
Decoding Strategies for Syntax-based
Statistical Machine Translation

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der
Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Fabienne Braune
aus Thun/Schweiz

Hauptberichter: Dr. Andreas Maletti
Mitberichter 1: Dr. Alexander Fraser
Mitberichter 2: Prof. Dr. Jonas Kuhn
Mitberichter 3: Prof. Dr. Kevin Knight

Tag der mündlichen Prüfung: 30.11.2015

Institut für Maschinelle Sprachverarbeitung (IMS)
Universität Stuttgart

2015

Abstract

Translation is the task of transforming text from a given language into another.
Provided with a sentence in an input language, a human translator produces a
sentence in the desired target language. The advances in artificial intelligence
in the 1950s led to the idea of using machines instead of humans to generate
translations. Based on this idea, the field of Machine Translation (MT) was created.
The first MT systems aimed to map input text into the target translation through
the application of hand-crafted rules. While this approach worked well for specific
language-pairs on restricted fields, it was hardly extendable to new languages and
domains because of the huge amount of human effort necessary to create new
translation rules. The increase of computational power enabled Statistical Machine
Translation (SMT) in the late 1980s, which addressed this problem by learning
translation units automatically from large text collections.

Statistical machine translation systems can be divided into several paradigms
depending on the form of the (automatically learned) units used during trans-
lation. Early systems modeled translation between words. Later work extended
these units from single words to sequences of words called phrases. A common
point between word and phrase-based SMT is that the translation process takes
place sequentially. This left-to-right process is not well suited to translate between
languages where several words need to be reordered over (potentially) long
distance. Such reorderings, which take place between many language pairs (e.g.
English-German, English-Chinese or English-Arabic), led to the implementation
of SMT systems based on formalisms that allow to translate recursively instead
of sequentially. In these systems, called syntax-based systems, the (automatically
learned) translation units are modeled with formal grammar productions and
translation is performed by assembling the productions of these grammars.

Many different grammar formalisms have been developed to model translation.
One of the first is the Synchronous Context-Free Grammar (SCFG) which is an
extension of the well-known Context-Free Grammar (CFG). To overcome several
drawbacks of SCFG, more powerful formalisms have been explored such as the

2

Synchronous Tree Substitution Grammar (STSG) or the local Multi Bottom-Up
Tree Transducer (l-MBOT). Because formal grammars can encode information in
their non-terminal symbols, linguistic annotations can easily be integrated into
syntax-based systems. Such annotations have been integrated at several levels. One
of the first large scale and high performance approaches is the hierarchical system
which uses SCFG rules without linguistic annotations. Another high-performance
system uses STSG rules with linguistic information on the target language.

This thesis contributes to the field of syntax-based SMT in three ways. First, the
applicability of a new grammar formalism to SMT is tested by building the first
system based on the l-MBOT. Previous to this work, procedures to automatically
learn l-MBOT translation rules were developed. However, the implementation of
the translation process and an empirical evaluation remained to be done. Our work
closes this gap.

The second contribution is the exploration of new ways to integrate linguistic
annotations in l-MBOT based systems. Three systems have been implemented
that work with annotations at different levels. A first variant works without any
annotations. A second variant uses annotations of the input and target languages
and a third one integrates target annotations only.

The last contribution explores new ways to integrate linguistic annotations in the
translation model instead of encoding those in the translation rules. In this work, a
hierarchical system is augmented with syntactic annotation in the form of soft syn-
tactic features. To this end, a discriminative model has been defined and trained,
which refines rule selection by taking the syntactic structure of the source sentence
into account. This model is added to the hierarchical translation model as an addi-
tional feature. This model has been extended to also work on systems integrating
annotations of the target language.

3

Deutsche Zusammenfassung

Übersetzung ist der Prozess, Texte von einer Sprache in eine andere zu trans-
formieren. Sätze aus einer Sprache werden durch einen menschlichen Übersetzer in
die Zielsprache überführt. Die Fortschritte in Künstlicher Intelligenz in den 1950er
Jahren haben dazu geführt, dass ab diesem Zeitpunkt ebenfalls Computer für
die Übersetzung eingesetzt wurden. Dies ist die Geburtsstunde der Maschinellen
Übersetzung (MÜ). Die ersten MÜ-Systeme basierten auf handgeschriebenen
Regeln, die Texte aus einer Sprache auf eine andere Sprache abbilden können.
Dieser Ansatz eignet sich zwar sehr gut für einige Sprachpaare in gewissen
Anwendungsbereichen, kann aber nicht ohne sehr kostspieliges Regelschreiben für
neue Sprachen oder Anwendungen angepasst werden. Die Verfügbarkeit höherer
Rechenleistung hat in den späten 1980er Jahren dazu geführt, dass sich Statistis-
che Maschinelle Übersetzung (SMÜ) etablieren konnte. SMÜ-Systeme lernen die
nötigen Übersetzungseinheiten automatisch aus großen Textsammlungen.

SMÜ-Paradigma können abhängig von ihrer automatisch gelernten Übersetzung-
seinheiten in verschiedene Paradigmen eingeteilt werden. Die ersten Systeme
modellierten nur die Übersetzung von einzelnen Wörtern. Spätere Systeme
erweiterten dies zu Wortsequenzen, welche als Phrasen bezeichnet werden.
Eine Gemeinsamkeit beider Ansätze besteht darin, dass die Übersetzung se-
quentiell erfolgt. Dieser von-Links-nach-Rechts Ansatz ist nicht sehr praktikabel,
falls Wörter im Rahmen der Übersetzung über eine lange Distanz im Satz
neu geordnet werden müssen. Typische Sprachpaare, die dieses Phänomen
aufweisen, sind Englisch-Deutsch, Englisch-Chinesisch oder Englisch-Arabisch. Um
diesem Problem entgegenzuwirken, wurde ein neues SMÜ Paradigma eingeführt,
welches die Übersetzung rekursiv statt sequentiell durchführt. Diese sogenannten
syntax-basierten SMÜ Systeme basieren auf Übersetzungseinheiten, die durch
Produktionen einer formalen Grammatik dargestellt werden.

Viele unterschiedliche Grammatikformalismen wurden zur Modellierung von
Übersetzung entwickelt. Einer der ersten waren synchrone kontextfreie Gram-
matiken (SCFG), welche eine Erweiterung der kontextfreien Grammatiken

4

darstellen. Um einige Nachteile der SCFGs auszugleichen, wurden mächtigere
Formalismen untersucht. Darunter fallen Baumsubstitutionsgrammatiken (STSG)
oder der lokale, aufsteigende Mehrfachbaumübersetzer (l-MBOT). Da formale
Grammatiken Informationen in ihren Nicht-Terminalen speichern können, lassen
sich linguistische Annotationen sehr einfach über diese Symbole in den For-
malismus übertragen. Solche Annotationen können auf unterschiedliche Arten
eingeführt werden. Das erste System, das im großen Maßstab eingesetzt wurde, ist
das hierarchische Modell. Dieses verwendet SCFG-Regeln, die als Nicht-Terminale
nur ein generisches Symbol verwenden. Ein anderer erfolgreicher Ansatz sind
Systeme mit linguistischen Annotationen aus der Zielsprache.

Diese Arbeit trägt zu dem Gebiet der syntax-basierten SMÜ in dreierlei Hinsicht
bei. Erstens wurde ein neuer Grammatikformalismus basierend auf l-MBOT
implementiert und getestet. Dieser Arbeit ging eine Vorarbeit zur automatischen
Extraktion von l-MBOT-Grammatiken voraus. Jedoch gab es bisher weder einen
Übersetzungsalgorithmus noch eine empirische Evaluation dieses Modells. Diese
Arbeit schliesst diese Lücke.

Als Zweites wurden neue Möglichkeiten untersucht, wie linguistische Annotationen
in einem l-MBOT-basierten MÜ System eingesetzt werden können. Dazu wurden
drei Systeme implementiert, die verschiedene Annotationen verwenden. Die erste
Variante verwendet keine Annotation, die zweite Variante betrachtet Annotationen
für die Quell- und die Zielsprache. In der letzten Variante werden nur Annotationen
in der Zielsprache betrachtet.

Abschließend wurde untersucht, wie linguistische Annotationen im Überset-
zungsmodell verankert werden können, anstatt sie wie herkömmlich über die Verar-
beitung der Übersetzungsregeln zu betrachten. Dazu wurde ein hierarchisches Sys-
tem mit syntaktischen Annotationen angereichert. Dies konnte durch ein diskrimi-
natives Modell, welches als zusätzliches Merkmal im hierarchischen MÜ System in-
tegriert ist, erreicht werden. Dieses Modell erlaubt eine bessere Regelauswahl durch
das Betrachten der syntaktischen Analyse des Quellsatzes. Darüber hinaus wurde
das Modell erweitert, damit ebenfalls Annotationen der Zielsprache während der
Übersetzung einbezogen werden können.

5

Contents

1 Introduction 10

1.1 Syntax-based SMT . 10

1.2 Contributions . 16

1.2.1 Theoretical Contributions . 16

1.2.2 Software Contributions . 17

1.3 Outline of the Dissertation . 17

2 Synchronous Grammars and their Implementation 20

2.1 Synchronous Grammars . 21

2.1.1 Weighted Synchronous Context-Free Grammars 21

2.1.2 Weighted Synchronous Tree Substitution Grammars 26

2.1.3 Weighted Synchronous Tree Sequence Substitution Grammars 33

2.2 Statistical Machine Translation with Synchronous Grammars 42

2.2.1 Weighted Synchronous Context-Free Grammars 43

2.2.2 Weighted Synchronous Tree Substitution Grammars 47

2.2.3 Weighted Synchronous Tree Sequence Substitution Grammars 49

2.3 Research Contributions . 51

3 Soft Syntactic Constraints 53

3.1 Rule Application in Hierarchical SMT 54

3.2 Better Rule Application with Syntactic Features 55

3.2.1 Syntactic Context Models . 56

3.2.2 Syntactic Rule Selection Models 57

3.3 Syntactic Rule Selection for String-to-Tree SMT 58

6

Contents

3.4 Research Contributions . 59

4 Background: Decoding for Synchronous Context-Free Grammars 62

4.1 Hierarchical SMT . 63

4.1.1 Hierarchical Grammar . 63

4.1.2 The Hierarchical Translation Model 67

4.2 Hierarchical Decoding . 71

4.2.1 The CYK+ parsing algorithm 72

4.2.2 Translation Generation . 77

4.2.3 Example . 78

4.2.4 N-best list Generation . 80

4.2.5 Language Model Integration 87

4.2.6 Pruning . 88

4.3 SMT with syntactically annotated SCFG 90

4.3.1 Training Data for SMT with Syntactic annotation 90

4.3.2 SCFG rules as Decorated Hierarchical Rules 91

4.3.3 Hierarchical rules with target annotations 93

4.3.4 SCFG Rules as Shallow STSG Rules 94

4.3.5 Shallow STSG Rules with Target Annotations 99

4.4 SCFG Decoding with Syntactic Annotations 101

4.4.1 CYK+ Chart Parser with Syntactic Annotations 101

4.4.2 Search Procedure and Translation Generation 102

4.4.3 Example . 103

4.4.4 SCFG Decoding with Target Annotations 106

4.5 Conclusion . 106

5 Shallow Local Multi Bottom-Up Tree Transducers 108

5.1 Shallow l-MBOT Grammars . 109

5.1.1 Sh-l-MBOT rules without syntactic annotation 109

5.1.2 Sh-l-MBOT rules with syntactic annotations on both sides . . 111

5.1.3 Sh-l-MBOT rules with target syntactic annotations 113

5.2 The Shallow l-MBOT Translation Model 114

7

Contents

5.2.1 Mathematical Definition . 114

5.2.2 Model Features . 118

5.2.3 Feature Training . 119

5.3 Decoding without syntactic annotation 121

5.3.1 CYK+ parsing and Translation Generation 121

5.3.2 Example . 123

5.3.3 Language Model Integration 124

5.4 Decoding with syntactic annotation 126

5.4.1 Source and Target Syntactic Annotations 127

5.4.2 Example . 128

5.4.3 Target Syntactic Annotations 133

5.5 Evaluation of Shallow l-MBOT . 134

5.5.1 Linguistic Resources . 134

5.5.2 Results . 135

5.5.3 Hierarchical systems . 137

5.5.4 Tree-to-tree systems . 137

5.5.5 String-to-tree systems . 138

5.6 Conclusion . 139

6 Improved Rule Selection for Hierarchical Machine Translation 142

6.1 Overall Presentation . 143

6.2 Rule Selection Model . 144

6.2.1 Model Definition . 145

6.2.2 Feature templates . 146

6.3 Model training . 148

6.3.1 Creation of Training Examples 148

6.3.2 Training Algorithm . 150

6.4 Decoding with Improved Rule Selection 150

6.4.1 Adjustments to the CYK+ Parsing Algorithm 151

6.4.2 Example . 153

6.4.3 Integration into the Hierarchical Translation Model 154

8

Contents

6.5 Advantages over Previous Rule Selection Models 154

6.5.1 Feature Sharing . 155

6.5.2 Training without Pruning of Negative Examples 156

6.5.3 Feature combination . 158

6.6 Evaluation . 160

6.6.1 Experimental Setup . 160

6.6.2 Compared Systems . 161

6.6.3 Results . 162

6.7 Conclusion . 163

7 Improved Rule Selection for String-to-Tree Machine Translation 165

7.1 String-to-Tree Rule Selection . 165

7.2 Rule selection model . 167

7.3 Experiments . 169

7.3.1 Experimental Setup . 169

7.3.2 Results . 170

7.4 Conclusion . 171

8 Conclusion and Future Work 172

8.1 Contributions . 172

8.2 Shortcomings and Future Work . 173

8.2.1 Language Model Scoring in Sh-l-MBOT Decoding 173

8.2.2 Finer-grained Syntactic Features for Rule Selection 175

8.2.3 Improved Diversity in String-to-Tree Rule Selection 176

8.2.4 Scalability of Rule Selection Models 177

8.2.5 Rule Selection for Sh-l-MBOT 177

References 178

9

Chapter 1

Introduction

1.1 Syntax-based SMT

The goal of translation is to transform text from a given language into another.

Given the English sentence E below, a human translator produces a sentence in a

required target language such as, for instance, the German sentence G.

E The commission has accepted the proposition.

G Die Kommission hat den Vorschlag angenommen.

The advances in artificial intelligence in the 1950s led to the idea of using computer

programs instead of humans to perform translation tasks. The development of this

idea created the field of machine translation.

The first machine translation systems aimed to map input text into the tar-

get translation through the application of hand-crafted rules. While early systems

used simple rules, later frameworks integrated more sophisticated translation units,

which included rich linguistic knowledge such as morphology, syntax or semantics.

