
0.3
0.5
0.7
0.9

Figure 9.4.: Flow Completion Rate for the basic FlowCon system ENG(f ,S)[FC]

Table 9.3.: Flow Completion Rate for FlowCon with SLCE

Ground Truth Flow Completion Rate for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.94 0.91 0.89 0.87 0.87 0.85
GT = 0.55 0.89 0.86 0.86 0.84 0.82 0.81
GT = 0.50 0.83 0.82 0.81 0.79 0.78 0.75
GT = 0.45 0.79 0.77 0.75 0.74 0.70 0.64
GT = 0.40 0.73 0.68 0.66 0.62 0.56 0.44

desired with respect to the results of the basic system to counter the reduction of
the flow completion rate. We can also benefit from this effect for low accuracy, low
variance CMS (GT = 0.45,V = 0.25), where we achieve the highest increase of the
flow completion rate of 15 percentage points. Here we have a low significance of
the correct event but due to the little variance simply rely more on information
from FlowCon which in turn improves the flow completion rate again. But this
has also a downside as we can see in the low accuracy high variance corner of the
plot, where this version actually decreases in performance again from FCR = 0.54
to FCR = 0.44. For this kind of CMS the opposite is true. A high variance leads
to high significant but wrong readings by the CMS, but due to the mechanism
in the SLCE, FlowPal is prone to believe in this information and uses also less
information from FlowCon to counter this reading. Before we elaborate on this

162

9.2. Flow Completion Rate

0.92
0.85
0.66

0.5

0.25
0.4 0.5 0.6 0.66 0.75Variance

0.4
0.45

0.5
0.55

0.6

Ground Truth

0
0.2
0.4
0.6
0.8

1

Fl
ow

C
om

p
le

ti
on

R
at

e

0.1
0.3
0.5
0.7
0.9

Figure 9.5.: Flow Completion Rate for FlowCon with SLCE

problem, we first look at the two alternative setups using a more sophisticated
CE.

The first one uses the same set of algorithms (FlowCon with SLCE) but the CMS
now only delivers the most significant event to the flow engine for processing in-
stead of a full probability distribution on the event type set. Any probability mass
not distributed on the event is then used as ignorance in the binominal opinion
again, in order to control the amount of information used from FlowCon. The re-
sults of this setup are shown in Figure 9.6 and the numeric values in Table 9.4. In
comparison to the previous setup having a full distribution, the single event infor-
mation performs at most six percentage points worse. Indeed, having only a single
event type and an overall higher uncertainty i. e. higher use of FlowCon, leads to

Table 9.4.: Flow Completion Rate for FlowCon with SLCE and the significant event
type input

Ground Truth Flow Completion Rate for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.93 0.89 0.86 0.84 0.84 0.81
GT = 0.55 0.87 0.84 0.83 0.80 0.80 0.78
GT = 0.50 0.80 0.78 0.77 0.76 0.75 0.71
GT = 0.45 0.75 0.73 0.72 0.70 0.68 0.63
GT = 0.40 0.67 0.65 0.63 0.60 0.57 0.49

163

9. Simulation Results

0.92
0.85
0.66

0.5

0.25
0.4 0.5 0.6 0.66 0.75Variance

0.4
0.45

0.5
0.55

0.6

Ground Truth

0
0.2
0.4
0.6
0.8

1

Fl
ow

C
om

p
le

ti
on

R
at

e

0.1
0.3
0.5
0.7
0.9

Figure 9.6.: Flow Completion Rate for FlowCon with SLCE and the significant
event type input

an improved result of five percentage points for GT = 0.4,V = 0.75. This way the
flow engine is not as prone to believe in a wrong reading.

The second variant uses FlowCon with the 4V CE (cf. Table 9.5 and Figure 9.7).
Using 4V we have values for "trueness" and "knowledge" to reason on the incoming
event instances and evaluate the condition. Overall 4V CE performs similar to
the SLCE. For the more accurate CMS this setup performs one to two percentage
points better, so using 4V is equally beneficial, compared to basic PT. However,
for GT ≤ 0.45 it is up to 34 percentage points inferior to the basic FlowCon and
even 27 percentage points compared to FlowCon with SLCE. This is again due to
the fact, that a high significant event leads to much less usage of information from
FlowCon and hence the flow engine is again prone to believe the wrong event

Table 9.5.: Flow Completion Rate for FlowCon with 4V CE

Ground Truth Flow Completion Rate for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.94 0.93 0.91 0.89 0.89 0.86
GT = 0.55 0.90 0.88 0.87 0.86 0.83 0.78
GT = 0.50 0.82 0.84 0.83 0.78 0.73 0.60
GT = 0.45 0.71 0.76 0.75 0.62 0.53 0.39
GT = 0.40 0.59 0.65 0.55 0.38 0.29 0.19

164

9.2. Flow Completion Rate

0.92
0.85
0.66

0.5

0.25
0.4 0.5 0.6 0.66 0.75Variance

0.4
0.45

0.5
0.55

0.6

Ground Truth

0
0.2
0.4
0.6
0.8

1

Fl
ow

C
om

p
le

ti
on

R
at

e

0.1
0.3
0.5
0.7
0.9

Figure 9.7.: Flow Completion Rate for FlowCon with 4V CE

happened. With only four values 4V CE is more prone to believe this type of
context event. This of course reduces the flow completion rate as shown in Figure
9.7 The last results lead to the development of the improved versions of SLCE that
use a fixed amount of trust, so that FlowCon (respective ?Con) is always applied
to some degree to counter high significant but wrong events.

The results of the first version applying a trust of 60% to FlowCon with SLCE are
depicted in Figure 9.8, the respective flow completion rate values in Table 9.6. The
performance is basically identical to the variant with 100% trust, with a noticeable
deviation for the less accurate CMS with GT ≤ 0.45. Here we see an improvement
in flow completion rate, especially for the higher variance values. The peak im-
provement of 18 percentage points is achieved for GT = 0.40,V = 0.75. So, while

Table 9.6.: Flow Completion Rate for FlowCon with SLCE and a maximal trust of
60%

Ground Truth Flow Completion Rate for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.93 0.91 0.89 0.87 0.87 0.85
GT = 0.55 0.88 0.86 0.86 0.84 0.84 0.82
GT = 0.50 0.83 0.82 0.82 0.81 0.80 0.78
GT = 0.45 0.78 0.78 0.78 0.76 0.74 0.73
GT = 0.40 0.73 0.71 0.68 0.66 0.66 0.63

165

9. Simulation Results

0.92
0.85
0.66

0.25
0.4 0.5 0.6 0.66 0.75Variance

0.4
0.45

0.5
0.55

0.6

Ground Truth

0
0.2
0.4
0.6
0.8

1

Fl
ow

C
om

p
le

ti
on

R
at

e

0.1
0.3
0.5
0.7
0.9

Figure 9.8.: Flow Completion Rate for FlowCon with SLCE and a maximal trust of
60%

for the more accurate CMS the use of FlowCon is balanced enough in order to not
interrupt normal execution, we gain significant assistance for the worse context
event.

The results of the next improvement we applied are shown in Figure 9.9 and Ta-
ble 9.7. Here, the adaptive navigation threshold has been added to FlowCon with
SLCE including the improved trust value of 60%. Overall, we see a significant im-
provement gained by the adaptive threshold. The improvements can be summa-
rized with the following two statements. The higher the GT , the lower the benefit
as the fixed threshold has already been in the correct range. The higher the vari-
ance, the higher the benefit, as the combination of the trust value and the adaptive

Table 9.7.: Flow Completion Rate for FlowCon with SLCE, a maximal trust of 60%
and an adaptive navigation threshold

Ground Truth Flow Completion Rate for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.99 0.98 0.98 0.97 0.97 0.96
GT = 0.55 0.97 0.97 0.96 0.95 0.95 0.94
GT = 0.50 0.94 0.94 0.93 0.93 0.92 0.92
GT = 0.45 0.88 0.89 0.90 0.89 0.89 0.88
GT = 0.40 0.81 0.84 0.83 0.82 0.82 0.79

166

9.2. Flow Completion Rate

0.92
0.85

0.25
0.4 0.5 0.6 0.66 0.75Variance

0.4
0.45

0.5
0.55

0.6

Ground Truth

0
0.2
0.4
0.6
0.8

1

Fl
ow

s
Fi

ni
sh

ed

0.1
0.3
0.5
0.7
0.9

Figure 9.9.: Flow Completion Rate for FlowCon with SLCE, a maximal trust of 60%
and an adaptive navigation threshold

threshold mitigate the high variance on wrong events better than the trust value
alone. Hence the smallest performance increase is achieved forGT = 0.60,V = 0.25
where FCR = 0.99 went up six percentage points. The largest improvement then
happens on the opposite side of the search space for GT = 0.40,V = 0.75 where
FCR = 0.79 went up 16 percentage points. To put this result further into perspec-
tive we compare it against the former variants using only a single event type as
input and the 4V CE.