Although this (rule-based) approach worked well for specific language-pairs on re-

stricted fields, it could not easily be extended to new languages and domains due to

the huge amount of human efforts necessary to create new translation rules. With

the increase of computing power, a major breakthrough in the field took place in

10

1.1 Syntax-based SMT

the late 1980s with the application of statistical methods to machine translation.

Through statistical models, translation units could be automatically learned from

large text collections. Consequently, Statistical Machine Translation (SMT) was not

tied anymore to specific languages or domains.

SMT systems can be divided into several paradigms depending on the form

of the (automatically learned) units used during translation. Early systems

[Brown et al., 1990, Brown et al., 1993] modeled translation between words such

as, for instance, the translation of forecasts into Prognosen in Figure 1.1.

Official forecasts predicted just 3 %

Offizielle Prognosen sind von nur 3 % ausgegangen

Figure 1.1: English-to-German Translation. The links indicate correspondences be-
tween the words in these sentences.

Later work [Koehn et al., 2003] extended these units from single words to se-

quences of words called phrases. The translation of Official forecasts into Offizielle

Prognosen in Figure 1.2 shows an example phrase-pair.

Official forecasts predicted just 3 %

Offizielle Prognosen sind von nur 3 % ausgegangen

Figure 1.2: English-to-German Translation. The links indicate correspondences be-
tween phrases in these sentences.

A common point between word and phrase-based SMT is that the translation

process works sequentially. The main drawback of this left-to-right method is that

it often fails to correctly reorder words, especially over long distances. For instance,

the translation of the English verb predicted into the German sind ausgegangen and

its reordering are difficult to obtain using sequential systems.

11

1.1 Syntax-based SMT

But many language pairs (e.g. English-Chinese, English-Arabic, English-

Japanese, and English-German) require to reorder words over long distances. Even

in language pairs such as English-French, which have a similar word order, transla-

tion in specific domains requires complex reordering. Figure 1.3 shows an example

French-English translation in the scientific domain.

Une pratique de l’ ingénérie informatique de haute qualité

A high quality software engineering process

Figure 1.3: French-to-English Translation

In order to deal with these word reorderings, many authors proposed to build SMT

systems based on formalisms that allow to translate sentences recursively instead

of sequentially. These systems use formal grammars to model translation and are

called syntax-based systems.

While many approaches have been proposed to build syntax-based SMT systems

roughly at the same time (an overview is given in Section 2.2), one of the first

large scale and high performance approach is the hierarchical phrase-based model

in [Chiang, 2005]. In this system, the translation units are rules such as p1 to p3

below, which are composed of phrases with an additional symbol X.

p1 X → 〈 X1 predicted X2, X1 sind von X2 ausgegangen 〉

p2 X → 〈 just 3 %, nur 3 %, 〉

p3 X → 〈 Official forecasts, Offizielle Prognosen 〉

Translation with these rules is done recursively by replacing the symbols labeled by

X with further rules.1 For instance, to translate the German sentence in Figure 1.1,

rule p1 would be applied first, followed by p2 and p3. The advantage of this recur-

sive mechanism is that reordering is encoded in the translation rules. For instance,

rule p1 allows to simultaneously (i) translate the verb predicted into sind ausgegan-

gen and (ii) indicate that ausgegangen will be separated from predicted by a gap.
1More precisely, indices on the symbol X indicate where to plug the replacing rules.

12

1.1 Syntax-based SMT

With this improved reordering procedure, hierarchical systems have outperformed

sequential frameworks on several translation tasks involving language pairs with

many (potentially long-distance) reorderings such as English and Chinese or Ara-

bic. The theoretical foundations of the hierarchical model are Synchronous Context-

Free Grammars (SCFG) [Aho and Ullman, 1969].2 In particular, hierarchical gram-

mars are SCFG where X is the only non-terminal. While this absence of annotations

makes the hierarchical approach very flexible, it also enables rule applications that

lead to malformed translations.

Instead of using just X, SCFG rules can be labeled by any finite alphabet such

as, for instance, a set of linguistic syntactic annotations. The parse trees in Figure

1.4 show example syntactic annotations for the English and German sentences pre-

sented above. In order to use these annotations to guide the translation process,

several approaches, discussed in Section 2.2.1, integrated those in SMT systems

by using annotated SCFG rules. In these approaches, the input to the translation

process is a sentence together with a parse tree, such as the English sentence in

Figure 1.4. During translation, rules matching the labels of this tree are recursively

applied until a corresponding German tree is generated. The concatenation of its

leaves yields the obtained target translation.

Unfortunately, SCFG-based systems carrying syntactic annotations have per-

formed poorly compared to the (non-annotated) hierarchical system.3 The main

reason for this failure is that the annotation-driven translation process, which re-

quires (i) to match input parse labels and (ii) to assemble rules in a target tree,

is very restrictive and error prone [Ambati and Lavie, 2008, Ambati et al., 2009].

Three main strategies have been adopted to take advantage of linguistic annota-

tions without decreasing the performance of syntax-based systems.

The first switches from SCFG to more powerful formalisms such as Synchronous

Tree Substitution Grammars [Eisner, 2003] (STSG), which model translation rules
2A detailed presentation of synchronous grammars is given in Chapter 2.1.
3SCFG-based systems with (source and target) syntactic annotations also underperformed se-

quential systems even on language pairs with many reorderings such as English and Chinese.

13

1.1 Syntax-based SMT

S

NP

JJ

Official

NNS

forecasts

VP

VBD

predicted

NP

QP

RB

just

CD

3

NN

%

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 1.4: Word aligned biparsed sentence pair

as pairs of trees instead of strings containing non-terminals. Figure 1.5 shows an

example STSG rule capturing the translation of the verb predicted into sind aus-

gegangen. By modeling complex reorderings4, STSG-based systems have outper-

formed their SCFG-based counterpart. Further work extended STSG into even more

powerful formalisms such as Synchronous Tree Sequence Substitution Grammars

(STSSG) [Zhang et al., 2008, Sun et al., 2009] which work with sequences of trees

instead of single ones. We contribute to this research by implementing a system

based on the Local Multi-Bottom Up Tree Transducers (l-MBOT) [Maletti, 2011], a

novel formalism that offers a middle-ground between STSG and STSSG.

The second strategy reduces the amount of annotations in the translation rules.

Instead of working with fully annotated rules, several approaches (presented in

Section 2.2) drop the source or target side annotations. Among these, systems

keeping the target labels only have been high ranked in public evaluation cam-

paigns [Bojar et al., 2014]. This success can be explained by the fact that the

4Such as, for instance, the swapping of non-terminals that are at different levels in a tree.

14

1.1 Syntax-based SMT

S

NP VP

VBD

predicted

NP

S

NP VAFIN

sind

VP

PP VVPP

ausgegangen

Figure 1.5: Example STSG rule

absence of source annotations provides high flexibility while the target labels

guarantee the syntactic well-formedness of the output. Following this work, we

build l-MBOT-based systems with linguistic annotations at different levels and

show that systems with target annotations only perform best.

The third strategy, presented in Section 3, integrates linguistic information in the

translation model of a hierarchical system instead of encoding it in the grammar

rules. In this work, soft syntactic constraints guide the correct application of non-

annotated rules. This methods allows to take advantage of linguistic information

while keeping the flexibility of the hierarchical model. We make two contributions

to this field. First, we propose a novel way to implement soft syntactic constraints

by integrating a global rule selection model in a hierarchical system. Second, we

define and evaluate the first rule selection model for systems with target syntactic

annotations.

This thesis has two goals. The first is to present our contributions to the field

of syntax-based SMT. The second is to provide a consistent and detailed presen-

tation of topics that have not been described elsewhere. For instance, in the field

of formal grammars for SMT, [Chiang, 2006] gives an excellent overview of syn-

chronous grammars. However, this description does not include recent formalisms

such as STSSG or l-MBOT. We close this gap by providing a detailed description

of these formalisms in Section 2.1. We also provide a complete presentation of

decoding procedures for SCFG grammars. Although these are well presented in

15

1.2 Contributions

[Chiang, 2007] and [Hoang, 2011] there is no complete overview of these strate-

gies for SCFG grammars with syntactic annotations. We provide a complete descrip-

tion of decoding for SCFG grammars in Chapter 4.

1.2 Contributions

1.2.1 Theoretical Contributions

We make three contributions to the field of syntax-based SMT:

• The first SMT system based on Local Multi Bottom-Up Tree Transducers:

We build an SMT system using the Local Multi Bottom-Up Tree Transducer as

translation model (l-MBOT). Our model includes features specific to l-MBOT

rules such as a gap penalty that counts the number of elements in the dis-

contiguous target sides. Decoding is done with an extended bottom-up chart

parser that can generate partial translations made of discontiguous units. Lan-

guage model scoring is integrated in the decoding process and pruning is

applied to reduce the computing costs. We show that with certain levels of

linguistic annotations our system outperforms several baselines based on syn-

chronous context-free grammars. A detailed overview of this contribution is

given in Section 2.3. The complete contribution is presented in Chapter 5.

• A global and exhaustive rule selection model for hierarchical SMT: While

previous work on hierarchical rule selection build models that are either local

to the source side of the translation rules or heavily pruned, we propose a

global model that performs no pruning. Because it generalizes to the com-

plete hierarchical grammar and is not pruned, our global model captures

useful information that is lost in local and pruned approaches. We show in

an extensive evaluation that a hierarchical system using this additional infor-

mation outperforms systems integrating local and pruned models. A detailed

16

1.3 Outline of the Dissertation

overview of this contribution is given in Section 3.4. The complete contribu-

tion is presented in Chapter 6.

• The first rule selection model for SMT with target syntactic annotations:

We extend our global rule selection model to work on systems with syntactic

annotations on the target language side, also called string-to-tree systems. This

contribution is the first attempt to use rule selection in string-to-tree systems.

A preliminary evaluation shows that rule selection does not improve string-

to-tree SMT. A detailed overview of this contribution is given in Section 3.4.

The complete contribution is presented in Chapter 7.

1.2.2 Software Contributions

Our theoretical contributions are implemented in the Moses toolkit

[Koehn et al., 2007, Hoang et al., 2009]:

• Our l-MBOT system is implemented in the branch mbotTestedDecoder and

can be downloaded with the command git clone -b mbotTestedDecoder

https://github.com/moses-smt/mosesdecoder.git

• Our rule selection models are implemented in the branch syntaxContext

and can be downloaded with the command git clone -b syntaxContext

https://github.com/moses-smt/mosesdecoder.git

1.3 Outline of the Dissertation

In this Section, we present the outline of this thesis. We present each contribution

listed above (Section 1.2) and discuss the parts of the thesis related to each contri-

bution. Then we outline each contribution separately.

Our first contribution is in the field of formal grammars and their implementa-

tion into SMT systems, which we present in Chapter 2. We begin this chapter with

17

1.3 Outline of the Dissertation

a detailed presentation of synchronous grammars in Section 2.1, which leads to the

definition of l-MBOT (Section 2.1.3). The aim of this presentation is to provide the

reader with background information necessary to understand the inner workings

of l-MBOT. It also gives a coherent presentation of grammar formalisms includ-

ing recent grammars such as Synchronous Tree Sequence Substitution Grammars

(STSSG). In Section 2.2, we present SMT systems based on the presented gram-

mars, the field to which our work contributes. We conclude the chapter by giving

an overview of this contribution in Section 2.3.

Our second and third contributions are on the topic of soft syntactic constraints

and their integration into SMT systems. We present this topic in Chapter 3. We be-

gin by showing why hierarchical systems can benefit from soft syntactic constraints

in Section 3.1. Then we discuss several ways of integrating these constraints into

syntax-based SMT systems, which have been presented in previous work (Section

3.2). We close the chapter with a detailed overview of our contributions in Section

3.4.

A central aspect of our contributions is the design and implementation of cus-

tomized decoding procedures. These are basically extensions of the algorithms used

to decode with Synchronous Context-Free Grammars (SCFG). In Chapter 4 we pro-

vide the reader with background knowledge in decoding strategies for SCGF-based

SMT. We also give a brief overview of existing algorithms to obtain SCFG gram-

mars from bilingual texts. In Section 4.1, we present hierarchical systems, i.e. with-

out syntactic annotations. In Section 4.3 we present systems including syntactic

annotations. This chapter offers a coherent overview of decoding procedures for

SCFG-based systems as implemented in the Moses toolkit [Hoang et al., 2009].

In Chapter 5 we present our SMT system based on l-MBOT. We work on a re-

stricted form of l-MBOT, which uses shallow rules (Sh-l-MBOT). After a brief pre-

sentation of existing rule extraction procedures in Section 5.1, we present our con-

tributions. We propose a translation model that defines and trains features specific

to Sh-l-MBOT rules (Section 5.2) before presenting a decoding procedure for this

model (Sections 5.3 and 5.4). Our system works with Sh-l-MBOT without syntactic

18

1.3 Outline of the Dissertation

annotations or systems containing annotations at different levels. An evaluation of

our system is given in Section 5.5.

In Chapter 6 we present our global rule selection model for hierarchical SMT. In

Sections 6.2 and 6.3 we formulate the model and describe the training procedure.

The integration of this model in a hierarchical system requires to modify the de-

coder in several ways, which we present in Section 6.4. We discuss the advantages

of our approach in Section 6.5 before giving an extensive evaluation in Section 6.6.

In Chapter 7 we apply our hierarchical rule selection model to systems with

target syntactic annotations (also called string-to-tree systems). We begin by show-

ing that in order to work with the string-to-tree system implemented in the Moses

toolkit [Hoang et al., 2009] our model has to be redefined (Section 7.1). In Section

7.2 present the formulation and training procedure of the adapted model. We eval-

uate our approach in Section 7.3.

In Chapter 8 we discuss again our contributions and present shortcomings of our

work. We close this thesis with a discussion of future work.

19

Chapter 2

Synchronous Grammars and their

Implementation

Syntax-based Statistical Machine Translation (SMT) systems find their theoretical

foundations in the field of formal languages. In the same fashion as statistical syn-

tactic parsing, syntax-based SMT encodes the structure of natural language into

grammars. While parsing works on monolingual data and hence models string or

tree generation, machine translation needs to capture the relation between lan-

guage pairs. Many studies have extended grammar formalisms such as Context-Free

Grammars (CFG) [Hopcroft et al., 2006] or Tree Substitution Grammars (TSG)

[Eisner, 2003] to model the generation of string and tree pairs. These formalisms

are often referred to as synchronous grammars. Based on these models, different

syntax-based SMT systems have been presented in the literature.

Recent work in the field of formal languages introduced new formalisms such as

the Local Multi Bottom-up Tree Transducer (l-MBOT) [Maletti, 2010]. Subsequent

studies have put forward the advantages of using l-MBOT in SMT [Maletti, 2011]

but a real system has never been implemented. As a consequence, the applicability

of l-MBOT to SMT has never been empirically evaluated. A first contribution of this

thesis closes this gap and builds a SMT system on a shallow variant of l-MBOT. Our

work also provides an empirical evaluation of this system.

20

2.1 Synchronous Grammars

In this chapter, we begin by presenting several synchronous grammar models in

increasing order of expressivity1 (Section 2.1). The main goal of this presentation is

to introduce l-MBOT, which is the formalism that we implement, and the baseline

models we will compare to. In Section 2.2, we present previous work on build-

ing syntax-based SMT systems using the grammar formalisms presented before. We

close this chapter by presenting our contributions to research on hard syntactic

constraints for statistical machine translation.

2.1 Synchronous Grammars

2.1.1 Weighted Synchronous Context-Free Grammars

Weighted Synchronous Context-Free Grammars (SCFG) have been studied in

[Aho and Ullman, 1969]. We first introduce weighted CFG [Hopcroft et al., 2006]

and then extend them to weighted SCFG.

Weighted Context-Free Grammars

Formal Definition A Context-Free Grammar (CFG) is a grammar G = (N,Σ, P, S)

where N is a finite set of non-terminal symbols, Σ is a finite set of terminal symbols,

S ∈ N the start non-terminal and P a finite set of grammar rules. Each CFG rule

has the form A → α, with α ∈ (N ∪ Σ)∗ and A ∈ N . A is the left-hand side (lhs)

of the rule and α its right-hand-side (rhs). The semantics of the CFG is given by the

following rewrite relation: if A→ α ∈ P and β ∈ (N ∪ Σ)∗ and γ ∈ (N ∪ Σ)∗, then

βAγ ⇒
G
βαγ. In other words, if the lhs of a rule appears in a string then it can be

replaced by the rhs of the rule. The rewriting of the start symbol S into a string t

of terminal symbols is called a derivation for t. The language of G is the set of all

strings t that have a derivation. Formally, L(G) = {t ∈ Σ∗ | S ∗⇒
G
t}.

A weighted CFG is a grammar G = (N,Σ, P, S, w) where (N,Σ, P, S) is a CFG and
1Another overview is given in [Chiang, 2006].

21

2.1 Synchronous Grammars

w : P → R is a function that assigns a weight to each grammar rule. A probabilistic

CFG is a weighted CFG where w : P → [0, 1] and the weights of all rules with the

same lhs sum to 1. The weight of a derivation is the product of the weights of the

rules used in the derivation. In the remainder of this chapter, the rule weights are

indicated over the arrow (see rule r1 below).

Example We present a weighted CFG G = (N,Σ, P, S, w) for a tiny portion of

French. The set of non-terminals is N = {NP, DET, NN}. The set of terminals is

Σ = {une, approche, pratique}. The start symbol S is NP. The set P of rules consists

of r1 to r4 :

r1 NP 1.0−→ DET NN

r2 DET 1.0−→ une

r3 NN 0.5−→ approche

r4 NN 0.5−→ pratique

Rule r1 can be used to rewrite the start symbol NP because this symbol appears

in its lhs. The application of r1 to NP yields the string DET NN which is the rhs

of r1. This derivation step is the first step in the derivation D below. To simplify

the presentation, we indicate the rule instead of the grammar below the derivation

arrow. In the same fashion, rule r2 can be used to rewrite the string DET NN because

the lhs DET of r2 appears in this string. After rewriting, the string une NN is created.

Following the same mechanism, the application of rule r3 yields une approche. The

weight of D is 0.5, that is the multiplication of the weights of r1, r2 and r3.

D NP⇒
r1

DET NN ⇒
r2

une NN ⇒
r3

une approche

The weighted CFG G recognizes the noun phrases une approche and une pratique.

The weights of the derivations used in this process are 0.5 each.

22

2.1 Synchronous Grammars

Weighted Synchronous Context-Free Grammars

Formal Definition A Synchronous Context-Free Grammar (SCFG) is essentially

a combination of 2 CFG Gs = (Ns,Σ, P, Ss) and Gt = (Nt,∆, P, St). Formally,

it is a system2 G = (Ns, Nt,Σ,∆, P, Ss, St) where P is a finite set of grammar

rules (or productions) of the form (As, At) → 〈α, β, Ã〉 such that As → α ∈ Ps,

At → β ∈ Pt and the number of nonterminal occurrences in α and β coincide. The

alignment function Ã is a one-to-one correspondence between non-terminals in α

and β such that the i-th input non-terminal (read from left to right) in α is the

same as the Ã(i)-th output non-terminal in β. If α has k non-terminal occurrences,

then Ã : {1, · · · , k} → {1, · · · , k} is a permutation from {1, · · · , k} to {1, · · · , k}.
We write Ã as [Ã(1), Ã(2), ..., Ã(k)]. The semantics of SCFG is given by the follow-

ing rewrite relation on sentential forms, which have exactly the same shape as our

right-hand sides of productions: Given a sentential form (α1, β1, Ã1) and a produc-

tion (As, At)→ (γ, δ, Ã) such that:

1. As is the i-th non-terminal in α1

2. At is the Ã1(i)-th non-terminal in β1,

(α1, β1, Ã1) can be rewritten into (α2, β2, Ã2) where α2 is obtained by replacing the

i-th non-terminal As in α1 by γ. In the same fashion, β2 is obtained by replacing

the Ã1(i)-th non-terminal At in β1 by δ. Finally, Ã2 is defined below, where m is the

number of non-terminals in γ.

∀d | 1 ≤ d ≤ m, Ã2(i+ d− 1) = Ã1(i) + Ã(d)− 1 (2.1)

∀j > i, Ã2(j +m− 1) =

Ã1(j) +m− 1 if Ã1(j) > Ã1(i)

Ã1(j) otherwise
(2.2)

2Note that the definition of syntax directed translation scheme given in [Aho and Ullman, 1969]
only augments the considered CFG with a set of output terminal symbols. This definition is too
restrictive for an application to syntax-based machine translation with linguistic annotations, where
the parse labels vary from one language to the other.

23

2.1 Synchronous Grammars

∀j > i, Ã2(j) =

Ã1(j) +m− 1 if Ã1(j) > Ã1(i)

Ã1(j) otherwise
(2.3)

In other words, all non-terminals behind Ã1(i) are moved (m − 1) places further.

For every integer k let 〈k〉 be k if k < Ã1(i) and k + (m − 1) otherwise. Then Ã2 =

[〈Ã1(1)〉, ..., 〈Ã(i− 1)〉, Ã1(i) + Ã(1)− 1, ..., Ã1(i) + Ã(m)− 1, 〈Ã1(i+ 1)〉, ..., 〈Ã1(n)〉].
The rewrite relation for SCFG is written as (α1, β1, Ã1) ⇒

G
(α2, β2, Ã2). Whenever G

is obvious from the context we might instead annotate the rule. The synchronous

context-free languages are exactly the sets of string pairs generated by SCFG. More

precisely, the language generated byG is the set of pairs of terminal strings obtained

by recursively rewriting the start symbols (Ss, St) using rules of G. Formally, L(G) =

{(ws, wt) ∈ Σ∗ ×∆∗ | (Ss, St, [1])
∗⇒
G

(ws, wt, [])}. The rewriting of the start symbols

(Ss, St) into a pair of strings of terminal symbols is called a derivation.

A weighted SCFG is defined in the same way as a weighted CFG, by assigning a

weight to each synchronous grammar rule. As in CFG, the weight of a derivation is

the product of the weights of the rules used in this derivation.

Example We present a weighted (and probabilistic) SCFG G =

(Ns, Nt,Σ,∆, P, Ss, St, w) for a tiny portion of French and English. The set of

input non-terminals is Ns = {S, NP, ADJ, NN, PP}. The set of output non-terminals

is Nt = {TOP, NP, ADJ, NN, PP}. The set of input terminals is Σ = {une, étude,

approche, pratique, du, document } and the set of output terminals is ∆ = {a, study,

approach, practical, of, the, document}. The start symbol (Ss, St) is (S,TOP). The set

P of rules contains r1 to r6:

r1 (S,TOP) 1.0−→ 〈 NP PP, NP PP, [1, 2] 〉

r2 (NP,NP) 1.0−→ 〈 une NN ADJ, a ADJ NN, [2, 1] 〉

r3 (ADJ,ADJ) 1.0−→ 〈 pratique, practical 〉

24

2.1 Synchronous Grammars

r4 (NN,NN) 0.5−→ 〈 étude, study 〉

r5 (NN,NN) 0.5−→ 〈 approche, approach 〉

The alignment Ã of each rule indicates the correspondence between non-

terminal symbols. For instance, in rule r1, we have Ã(1) = 1, which means that

the first non-terminal in the lhs (NP) corresponds to the first non-terminal in the

rhs (NP). In the same fashion, Ã(2) = 2 indicates that the second non-terminal

in the lhs (PP) corresponds to the second non-terminal in the rhs (PP). In rule r2,

we have Ã′(1) = 2, which means that the first non-terminal in the lhs (NN) cor-

responds to the second non-terminal in the rhs (NN). Note that when there are

no non-terminals in the right-hand sides, such as in r3, the permutation is omitted

from the rule.

Rule r1 can be used to rewrite the sentential form (S , TOP,[1]) because this non-

terminal pair appears in the lhs of r1. This derivation step, denoted by D1 below,

yields the sentential form (NP PP , NP PP) with alignment Ã = [1, 2]. This string

pair can be rewritten using r2 because the non-terminal NP in the lhs of r2 appears

(i) at position 1 in the input side and (ii) at position Ã(1) = 1 in the output side

of the considered string. This second derivation step, denoted by D2 below, yields

the sentential form (une NN ADJ PP, a ADJ NN PP, Ã′) with alignment Ã′ = [2, 1, 3].

This string pair is created in three steps, illustrated below. First, the input side is

obtained by replacing the non-terminal NP (in box) by the string une NN ADJ which

is the input rhs of r2. In a second step, the output side is obtained by replacing the

non-terminal NP by the string a ADJ NN, which is the output rhs of r2.

D1 〈 S,TOP,[1] 〉 ⇒
r1
〈 NP PP, NP PP, [1, 2] 〉

D2 〈 NP PP, NP PP, [1, 2] 〉 ⇒
r2
〈 une NN ADJ PP, a ADJ NN PP, [2, 1, 3] 〉

Finally, the alignment is created as illustrated below: there are three non-

terminal pairs in the sentential form obtained after step D2, so Ã′ has length 3.

25

2.1 Synchronous Grammars

Because the substituted non-terminal NP (in box) is at position 1 in the input string

pair, the alignment of r2 fills the two first slots of Ã′, following Equation 2.1 above.

D2 〈 NP PP, NP PP, [1, 2] 〉 ⇒
r2
〈 une NN ADJ PP, a ADJ NN PP, [2,1, 3] 〉

r2 (NP,NP) 1.0−→ 〈 une NN ADJ , a ADJ NN , [2,1] 〉

As the non-terminal PP (in box below) follows NP in the input string, its align-

ment occupies the last slot in Ã′. Because PP is preceded by two non-terminals, its

alignment is increased by 2− 1 = 1, following Equation 2.2 above.

D2 〈 NP PP , NP PP , [1, 2] 〉 ⇒
r2
〈 une NN ADJ PP, a ADJ NN PP, [2, 1,3] 〉

Following the same mechanism, rule r3 can be used to rewrite the sentential form

obtained after step D2 by replacing the non-terminal ADJ by the input and output

rhs of r3.

D3 〈 une NN ADJ PP, a ADJ NN PP, [2, 1, 3] 〉
⇒
r2
〈 une NN pratique PP, a practical NN PP, [1, 2] 〉

The synchronous context-free language generated by G is the pair of noun phrases

une étude pratique du document, a practical study of the document and une approche

pratique du document, a practical approach of the document.

2.1.2 Weighted Synchronous Tree Substitution Grammars

SCFG generate a language that consists of pairs of strings. When applied to trees,

such grammars can only perform transformations of depth one, i.e. only work on

sister nodes. Synchronous Tree Substitution Grammars (STSG) [Eisner, 2003] allow

more complex transformations by modeling pairs of trees instead of pairs of strings.

Unlike SCFG, STSG can reorder nodes that are at different levels in a tree. For

instance it can swap the tree fragments rooted at NP and PP when transforming

the French parse tree in Figure 2.8 into its English counterpart.

26

2.1 Synchronous Grammars

Weighted Tree Substitution Grammars

Formal Definition A Tree Substitution Grammar (TSG) is a grammar G =

(N,Σ, P, S) where N is a set of non-terminal symbols, Σ is a set of terminal sym-

bols, S the start non-terminal and P the finite set of grammar rules. Each TSG rule

is called an elementary tree and has the form T = (V, Vi, E,m, l, r) where V is an

ordered finite set of nodes, Vi ⊆ V a set of internal nodes and E ⊆ V × V a set

of directed edges such that (V,E) is a rooted connected tree. The set Vl = V − Vi
is the set of leaf nodes. The function m : Vi → N labels each internal node with a

non-terminal symbol. The function l : Vl → (N ∪ Σ) labels each leaf node with a

label from (N ∪ Σ). The symbol r is the label of the root node of a tree. Following

[Eisner, 2003], we use the notation T. to access the elements of a tree T . For in-

stance, we write T.V to refer to the set of nodes of T . The semantics of TSG is given

by the following rewrite relation: let T1 and T2 be elementary trees and d ∈ T1.Vl a

leaf node of T1. If T1.l(d) = T2.r then we can use T2 to rewrite T1 into T12 by substi-

tuting d in T1 by T2. Let v ∈ T1.V be the node such that (v, d) ∈ T1.E provided that

such a node exists and let w ∈ T2.V be the root of T2. The substitution operation

yields T12 = (V12, Vi12, E12,m12, l12, r12) where:3

V12 = (T1.V − {d}) ∪ T2.V

Vi12 = T1.Vi ∪ T2.Vi

E12 =

T1.E ∪ T2.E − {(v, d)} ∪ {(v, w)} if d is not the root

T2.E otherwise

m12(q) =

T1.m(q) if q ∈ T1.Vi

T2.m(q) if q ∈ T2.Vi

r12 =

T1.r if d is not the root of T1

T2.r otherwise

3We assume that T1.V and T2.V are disjoint.

27

2.1 Synchronous Grammars

l12 = (T1.l ∪ T2.l)− {(d, T2.r)}

The rewrite relation for TSG can be written as T ⇒
G
T ′. Each set of trees gener-

ated by a TSG is a tree substitution language. More precisely, the generated lan-

guage is the set of trees obtained by recursively rewriting trees with root label S

until all leaf nodes with labels in N are substituted. Formally, L(G) = {t | Ts ∈
P is elementary and Ts

∗⇒
G
t with Ts.r = S and t.l(t.Vl) ∩ N = ∅}. The rewriting of

an elementary tree T into t using the grammar G is called a derivation.

A weighted TSG is a grammar G = (N,Σ, P, S, w) where w : P → R is a function

that assigns a weight to each elementary tree. A probabilistic TSG is a weighted

TSG where w : P → [0, 1] and the weight of all trees with the same root label sums

to 1. The weight of a derivation is the product of the weights of the elementary

trees used in this derivation.