In Figure 9.10 are the results for FlowCon with SLCE using the minimal trust, the
adaptive navigation threshold and only the most significant event from the CMS
as input, the respective values are in Table 9.8. On average the flow completion

Table 9.8.: Flow Completion Rate for FlowCon with SLCE, a maximal trust of 60%,
an adaptive navigation threshold and the significant event type input

Ground Truth Flow Completion Rate for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.98 0.96 0.95 0.94 0.93 0.92
GT = 0.55 0.95 0.93 0.91 0.90 0.90 0.88
GT = 0.50 0.91 0.88 0.88 0.87 0.86 0.85
GT = 0.45 0.83 0.83 0.83 0.82 0.82 0.81
GT = 0.40 0.70 0.73 0.75 0.76 0.75 0.75

167

9. Simulation Results

0.92
0.85

0.25
0.4 0.5 0.6 0.66 0.75Variance

0.4
0.45

0.5
0.55

0.6

Ground Truth

0
0.2
0.4
0.6
0.8

1

Fl
ow

C
om

p
le

ti
on

R
at

e

0.1
0.3
0.5
0.7
0.9

Figure 9.10.: Flow Completion Rate for FlowCon with SLCE, a maximal trust of
60%, an adaptive navigation threshold and the significant event type
input

rate decreases by five percentage points, which is similar to the previous results,
where we moved from the full distribution to the single most significant event.
However, there is one interesting behavior for GT = 0.40,V ≤ 0.5, where we are
up to 16 percentage points worse. In this combination it can happen that we re-
ceive a wrong context event but all the mass for the right event is attributed to
FlowCon. FlowCon aids in the detection of the correct event but also will im-
prove the unlikely but possibly false event. As we have no other information from
the CMS in this setup, the false event still has a fair chance to be higher than
the adapted navigation threshold. Hence, the performance is decreased. If we
also compare this result with the original FlowCon with SLCE and the reduced
input from the CMS this improved setup is still a slight three percentage points
ahead.

The final variant of FlowCon uses the 4V CE with the two improvements of 60%
trust the adaptive navigation threshold. Figure 9.11 depicts the results and the
values can be found in Table 9.9. The trust value and the adaptive navigation
threshold have nearly no effect for the more accurate CMS. There we have only a
slight improvement up to four percentage points compared to the former version
using FlowCon with 4V CE. The opposite result is achieved for the high variance
V = 0.75, low accuracy GT ≤ 0.50 systems. There we achieve improvements in
the flow completion rate between 13 and up to 48 percentage points. Here the
beneficial effects that could be observed for the other systems also influence the

168

9.2. Flow Completion Rate

Table 9.9.: Flow Completion Rate for FlowCon with 4V CE, a maximal trust of 60%
and an adaptive navigation threshold

Ground Truth Flow Completion Rate for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.98 0.96 0.95 0.94 0.93 0.92
GT = 0.55 0.94 0.93 0.92 0.91 0.90 0.88
GT = 0.50 0.89 0.89 0.88 0.87 0.86 0.85
GT = 0.45 0.85 0.83 0.82 0.80 0.79 0.71
GT = 0.40 0.76 0.74 0.73 0.72 0.71 0.68

0.92
0.85

0.25
0.4 0.5 0.6 0.66 0.75Variance

0.4
0.45

0.5
0.55

0.6

Ground Truth

0
0.2
0.4
0.6
0.8

1

Fl
ow

C
om

p
le

ti
on

R
at

e

0.1
0.3
0.5
0.7
0.9

Figure 9.11.: Flow Completion Rate for FlowCon with 4V CE, a maximal trust of
60% and an adaptive navigation threshold

flow completion rate. The higher the variance, the higher the benefit, because both
improvements prevent the flow engine believing a wrong respective contradictory
event.

Having achieved very high flow completion rates for FlowCon we transferred the
results to FlexCon. In Figure 9.12 the results of FlexCon with SLCE, the 60%
trust value and the adaptive navigation threshold are shown; Table 9.10 shows
the respective results. Please note again, that these results have been achieved on
the much more flexible flows based on the HFM. On average we achieve a flow
completion rate of 77%, which is only 14 percentage points behind FlowCon with
the same adjustments but executing the more rigid flows.

169

9. Simulation Results

Table 9.10.: Flow Completion Rate for FlexCon with SLCE, a maximal trust of 60%
and an adaptive navigation threshold

Ground Truth Flow Completion Rate for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.91 0.87 0.85 0.84 0.83 0.82
GT = 0.55 0.85 0.83 0.82 0.81 0.80 0.80
GT = 0.50 0.78 0.78 0.77 0.77 0.77 0.76
GT = 0.45 0.73 0.73 0.74 0.74 0.74 0.73
GT = 0.40 0.64 0.67 0.67 0.68 0.67 0.66

0.85
0.66

0.25
0.4 0.5 0.6 0.66 0.75Variance

0.4
0.45

0.5
0.55

0.6

Ground Truth

0
0.2
0.4
0.6
0.8

1

Fl
ow

C
om

p
le

ti
on

R
at

e

0.1
0.3
0.5
0.7
0.9

Figure 9.12.: Flow Completion Rate for FlexCon with SLCE, a maximal trust of
60% and an adaptive navigation threshold

Table 9.11.: Flow Completion Rate for FlexCon with 4V CE, a maximal trust of
60% and an adaptive navigation threshold

Ground Truth Flow Completion Rate for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.98 0.96 0.93 0.90 0.88 0.86
GT = 0.55 0.95 0.91 0.88 0.85 0.83 0.80
GT = 0.50 0.88 0.83 0.81 0.79 0.77 0.75
GT = 0.45 0.77 0.74 0.72 0.70 0.70 0.67
GT = 0.40 0.65 0.63 0.63 0.62 0.61 0.60

170

9.2. Flow Completion Rate

0.92
0.85
0.66

0.25
0.4 0.5 0.6 0.66 0.75Variance

0.4
0.45

0.5
0.55

0.6

Ground Truth

0
0.2
0.4
0.6
0.8

1

Fl
ow

C
om

p
le

ti
on

R
at

e

0.1
0.3
0.5
0.7
0.9

Figure 9.13.: Flow Completion Rate for FlexCon with 4V CE, a maximal trust of
60% and an adaptive navigation threshold

Using FlexCon with 4V CE yields similar results, that are depicted in Figure 9.13,
and shown in Table 9.11. Compared to the other FlexCon setup we get a mixed
picture. Using the 4V CE the flow completion rate is significantly better for the
more accurate CMS with GT ≥ 0.50. There, we achieve an improvement of up to
ten percentage points, especially for low variance values V ≤ 0.40. However, for
the less accurate CMS with GT ≤ 0.45 the flow completion rate drops a slight six
percentage points. The increase can be explained because the 4V CE also takes
contradicting information into account and is less sensitive in the condition eval-
uation as we will also see in the next section when we discuss the flow certainty.
The drop for the less accurate CMS is caused by a combination of effects. Due to a
"missing" relation in FlexCon a contradiction in 4V CE is imposed, which in turn
allows to navigate one or even multiple wrong transitions, maybe in addition to the
right one. This likely leads then also to a wrong execution. A higher variance sup-
ports this effect. Therefore, it can also be observed for GT = 0.50,V = 0.75 where
4V CE is two percentage points worse than its SLCE variant.

Discussion The flow completion rate is the key performance indicator for the
usefulness of FlowPals algorithms. We have started our work with a mediocre basic
flow navigator that is only capable to handle uncertain context information with
the most accurate CMS. With the introduction of FlowCon we have shown that
the usage of flow knowledge can provide a significant benefit in order to achieve

171

9. Simulation Results

better flow completion rates when the CMS cannot provide very accurate results.
However, we also have seen, that the naive way to use this information reduces the
performance of for accurate CMS.

Spending effort to combine the information from ?Con in a more meaningful way
using either SL CE or 4V CE has helped to improve the completion rates signifi-
cantly and also allows us to reduce the amount of statistical information required
from ?Con back to a minimum baseline. But it was also quite surprising that a fair
amount of ignorance also helps to improve the flow completion rate. This way the
flow becomes more resilient to high significant but wrong events. This especially
has boosted the completion rates for the lower quality CMS. Our results show
further a gracefully degradation of the algorithm performance the worse the CMS
becomes.

Based on these combination methods we were even able to drop the requirement
on having a full probability distribution from the CMS to only the most signif-
icant event, which makes the application of FlowPal much simpler to available
CMS.

Having transferred this set of mechanisms to the flexible human-centric flows
based on the HFM, with similar success is a very important overall result. We
are capable to extract enough information from this more loosely coupled process
description so that we can provide a decent second source of information to handle
uncertain context information.

9.3. Flow Certainty

Now, that we have seen the overall performance ?Con can achieve with its different
variants, we also want to show the decrease in uncertainty. As we described in Sec-
tion 8.3.1, the flow certainty can be used to argue on the navigation decisions made
by the flow engine. The results on the flow certainty have been measured given
identical simulation setups as described for the flow completion rate i. e. 200 struc-
turally different flow models and 200 traces for each model.

The overview on the achieved results is shown in Table 9.12. We start with the
average event certainty that is fed into the system, followed by the flow certainty
of the basic FlowCon system. We compare the results against the improved ver-
sions of HyperFlowCon with the adaptive threshold and the limited trust and also
for the reduced input information. After that, we discuss the certainty results of
FlexCon with SLCE.

All the figures with the results use the same scale and metrics for comparability.
Each shows the flow certainty (z-axis) for combinations of ground truth (y-axis)
GT = 0.4 to GT = 0.6 and the variance (x-axis) V = 0.25 to V = 0.75. This range

172

9.3. Flow Certainty

is the same used for the flow completion rate. The flow certainty is depicted in a
range from f c = 0.40 to f c = 1.0

Figure 9.14 shows the average flow certainty when we use only the basic refer-
ence system without FlowCon and the "default" Condition Evaluator. This setup
achieves a minimal flow certainty for the low accurate CMS GT = 0.4,V = 0.25
of 31% and a maximum one for high accurate CMS GT = 0.6,V = 0.25 of 56%.
For the less accurate CMS a higher variance slightly improves the certainty as the
correct events tend to benefit more from the normalizing step after applying the
variance. The opposite holds for the more accurate CMS. Therefore, the flow cer-
tainty increases for the low accurate CMS with high variance GT = 0.4,V = 0.75
where it is 39% and decreases for the high accurate CMS with high variance GT =
0.6,V = 0.75 where it is only 49%. Overall the flow certainty is lower than actually
expected due to the average ground truth. This is due to the loss of information
when combining the events using probability theory e. g. by the use of probabilis-
tic conjunction.