Example We present an example weighted TSG G = (N,Σ, P, S, w) for

a tiny portion of French. The set of internal node labels is N =

{S,NP,DT,ADJ,NN, V P, V } and the set of leaf node labels is N ∪ Σ with

Σ = {this, report, lacks, a, practical, study}. The start symbol is S. The set P of

rules consists of T1 to T5 shown in Figures 2.1 and 2.2. The weight of each tree is

given in the caption.

S

NP VP

V NP

NP

DT

a

ADJ NN

study

NP

DT

this

NN

report

Figure 2.1: Elementary trees T1 to T3 with weights 1.0, 0.5 and 0.5

V

lacks

ADJ

practical

Figure 2.2: Elementary trees T4 and T5 with (both) weights 1.0

28

2.1 Synchronous Grammars

We assume that the tree in Figure 2.1 is the starting point of the derivation

process as its root label is the start symbol S. Rule T2 can be used to rewrite T1

because its root label (NP) is equal to a leaf label of T1. This derivation step can

yield the tree T12 in Figure 2.1.2, where T2 substitutes the leftmost leaf label NP

in T1. Note that all leaves labeled with NP could be replaced by T2. In the same

fashion, rule T5 can be used to rewrite tree T12 because its root label (ADJ) is

equal to the label of a non-terminal leaf of T12. The created tree T125 is obtained by

substituting the node labeled with ADJ in T12 by T5.

S

NP

DT

a

ADJ NN

study

VP

V NP

S

NP

DT

a

ADJ

practical

NN

study

VP

V NP

Figure 2.3: Elementary Trees T12 and T125

S

NP

DT

a

ADJ

practical

NN

study

VP

V

lacks

NP

DT

this

NN

report

S

NP

DT

this

NN

report

VP

V

lacks

NP

DT

a

ADJ

practical

NN

study
S

NP

DT

this

NN

report

VP

V

lacks

NP

DT

this

NN

report

S

NP

DT

a

ADJ

practical

NN

study

VP

V

lacks

NP

DT

a

ADJ

practical

NN

study

Figure 2.4: Trees in the language generated by TSG G

The Tree Substitution Language generated by G consists of the four trees given

in Figure 2.4. Their derivations have weight 0.25 each.

29

2.1 Synchronous Grammars

Weighted Synchronous Tree Substitution Grammars

Formal Definition A Synchronous Tree Substitution Grammar (STSG) is essen-

tially a combination of two TSG Gs = (Ns,Σ, Ps, Ss) and Gt = (Nt,Σ, Pt, St). For-

mally, it is a system G = (Ns, Nt,Σ,∆, P, Ss, St). The rules P are elementary tree

pairs Tp = (T1, T2, Ã) where T1 ∈ Ps, T2 ∈ Pt, and T1 contains as many non-terminal

leaves as T2. We write T1.nt and T2.nt to denote the sets of leaf nodes in T1.Vl

and T2.Vl that are labeled by non-terminals. The alignment is a bijective function

Ã : T1.nt→ T2.nt. The semantics of STSG is given by the following rewrite relation.

Assume that Tp1 and Tp2 are elementary tree pairs. If conditions (i) and (ii) below

are met, then we can use Tp2 to rewrite Tp1 into Tp12:

(i) a leaf node n ∈ Tp1.T1.nt is labeled by the root label Tp2.T1.r

(ii) the aligned leaf node Ã(n) ∈ Tp1.T2.nt is labeled by the root label Tp2.T2.r

The rewriting is done by substituting n with Tp2.T1 and Ã(n) with Tp2.T2 ac-

cording to the substitution procedure defined in Section 2.1.2. The rewrite rela-

tion for STSG can be written as Tp ⇒
G
Tps. Each set of tree pairs generated by a

STSG is a Synchronous Tree Substitution Language. More precisely, the generated

language is the set of tree pairs obtained by recursively rewriting a chosen start

tree pair Tps until all leaf nodes labeled with non-terminals are substituted. For-

mally, L(G) = {Tp | tp is a tree pair ∧ Tps
∗⇒
G
tp with Tps.T1.r = Ss and Tps.T2.r =

St and tp.T1.nt = tp.T2.nt = ∅}. The rewriting of an elementary tree pair Tp1 into

Tp12 is called a derivation.

A weighted STSG is defined in the same way as a weighted TSG, by assigning a

weight to each tree pair. As in TSG, the weight of a derivation is the product of the

weights of the tree pairs used in this derivation.

Example We present an example weighted STSG G = (Ns, Nt,Σ,∆, P, Ss, St, w)

for a small portion of French and English. The elementary tree pairs are given in

30

2.1 Synchronous Grammars

Figures 2.5 to 2.6. The start symbols are Ss = TOP and St = S. The set of source

and target non-terminals are Ns = {TOP,NP, V P, V, PP,DT,NN,ADJ, PREP}
and Nt = {S,NP, V P, V,DT,ADJ,NN}. The set of source and target ter-

minal symbols are Σ = {une, étude, pratique,manque, à, ce, rapport} and ∆ =

{a, study, practical, lacks, this, report}. The alignment function is indicated by blue

links. We assume that all tree pairs have weight 1.0.

TOP

NP VP

V PP

S

NP VP

V NP

NP

DT

une

NN

étude

ADJ

NP

DT

a

ADJ NN

study

Figure 2.5: Tree pairs Tp1 and Tp2

V

manque

V

lacks

ADJ

pratique

ADJ

practical

PP

PREP

à

DT

ce

NN

rapport

NP

DT

this

NN

report

Figure 2.6: Tree pairs Tp3 to Tp5

We assume that the tree pair Tp1 in Figure 2.5 is the starting point of the derivation

because the root labels of its elementary trees are the start symbols TOP and S.

Rule Tp2 can be used to rewrite Tp1 because:

(i) a leaf node n in Tp1.T1.nt is labeled by the root label Tp2.T1.r (NP)

(ii) the leaf node in Tp1.Ã(w) is labeled by the root label Tp2.T2.r (NP)

During this derivation step, the chosen leaves labeled with NP in Tp1 are re-

placed by Tp2.T1 and Tp2.T2, yielding the tree pair Tp12 in Figure 2.7. This tree pair

can be further processed using rule Tp4 yielding the tree pair Tp25 illustrated in

Figure 2.7.

The synchronous tree substitution language generated by G is the tree pair given

in Figure 2.8. The weight of its derivation is 1.0.

31

2.1 Synchronous Grammars

TOP

NP

DT

une

NN

étude

ADJ

VP

V PP

S

NP VP

V NP

DT

a

ADJ NN

study

TOP

NP

DT

une

NN

étude

ADJ

pratique

VP

V PP

S

NP

DT

a

ADJ

practical

NN

study

VP

V NP

Figure 2.7: Tree pairs Tp12 and Tp25

TOP

NP

DT

une

NN

étude

ADJ

pratique

VP

V

manque

PP

PREP

à

DT

ce

NN

rapport

S

NP

DT

this

NN

report

VP

V

lacks

NP

DT

a

ADJ

practical

NN

study

Figure 2.8: Tree pair generated by STSG G

32

2.1 Synchronous Grammars

2.1.3 Weighted Synchronous Tree Sequence Substitution Gram-

mars

By modeling relations between trees, STSG can perform tree transformations such

as subtree swapping at different levels. However these grammars only allow to gen-

erate complete tree fragments such as the subtrees rooted in NP and PP in Figure

2.8. But many applications require to perform transformations between segments

that do not span a complete tree fragment. For instance, in Figure 2.9, the string ne

manque pas, which translates to does not lack, does not span a complete tree. Hence,

a formalism that only performs transformations on trees, such as STSG, forces a sys-

tem to include the sentence structure of the French tree in Figure 2.9 into each rule

for “ne manque pas”. Synchronous Tree Sequence Substitution Grammars (STSSG)

model relations between sequences of trees instead of single trees. Such grammars

allow to transform tree sequences into each other which is very useful when work-

ing with highly non-isomorphic trees such as the tree pair in Figure 2.9. In this

case, a STSSG can transform the tree sequence that spans the string ne manque pas

(2 trees) into the tree sequence that spans does not lack (3 trees). The STSSG rule

performing this transformation is given in Figure 2.11.

TOP

NP

DT

une

NN

etude

ADJ

pratique

VP

ADV

ne

V

manque

ADV

pas

PP

PREP

à

DT

ce

NN

rapport

S

NP

DT

this

NN

report

VP

VBZ

does

RB

not

VP

V

lack

NP

DT

a

ADJ

practical

NN

study

Figure 2.9: Non-isomorphic trees. Contiguous tree sequences are shown in red.

Two versions of STSSG have been suggested which propose a different defi-

nition of grammar rules and alignment. [Zhang et al., 2008] present a version of

STSSG where the tree sequences in the grammar rules have contiguous spans such

as the sequences presented above. This type of grammar handles well cases of non-

isomorphic trees where contiguous spans correspond to each other. In many cases,

33

2.1 Synchronous Grammars

however, tree sequences that translate into each other are not contiguous. This phe-

nomenon occurs frequently in language pairs such as English and German, Arabic

or Chinese. An example tree pair with non-contiguous tree sequences is given in

Figure 2.10. In order to model that kind of transformation, [Sun et al., 2009] de-

fine a non-contiguous version of STSSG.

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

ADV

gerade

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

S

NP

JJ

Official

NNS

forecasts

VP

ADVP

RB

just

VBD

predicted

NP

QP

RB

only

CD

3

NN

%

Figure 2.10: Non-isomorphic trees. Non-contiguous tree sequences are shown in
red.

Formal Definition

A STSSG is essentially a STSG where grammar rules consist of sequences of elemen-

tary trees on the input and output side instead of single elementary trees. Formally

an STSSG is a grammar G = (Ns, Nt,Σ,∆, P, Ss, St) where Ns, Nt, Σ, ∆, Ss and St

are as for STSG. P is a finite set of productions explained next.

Contiguous Synchronous Tree Sequence Substitution Grammars

In a contiguous STSSG, the grammar rules are tree sequence pairs Tps = (Ts1, Ts2, Ã)

where Ts1 and Ts2 are sequences of (input and output) elementary trees as defined

in Section 2.1.2. We write Ts1.nt and Ts2.nt to denote the sequence of leaves (taken

left-to-right) labeled with non-terminals in the trees (taken left-to-right) composing

Ts1 and Ts2. The alignment Ã ⊆ Ts1.nt × Ts2.nt is a relation from the set of non-

terminal leaves Ts1.nt to the non-terminal leaves Ts2.nt. The semantics of STSSG is

given by the following rewrite relation. Suppose that Tps1 and Tps2 are tree sequence

pairs with alignment Ã. If conditions (i) and (ii) below are met, then we can use

34

2.1 Synchronous Grammars

Tps2 to rewrite Tps1 into Tps12. We write Ts1.r to denote the ordered set of roots of

the trees (taken left-to-right) in the sequence Ts1.

(i) there exists an (ordered) set of contiguous leaf nodes {l1, · · · , lm} ⊆
Tps1.Ts1.nt labeled by the sequence of roots Tps2.Ts1.r

(ii) the (ordered) set of contiguous aligned leaf nodes Ã({l1, · · · , lm}) ⊆
Tps1.Ts2.nt is labeled by the sequence of roots Tps2.Ts2.r

The rewriting is done by substituting {l1, · · · , lm} by Tps2.Ts1 and Ã({l1, · · · , lm})
by Tps2.Ts2 according to the substitution procedure defined in Section 2.1.2. The

rewrite relation for STSSG can be written as Tps ⇒
G
tps. Each set of pairs of trees

generated by a STSSG is a synchronous tree sequence substitution language. The

generated language is written in exactly the same way as for STSG except that the

grammar rules used in a derivation are from the STSSG, i.e. tree sequence pairs.

A weighted STSSG is defined in the same way as a weighted STSG, by assigning a

weight to each pair of tree sequences. The weight of a derivation is the product of

the weights of rules used in this derivation.

Example We present an example weighted contiguous STSSG G for a tiny portion

of French and English. Our grammar consists of the elementary tree pairs presented

in Figures 2.5 and 2.6 (in Section 2.1.2) and Figure 2.12 below. Note that elemen-

tary tree pairs are a particular case of tree sequence pairs, where the length of the

sequences is 1 and the alignment between non-terminals is a one-to-one correspon-

dence. The rules of G also contain the tree sequence pairs given in Figures 2.11

and 2.12. The one-to-one alignments between pairs of leaves is indicated by blue

links. The many-to-many alignments are indicated in red. We assume that (i) all

tree pairs have weight 1.0 and (ii) the tree sequence pair Tps6 is the starting point

of the derivation because the root labels of its trees are the start symbols. This tree

pair can be rewritten using the tree sequence pair Tps1 because conditions (i) and

(ii) below are met:

35

2.1 Synchronous Grammars

(i) a set of leaf nodes Tps6.Ts1.nt is labeled by the sequence of root labels in

Tps1.Ts1.r (V P,ADV)

(ii) the set of leaf nodes Ã(V P,ADV) is labelled by the sequence of roots in

Tps1.Ts2.r (V BZ,RB, V)

The created tree pair Tp61 is obtained by substituting the nodes labeled

{V P,ADV } in Tps6.T1.nt by Tps1.Ts1 and the nodes labeled {V BZ,RB, V } in

Tps6.T2.nt with Tps1.Ts2.

TOP

NP VP ADV PP

S

NP VP

VBZ RB VP

V NP
(VP

ADV

ne

V

manque

;
ADV

pas

) (VBZ

does
;

RB

not
;

V

lack

)

Figure 2.11: Tree sequence pairs Tps6 and Tps1

NP

DT

une

NN

étude

ADJ

pratique

NP

DT

a

ADJ

practical

NN

study

TOP

NP VP

ADV

ne

V

manque

ADV

pas

PP

S

NP VP

VBZ

does

RB

not

VP

V

lack

NP

Figure 2.12: Tree pairs Tp7 and Tp61

By substituting the leaves labeled NP and PP in Tp61.T1.nt and the aligned leaves

NP and NP in Tp61.T2.nt by the tree pairs Tp5 and Tp7, we obtain the tree pair

shown in Figure 2.9. As no leaf nodes can be further substituted in this tree pair,

it belongs to the language generated by our example contiguous STSSG. This tree

is the only element of the language generated by our grammar. The weight of its

derivation is 1.0.