Table 9.12.: Simulation Result Overview: Flow Certainty
Fig.# context event input trust nav. threshold ?Con CE
9.14 distribution 100% tn = 0.4 n.a. BinCE
9.15 distribution 50% tn = 0.4 FlowCon BinCE
9.16 distribution 60% (tn = 1/ |E|+ 0.28) FlowCon SLCE
9.17 significant event 60% (tn = 1/ |E|+ 0.28) FlowCon SLCE
9.18 distribution 60% (tn = 1/ |E|+ 0.28) FlexCon SLCE

173

9. Simulation Results

0.55
0.5

0.45
0.4

0.35

0.25
0.4 0.5 0.6

0.75Variance
0.4

0.45
0.5

0.55
0.6

Ground Truth

0.4

0.6

0.8

1

Fl
ow

C
er

ta
in

ty

0.3

0.5

0.7

Figure 9.14.: Average Flow Certainty of the basic reference System

Next, we compare those results with the improvements that FlowCon can achieve.
The results are depicted in Figure 9.15 and the respective data points in Table 9.13.
FlowCon manages to decrease the effects of high variance, especially for the lower
accurate CMS where the variance can be tolerated very well. There we gain up to
12 percentage points compared to the reference system without FlowCon. For the
more accurate CMS, the overall flow certainty is reduced by about two percentage
points. Here the fixed combination of information used by basic FlowCon pro-
hibits a better result. We have already shown and discussed this effect for the flow
completion rate (cf. Figure 9.4).

When we apply the final set of algorithms devolved for FlowCon including SLCE,
the maximal trust of 60% and the adaptive navigation threshold, we achieve flow

Table 9.13.: Flow Certainty for the basic FlowCon system

Ground Truth Flow Certainty for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.54 0.51 0.50 0.49 0.49 0.48
GT = 0.55 0.50 0.48 0.47 0.47 0.47 0.47
GT = 0.50 0.46 0.45 0.45 0.45 0.45 0.45
GT = 0.45 0.44 0.44 0.44 0.44 0.44 0.45
GT = 0.40 0.44 0.44 0.44 0.44 0.44 0.44

174

9.3. Flow Certainty

0.54
0.52

0.5
0.48
0.46
0.44

0.25
0.4 0.5 0.6

0.75Variance
0.4

0.45
0.5

0.55
0.6

Ground Truth

0.4

0.6

0.8

1

Fl
ow

C
er

ta
in

ty

0.3

0.5

0.7

Figure 9.15.: Flow Certainty for the basic FlowCon system

certainty results as depicted in Figure 9.16. The respective values are printed in
Table 9.14. On average over all measurement points we achieve a flow certainty of
64%. Please note that there are two local maximum values in the plot. One for the
most accurate CMS GT = 0.6,V = 0.25 with f c = 0.65 and the other for the worst
CMSGT = 0.4,V = 0.75 also with f c = 0.65. Using the optimized algorithm, allows
for precise adjustment to which degree we rely on FlowCon for information provi-
sioning. For the better CMS, we limit the use of FlowCon to a degree necessary to
deal with the uncertainty introduced by the increasing variance. Therefore, the re-
sults achieve values as could be expected by the ground truth alone. However, for
the worse CMS we also achieve very robust results. Of course, we cannot magically
remove the uncertainty introduced by the CMS. But in this cases the flow engine
relies more on the statistical information from previous flow executions that can
be provided by FlowCon. This allows us also to get a high flow certainty at the
expense not to use the real world events to a large degree. A higher variance – i. e.
more uncertainty – again favors to use more information from FlowCon compared
to the more accurate CMS. Therefore FlowCon with SLCE tries to remove the un-
certainty and in turn uses even less information from the context event. Of course,
this introduces a risk to take a decision purely on statistical data than based on
evidence. But as the flow provides still some structure, a single error will usu-
ally be detected for one of the following events, which allows fast correction. This
provides also an opportunity for FEvA to aid in successful flow execution (i. e. a
combination of a missing and a false positive event).

175

9. Simulation Results

Table 9.14.: Flow Certainty for FlowCon with SLCE, a maximal trust of 60% and
an adaptive navigation threshold

Ground Truth Flow Certainty for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.65 0.64 0.63 0.62 0.62 0.62
GT = 0.55 0.64 0.63 0.62 0.62 0.62 0.62
GT = 0.50 0.61 0.62 0.62 0.62 0.62 0.63
GT = 0.45 0.60 0.62 0.62 0.63 0.63 0.64
GT = 0.40 0.62 0.63 0.64 0.64 0.65 0.65

0.65
0.64
0.63
0.62
0.61

0.25
0.4 0.5 0.6

0.75Variance
0.4

0.45
0.5

0.55
0.6

Ground Truth

0.4

0.6

0.8

1

Fl
ow

C
er

ta
in

ty

0.3

0.5

0.7

Figure 9.16.: Flow Certainty for the FlowCon with SLCE, a maximal trust of 60%
and an adaptive navigation threshold

In the next step, we reduce the input information again providing only the most
significant event. The results are shown in Figure 9.17 and Table 9.15. For the
more accurate CMS the result is only three to nine percentage points worse than
before. For these situations we receive the correct event most of the time and with
the significance based usage of FlowCon, the results remain similar. For the less
accurate CMS the drop in of flow certainty is greater. Here the CMS can provide
no evidence at all for the correct event and even using a possibly high amount of
uncertainty going along with the event on average limits the flow certainty. This is
also sound with the observations made for the flow completion rate as depicted in
Figure 9.10.

176

9.3. Flow Certainty

Table 9.15.: Flow Certainty for FlowCon with SLCE, a maximal trust of 60% and
an adaptive navigation threshold and reduced input information

Ground Truth Flow Certainty for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.63 0.61 0.59 0.58 0.57 0.56
GT = 0.55 0.60 0.58 0.57 0.56 0.55 0.55
GT = 0.50 0.56 0.55 0.54 0.54 0.54 0.54
GT = 0.45 0.52 0.52 0.52 0.53 0.53 0.53
GT = 0.40 0.48 0.51 0.51 0.52 0.53 0.53

0.6
0.55

0.5

0.25
0.4 0.5 0.6

0.75Variance
0.4

0.45
0.5

0.55
0.6

Ground Truth

0.4

0.6

0.8

1

Fl
ow

C
er

ta
in

ty

0.3

0.5

0.7

Figure 9.17.: Flow Certainty for the FlowCon with SLCE, a maximal trust of 60%
and an adaptive navigation threshold and reduced input information

Finally, Figure 9.18 shows the results on flow certainty of FlexCon applied to hy-
brid flows. The respective values can be found in Table 9.16. Overall the results
in terms of flow certainty are comparable to those achieved with FlowCon for the
imperative flows. Again, for the accurate CMS a viable certainty of up to 61% is
achieved. This means that the FlexCon is also capable to provide the right amount
of information for the less structured hybrid flows. But also for the less accu-
rate CMS we have a similar issue as FlowCon. On average, we have the highest
flow certainty for the worst CMS due to the fact, that the high uncertainty leads
to a stronger influence from FlexCon. As we then use less of the uncertain in-
formation, the flow engine is sensitive to uncommon execution sequences where
the user deviates from his "routine" behavior, to a degree that is not reflected by

177

9. Simulation Results

FlexCon. An over-trained DBN will increase this issue, as the routine case can
have an over proportional weight. Similar to FlowCon this is somewhat mitigated
by the fact, that an event which does not fit in the current routine, will likely cause
the flow engine to ask for user guidance quickly. Given the right event, FlexCon
will correctly recover and represent the statistics of the correct real-world situa-
tion, providing further assistance. Analyzing the single executions of this setup
showed that this kind of interaction would have been required in less than 4% of
the executed flows. This value seems acceptable.

Discussion The results on the flow certainty show that our methods are capable
for a broad range of CMS to improve the confidence of the flow when making
navigation decisions. This is especially true for the more accurate CMS but those
posed only a small problem right from the start. On the other end, for the more
inaccurate CMS we observe a mixed result. The flow certainty in general is very
high but this raises suspicion. When combined with SLCE or 4V CE and a very
inaccurate CMS, the flow engine is prone for two kinds of erroneous behavior.
Either it uses a very high amount of information from ?Con due to the lack of
information from the received context events and thus may omit information that
deviate from the statistical most likely execution path in the flow. The other case
happens when the CMS due to its high variance recognizes a wrong event with
high significance. In this case FlowPal is prone to belief in this event and reduce
the amount of information used by ?Con to counter it. Both situations will quickly
require the attention of the user, as subsequent information will soon contradict
with the previous navigation decision. This will negatively impact the unobtrusive
execution of the flow.

Table 9.16.: Flow Certainty for FlexCon with SLCE, a maximal trust of 60% and an
adaptive navigation threshold

Ground Truth Flow Certainty for Variance
0.25 0.40 0.50 0.60 0.66 0.75

GT = 0.60 0.61 0.60 0.59 0.58 0.58 0.58
GT = 0.55 0.60 0.59 0.58 0.58 0.58 0.59
GT = 0.50 0.58 0.58 0.59 0.59 0.60 0.61
GT = 0.45 0.58 0.59 0.60 0.61 0.61 0.62
GT = 0.40 0.60 0.61 0.62 0.64 0.64 0.65

178

9.4. FEvA results

0.64
0.62

0.6

0.25
0.4 0.5 0.6

0.75Variance
0.4

0.45
0.5

0.55
0.6

Ground Truth

0.4

0.6

0.8

1

Fl
ow

C
er

ta
in

ty

0.3

0.5

0.7

Figure 9.18.: Flow Certainty for FlexCon with SLCE, a maximal trust of 60% and
an adaptive navigation threshold

9.4. FEvA results

In the final part of this chapter we show the detailed results achieved by FEvA.
First we will investigate the performance of FEvA with respect to the correct event
assignment rate for all three parameters α,γ,δ of the error model. Each parameter
is discussed independent of the others. After that we discuss the associated flow
completion rates that can be achieved. Finally, we directly compare the basic flow
engine ENG(f ,S) against FEvAs flow engine ENG(f ,S)[FEvA].

9.4.1. Correct Event Assignment Rate

For the simulations here we used again the set of 200 different flow models and the
respective 200 trace per model. The chosen range of parameter values for α,γ,δ
have already been discussed in Section 8.3.1. For the experiments with FEvA we
have set the ground truth to GT = 0.5 as this value matches the minimal linguistic
requirement "high" for FEvA to accept an event and assign it. As we do not include
?Con, which also affects the accuracy of the events, for these experiments, this
assumption is reasonable. On average an generated event will achieve the desired
accuracy. Further, we investigate three different variance values V ∈ 0.2,0.4,0.5 for
CMS with low, medium and medium-high noise.

179

9. Simulation Results

In each diagram we use stacked histograms to show the correct event assignment
rate (y-axis). In the foreground (dark grey) we see the results of the basic reference
flow engine ENG(f ,S). On top of these bars are the results for an flow engine using
FEvA. On the x-axis the value for the respective error model parameter is given.
The range of values and their validity have already been discussed at the end of
Section 8.3.2. Additionally, the diagrams are grouped according to the variance
value used for the experiment.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 50 70 80 100
0 10 20 30 50 70 80 100

0 10 20 30 50 70 80 100

C
or

re
ct

E
ve

nt
A

ss
ig

nm
en

t
R

at
e

Flow-Engine without FEvA
Flow-Engine using FEvA

Variance: 0.5, for αVariance: 0.4, for αVariance: 0.2, for α

Figure 9.19.: Correct Event Assignment Rate comparison of reference system and
FEvA for false positive context events

Figure 9.19 shows the results for false positive events α. The number of correct
events assigned to the activities decreases slowly from about cear = 0.94 to about
cear = 0.78, for an increasing amount of false positive events. This is a solid re-
sult and indicates that FEvA is capable to assign the correct events even when a
significant number of false positive events is produced by the system. Further-
more, this result is achieved basically independent of the variance. The mapping
to the linguistic representation and assignment performed by FEvA is effectively
capable to mitigate the increasing variance. The reference system in comparison
gets confused much faster. Increasing the number of false positives events leads

180

9.4. FEvA results

to a decline in correct event assignment rate from about cear = 0.78 to less than
cear = 0.4.

When we look at the corresponding flow completion rates for the same experi-
mental setup depicted in Figure 9.20, we discover a surprising result. Instead of
a declining trend in the number of successfully completed flows, the opposite is
true. The flow completion rate increases between three and 17 percentage points
between α = 0.0 and α = 1.0 for all variances. For the lower variance value v = 0.2
where events are recognized more accurately, the flow is able to deal with more
false positives, without a strong impact on performance. However, the higher the
variance, the more counter-intuitive the result is and the more flows are complete.
But this effect has quite a simple explanation. When the number of false positives
increases, the chances for FEvA to assign a wrong event increases, too. Especially
when conflicts occur during event the assignment FEvA may map a false positive
event to early and falsely. Using this wrong events eventually, leads to the com-
pletion of more flows as before. This is an undesired side effect caused by FEvA.
But for values of α ≤ 0.2 this happens for less than 3% of the flows and even fewer
for the low noise CMS. In conclusion, FEvA proves itself capable to deal with false
positive events, as long as the CMS does not produce very high numbers of false
positive events.

Next, we investigate the results for FEvA when confronted with out-of-order events
as depicted in Figure 9.21. FEvA achieves consistently high values (cear ≥ 0.94)
even for an increasing amount of out-of-order events. Almost all events are as-
signed to the correct activities. The use of the event container in combination with
the delayed assignment and early mapping to prepared activities mitigate the pos-
sible problems. This is a significant improvement on the reference system, where
the number of correctly assigned events declines slowly with an increasing num-
ber of out-of-order context events.

The achieved flow completion rates are depicted in Figure 9.22. There, we observe
the expected drop due to the increasing variance, because the assigned events are
not processed any further. We also see a slight decline of about ten percentage
points for each variance value, while we increase the number of out-of-order con-
text events.

Considering the missed events depicted in Figure 9.23, FEvA is still able to assign
the remaining events accurately, with caer ≥ 0.94. This is not a surprising result
as less events are not a problem for the event assignment algorithm. The reference
system has much more trouble to assign events in this situation as no means are
taken to replace the missing events somehow.

However a missing event has a very strong impact on the flow completion rate as
can be seen in Figure 9.24. While a low number of missing events is somewhat

181

9. Simulation Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fl
ow

C
om

p
le

ti
on

R
at

e

Percentage of added false-positive events α

v=0.2
v=0.4
v=0.5

Figure 9.20.: Flow Completion Rate of FEvA for false positive context events

tolerable, the amount of correctly completed flows drops rapidly to a f cr = 0.07
when more than a quarter of the events is missing.

Finally, we compare the flow completion rates of FEvA with the reference system
for all three system parameters (α,γ,δ). The result is shown in Figure 9.25. The
first two bars in each group refer to the false positive events. The reference system
gets confused by the false positive events and only achieves rates between f cr =
0.17 and f cr = 0.15 on average. FEvA is much more stable with respect to the false
positives and able to complete between f cr = 0.52 and f cr = 0.76 of the flows.
However the already discussed problem of assigning some of the false positive
events to some real activities gives this result a bias.

The middle two bars in each group refer to the out-of-order events. Compared to
the other two failure types the naive reference system can deal quite effectively
with out of order events achieving flow completion rates of 26% to 28%. But with
FEvA the system performs much better witch completion rates between 50% and
74%.

182

9.4. FEvA results

0

0.2

0.4

0.6

0.8

1

100
95 90 85 80 75 70 65 100

95 90 85 80 75 70 65 100
95 90 85 80 75 70 65

C
or

re
ct

E
ve

nt
A

ss
ig

nm
en

t
R

at
e

Flow-Engine without FEvA
Flow-Engine using FEvA

Variance: 0.5, for γVariance: 0.4, for γVariance: 0.2, for γ

Figure 9.21.: Correct Event Assignment Rate comparison of reference system and
FEvA for out of order context events

The last two bars in each group show the values for deleted events. As we already
have seen, the flow completion rate using FEvA drops quickly when more than a
few percent of the events are missing. This is still much better when compared
against the flow completion rate of the reference system under this conditions.
For just a few missing events FEvA performs up to 40 percentage points better.
However, there is still a lot of room for improvement.

Discussion FEvA provides us with a very mixed set of results. While the cor-
rect event assignment rates are surprisingly good when facing errors caused by
out-of-order context information and deleted context events, FEvA is somewhat
prone to assign false positive events to activities. The inspection of the false pos-
itives and their weighting by the activities would have suggested a more robust
result. With respect to the flow completion rates achieved, FEvA also provides
mediocre results. While for false positive events we suffer from their wrong map-
ping, for the deleted events FEvA only provides a medium improvement. However
the measures taken to allow for a missing event are quite extensive and any further

183

9. Simulation Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.650.70.750.80.850.90.951

Fl
ow

C
om

p
le

ti
on

R
at

e

Percentage of events in correct order γ

v=0.2
v=0.4
v=0.5

Figure 9.22.: Flow Completion Rate of FEvA for out-of-order context events

relaxation would make the flow execution too self contained, neglecting the actual
input.

184

9.4. FEvA results

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

C
or

re
ct

E
ve

nt
A

ss
ig

nm
en

t
R

at
e

Flow-Engine without FEvA
Flow-Engine using FEvA

Variance: 0.5, for δVariance: 0.4, for δVariance: 0.2, for δ

Figure 9.23.: Correct Event Assignment Rate comparison of reference system and
FEvA for deleted/missing context events

185

9. Simulation Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3

Fl
ow

C
om

p
le

ti
on

R
at

e

Percentage of deleted/missing events δ

v=0.2
v=0.4
v=0.5

Figure 9.24.: Flow Completion Rate of FEvA for deleted context events

186

9.4. FEvA results

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.5

Fl
ow

C
om

p
le

ti
on

R
at

e

for variances v

Reference α = 0.05,γ = 1.0,δ = 0.0
FEvA α = 0.05,γ = 1.0,δ = 0.0
Reference α = 0.0,γ = 0.9,δ = 0.0
FEvA α = 0.0,γ = 0.9,δ = 0.0
Reference α = 0.0,γ = 1.0,δ = 0.05
FEvA α = 0.0,γ = 1.0,δ = 0.05

Figure 9.25.: Flow Completion Rate comparison of reference system and FEvA for
individual sequence errors

187

Part IV.

Conclusions and Outlook

189

10. Conclusions

Modern process-based applications rely on the sophisticated and well established
workflow programming model. They are heavily influenced by the wide availabil-
ity of mobile computing devices and mobile sensors. The applications are driven
by context information and human users have to interact with workflows using
in various situations using all kinds of different modalities. While the user is
supported in his activities the process provides guidance and further can prepare
and adapt resources to the users needs. To make this interaction as seamless and
unobtrusive as possible a robust detection of the users actions is a key require-
ment.