36

2.1 Synchronous Grammars

Non-contiguous Synchronous Tree Sequence Substitution Grammars

A non-contiguous Synchronous Tree Sequence Substitution Grammar (Nc-STSSG)

is essentially a contiguous STSSG without the restriction that aligned leaves la-

beled with non-terminals have to be contiguous. We present an example weighted

Nc-STSSG G for a tiny portion of German and English. Our grammar consists of

the tree sequences presented in Figures 2.13 to 2.15. The display of many-to-many

alignments as well as labeled root states is the same as for contiguous STSSG (Sec-

tion 2.1.3). The rewriting process works exactly like for contiguous STSSG except

for contiguity. For instance, the non-contiguous tree sequence Tncp4 can be used to

rewrite Tncp1 (which we assume to be the starting point of the derivation process)

into Tncp41 shown in Figure 2.16. Further rewriting of Tncp41 using Tncp2 and Tncp3

yields the tree pair shown in Figure 2.10. As this pair is the only pair that can be

generated by our example grammar G, it constitutes the language of G.

S

NP VAFIN ADV VP

PP VVPP

S

NP VP

ADVP VBD NP
NP

ADJA

Offizielle

NN

Prognosen

NP

JJ

Official

NNS

forecasts

Figure 2.13: Tree pairs Tncp1 and Tncp2

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

NP

QP

RB

only

CD

3

NN

%

Figure 2.14: Tree pair Tncp3.

37

2.1 Synchronous Grammars

(VAFIN

sind
;

ADV

gerade
;

VVPP

ausgegangen

) (ADVP

RB

just

;
VBD

predicted

)

Figure 2.15: Tree sequence pair Tncp4.

S

NP VAFIN

sind

ADV

gerade

VP

PP VVPP

ausgegangen

S

NP VP

ADVP

RB

just

VBD

predicted

NP

Figure 2.16: Tree pair Tncp41.

Weighted Local Multi Bottom Up Tree Transducers

While Nc-STSSG are well suited to capture long distance dependencies in highly

non-isomorphic tree pairs, they may be too powerful for SMT applications. As we

will show in Section 4, formal grammar rules for SMT are extracted from tree pairs

with aligned leaves where the leaf alignments represent correspondences between

the words of two languages. For instance, Figure 2.17 shows the tree pair from

which the rules of the Nc-STSSG presented above (Section 2.1.3) could have been

extracted. In this example, the German word nur is aligned to only.

Figure 2.18 shows the same sentence pair but where the German word nur is

aligned to the English words just and only. When dealing with this alignment, using

a Nc-STSSG would lead to the extraction of the rule shown in Figure 2.19. But this

rule models a potentially incorrect translation which hurts translation quality. In

[Sun et al., 2009] the authors note this problem and ignore non-contiguous trans-

lation rules having discontiguities on both the source and target language side.

Instead of ignoring some rules in a too powerful grammar, [Maletti, 2011] pro-

poses the local multi bottom up tree transducer (l-MBOT) which only allows rules

38

2.1 Synchronous Grammars

S

NP

JJ

Official

NNS

forecasts

VP

ADVP

RB

just

VBD

predicted

NP

QP

RB

only

CD

3

NN

%

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

ADV

gerade

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 2.17: Non-isomorphic tree with aligned leaves representing a correct word
alignment.

with tree sequences on the target language side. l-MBOT is even less powerful than

non-contiguous STSSG ignoring discontiguities on source or target language side,

as it forbids tree sequences on the input side even if those are contiguous while

restricted Nc-STSSG allow contiguous tree sequences. By requiring a complete tree

fragment on the input side of the rules, l-MBOT guarantees better syntactic co-

herence than non-contiguous STSSG. When working with noisy tree pairs such as

shown in Figure 2.18, the grammar rules of l-MBOT would not contain the rule in

Figure 2.19 as it is discontiguous on the input side.

Formal Definition l-MBOT is a Nc-STSSG with the restriction that the tree se-

quence in the input side of the rules has size 1, i.e. is an elementary tree as defined

in Section 2.1.2. Formally, the grammar rules of l-MBOT are pairs Tps = (Tp1, Ts2, Ã)

where Tp1 is an elementary tree and Ts2 is a sequence of trees. The alignment Ã is

the same as in Nc-STSSG with the restriction that to each target there is exactly one

39

2.1 Synchronous Grammars

S

NP

JJ

Official

NNS

forecasts

VP

ADVP

RB

just

VBD

predicted

NP

QP

RB

only

CD

3

NN

%

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

ADV

gerade

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 2.18: Non-isomorphic tree with aligned leaves.

(ADVP

RB

just

;
VBD

predicted
;

RB

only

) (VAFIN

sind
;

ADV

nur
;

VVPP

ausgegangen

)

Figure 2.19: Tree sequence pair leading to a wrong translation.

40

2.1 Synchronous Grammars

source.

Example We present an example weighted l-MBOTG for a tiny portion of German

and English. The rules of our grammar are shown in Figures 2.20 to 2.22. One-

to-many alignments are displayed in red and root labels are given in italics. The

rewriting process works in exactly the same way as for STSSG. As usual, we assume

that all rules have weight 1.0 and that Tts1 is the starting point of our derivation.

The l-MBOT rule Tts3 can be used to rewrite Tts1 into the tree pair Tts31 shown in

Figure 2.22. Further rewriting of Tts31 using Tts2 and Tts4 yields the tree pair shown

in Figure 2.23. As this pair is the only pair that can be generated by our example

grammar G, it constitutes the language of G. The weight of its derivation is 1.0.

S

NP VP

VBD NP

S

NP VAFIN VP

PP VVPP
NP

JJ

Official

NNS

forecasts

NP

ADJA

Offizielle

NN

Prognosen

Figure 2.20: Tree pairs Tts1 and Tts2

VBD

predicted

(VAFIN

sind
;

VVPP

ausgegangen

)

Figure 2.21: Tree-to-tree sequence pair Tts3.

NP

QP

RB

just

CD

3

NN

%

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

S

NP VP

VBD

predicted

NP

S

NP VAFIN

sind

VP

PP VVPP

ausgegangen

Figure 2.22: Tree pairs Tts4 and Tts31

41

2.2 Statistical Machine Translation with Synchronous Grammars

S

NP

JJ

Official

NNS

forecasts

VP

VBD

predicted

NP

QP

RB

just

CD

3

NN

%

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 2.23: Tree pair generated by the l-MBOT grammar.

2.2 Statistical Machine Translation with Syn-

chronous Grammars

Past work on syntax-based machine translation builds SMT systems based on the

grammar formalisms presented above (Section 2.1). Among these, some only ex-

ploit the recursive structure of the grammar without including any linguistic anno-

tation. In other systems, linguistic syntactic annotation is integrated into the gram-

mar via source and target non-terminal alphabets. These usually consist of parse

tree labels automatically acquired by parsing the source and target language side

of the training data.4 The integration of syntactic annotations is done at several lev-

els: besides systems that use annotations on the source and target language side,

some approaches integrate linguistic annotations of the source language only while

others focus on target language annotations. We present previous work according

to the formalism that is implemented and the amount of linguistic annotation that

is integrated.

4We present examples of training data for such systems in Section 4.3

42

2.2 Statistical Machine Translation with Synchronous Grammars

2.2.1 Weighted Synchronous Context-Free Grammars

A first line of work builds SMT systems using weighted Synchronous Context-Free

Grammars (SCFG, presented in Section 4.3). Decoding for SCFG is usually done

with CYK-style bottom-up chart parsing augmented with a translation generation

component and language model scoring. We extensively present SCFG decoding in

Sections 4.2 and 4.4.

Systems without Syntactic Annotations

Hierarchical SMT [Chiang, 2005, Chiang, 2007] is a SCFG-based system that inte-

grates no syntactic annotation in its rules. In this framework, the input and output

non-terminal alphabets are reduced to the single label X. Early work on this topic

[Wu, 1997] presents a restricted version of non-annotated SCFG, called inversion

transduction grammars (ITG). ITG rules cannot combine terminal and non-terminal

symbols. Rules consisting of non-terminals have only two forms, which allow se-

quential translation or swapping. A middle ground between hierarchical grammars

(HG) and ITG is the binary SCFG [Mylonakis and Sima’an, 2010]. This restricted

form of SCFG (i) allows only 2 non-terminals on the source side of translation rules

and (ii) only contains non-lexical or purely lexicalized rules. SMT systems based on

binary SCFG [Mylonakis and Sima’an, 2010] yield translation quality comparable

to hierarchical systems.

Many approaches have been proposed to improve the performance of

hierarchical systems. An often highlighted weakness [Blunsom et al., 2008,

Marton and Resnik, 2008, He et al., 2008] is the rule extraction and especially the

scoring heuristic in [Chiang, 2005]. [Blunsom et al., 2008] built a discriminative

translation model with derivations as latent variables which can perform rule scor-

ing and decoding over multiple derivations. [Blunsom et al., 2009] use a non-

parametric Bayesian model to induce grammar rules. None of these systems sig-

43

2.2 Statistical Machine Translation with Synchronous Grammars

nificantly outperform hierarchical systems with the feature sets of [Chiang, 2005].5

Further work improves hierarchical machine translation by defining syntactic fea-

tures on hierarchical rules. As we contribute to this work, we dedicate an entire

Chapter to a detailed presentation (in Chapter 3).

Hierarchical systems are implemented in many open source toolkits such as

Moses [Hoang et al., 2009], Joshua [Li et al., 2009] or Jane [Vilar et al., 2012].

This allows the replication of the results in [Chiang, 2005] and the application

of the approach to further language pairs. Our experiments (in Section 5.5) show

that hierarchical systems are among the best performing syntax-based systems on

some language pairs such as English-Arabic.

Systems with Source and Target Syntactic Annotations

Tree-to-tree SCFG-based SMT [Lavie et al., 2008, Ambati and Lavie, 2008,

Lavie, 2008, Ambati et al., 2009] integrates syntactic annotation on the input

and output alphabets of SCFG rules. As shown in [Ambati and Lavie, 2008,

Ambati et al., 2009], tree-to-tree SCFG systems are too restrictive to achieve good

translation quality: the syntactic structure of the input and output parse trees

prevents such systems to extract translation rules with good lexical coverage.

Moreover the shallow SCFG rules cannot model multi-level reorderings.6 To

avoid these shortcomings two strategies have been adopted. Several authors (see

Section 2.2.2) use a more powerful formalism such as STSG to model tree-to-tree

translation. Others (see Chapter 3) integrate source and target side syntactic

information as features in a hierarchical model. Early work on tree-to-tree SCFG

[Melamed, 2004] extends CFG parsing to induce SCFG and shows how to build an

SMT system with the induced grammar.

Tree-to-tree SCFG are implemented in the Moses open source toolkit which

5In [Blunsom et al., 2008] language model scoring is not integrated in the decoding procedure,
the system in [Blunsom et al., 2008] underperforms a hierarchical baseline trained with the features
of [Chiang, 2005]

6[Zhang et al., 2007] show that this restriction notably hurts translation quality.

44

2.2 Statistical Machine Translation with Synchronous Grammars

allows to perform SCFG based SMT on several language pairs. Our evaluation (in

Section 5.5) shows that tree-to-tree SCFG systems achieve the worst performance

among the syntax-based systems we tested.

Systems with target side syntactic annotations

String-to-tree SCFG machine translation [Zollmann and Venugopal, 2006,

Almaghout et al., 2011, Williams and Koehn, 2012, Hanneman and Lavie, 2013]

integrates syntactic annotation on the target side of SCFG rules. Among work

on string-to-tree systems, [Zollmann and Venugopal, 2006] annotate the tar-

get side of SCFG rules with fuzzy labels from a tagset similar to Combinatory

Categorial Grammars (CCG) [Steedman, 1996]. [Almaghout et al., 2011] sim-

plify these labels by only considering the left and right context in the CCG

annotations7. [Hanneman and Lavie, 2013] also reduce the set of CCG labels

in [Zollmann and Venugopal, 2006] by clustering those using bilingual labels.8

The authors report significant improvements over a hierarchical baseline.

[Williams and Koehn, 2012] use the rule extraction procedure for string-to-

tree STSG [Galley et al., 2004, Galley et al., 2006] with rule combination

[DeNeefe et al., 2007] (see Section 2.2.2). They transform the obtained rules

into a SCFG by removing the internal nodes in the target side trees.9 The

results of shared tasks such as [Bojar et al., 2014] show that the approach in

[Williams and Koehn, 2012] ranks highly among other types of syntax-based and

other SMT systems (e.g. phrase-based). Early work on string-to-tree decoding

[Yamada and Knight, 2002] transforms strings into trees by learning a target

language CFG and combining it with a set of rules that model the translation

process. During decoding, a source tree is built on the input string which is then
7And thus removing the functor information
8More precisely, they extend the target side CCG annotation in [Zollmann and Venugopal, 2006]

to a tree-to-tree annotation. This bilingual grammar is then coarsened by grouping pairs of source
and target labels into simpler categories according to a distance metric.

9Because string-to-tree systems do not require to match any input parse tree and the rules are
assembled on the leaf non-terminals, decoding with string-to-tree SCFG or STSG works in the same
way.

45

2.2 Statistical Machine Translation with Synchronous Grammars

transformed into a target tree via the translation rules.

String-to-tree SCFG as described in [Williams and Koehn, 2012] is implemented

in the Moses open source toolkit. The toolkit also implements a string-to-tree

SCFG where hierarchical rules are augmented with syntactic labels on the tar-

get language side. Our evaluation (in Section 5.5) shows that the approach in

[Williams and Koehn, 2012] outperforms all other syntax-based systems on several

language pairs such as English-German.

Systems with source side syntactic annotations

Tree-to-string SCFG models [Hoang and Koehn, 2010],

[Mylonakis and Sima’an, 2011] integrate syntactic annotations on the source

side of SCFG rules. As noted in [Hoang and Koehn, 2010] these annotations

restrict rule application in a way that hurts coverage. Consequently, tree-to-

string models relax the source syntactic constraints. [Hoang and Koehn, 2010]

propose a mixed-syntax model that combines hierarchical and tree-to-string

rules. The authors report significant improvements over a hierarchical base-

line. [Mylonakis and Sima’an, 2011] build a system using binary SCFG (see

Section 2.2.1) with annotations on the source side of the rules. Similar to

[Zollmann and Venugopal, 2006] they use CCG-style annotations. Early work on

tree-to-string translation [Yamada and Knight, 2001] transforms a source language

tree into a target string by performing a sequence of operations that model node

reordering, insertion and translation.

The mixed syntax model of [Hoang and Koehn, 2010] is implemented in the

Moses toolkit. The toolkit can also be used to build a system working with

tree-to-string SCFG rules.

46

2.2 Statistical Machine Translation with Synchronous Grammars

Binarization

Theoretically, the parsing complexity of SCFG decoding is exponential in the rank

of the grammar, i.e. the maximal number of non-terminals in the source rhs of

the rules. One way to reduce this complextiy is to reduce the rank of the gram-

mar rules. While this is always possible with the (monolingual) CFG grammars,

SCFG cannot always be binarized. [Zhang et al., 2006], [Huang et al., 2009] and

[Xiao et al., 2009] present techniques to binarize some SCFG rules.

2.2.2 Weighted Synchronous Tree Substitution Grammars

Synchronous Tree Substitution Grammars (STSG) improve over SCFG by allowing

multi-level node reordering (see Section 2.1.2). Many authors take advantage of

this additional ability and build STSG based systems. Although STSG are useful

when using grammars with syntactic annotations on both sides (tree-to-tree), this

formalism has also been used to build systems with annotations on the source or

target side only. None of these systems is publicly available so we could not experi-

ment with these grammars in our work.

Tree-to-tree models

[Zhang et al., 2007] build an experimental SMT system using tree-to-tree STSG

rules extracted from a small training set of 9,000 sentence pairs. They report signif-

icant improvements over a phrase-based system and very large improvements over

a system based on tree-to-tree SCFG (as described in Section 2.2.1). Their evalu-

ation also shows that tree-to-tree SCFG underperform phrase-based systems. Fur-

ther work [Mi et al., 2008, Mi and Huang, 2008] and [Liu et al., 2009] point out

that even when using STSG, tree-to-tree models are too constrained by the syn-

tactic annotations. To overcome this problem [Mi et al., 2008] propose a system

that takes a packed forest as input to the translation process instead of a sin-

47

2.2 Statistical Machine Translation with Synchronous Grammars

gle tree. [Mi and Huang, 2008] extract translation rules from parse forests while

[Liu et al., 2009] use these in the source side of tree-to-tree rules. All approaches

improve over a standard (i.e using 1-best trees) tree-to-tree STSG system.

String-to-tree models

[Galley et al., 2004, Galley et al., 2006] present algorithms to extract and score

string-to-tree STSG rules. [DeNeefe et al., 2007] extend this work by compos-

ing translation rules into larger units to improve lexical coverage. The authors

show that string-to-tree STSG significantly improve over phrase-based systems

[Koehn et al., 2003]. In turn, using composed rules yields better translation qual-

ity than minimal (i.e. not composed) ones. A comparison against other syntax-

based approaches is not provided. [Marcu et al., 2006] build an SMT system on

a restricted form of STSG rules where no non-terminals are allowed on the

source side of the rules. They report significant improvements over phrase-based

systems [Koehn et al., 2003]. An often outlined weakness of STSG rule extrac-

tion [Fossum et al., 2008, Cohn and Blunsom, 2009, Wang et al., 2010] is the bad

compatibility between automatically acquired word alignments and parse trees:

the alignments often cross constituents, which leads to the extraction of very

large rules that do not generalize well. Many authors address this problem.

[Wang et al., 2007] present a method to binarize string-to-tree grammar rules for

better generalization and rule composition. Systems with binarized rules outper-

form non-binarized systems. [Wang et al., 2010] improve string-to-tree models by

finding the tree structures, tree labels and alignments that best improve translation

quality. Their approach significantly improves over standard string-to-tree systems.

[Cohn and Blunsom, 2009] define a generative model for inducing string-to-tree

STSG rules directly from target parsed parallel data. Translation with the obtained

rules outperforms a standard string-to-tree system.

48

2.2 Statistical Machine Translation with Synchronous Grammars

Tree-to-string models

[Huang et al., 2006] build a system based on a tree-to-string transducer (see Sec-

tion 2.2.3) that can be seen as STSG-based translation with top-down decoding.10

In contrast to most models presented above, language model scoring is not inte-

grated in the decoding process and used as a reranker only. The approach is eval-

uated on a tiny test set of 140 sentences and underperforms a phrase-based sys-

tem [Koehn et al., 2003]. [Liu et al., 2006] build a tree-to-string STSG system with

bottom-up beam search decoding and integrated language model. The authors re-

port significant improvements over a phrase-based system. [Liu et al., 2007] make

tree-to-string rule application more flexible by allowing parse forests in the source

side of the rules. This method significantly improves over a standard tree-to-string

system.

2.2.3 Weighted Synchronous Tree Sequence Substitution Gram-

mars

As seen in Section 2.1.3 synchronous tree sequence substitution grammars are even

more flexible than STSG because they model translation rules containing sequences

of trees instead of single ones. For these grammars, only tree-to-tree systems have

been proposed so far.

Tree-to-tree models

[Zhang et al., 2008] build an SMT system with tree-to-tree weighted Synchronous

Tree Sequence Substitution Grammars (STSSG). More precisely, they use the con-

tiguous version of STSSG (Section 2.1.3) which requires that the tree sequences

10At each node, all possible translation rules are applied and descendant nodes are visited recur-
sively. Decoding is made tractable by caching each visited node which guarantees that each node is
visited at most once.

49

2.2 Statistical Machine Translation with Synchronous Grammars

have contiguous spans.11 Decoding is performed using a span-based bottom-up

beam search. The authors show significant improvements over phrase-based sys-

tems as well as tree-to-tree SCFG and STSG based systems.12

[Sun et al., 2009] extend this work by using STSSG rules with tree sequences

on (possibly) discontiguous spans (Section 2.1.3). Decoding is performed bottom-

up in a three step heuristic for increasing spans. First, contiguous STSSG rules are

applied to a specific span. In a second step, rules with discontiguous source sides

are added to the candidates for this span. Finally, all (i.e. with and without source

side discontiguities) rules with discontiguous target spans are applied. Language

model scoring is only performed on contiguous rules. The authors evaluate the

impact of different types of rules on translation quality. The results show that sys-

tems including non-contiguous rules outperform contiguous STSSG in all setups.

Systems including source side discontiguities outperform systems with target side

discontiguities alone.

Other Models

Further work on syntax-based SMT builds on formalisms other than

the synchronous grammars discussed previously. [Ding and Palmer, 2005,

Quirk et al., 2005, Riezler and Maxwell III, 2006] work with dependency

grammars. [Graehl and Knight, 2004, Graehl et al., 2008, May et al., 2010]

apply tree transducers to SMT problems while [Nesson et al., 2006,

DeNeefe and Knight, 2009, Liu et al., 2011b] use Synchronous Tree Adjoining

Grammars.
11In this approach, sequences are essentially used to overcome discrepancies between word align-

ments and parse trees.
12Their evaluation also confirms that systems based on tree-to-tree SCFG grammars perform

poorly compared to all other evaluated systems.

50

2.3 Research Contributions

2.3 Research Contributions

We contribute to the topic of SMT with synchronous grammars by building a system

based on the Weighted Local Multi Bottom-Up Tree Transducer (l-MBOT, Section

2.1.3). More precisely, we work with the Shallow l-MBOT (Sh-l-MBOT), which is

a restricted version of l-MBOT that works with shallow rules instead of tree frag-

ments. Our contribution is presented in Chapter 5. It includes:

The definition of a Translation Model for Sh-l-MBOT. In Section 5.2, we

present the Shallow l-MBOT translation model which is a log-linear model

over Sh-l-MBOT derivations. The features include a gap penalty that counts

the number of elements in the target side sequences of the rules.

A CYK-style bottom-up procedure for decoding with Shallow l-MBOT.

The main difference between Shallow l-MBOT and synchronous SCFG rules

are that the first allow sequences of trees on the target language side.

We extended a bottom-up chart decoder [Chiang, 2007, Hoang, 2011] for

synchronous SCFG grammars13 to perform Sh-l-MBOT decoding. The lan-

guage model is integrated in the decoder and cube pruning is performed for

tractability. Our Sh-l-MBOT decoder integrates linguistic annotations at dif-

ferent levels:

The hierarchical Sh-l-MBOT decoder in Section 5.3 works without lin-

guistic annotations and only exploits the structure of the Sh-l-MBOT

grammar.

The tree-to-tree Sh-l-MBOT decoder in Section 5.4 integrates syntactic

annotations on the source and target language side.

The string-to-tree Sh-l-MBOT decoder in Section 5.4.3 exploits target

side annotations only.

A preliminary evaluation of the Sh-l-MBOT system. In Section 5.5, we eval-

uate the performance of a Sh-l-MBOT system with syntactic annotations on
13The formal description of Synchronous SCFG is given in Section 2.1.1.

51

2.3 Research Contributions

the source and target language side (tree-to-tree). In this preliminary anal-

ysis, we show that tree-to-tree Sh-l-MBOT systems outperform SCFG based

systems when the Sh-l-MBOT rules are combined with SCFG rules.

Our contributions base on the rule extraction procedures for Sh-l-MBOT gram-

mars that have been proposed in [Maletti, 2011, Seemann et al., 2015a] which we

briefly present in Section 5.1. A systematic evaluation of Sh-l-MBOT with syntactic

annotations at different levels is performed in [Seemann et al., 2015b]. These re-

sults are presented in Section 5.5.

Closely related work is [Sun et al., 2009] who also experiment with STSSG that

have discontiguities on one side of the translation rules (see Section 2.2.3). Our

contributions are different from their work in many respects. First, Sh-l-MBOT

translation rules allow only a single tree on the source side while they allow se-

quences of trees that have to be contiguous. Second, they only work with tree-to-

tree rules while our system works with different setups of linguistic annotations.

Moreover, we work with shallow rules while they use tree fragments. Third, their

decoding algorithm only performs Language Model (LM) scoring on contiguous

rules while we include LM scores for all rules. Finally, the evaluation of our systems

in [Seemann et al., 2015b] leads to conclusions that are opposed to their observa-

tions: for tree-to-tree translation, target side discontiguities in Sh-l-MBOT systems

hurt translation quality while [Sun et al., 2009] report significant improvements.

A last difference is that our system scales to very large data sets (over 4 million

parallel sentences) while they work on small data sets.

52

Chapter 3

Soft Syntactic Constraints

The hierarchical phrase-based SMT system [Chiang, 2005, Chiang, 2007] pre-

sented in Section 2.2.1 belongs to the best performing systems for several language

pairs. Consequently, lots of research efforts have been dedicated to further improve

hierarchical SMT. The main weakness of the hierarchical approach reported in the

literature is the high ambiguity between the translation rules. Consequently, wrong

rules are often applied during decoding which leads to bad translations. Approaches

that try to solve this problem by replacing hierarchical rules with labeled SCFG

rules, presented in Section 2.2, have been rather unsuccessful. Another way to im-

prove hierarchical SMT is by augmenting the hierarchical translation model with

syntactic information in the form of soft constraints or features. Many authors have

followed this path and proposed different ways to include soft syntactic constraints

in a hierarchical system. Most of these report significant improvements in transla-

tion quality for many language pairs. We contribute to this research by bringing

forward further ways to integrate soft syntactic constraints into hierarchical decod-

ing.

The present chapter is structured as follows: we begin by explaining the draw-

backs of hierarchical rule application in Section 3.1 before discussing previous work

on this topic in Section 3.2. We conclude by presenting our contributions in the field

which we discuss in detail in Chapters 6 and 7.

53

3.1 Rule Application in Hierarchical SMT

3.1 Rule Application in Hierarchical SMT

The discussion of rule application in this section requires background knowledge in

hierarchical machine translation. A detailed presentation of hierarchical systems is

given in Chapter 4.

To present the main weakness in hierarchical rule application, let us consider rule

r7, which will be presented in Section 4.1.1. We call the string X1 de l’ ingénérie the

source side of r7 (instead of source right-hand side) and engineering X1 its target

side.

r7 X→ 〈 X1 de l’ ingénérie, engineering X1 〉

A consequence of the rule extraction heuristic in [Chiang, 2007], that will be in-

troduced in Section 4.1.1, is that the obtained hierarchical grammar contains nu-

merous rules with the same source language side (but different target language

sides). For example, rules q1 and q2 have the same source language side X1 pra-

tique X2 although their target language sides practical X1 X2 and X1 X2 process are

different.

q1 X→ 〈 X1 pratique X2, practical X1 X2 〉

q2 X→ 〈 X1 pratique X2, X1 X2 process 〉

During decoding (see Section 4.2), rules with the same source side apply to the

same segments in the input sentence: both rules q1 and q2 can be used for translating

sentences F1 and F2 below:1

F1 Une étude de l’ (intérêt)X1 pratique (de notre approche)X2 .

A study on the (interest)X1 practical (of our approach)X2 .

F2 Une étude de (la)X1 pratique (de l’ingénérie informatique)X2 .

A study on (the)X1 process (of software development)X2 .

However, among all applicable rules, only a subset yield correct translations. For

instance, using q2 to translate F1 yields the incorrect translation E2 while the correct

1Given with the corresponding English word-by-word glosses.

54

3.2 Better Rule Application with Syntactic Features

translation E1 requires the application of q1.

E1 A study on the practical (interest)X1 (of our approach)X2 .

E2 *A study on the (interest)X1 (of our approach)X2 process.

On the other hand, the application of q1 to translate F2 yields the incorrect transla-

tion E3 while the correct translation E4 requires to apply rule r2.

E3 *A study on practical (the)X1 (software development)X2 .

E4 A study on (the)X1 (software development)X2 process.

The relative frequency based scoring heuristic for hierarchical rules

[Chiang, 2007] (see Section 4.1.2) does not allow a good disambiguation between

rules with the same source side. For instance, in scientific reports or newswires,

parallel sentences from which rules q1 and q2 can be extracted are equally likely to

be observed. These rules will then have about the same probability after rule scor-

ing. As a consequence, the rule weight feature of a standard hierarchical system

will allow a random selection of q1 or q2 to translate sentences such as F1 and F2.

Furthermore, if rule q1 has been extracted more frequently from the training data

than q2 but a sentence similar to F2 appears in the test data, then the rule weight

feature will erroneously boost the application of rule q1.

3.2 Better Rule Application with Syntactic Features

Several approaches have been proposed to improve the application of hierarchical

rules using syntactic information. A first line of work [Vilar et al., 2008] extends

the hierarchical rule extraction heuristic to determine if the non-terminals in the

right-hand side (rhs) of hierarchical rules match a syntactic constituent. Using this

information, a syntactic score is computed which is added to the rule features pre-

sented in Section 4.1.2. Besides this work, many approaches focus on the context of

the source sentence in which a hierarchical rule is applied. Given r : X → 〈γ, α,∼〉,

55

3.2 Better Rule Application with Syntactic Features

previous work on rule selection can be grouped into 2 categories, which we present

in detail in the next sections:

1. Models that estimate how good rule application is in a given situation by con-

sidering the syntactic structure of the source and/or target language sentence

to which the rule is applied. Approaches considering source language syntax

only aim to estimate a distribution P (r | Ss), where Ss denotes the source

syntax. Work taking the target language sentence into account aim to esti-

mate P (r | Ss, St), where St denotes the target syntax. We call such models

Syntactic context models.

2. Models that estimate how good the application of the target side γ of a rule

is given the source side α as well as information about (i) the structure of

the rule to be applied and (ii) the syntactic structure of the source language

sentence to which the rule is applied. Such models aim to estimate a distribu-

tion that can be written P (γ | α, S).2 Following, [He et al., 2008] we call such

models Syntactic rule selection models.

Finally, several authors use syntactic structure to train reordering models.