In this thesis we have explored the interaction space between human users, sub-
ject to activity recognition, and context-driven process-oriented applications. The
main goal was to investigate in which ways structural information of a workflow-
based application can be used to reduce uncertainty and ambiguity of context in-
formation that drive the workflow itself. We have constructed a sound system
model that provides us with the basic assumptions required for the system to work
properly. In order to apply workflow modeling to the target application scenarios,
we investigated current approaches with respect to their modeling flexibility and
ways to integrate context information. As a result of this investigation we created
the HFM that provides modeling flexibility from both major workflow modeling
paradigms imperative and declarative and also is naturally designed to be driven
by context information.

Based on the system model we introduced a overall system architecture – FlowPal–
that builds upon a standard process management environment. We integrated a
CMS and researched a number of methods that can be added as plugins to the ar-
chitecture and aim to resolve the problems of uncertainty and ambiguity.

The most important plugin is ?Con that resolves interpretation issues for received
context events. First, we developed a variant, FlowCon, that is suitable for clas-
sic imperative workflows only but demonstrates the feasibility of the idea behind
?Con very well. We use flow knowledge or more specifically information about the
activities in the flow, their structural ordering and historical information as well
as information from the currently executed instance, to build a BN that provides
us with a second source of information to reason on the probability of the current
context information. Having applied this approach with FlowCon successfully to

191

10. Conclusions

imperative flows, we constructed FlexCon that uses the same principle but is ap-
plicable to the more flexible human-centric flows which could be defined by the
HFM. As our evaluation results show FlowCon is capable to increase the accuracy
of context events of up to 50% and very reasonable flow completion rates depend-
ing on the input characteristics of the CMS. FlexCon is also capable to improve
the accuracy of context events of up to 73% which is again very good result. But
FlexCon cannot consistently provide these values due to the increased flexibility
of the flows. Therefore, the flow completion rates stay behind those for FlowCon.
Please note again that a higher flow completion rate means less need for a user
to manually intervene. We also tackled the representation and reasoning of un-
certain context information in this work and the results have been subsumed in
the CE plugin of FlowPal. The investigated variants to represent uncertainty in
the system have also a major impact and we found that the overall system could
largely benefit from the usage of SL and 4V compared to PT.

Further we developed FEvA, a plugin that tackles issues in the sequence of events
that a flow may have to deal with. The goal has been to mitigate the sequence
errors and allow the flow to adapt with little user intervention. FEvA fulfills these
requirements very well when faced with false positive events or events that arrive
the at the application out-of-order, but still has space for improvements on missing
events.

A key factor that makes the results we presented resilient is the two phase ap-
proach we used to evaluate our algorithms. The case study we conducted in an
geriatric nursing home, covers a wide range of requirements relevant for our tar-
get application domains, providing us with the necessary insights to setup the
large scale simulations to test our algorithms against.

192

11. Outlook

The FlowPal approach has been so far limited in scope, to keep the complexity
especially of the experiments reasonable at first. But there are some natural places
to extend them. First, we focused on a single flow application only, neglecting the
possible ecosystem of concurrently running flow applications instantiated from
different flow models. By extending the structures learned by ?Con to all flows
in a relevant workplace/scenario a better benefit might be achieved. Another op-
portunity can be found in the users. So far we assumed that one BN captures the
habit of each and every person executing the flow instance. A personalized BN for
each user, possibly also spanning multiple flow models, might again yield an over-
all better result as the habit of this user can be better reflected by the specialized
model.

A very interesting next step would be to test the system in a small real-world de-
ployment similar to the scenario we described in Chapter 8. As of now this oppor-
tunity was not available. Besides the obvious result of a real world deployment,
this would further provide opportunities to come up with suitable meta-heuristics
to adapt FlowPal to the actual deployment. Some of the values we found in our
evaluations, such as the minimal event ignorance value for the SL CE and the
values for the fuzzy membership functions in FEvA might have different optimal
values in an actual real world scenario.

193

Bibliography

[AAD+07] Agrawal, Ashish ; Amend, Mike ; Das, Manoj ; Ford, Mark ; Keller,
Chris ; Kloppmann, Matthias ; König, Dieter ; Leymann, Frank ;
Müller, Ralf ; Pfau, Gerhard ; Plösser, Karsten ; Rangaswamy, Ravi
; Rickayzen, Alan ; Rowley, Michael ; Schmidt, Patrick ; Trickovic,
Ivana ; Yiu, Alex ; Zeller, Matthias: Web Services Human Task (WS-
HumanTask), Version 1.0 / Oasis. 2007. – Forschungsbericht

[AAH+09] In:Aalst, W. M. ; Adams, M. ; Hofstede, A. H. ; Pesic, M. ; Schonen-
berg, H.: Flexibility as a Service. Berlin, Heidelberg : Springer-Verlag,
2009. – ISBN 978–3–642–04204–1, 319–333

[AH03] Aalst, W.M.P. van d. ; Hofstede, A. H. M. T.: YAWL: Yet Another
Workflow Language. In: Information Systems 30 (2003), S. 245–275

[AHEA06] Adams, Michael ; Hofstede, ArthurH.M. ; Edmond, David ; Aalst,
WilM.P.: Worklets: A Service-Oriented Implementation of Dynamic
Flexibility in Workflows. Version: 2006. http://dx.doi.org/10.

1007/11914853_18. In: Meersman, Robert (Hrsg.) ; Tari, Zahir
(Hrsg.): On the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE Bd. 4275. Springer Berlin Heidelberg, 2006. –
ISBN 978–3–540–48287–1, 291-308

[AHH94] Aalst, Wil M. d. ; Hee, K.M. van ; Houben, G.J.: Modelling and
analysing workflow using a Petri-net based approach. In: Proc. 2nd
Workshop on Computer-Supported Cooperative Work Petri nets and related
formalisms, 1994, S. pp 31–50

[AKG+10] Altakouri, B. ; Kortuem, G. ; Grunerbl, A. ; Kunze, K. ; Lukowicz,
P.: The benefit of activity recognition for mobile phone based nurs-
ing documentation: A Wizard-of-Oz study. In: Wearable Computers
(ISWC), 2010 International Symposium on, 2010. – ISSN 1550–4816

[AMSW09] Aalst, Wil M. ; Mooij, Arjan J. ; Stahl, Christian ; Wolf, Karsten:
Formal Methods for Web Services. Version: 2009. http://dx.doi.

org/10.1007/978-3-642-01918-0_2. Berlin, Heidelberg : Springer-
Verlag, 2009. – ISBN 978–3–642–01917–3, Kapitel Service Interaction:
Patterns, Formalization, and Analysis, 42–88

195

http://dx.doi.org/10.1007/11914853_18
http://dx.doi.org/10.1007/11914853_18
http://dx.doi.org/10.1007/978-3-642-01918-0_2
http://dx.doi.org/10.1007/978-3-642-01918-0_2

Bibliography

[APS09] Aalst, W.M.P. van d. ; Pesic, M. ; Schonenberg, H.: Declarative
workflows: Balancing between flexibility and support. In: Computer
Science-Research and Development 23 (2009), Nr. 2, 99–113. http:

//www.springerlink.com/content/f33657685l38787m/

[ATM03] Adam, O. ; Thomas, O. ; Martin, G.: Fuzzy Workflows—Enhancing
Workflow Management with Vagueness. In: EURO/INFORMS Istanbul
2003 Joint International Meeting, 2003, 6–10

[ATV05] Adam, Otmar ; Thomas, Oliver ; Vanderhaeghen, Dominik: Fuzzy-
Set-Based Modeling of Business Process Cases. In: ICCBR Workshops,
2005, S. 251–260

[AWG05] Aalst, Wil M. P. d. ; Weske, Mathias ; Grünbauer, Dolf: Case han-
dling: a new paradigm for business process support. In: Data Knowl.
Eng. 53 (2005), Mai, Nr. 2, 129–162. http://dx.doi.org/10.1016/

j.datak.2004.07.003. – DOI 10.1016/j.datak.2004.07.003. – ISSN
0169–023X

[Bar81] Barnett, Jeffrey A.: Computational methods for a mathematical the-
ory of evidence. In: IJCAI’81: Proceedings of the 7th international joint
conference on Artificial intelligence. San Francisco, CA, USA : Morgan
Kaufmann Publishers Inc., 1981, 868–875

[BBA05] Barger, T.S. ; Brown, D.E. ; Alwan, M.: Health-status monitoring
through analysis of behavioral patterns. In: Systems, Man and Cyber-
netics, Part A: Systems and Humans, IEEE Transactions on 35 (2005), Nr.
1, 22 - 27. http://dx.doi.org/10.1109/TSMCA.2004.838474. – DOI
10.1109/TSMCA.2004.838474. – ISSN 1083–4427

[BDR07] Baldauf, Matthias ; Dustdar, Schahram ; Rosenberg, Florian: A
survey on context-aware systems. In: International Journal of Ad
Hoc and Ubiquitous Computing 2 (2007), Nr. 4, 263–277. http://

inderscience.metapress.com/index/1184787H28163T15.pdf

[BFH+09] Bouckaert, Remco R. ; Frank, Eibe ; Hall, Mark ; Kirkby, Richard
; Reutemann, Peter ; Seewald, Alex ; Scuse, David: Weka man-
ual (3.7.1), Juni 2009. http://prdownloads.sourceforge.net/weka/
WekaManual-3-7-1.pdf?download

[BG09] Buffett, Scott ; Geng, Liqiang: Bayesian Classification of Events for
Task Labeling Using Workflow Models. In: Business Process Manage-
ment Workshops. Milano, Italy, September 2009, 97-108

[BH08] Barker, Adam ; Hemert, Jano: Scientific Workflow: A Survey and
Research Directions. In: Wyrzykowski, Roman (Hrsg.) ; Dongarra,
Jack (Hrsg.) ; Karczewski, Konrad (Hrsg.) ; Wasniewski, Jerzy (Hrsg.):