[Gao et al., 2011] uses soft syntactic constraints from the dependency structure

of the source sentence to predict the reordering between a word and its head.

[Li et al., 2014] propose a unified reordering model that uses syntactic and seman-

tic information to predict constituent reordering.

3.2.1 Syntactic Context Models

The first attempt to improve hierarchical rule selection by considering infor-

mation about the syntactic structure of the source sentence is [Chiang, 2005,

Chiang, 2007]. This approach rewards hierarchical rules whose span matches syn-

tactic constituents in the parse tree of the source language sentence. The rewarding
2Where S denotes the information about the structure of the rules and the syntax of the source

sentence.

56

3.2 Better Rule Application with Syntactic Features

is done with a binary feature c(i, j) added to the hierarchical translation model.

This approach did not lead to improvements in translation quality. Further work

[Marton and Resnik, 2008, Marton et al., 2012] extend the constituency feature

c(i, j) into a finer grained set of features C = {NP, V P, IP, ...} that includes the

types of constituents that are matched. In addition to rewarding constituent match-

ing, crossing is penalized. In [Marton and Resnik, 2008] these features are called

soft syntactic constraints. The inclusion of these in the hierarchical translation model

leads to significant improvements in translation quality. [Chiang, 2010] extends

this work by augmenting a hierarchical system not only with syntactic features on

the source sentence but also on the target sentence, which is built during decod-

ing. [Liu et al., 2011a] define a discriminative model over source side constituent

labels instead of using rewarding/crossing heuristics. The training procedure for

their discriminative model is based on possible derivations on the source sentence.3

Both approaches [Chiang, 2010, Liu et al., 2011a] yield significant improvements

in translation quality.

3.2.2 Syntactic Rule Selection Models

Hierarchical rule selection models are inspired by work on word sense disam-

biguation (WSD) [Carpuat and Wu, 2007]. The first attempt to integrate a WSD

model into a hierarchical system is [Chan et al., 2007]. Their model is limited

to rules containing only terminal symbols and having length 2. This work is ex-

tended by [He et al., 2008] who consider all hierarchical rules and build a discrim-

inative model which they call rule selection model. This model includes features

on the structure of hierarchical rules as well as contextual information about the

source sentence. Following [Carpuat and Wu, 2007, Chan et al., 2007], they define

a rule selection model that is local to the source side of the rules, i.e. that trains

one (local) classifier for each source side or pattern of the hierarchical rules. In

3The training instances are obtained by performing bilingual parsing on the training data and
extracting the obtained rules from the derivation forest.

57

3.3 Syntactic Rule Selection for String-to-Tree SMT

[He et al., 2010] they somewhat generalize this work by defining a model that

is local to source patterns instead of rule source sides. This first line of work on

rule selection does not include syntactic features and focuses on lexical rule selec-

tion. The first true Syntactic rule selection model is proposed in [Cui et al., 2010]

who define a model that includes features on the syntactic structure of the source

sentence. Instead of limiting their work to a rule selection model, they propose

a joint approach over the source and target side of hierarchical rules. This global

model includes a Syntactic rule selection model which they call the Context Based

Target Model. The model in [Cui et al., 2010] is not local to the source side of the

rules but generalizes to all rules (global model). Syntactic rule selection models are

also defined to improve other types of syntax- and even semantics-based systems.

[Liu et al., 2008] train a local discriminative rule selection model for tree-to-string

machine translation. [Zhai et al., 2013] propose a discriminative model to disam-

biguate predicate argument structures. [Huang et al., 2010] propose a model that

includes information about the syntactic structure of (i) the source sentence and

(ii) the non-terminals in the lhs and rhs of the hierarchical rules. Each rule is aug-

mented with a real-valued vector of syntactic features. Each entry represents a syn-

tactic constituent that has been observed to govern the source rhs non-terminal X

in the training data. This work leads to significant improvements on an English-to-

German translation task.

3.3 Syntactic Rule Selection for String-to-Tree SMT

As seen in Section 3.2.1, syntactic rule selection models have shown significant im-

provements in hierarchical, tree-to-string and predicate augment structure based

systems. A common point between these systems is that they have no syntactic

annotations on the target language side. An interesting research question is then

if such models can also be applied to systems with target syntactic annotations

such as the string-to-tree system presented in Section 2.2.1. Because they beat all

58

3.4 Research Contributions

other syntax-based systems on several language pairs [Bojar et al., 2014], string-to-

tree systems are particularly good candidates for testing a syntactic rule selection

model.4 Rules q3 to q6 below are string-to-tree rules as presented in Section 2.2.1.

These rules have in common that they have the same source rhs and are thus po-

tential candidates to translate sentence F below.

(q3) X/NP → 〈 X1 caractéristiques X2, JJ1 JJ2 characteristics 〉

(q4) X/NP → 〈 X1 caractéristiques X2, NNS1 characteristic JJ2 〉

(q5) X/NP → 〈 X1 caractéristiques X2, JJ1 properties JJ2 〉

(q6) X/NP → 〈 X1 caractéristiques X2, JJ1 JJ2 features 〉

A syntactic rule selection model for string-to-tree systems should predict, during

decoding5, which rule should be applied to produce the correct translation E, i.e.

rule q3.

F (Diverses)X1 caractéristiques (importantes)X2 n’ont pas été prises en compte.

(Various)X1 characteristics (important)X2 were not considered.

E (Various)X1 (important)X2 characteristics were not considered.

No work has yet been proposed on integrating a syntactic rule selection model

into a string-to-tree system. One of our contributions (see Section 3.4) is to define,

implement and evaluate such a system.

3.4 Research Contributions

Our first contribution to the topic of improving SMT with soft syntactic constraints

is the definition of a global syntactic rule selection model for hierarchical SMT. This

contribution is presented in Chapter 6 and includes:

4As shown in Section 2.2, string-to-tree systems can either be based on synchronous context-
free grammars or synchronous tree substitution grammars. We work with the first because it is
implemented in Moses which is publicly available. Another advantage of using Moses is that this
system has been evaluated on shared tasks and shown to achieve very competitive performance.

5SCFG decoding with target side annotation is explained in Section 4.4.4.

59

3.4 Research Contributions

The definition and training of a global rule selection model. In Section

6.2, we define and train a syntactic rule selection model that generalizes to

the complete hierarchical grammar instead of rules with the same source lan-

guage side only. The model includes a rich set of syntactic and lexical features.

By training the model with a high-speed streaming classifier we can train a

global model without performing any pruning.

The integration of the model in a hierarchical system. In Section 6.4, we

present to which extent the hierarchical decoding procedure6 had to be mod-

ified to include model predictions during decoding.

An extensive evaluation. In Section 6.5, we show the advantages of using

a global model without pruning over previously proposed approaches. These

observations are confirmed by an extensive empirical evaluation, which we

present in Section 6.6.

Closely related work to our first contribution is [Cui et al., 2010] who also define

a global syntactic rule selection model for hierarchical systems. Our contribution is

different from their work insofar as it allows the training of a global model without

pruning of negative examples (see Section 6.5.2).

Our second contribution to this field is the extension of the hierarchical syntactic

rule selection model to a string-to-tree system. This contribution is presented in

Chapter 7 and includes:

A syntactic rule selection model for string-to-tree SMT. In Section 7.2, we

define and train a syntactic rule selection model for string-to-tree SMT. The

model is global and hence generalizes to the complete string-to-tree gram-

mar. The features of this model include rule shape features and soft syntactic

constraints of the source sentence.
6Presented in Section 4.2.

60

3.4 Research Contributions

A preliminary evaluation of the model. In Section 7.3, we evaluate a string-

to-tree system augmented with the syntactic rule selection model. These re-

sults are further analyzed and compared to a hierarchical system.

61

Chapter 4

Background: Decoding for

Synchronous Context-Free Grammars

Our contributions to research in Statistical Machine Translation (SMT), presented

in Sections 2.3 and 3.4, create improved SMT systems either by implementing

novel grammar formalisms or by integrating soft syntactic constaints in exist-

ing translation models. A central aspect in building these systems is the imple-

mentation of customized decoding procedures. The decoders presented in our

work are based on the bottom-up chart decoder for Synchonous Context-Free

Grammars (SCFG) implemented in Moses [Hoang et al., 2009] and described in

[Chiang, 2007, Hoang, 2011]. The goal of this chapter is to provide the reader with

background knowledge in decoding for SCFG that is necessary to fully understand

our contributions.

We begin with a brief presentation of hierarchical grammars and the hierarchi-

cal translation model in Section 4.1. Then we provide a detailed description of the

hierarchical decoding procedure (as implemented in Moses [Hoang et al., 2009])

in Section 4.2. Finally, we extend our presentation to systems dealing with syntac-

tically annotated SCFG in Section 4.3.

62

4.1 Hierarchical SMT

4.1 Hierarchical SMT

4.1.1 Hierarchical Grammar

Hierarchical Rules

A Hierarchical Grammar (HG) is a Synchronous Context-Free Grammar (SCFG),

as defined in Chapter 2 (Section 4.3) with two specificities. First, their input and

output alphabets Ns and Nt only contain the labels X and S. Moreover HG include

a set of glue rules that sequentially combine non-terminals to the start symbol. Fol-

lowing [Chiang, 2007], we denote hierarchical rules by X → 〈α, γ,∼〉, where α

and γ are the source and target language strings and ∼ the correspondence be-

tween non-terminal symbols. Usually, we show the alignment ∼ by indexing the

non-terminals in the rules. Example hierarchical rules are h1 to h5 below.

h1 X → 〈 X1 X2, X2 X1 〉

h2 X → 〈 une X1 X2, a X2 X1 〉

h3 X → 〈 une X1 pratique, a practical X1 〉

h4 X → 〈 pratique, practical 〉

h5 X → 〈 étude, study 〉

In addition to the SCFG rules above, HG include two glue rules that have the form:

g1 S → 〈 S1 X2, S1 X2 〉

g2 S → 〈 X, X 〉

The semantics of hierarchical grammars is the same as for the corresponding SCFG

including the glue rules. Example D below shows a hierarchical derivation:

D S⇒
g2
〈 X1, X1 〉 ⇒

h2
〈 une X1 X2, a X2 X1 〉 ⇒

h4
〈 une X1 pratique, a practical X1 〉

⇒
h5
〈 une étude pratique, a practical study 〉

63

4.1 Hierarchical SMT

Automatic Extraction of Hierarchical Rules

The extraction of hierarchical rules [Chiang, 2007] is done following a two-step

heuristic. The input to rule extraction is a word aligned parallel text. The sentences

F and E show example sentences from a French-English parallel corpus. Figure 4.1

shows a possible word alignment between sentences F and E.

F Une étude de la pratique de l’ingénérie informatique.

E A study of the software engineering process.

Une étude de la pratique de l’ ingénérie informatique

A study of the software engineering process

Figure 4.1: Word aligned sentences

In the first step, the rule extraction yields “initial phrase pairs” [Chiang, 2007,

p.266]. Given a word aligned parallel text like the one in the above figure, a pair

of token sequences 〈f ji , e
j′

i′ 〉 is an initial phrase pair if it fulfills the conditions below.

The sequences f ji and ej
′

i′ are strings of terminal symbols in the source and target

language that span from i to j. We use the symbol ∼ to denote word alignment.

1. There is at least one aligned word between both phrases composing the

initial phrase pair.

Formally, fk ∼ ek′ for some k ∈ [i, j] and k′ ∈ [i′, j′].

2. All words aligned to the source language phrase are in the target lan-

guage phrase.

Formally, fk � ek′ for all k ∈ [i, j] and k′ /∈ [i′, j′].

3. All words aligned to the target language phrase are in the source lan-

guage phrase.

64

4.1 Hierarchical SMT

Formally, fk � ek′ for all k /∈ [i, j] and k′ ∈ [i′, j′].

All initial phrase pairs are hierarchical rules without non-terminals on the right-

hand side, i.e. rules of the form X → 〈f ji , e
j′

i′ 〉. Further hierarchical rules are cre-

ated from initial phrase pairs by removing subpairs and replacing those by pairs of

aligned non-terminals. Formally, for each rule r = X → 〈α, γ〉, an initial phrase pair

〈f ji , e
j′

i′ 〉 can be extracted from r if α = α1f
j
i α2 and γ = γ1e

j′

i′ γ2. The extracted rule

is given by X → 〈α1Xkα2, γ1Xkγ2〉 for a new index k.

To illustrate the extraction of hierarchical rules, consider the word aligned se-

quences in Figure 4.2. Initial phrase pairs extracted from this sequence include1:

pratique de l’ ingénérie informatique

software engineering process

Figure 4.2: Word aligned noun phrases

r1 X → 〈 pratique, process 〉

r2 X → 〈 pratique de, process 〉

r3 X → 〈 pratique de l’, process 〉

r4 X → 〈 ingénérie, engineering 〉

r5 X → 〈 pratique de l’ ingénérie, engineering process〉

r6 X → 〈 pratique de l’ ingénérie informatique, software engineering process〉

Further rules are created by subtracting initial phrase pairs from larger phrase

pairs. For instance, a new rule r7 can be created by subtracting the right-hand side

(rhs) of rule r1, that is the initial pair 〈 pratique, process 〉 from rule r5. In the same

fashion, rule r8 is obtained by subtracting the rhs of rule r2 from r5.

r7 X → 〈 X1 de l’ ingénérie, engineering X1 〉

r8 X → 〈 X1 l’ ingénérie, engineering X1 〉
1As the rule extraction heuristic leads to a large number of extracted initial phrase pairs, we only

give some example rules here.

65

4.1 Hierarchical SMT

By subtracting several initial phrase pairs from hierarchical rules, new rules con-

taining multiple non-terminals are created. For instance, rule r9, below, is created

by subtracting the rhs of r1 and r4 from r5. In the same fashion, rule r10 is created

by subtracting rules r3 and r4 from r5.

r9 X → 〈 X1 de l’ X2, X2 X1 〉

r10 X → 〈 X1 X2, X2 X1 〉

Because this rule extraction strategy leads to a very high number of rules,

[Chiang, 2005] adds the following restrictions to the extraction heuristic:

1. Only the shortest of several initial phrase pairs with the same alignment points is

kept.

2. Initial phrase pairs are limited to a length of 10 symbols on the source language side.

Rules are limited to five2 symbols on the source language side.

3. The subtracted initial phrase on the source language side must contain more than

one word.

4. Rules can have at most 2 non-terminals.

5. No rule with adjacent non-terminals on the source language side is allowed.

6. Rules must have at least one pair of aligned terminals.

By applying this restriction to the extraction heuristic illustrated above, rules r2

and r3 would not be extracted because they are not the smallest rules with the

same alignment points (restriction 1). Consequently, rule r8 would not be extracted

because it requires to subtract the initial phrase pair r2, which is not allowed (re-

striction 1). Rule r7 would not be extracted because the subtracted phrase pair, i.e.

the rhs of rule r1, contains only one symbol on the source language side (restriction

4). Rule r9 would also be dropped because it does not contain a pair of aligned

terminals (restriction 7). Finally, rule r10 would not be extracted because its source

language side contains adjacent non-terminals (restriction 6).