196

http://www.springerlink.com/content/f33657685l38787m/
http://www.springerlink.com/content/f33657685l38787m/
http://dx.doi.org/10.1016/j.datak.2004.07.003
http://dx.doi.org/10.1016/j.datak.2004.07.003
http://dx.doi.org/10.1109/TSMCA.2004.838474
http://inderscience.metapress.com/index/1184787H28163T15.pdf
http://inderscience.metapress.com/index/1184787H28163T15.pdf
http://prdownloads.sourceforge.net/weka/WekaManual-3-7-1.pdf?download
http://prdownloads.sourceforge.net/weka/WekaManual-3-7-1.pdf?download

Bibliography

Parallel Processing and Applied Mathematics Bd. 4967. Springer Berlin
Heidelberg, 2008. – ISBN 978–3–540–68105–2, S. 746–753

[BJ77] Belnap Jr., Nuel D.: A useful four-valued logic. In: Modern uses of
multiple-valued logic. Springer, 1977, S. 5–37

[BKL10] Bahle, Gernot ; Kunze, Kai ; Lukowicz, Paul: On the use of magnetic
field disturbances as features for activity recognition with on body sen-
sors. In: Proceedings of the 5th European conference on Smart sensing and
context. Berlin, Heidelberg : Springer-Verlag, 2010 (EuroSSC’10). –
ISBN 3–642–16981–3, 978–3–642–16981–6, 71–81

[BKS03] Buchholz, Thomas ; Küpper, Axel ; Schiffers, Michael: Quality of
Context: What It Is And Why We Need It. In: In Proceedings of the 10th
Workshop of the OpenView University Association: OVUA’03, 2003

[BTJ+10] Biswas, Jit ; Tolstikov, Andrei ; Jayachandran, Maniyeri ; Fook, Vic-
tor Foo S. ; Wai, Aung Aung P. ; Phua, Clifton ; Huang, Weimin ;
Shue, Louis ; Gopalakrishnan, Kavitha ; Lee, Jer-En: Health and
wellness monitoring through wearable and ambient sensors: exem-
plars from home-based care of elderly with mild dementia. In: An-
nales des Télécommunications 65 (2010), Nr. 9-10, S. 505–521. http:

//dx.doi.org/http://dx.doi.org/10.1007/s12243-010-0176-0. –
DOI http://dx.doi.org/10.1007/s12243–010–0176–0

[CITR08] Chiao, Carolina ; Iochpe, Cirano ; Thom, Lucinéia H. ; Reichert, Man-
fred: Verifying Existence, Completeness and Sequences of Semantic
Process Patterns in Real Workflow Processes. In: Proc. of the Simpó-
sio Brasileiro de Sistemas de Informação. Rio de Janeiro: UNIRIO. Brazil,
2008, p. 164-175.

[CK10] Curbera, Francisco ; Khalaf, Rania: Implementing BPEL4WS: The Ar-
chitecture of a BPEL4WS Implementation. / IBM T.J. Watson Research
Center. 2010. – Forschungsbericht

[CL04] Chakraborty, Dipanjan ; Lei, Hui: Pervasive Enablement of Business
Processes. In: PerCom, 2004, S. 87–100

[DA99] Dey, Anind K. ; Abowd, Gregory D.: Towards a better understand-
ing of context and context-awareness. In: In HUC ’99: Proceedings of
the 1st international symposium on Handheld and Ubiquitous Computing,
Springer-Verlag, 1999, S. 304–307

[DMV+05] Dongen, B. van ; Medeiros, A. de ; Verbeek, H. ; Weijters, A. ; Aalst,
W. van d.: The ProM Framework: A New Era in Process Mining Tool
Support. Version: 2005. http://dx.doi.org/10.1007/11494744-25.

197

http://dx.doi.org/http://dx.doi.org/10.1007/s12243-010-0176-0
http://dx.doi.org/http://dx.doi.org/10.1007/s12243-010-0176-0
http://dx.doi.org/10.1007/11494744-25

Bibliography

In: Ciardo, Gianfranco (Hrsg.) ; Darondeau, Philippe (Hrsg.): Ap-
plications and Theory of Petri Nets 2005 Bd. 3536. Springer Berlin /
Heidelberg, 2005. – ISBN 978–3–540–26301–2, 1105-1116

[DRK00] Dadam, Peter ; Reichert, Manfred ; Kuhn, Klaus: Clinical Work-
flows - The Killer Application for Process-oriented Information Sys-
tems? In: Proc. 4th Int’l Conference on Business Information Systems,
Springer, April 2000, 36-59

[DS05] Dustdar, Schahram ; Schreiner, Wolfgang: A Survey on Web Services
Composition. In: INTERNATIONAL JOURNAL ON WEB AND GRID
SERVICES 1 (2005), Nr. 1, S. 1–30

[EFH+09] Eberle, Hanna ; Föll, Stefan ; Herrmann, Klaus ; Leymann, Frank ;
Marconi, Annapaola ; Unger, Tobias ; Wolf, Hannes: Enforcement
from the Inside: Improving Quality of Business in Process Manage-
ment. In: 2009 IEEE International Conference on Web Services (ICWS
2009). Los Angeles : IEEE Computer Society, Juli 2009

[FFHR11] Fischer, Daniel ; Föll, Stefan ; Herrmann, Klaus ; Rothermel, Kurt:
Energy-efficient workflow distribution. In: Proceedings of the 5th Inter-
national Conference on Communication System Software and Middleware.
New York, NY, USA : ACM, 2011 (COMSWARE ’11). – ISBN 978–1–
4503–0560–0, 2:1–2:8

[GH01] Giannakopoulou, Dimitra ; Havelund, Klaus: Automata-Based Ver-
ification of Temporal Properties on Running Programs. In: In Pro-
ceedings, International Conference on Automated Software Engineering
(ASE’01), IEEE Computer Society, 2001, 412–416

[Gin88] Ginsberg, Matthew: Multivalued Logics: A Uniform Approach to
Inference in Artificial Intelligence. In: Computational Intelligence 4
(1988), S. 265–316

[Gin90] Ginsberg, Matthew: Bilattices and Modal Operators. In: Journal of
Logic and Computation 1 (1990), S. 1–41

[Gre02] Grefen, Paul: Transactional Workflows or Workflow Transac-
tions? Version: 2002. http://dx.doi.org/10.1007/3-540-46146-9_
7. In: Hameurlain, Abdelkader (Hrsg.) ; Cicchetti, Rosine (Hrsg.) ;
TraunmÃ¼ller, Roland (Hrsg.): Database and Expert Systems Applica-
tions Bd. 2453. Springer Berlin Heidelberg, 2002. – ISBN 978–3–540–
44126–7, 60-69

[HC03] Hwang, San-Yih ; Chen, Ya-Fan: Personal Workflows: Modeling and
Management. In: Lecture Notes in Computer Science Bd. 2574/2003,
Springer, 2003 (LNCS), S. 141–152

198

http://dx.doi.org/10.1007/3-540-46146-9_7
http://dx.doi.org/10.1007/3-540-46146-9_7

Bibliography

[HCC05] Han, Joohyun ; Cho, Yongyun ; Choi, Jaeyoung: Context-Aware Work-
flow Language Based on Web Services for Ubiquitous Computing. In:
ICCSA (2), 2005, S. 1008–1017

[HCKC06] Han, Joohyun ; Cho, Yongyun ; Kim, Eunhoe ; Choi, Jaeyoung: A
Ubiquitous Workflow Service Framework. In: ICCSA (4), 2006, S. 30–
39

[HFF+11] Hiesinger, Christian ; Fischer, Daniel ; Föll, Stefan ; Klaus, Her-
rmann ; Rothermel, Kurt: Minimizing Human Interaction Time in
Workflows. In: Proceedings of the Sixth International Conference on In-
ternet and Web Applications and Services (ICIW 2011). St. Maarten, the
Netherlands Antilles : IARIA, März 2011, 22–28

[HGR07] Hackmann, Gregory ; Gill, Christopher ; Roman, Gruia-Catalin: Ex-
tending BPEL for Interoperable Pervasive Computing. In: IEEE Inter-
national Conference on Pervasive Services. Istanbul, 15-20 July 2007, 204
- 213

[HHGR06] Hackmann, Gregory ; Haitjema, Mart ; Gill, Christopher D. ; Roman,
Gruia-Catalin: Sliver: A BPEL Workflow Process Execution Engine
for Mobile Devices. In: Proceedings of 4th International Conference on
Service Oriented Computing (ICSOC Bd. 4294, Springer, 2006 (LNCS),
503-508

[HR06] Henricksen, Karen ; Robinson, Ricky: A survey of middleware for
sensor networks: state-of-the-art and future directions. In: MidSens
’06: Proceedings of the international workshop on Middleware for sensor
networks. New York, NY, USA : ACM, 2006. – ISBN 1–59593–424–3,
60–65

[HRKD08] Herrmann, Klaus ; Rothermel, Kurt ; Kortuem, Gerd ; Dulay,
Naranker: Adaptable Pervasive Flows–An Emerging Technology for
Pervasive Adaptation. In: Proceedings of the 2008 Second IEEE Inter-
national Conference on Self-Adaptive and Self-Organizing Systems Work-
shops IEEE Computer Society, 2008, 108–113

[IKM+10] Ings, Luc Daveand C. Daveand Clément ; König, Dieter ; Mehta,
Vinkesh ; Müller, Ralf ; Rangaswamy, Ravi ; Rowley, Michael ; Trick-
ovic, Ivana: WS-BPEL Extension for People (BPEL4People) Specifica-
tion Version 1.1 / Oasis. 2010. – Forschungsbericht

[Jøs97] Jøsang, Audun: Artificial reasoning with subjective logic. In: In 2nd
Australian Workshop on Commonsense Reasoning, 1997

[Jøs11] Jøsang, Audun: Subjective Logic. http://folk.uio.no/josang/

publications.html. Version: September 2011. – Draft book

199

http://folk.uio.no/josang/publications.html
http://folk.uio.no/josang/publications.html

Bibliography

[KBNL11] Kunze, Kai ; Bahle, Gernot ; Neuburger, Josef ; Lukowicz, Paul: D.2.3
- Final report on the integration of context recognition / Embedded
Systems Lab, University of Passau. 2011. – Forschungsbericht

[Kja07] Kjaer, Kristian E.: A survey of context-aware middleware. In:
SE’07: Proceedings of the 25th conference on IASTED International Multi-
Conference. Anaheim, CA, USA : ACTA Press, August 2007, 148–155

[KKR08] Koch, Gerald G. ; Koldehofe, Boris ; Rothermel, Kurt: Higher con-
fidence in event correlation using uncertainty restrictions. In: 28th
IEEE International Conference on Distributed Computing Systems Work-
shops (ICDCSW’08); 2008, 2008. – ISSN 1545–0678, 417–422

[KL08] Kunze, Kai ; Lukowicz, Paul: Dealing with sensor displacement in
motion-based onbody activity recognition systems. In: Proceedings of
the 10th international conference on Ubiquitous computing. New York,
NY, USA : ACM, 2008 (UbiComp ’08). – ISBN 978–1–60558–136–1,
20–29

[KWK+09] Kunze, Kai ; Wagner, Florian ; Kartal, Ersun ; Morales Kluge,
Ernesto ; Lukowicz, Paul: Does Context Matter ? - A Quantitative
Evaluation in a Real World Maintenance Scenario. In: Proceedings of
the 7th International Conference on Pervasive Computing. Berlin, Hei-
delberg : Springer-Verlag, 2009 (Pervasive ’09). – ISBN 978–3–642–
01515–1, 372–389

[LGB05] Lippe, Sonia ; Greiner, Ulrike ; Barros, Alistair: A survey on state
of the art to facilitate modelling of cross-organisational business pro-
cesses. In: XML4BPM 1 (2005), S. 7–22

[LR00] Leymann, Frank ; Roller, Dieter: Production workflow: concepts
and techniques. Prentice Hall PTR, 2000 http://www.amazon.de/

Production-Work-Flow-Concepts-Techniques/dp/0130217530

[LSPG06] Lu, Ruopeng ; Sadiq, Shazia ; Padmanabhan, Vineet ; Governatori,
Guido: Using a temporal constraint network for business process ex-
ecution. Version: 2006. http://portal.acm.org/citation.cfm?id=
1151736.1151753. In: Proceedings of the 17th Australasian Database
Conference - Volume 49. Darlinghurst, Australia : Australian Computer
Society, Inc., 2006 (ADC ’06). – ISBN 1–920682–31–7, 157–166

[LUW10] Leymann, Frank ; Unger, Tobias ; Wagner, Sebastian: On designing a
people-oriented constraint-based workflow language. In: ZEUS, 2010,
25-31

200

http://www.amazon.de/Production-Work-Flow-Concepts-Techniques/dp/0130217530
http://www.amazon.de/Production-Work-Flow-Concepts-Techniques/dp/0130217530
http://portal.acm.org/citation.cfm?id=1151736.1151753
http://portal.acm.org/citation.cfm?id=1151736.1151753

Bibliography

[LVOS09] Lohmann, Niels ; Verbeek, Eric ; Ouyang, Chun ; Stahl, Christian:
Comparing and evaluating Petri net semantics for BPEL. In: Interna-
tional Journal of Business Process Integration and Management 4 (2009),
Nr. 1, S. 60–73

[LWG+09] Lange, Ralph ; Weinschrott, Harald ; Geiger, Lars ; Blessing, An-
dre ; Dürr, Frank ; Rothermel, Kurt ; Schütze, Hinrich: On a
Generic Uncertainty Model for Position Information. In: Rothermel,
Kurt (Hrsg.) ; Fritsch, Dieter (Hrsg.) ; Blochinger, Wolfgang (Hrsg.) ;
Dürr, Frank (Hrsg.): First Internationa Workshop on Quality of Context,
QuaCon 2009. Stuttgart : Springer, June 2009 (LNCS 5786), S. 76–87

[Mur02] Murphy, Kevin P.: Dynamic Bayesian Networks: Representation, Infer-
ence and Learning, UNIVERSITY OF CALIFORNIA, BERKELEY, Diss.,
2002

[NAPI+03] Najafi, B. ; Aminian, K. ; Paraschiv-Ionescu, A. ; Loew, F. ; Bula, C.J.
; Robert, P.: Ambulatory system for human motion analysis using a
kinematic sensor: monitoring of daily physical activity in the elderly.
In: Biomedical Engineering, IEEE Transactions on 50 (2003), Nr. 6, S.
711 –723. http://dx.doi.org/10.1109/TBME.2003.812189. – DOI
10.1109/TBME.2003.812189. – ISSN 0018–9294

[NPP02] Ng, Brenda ; Peshkin, Leonid ; Pfeffer, Avi: Factored Particles for
Scalable Monitoring. In: In Proceedings of the Eighteenth Conference on
Uncertainty in Artificial Intelligence, Morgan Kaufmann, 2002, S. 370–
377

[Ped94] Pedrycz, Witold: Why triangular membership functions? In:
Fuzzy Sets and Systems 64 (1994), 21 - 30. http://dx.doi.org/

DOI:10.1016/0165-0114(94)90003-5. – DOI DOI: 10.1016/0165–
0114(94)90003–5. – ISSN 0165–0114

[PG94] Pedrycz, Witold ; Gomide, Fernando: A generalized fuzzy Petri net
model. In: IEEE Transactions on Fuzzy Systems 2 (1994), November,
Nr. 4, S. 295 –301. http://dx.doi.org/10.1109/91.324809. – DOI
10.1109/91.324809. – ISSN 1063–6706

[Pro] ProM Fuzzy Miner: http://www.processmining.org/online/fuzzyminer,
http://www.processmining.org/online/fuzzyminer

[PSA07] Pesic, Maja ; Schonenberg, Helen ; Aalst, Wil M. d.: DE-
CLARE: Full Support for Loosely-Structured Processes. In:
Enterprise Distributed Object Computing Conference, IEEE In-
ternational 0 (2007), S. 287. http://dx.doi.org/http:

//doi.ieeecomputersociety.org/10.1109/EDOC.2007.14. – DOI

201

http://dx.doi.org/10.1109/TBME.2003.812189
http://dx.doi.org/DOI: 10.1016/0165-0114(94)90003-5
http://dx.doi.org/DOI: 10.1016/0165-0114(94)90003-5
http://dx.doi.org/10.1109/91.324809
http://www.processmining.org/online/fuzzyminer
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/EDOC.2007.14
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/EDOC.2007.14

Bibliography

http://doi.ieeecomputersociety.org/10.1109/EDOC.2007.14. – ISSN
1541–7719

[PSSA07] Pesic, M. ; Schonenberg, MH ; Sidorova, N. ; Aalst, WMP van d.:
Constraint-based workflow models: Change made easy. In: On the
Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE,
GADA, and IS Bd. 4803. Heidelberg : Springer, 2007 (LNCS), 77-94

[RAHE05] Russell, Nick ; Aalst, WilM.P. ; Hofstede, ArthurH.M. ; Edmond,
David: Workflow Resource Patterns: Identification, Representation
and Tool Support. Version: 2005. http://dx.doi.org/10.1007/

11431855_16. In: Advanced Information Systems Engineering Bd. 3520.
Springer Berlin Heidelberg, 2005. – ISBN 978–3–540–26095–0, 216-
232

[RCMR01] Raposo, A.B. ; Coelho, A.L.V. ; Magalhaes, L.P. ; Ricarte, I.L.M.: Us-
ing fuzzy Petri nets to coordinate collaborative activities. In: IFSA
World Congress and 20th NAFIPS International Conference, 2001. Joint
9th Bd. 3, 2001, 1494 -1499 vol.3

[RDD+03] Rothermel, Kurt ; Dudkowski, Dominique ; Dürr, Frank ; Bauer, Mar-
tin ; Becker, Christian: Ubiquitous Computing - More than Comput-
ing Anytime Anyplace? In: Proceedings of the 49. Photogrammetrische
Woche. Stuttgart : ifp, September 2003

[Rei10] Reisig, W.: Petrinetze. Vieweg-Teubner Verlag, 2010

[RHAM06] Russell, N. ; Hofstede, A.H.M. ter ; Aalst, W.M.P. van d. ; Mulyar,
N.: Workflow Control-Flow Patterns: A Revised View / BPM Center
Report. 2006. – Forschungsbericht

[RHEA05] Russell, Nick ; Hofstede, Arthur H. M. ; Edmond, David ; Aalst, Wil
M. P. d.: Workflow data patterns: identification, representation and
tool support. In: Proceedings of the 24th international conference on Con-
ceptual Modeling. Berlin, Heidelberg : Springer-Verlag, 2005 (ER’05). –
ISBN 3–540–29389–2, 978–3–540–29389–7, 353–368

[RN02] Russell, Stuart J. ; Norvig, Peter: Artificial Intelligence: A Modern
Approach. 2nd Edition. Prentice Hall, 2002 http://www.amazon.com/

Artificial-Intelligence-Modern-Approach-2nd/dp/0137903952/

ref=sr_1_2?ie=UTF8&s=books&qid=1272898384&sr=8-2

[Sha92] Shafer, Glenn: Response to the discussion of belief functions. In:
International Journal of Approximate Reasoning 6 (1992), Nr. 3, S. 445–
480

202

http://dx.doi.org/10.1007/11431855_16
http://dx.doi.org/10.1007/11431855_16
http://www.amazon.com/Artificial-Intelligence-Modern-Approach-2nd/dp/0137903952/ref=sr_1_2?ie=UTF8&s=books&qid=1272898384&sr=8-2
http://www.amazon.com/Artificial-Intelligence-Modern-Approach-2nd/dp/0137903952/ref=sr_1_2?ie=UTF8&s=books&qid=1272898384&sr=8-2
http://www.amazon.com/Artificial-Intelligence-Modern-Approach-2nd/dp/0137903952/ref=sr_1_2?ie=UTF8&s=books&qid=1272898384&sr=8-2

Bibliography

[SLP04] Strang, Thomas ; Linnhoff-Popien, Claudia: A Context Modeling
Survey. In: Workshop on Advanced Context Modelling, Reasoning and
Management, UbiComp 2004 - The Sixth International Conference on
Ubiquitous Computing, Nottingham/England, 2004

[TRC+08] Thom, Lucinéia H. ; Reichert, Manfred ; Chiao, Carolina M. ; Iochpe,
Cirano ; Hess, Guillermo N.: Inventing Less, Reusing More, and
Adding Intelligence to Business Process Modeling. In: DEXA, 2008,
S. 837–850

[TRCI08] Thom, Lucinéia H. ; Reichert, Manfred ; Chiao, Carolina M. ; Iochpe,
Cirano: Applying Activity Patterns for Developing an Intelligent Pro-
cess Modeling Tool. In: ICEIS (3-1), 2008, S. 112–119

[TRI09] Thom, Lucineia H. ; Reichert, Manfred ; Iochpe, Cirano: Activity
patterns in process-aware information systems: basic concepts and
empirical evidence. In: International Journal of Business Process In-
tegration and Management 4 (2009), Januar, Nr. 2, 93–110. http:

//www.metapress.com/content/H9X5114788107226

[UBR06] Urbanski, Stephan ; Becker, Christian ; Rothermel, Kurt: Sentient
Processes - Process-based Applications in Pervasive Computing. In:
PerCom Workshops, 2006, S. 608–611

[UELW10] Unger, T. ; Eberle, H. ; Leymann, F. ; Wagner, S.: An event-model for
constraint-based person-centric flows. In: Progress in Informatics and
Computing (PIC), 2010 IEEE International Conference on Bd. 2, 2010, S.
927 –932

[UHW+09] Urbanski, Stephan. ; Huber, Eduard. ; Wieland, Matthias. ; Leymann,
Frank. ; Nicklas, Daniela.: PerFlows for the computers of the 21st
century. In: Pervasive Computing and Communications, 2009. PerCom
2009. IEEE International Conference on, 2009, 1 -6

[Wei91] Weiser, Mark: The Computer for the 21st Century. In: Scientific Amer-
ican 265 (1991), September, Nr. 3, 94–104. http://sandbox.xerox.

com/want/papers/ubi-sciam-sep91.pdf. – The PDF-file is a reprint.

[WHP11] Wolf, Hannes ; Herrmann, Klaus ; Palauro, Jonas: Fuzzy Event As-
signment for Robust Context-Aware Workflows. In: Proceedings of the
Fourth International Conference on Dependability (DEPEND 2011), 2011

[WHR09] Wolf, Hannes ; Herrmann, Klaus ; Rothermel, Kurt: Modeling Dy-
namic Context Awareness for Situated Workflows. In: R. Meersman,
P. H. (Hrsg.) ; (Eds.), T. D. (Hrsg.): OTM 2009 Workshops Bd. 5872. Vil-
amoura : Springer-Verlag Berlin Heidelberg, November 2009 (LNCS),
98-107

203

http://www.metapress.com/content/H9X5114788107226
http://www.metapress.com/content/H9X5114788107226
http://sandbox.xerox.com/want/papers/ubi-sciam-sep91.pdf
http://sandbox.xerox.com/want/papers/ubi-sciam-sep91.pdf

Bibliography

[WHR10] Wolf, Hannes ; Herrmann, Klaus ; Rothermel, Kurt: Robustness
in Context-Aware Mobile Computing. In: IEEE International Confer-
ence on Wireless and Mobile Computing, Networking and Communications
(WiMob’2010). Niagara Falls, Canada, 10 2010

[WHR11] Wolf, Hannes ; Herrmann, Klaus ; Rothermel, Kurt: FlexCon
– Robust Context Handling in Human-Oriented Pervasive Flows.
Version: 2011. http://dx.doi.org/10.1007/978-3-642-25109-2_

16. In: Meersman, Robert (Hrsg.) ; Dillon, Tharam (Hrsg.) ; Her-

rero, Pilar (Hrsg.) ; Kumar, Akhil (Hrsg.) ; Reichert, Manfred (Hrsg.)
; Qing, Li (Hrsg.) ; Ooi, Beng-Chin (Hrsg.) ; Damiani, Ernesto (Hrsg.) ;
Schmidt, Douglas (Hrsg.) ; White, Jules (Hrsg.) ; Hauswirth, Manfred
(Hrsg.) ; Hitzler, Pascal (Hrsg.) ; Mohania, Mukesh (Hrsg.): On the
Move to Meaningful Internet Systems: OTM 2011 Bd. 7044. Springer
Berlin / Heidelberg, 2011. – ISBN 978–3–642–25108–5, 236-255

[WHR13] Wolf, Hannes ; Herrmann, Klaus ; Rothermel, Kurt: Deal-
ing with Uncertainty: Robust Workflow Navigation in the Health-
care Domain. In: ACM Trans. Intell. Syst. Technol. 4 (2013), 65:1–
65:23. http://dx.doi.org/10.1145/2508037.2508046. – DOI
10.1145/2508037.2508046. – ISSN 2157–6904

[Wik] http://en.wikipedia.org/wiki/File:Accuracy_and_precision.

svg

[WKL+09] Wieland, Matthias ; Käppeler, Uwe-Philipp ; Levi, Paul ; Leymann,
Frank ; Nicklas, Daniela: Towards Integration of Uncertain Sensor
Data into Context-aware Workflows. In: Informatics (LNI), GI-Edition
Lecture N. (Hrsg.): Tagungsband INFORMATIK 2009 – Im Focus das
Leben, 39. Jahrestagung der Gesellschaft für Informatik e.V. (GI). Lübeck
: Lecture Notes in Informatics (LNI), September 2009

[WKN08] Wieland, Matthias ; Kaczmarczyk, Peter ; Nicklas, Daniela: Context
Integration for Smart Workflows. In: Proceedings of the Sixth Annual
IEEE International Conference on Pervasive Computing and Communi-
cations. Hong Kong : IEEE computer society, March 2008. – ISBN
0–7695–3113–X, 239–242

[WKNL07] Wieland, Matthias ; Kopp, Oliver ; Nicklas, Daniela ; Leymann,
Frank: Towards Context-Aware Workflows. In: Pernici, Barbara
(Hrsg.) ; Gulla, Jon A. (Hrsg.): CAiSE´07 Proceedings of the Workshops
and Doctoral Consortium Vol.2, Trondheim, Norway, June 11-15th, 2007,
Tapir Acasemic Press, Juni 2007. – ISBN 978–82–519–2246–3

[YAW13] YAWL: Credit Card Example. http://www.yawlfoundation.org/

pages/resources/creditcardexample.html. Version: 2013

204

http://dx.doi.org/10.1007/978-3-642-25109-2_16
http://dx.doi.org/10.1007/978-3-642-25109-2_16
http://dx.doi.org/10.1145/2508037.2508046
http://en.wikipedia.org/wiki/File:Accuracy_and_precision.svg
http://en.wikipedia.org/wiki/File:Accuracy_and_precision.svg
http://www.yawlfoundation.org/pages/resources/creditcardexample.html
http://www.yawlfoundation.org/pages/resources/creditcardexample.html

[Zad65] Zadeh, LA: Fuzzy Sets. In: Information and Control 8 (1965),
Nr. 3, 338–353. http://linkinghub.elsevier.com/retrieve/pii/

S001999586590241X

[Zad86] Zadeh, Lotfi A.: A simple view of the Dempster-Shafer theory of evi-
dence and its implication for the rule of combination. In: AI magazine
7 (1986), Nr. 2, S. 85

All URLs have been checked at June 27, 2014.

205

http://linkinghub.elsevier.com/retrieve/pii/S001999586590241X
http://linkinghub.elsevier.com/retrieve/pii/S001999586590241X

Curriculum Vitae

Hannes Wolf
Date and place of birth: May 17th, 1984; Cottbus, Germany
Nationality: German

09/2014 – today Software Engineer for Embedded Devices
Bosch Connected Devices and Solutions GmbH,
Reutlingen, Germany

04/2012 – 08/2014 Engineer for final test of MEMS-sensors
Automotive Electronics, Robert Bosch GmbH,
Reutlingen, Germany

03/2008 – 02/2012 Research staff member at the Institute of
Parallel and Distributed Systems (IPVS),
Universität Stuttgart, Germany

10/2003 – 02/2008 Studies in Computer Science
at Universität Stuttgart, Germany
Degree: Diplom-Informatiker (Dipl.–Inf.)

06/2006 – 02/2007 ERASMUS exchange studies
at University of Limerick, Ireland

07/2002 – 06/2003 National Military Service
at "2./233. Gebrigsjägerbataillon"
in Mittenwald, Germany

09/1998 – 06/2002 Secondary School and university-entrance diploma
at Goetheschule in Ilmenau, Germany

207