2terminal and non-terminal

66

4.1 Hierarchical SMT

4.1.2 The Hierarchical Translation Model

Many hierarchical rules can be applied to an input sentence (e.g. Sentence F in

Section 4.1.1) to derive output sentences and each derivation possibly3 yields a dif-

ferent output sentence. The hierarchical translation model predicts the best trans-

lation e of a given input sentence f .

Mathematical Definition

The hierarchical translation model is a log-linear model [Och and Ney, 2002] over

the derivations D. The probability P (D) of a derivation D = S ⇒
r1
〈α1, γ1〉 ⇒

r2
... ⇒

rl

〈f, e〉 is defined as the weighted product of the features in this derivation.

P (D) ∝
m∏
i=1

hi(D)λi (4.1)

The features hi(D)λi belong to two categories which are (i) features on the rules

and (ii) the n-gram language model. Considering this division, Equation 4.1 can be

written as:

P (D) ∝ LM(e)λm
m−1∏
i=1

hi(D)λi (4.2)

where LM(e) is the evaluation of the language model on e. We assume that the

language model is the m-th feature. As seen in Section 2.1.1, the product of the

rules in a SCFG derivation equals the weight of this derivation. Hence, Equation

4.2 can be written as:

P (D) ∝ LM(e)λm
m−1∏
i=1

l∏
j=1

hi(rj)
λi (4.3)

3Note that different derivations can yield the same output sentence. Given the input sentence
pratique de l’ingénérie, the derivation using rules r1 and r7 produces the same output sentence as
the derivation using rules r2 and r8.

67

4.1 Hierarchical SMT

Model Features

As seen above (Equation 4.3), the features of the hierarchical translation model

are the target language model LM(e) as well as a set of features on the rules in a

derivation. Rule features include:

1. The direct translation weight of a rule, which defines the probability P (γ | α,∼) to

see the target side γ of a rule given its source side α.

2. The indirect translation weight of a rule, which defines the probability P (α | γ,∼) to

see the source side α of a rule given its target side γ.

3. The direct lexical weight of a rule, which defines the probability Pw(u | v) to see the

words u in the target side of a rule given the words v in the source side.

4. The indirect lexical weight of a rule, which defines the probability Pw(v | u) to see

the words v in the source side of a rule given the words u in the target side.

5. A constant used to count the number of rules in a derivation.

6. A constant used to count the number of glue rules.

7. The number of terminal symbols in a rule.

Feature Training

Translation weights To score hierarchical rules according to a generative model,

the derivations from which the sentence pairs composing the training data have

been obtained should be known. Using this information, observed rules could be

counted to estimate a distribution. However, this information is not available and

typical training data consists of word aligned sentence pairs as illustrated in Sec-

tion 4.1.1. As a consequence, [Chiang, 2007] proposes to score hierarchical rules

in a similar fashion as in phrase-based systems [Koehn et al., 2003], by computing

relative frequencies on extracted rules. Each time an initial phrase pair is extracted,

it gets a count of 1. This count is then uniformly divided to obtain fractional counts

allocated to hierarchical rules that can be obtained from this initial phrase-pair. The

frequency of each hierarchical rule is obtained by summing up the fractional counts

of rules extracted from the training data. The direct probability is then obtained by

68

4.1 Hierarchical SMT

normalizing its frequency by the (fractional) count of all rules with the same source

language side, i.e. by computing P (γ | α,∼) = fracCount(α,γ)∑
γi
fracCount(α,γi)

. In the same fash-

ion, the indirect translation probability is obtained by normalizing over rules with

the same target language side i.e. by computing P (α | γ,∼) = fracCount(α,γ)∑
αi
fracCount(αi,γ)

. In

order to illustrate the scoring of hierarchical rules, assume that the initial phrase

pair r6 has been extracted 20 times from the aligned corpus. According to the re-

stricted hierarchical rule extraction heuristic, rules r11 and r12 below can be created

from r6.

r11 X → 〈 X1 informatique, software X1 〉 10

r12 X → 〈 pratique de l’X1, X1 process 〉 10

Each count attributed to r6 is uniformly distributed among r11 and r12, meaning

that each rule gets a frequency of 10. The frequency of each rule is indicated in red.

Assume that r13 to r16 have also been extracted from the training data:

r13 X → 〈 pratique de l’X1, practical of X1 〉 15
2

r14 X → 〈 pratique de l’X1, X1 practice 〉 20

r15 X → 〈 pratique de l’X1, X1 in practice 〉 25
2

r16 X → 〈 processus X1, X1 process 〉 10

The direct probability P (γ12 | α12) of rule r12 is then computed by dividing its

frequency by the sum of the frequencies of the rules having the segment pratique

de l’X1 as source language side, i.e. by the sum of the frequencies of r12 to r15.

According to the example above, we have P (γ12 | α12) = 10
15
2
+20+ 25

2
+10

= 10
50

= 1
5
. The

indirect translation probability is obtained through division by the rules having the

segment X1 process as target language side. This yields P (α12 | γ12) = 10
20

= 1
2
.

Lexical weights Lexical weights are obtained by multiplying the lexical proba-

bilities of aligned words in a rule. If a word is aligned to multiple words, the

average of the lexical probabilities is taken. The computation of the direct lexi-

cal weight is given by Pw(u | v) =
∏|u|

i=1
1

|{j|(i,j)∈A}|
∑

(i,j)∈A lex(ui | vj), where (i)

v and u denote the string of the terminal symbols in α and γ, (ii) A stands for

69

4.1 Hierarchical SMT

v ∼ u, which is the (NULL-enriched) alignment between the words in α and γ, (iii)

lex(ui | vj) denotes the word translation probability between the j-th word in v

and the i-th word in u. In the same fashion, the indirect lexical weight is computed

as Pw(v | u) =
∏|v|

j=1
1

|{i|(i,j)∈A}|
∑

(i,j)∈A lex(vj | ui). Unaligned words are considered

as being aligned to a special empty word which also has a given lexical translation

probability. To illustrate the training of lexical weights, consider rules r6 and r17. The

alignments between terminal symbols in these rules are given in Figure 4.3 and the

word translation probabilities between aligned words are given in Figure 4.5. The

direct lexical weight of r6 is Pw(u6 | v6) = 0.15+0.05
2
∗0.4∗0.5∗0.3 = 0.006. The indirect

lexical weight of r6 is Pw(v6 | u6) = 0.3 ∗ 0.01 ∗ 0.01 ∗ 0.5 ∗ 0.2 = 3 ∗ 10−6. Computed

in the same way, the direct lexical weight of r17 is Pw(u17 | v17) = 0.15+0.1+0.05
3

= 0.1.

The indirect weight is Pw(v17 | u17) = 0.05 ∗ 0.1 ∗ 0.05 = 0.00025

r17 X→ 〈 compte tenu de X1, considering X1 〉

pratique de l’ ingénérie informatique

NULL software engineering process

compte tenu de X

considering X

Figure 4.3: Alignment between words in rules r6 (left) and r17 (right)

Count features The count features assign a negative weight or penalty of e−1 to

the elements they are defined on. An example count feature is the number of rules

French Word English Word Weight
pratique process 0.4
de NULL 0.15
l’ NULL 0.05
ingénérie engineering 0.5
informatique software 0.3

French Word English Word Weight
compte considering 0.15
tenu considering 0.1
de considering 0.05

Figure 4.4: Direct word translation probabilities of aligned words in rules r6 (left)
and r17 (right)

70

4.2 Hierarchical Decoding

English Word French Word Weight
process pratique 0.3
NULL de 0.01
NULL l’ 0.01
engineering ingénérie 0.5
software informatique 0.2

English Word French Word Weight
considering compte 0.05
considering tenu 0.1
considering de 0.05

Figure 4.5: Indirect word translation probabilities of aligned words in rules r6 (left)
and r17 (right)

used in a derivation.

Weight training The weights λi of the features in the hierarchical translation

model are trained using minimum error rate training [Och, 2003].

4.2 Hierarchical Decoding

The decoding algorithm of a hierarchical SMT system aims to find the yield e of the

1-best derivation obtained by applying hierarchical rules on the input string f , that

is:

D̂ = arg max
D

P (D) (4.4)

where P (D) is given by Equation 4.3 and D = S ⇒
r1
〈α1, γ1〉 ⇒

r2
... ⇒

rl
〈f, e〉. The

generated target translation (ê) of the best derivation is the proposed translation.

The 1-best derivation D̂ for a French string f is obtained by parsing f with the

source side of the hierarchical grammar. This is done, as for CFG grammar rules4

in Chomsky normal form, with the CYK chart parser. In order to avoid the conver-

sion of the rules into Chomsky normal form, [Chiang, 2007] and [Hoang, 2011]

use parsing algorithms that operate directly on the grammar rules. Since they use

different methods, we follow [Hoang, 2011], whose work is implemented in the

Moses open source toolkit [Koehn et al., 2007, Hoang et al., 2009].5 This search

4An overview of context-free grammars (CFG) has been given in Section 2.1.1.
5We do this because our decoder for the shallow l-MBOT translation model is an extension of

71

4.2 Hierarchical Decoding

procedure is based on the CYK+ chart parser [Chappelier et al., 1998]. Once the

parsing process yielded the best derivation D̂, the corresponding target translation

(ê) must be produced. This is done by adding a translation generation component to

the CYK+ chart parser6. Finally, the score LM(e)λm of the language model (in Equa-

tion 4.3) must be integrated in the parsing procedure. As this integration makes

search expensive, pruning is applied to make the decoding process tractable.

We first present the CYK+ parsing algorithm in Section 4.2.1. Then we introduce

the translation generation component (in Section 4.2.2) before discussing how n-

best lists are generated for minimum error rate training (in Section 4.2.4). We close

this section by showing how language model scores are computed (in Section 4.2.5)

and by presenting pruning (in Section 4.2.6).

4.2.1 The CYK+ parsing algorithm

[Chiang, 2007, Hoang, 2011] formalize the CYK+ parsing algorithm as a deductive

proof system and define a decoding procedure using this system. We begin by intro-

ducing deductive proof systems. Then we present the inference rules of the chart

parser before showing the search procedure for an input sentence. As we present

the CYK+ parser for hierarchical systems, we take all non-terminal symbols from

the alphabet Ns = Nt = {X,S}, as defined in Section 4.1.1.

Deductive Proof Systems

A deductive proof system consists of (i) a set of weighted items, which we write

Xi : wi, and (ii) a set of inference rules of the form:

A1 : w1 · · ·Ak : wk
B : w

φ

Moses.
6Note that when searching for the first best derivation only (and without scoring the language

model) the generation of the English string e can easily be done as a postprocessing step that replaces
each source side α of a rule with its target side γ.

72

4.2 Hierarchical Decoding

where Ai : wi and B : w are weighted items and φ is a side condition. Inference

rules are used in the inference process to prove new items given a set of items that

have already been proved. The first, denoted by B : w in the inference rule, is called

the consequent of the rule. The latter, written Ai : wi, are called the antecedents. The

inference process starts with a set of items, called the axioms, which are assumed

being already proved (or true) before inference starts. Given these axioms and the

inference rules, new items are proved. The process stops once a special axiom,

called the goal of the process, has been proved.

The CYK+ Chart Parser

Instead of using grammar rules in Chomsky normal form, the CYK+ chart parser

uses dotted rules of the form:

X → α1 • α2

where α1 and α2 are strings composed of terminal or non-terminal symbols. Dotted

rules are applied on the input string in a bottom-up fashion, just as for the CYK

algorithm. In addition, the rules memorize the processed symbols in the right-hand

side (rhs) of a rule by moving the dot left-to-right, one symbol at a time. Once the

dot has consumed all symbols in the rhs of a rule, this rule is called passive. Passive

rules can be used to parse non-terminal symbols in the same fashion as grammar

rules in the CYK parsing algorithm.

Written as a deductive proof system, the CYK+ chart parsing algorithm is com-

posed of items of the form [X → α1 • α2, i, j, w] where X → α1 • α2 is a dotted

rule in which the string α1 has been recognized. The complete item indicates that

the string α1 spanning from i to j has been processed inside of a subtree rooted

by X. For the complete subtree to be processed, the string α2 remains to be rec-

ognized. The last element of the item is the weight w of the subtree. We call such

items parse items. We distinguish between active and passive parse items. The first

are composed of active dotted rules and the second of passive rules. The axioms

73

4.2 Hierarchical Decoding

of the parser are obtained by means of the grammar rules X w−→ α. For each rule,

the axiom in Equation 4.5 is created. Because axioms model rules that have not yet

been applied, we omit the span information in the remainder of the thesis.

[X → •α, i, i, w]
(X

w−→ α ∈ P) (4.5)

The axiom indicates that the string α, that is the rhs of the grammar rule X w−→ α,

remains to be recognized for the subtree rooted byX to be processed. The inference

rules of the parser are divided into two categories:

1. Lexical rules process terminal symbols and are of the form:

[X → α1 • tj+1α2, i, j, w]

[X → α1tj+1 • α2, i, j + 1, w]
(4.6)

where tj+1 is the terminal spanning from j to j+1. The antecedent of the rule

is a parse item where the terminal symbol tj+1 has not yet been recognized.

The consequent of the rule is an item in which tj+1 has been processed and

the span extended to j + 1.

2. Non-lexical rules process non-terminal symbols and have the form:

[X → α1 •Xα2, i, j, w1] [X → β•, j, k, w2]

[X → α1X • α2, i, k, w1 ∗ w2]
(4.7)

where X is a non-terminal spanning from j to k. The first antecedent of the

rule is a parse item where the non-terminal X remains to be processed. The

second antecedent is a parse item where the rule X → β• is passive, meaning

that its right hand side has already been consumed. The consequent is a parse

item where the non-terminal X has been processed via the passive rule X →
β• and the span extended from j to k.

Finally the goal of the system is the item [S → α•, 0, |f |, w], where the rhs of a

rule starting with the start non-terminal S and spanning the entire input string has

74

4.2 Hierarchical Decoding

been processed.

CYK+ search Procedure

The CYK+ parsing process starts with the axioms defined above and produces new

items using the inference rules. The search procedure is given in Algorithm 1. It uses

six data structures. The first two, denoted by a[· · ·], are lists containing the axioms

constructed using the rules of the grammar, one list for each non-terminal of the

grammar7. The second and fourth, denoted by d[· · ·], contain active parse items for

each non-terminal. The third and fifth, indicated by h[· · ·], contain passive parse

items for each non-terminal. The item lists are ordered from smallest to largest

span in an input sentence f of length |f |.

The parsing algorithm traverses each list cell by cell. In each cell, the parser tries

to prove all items belonging to this cell. Each time a new item is proven, it is added

to the cell together with a tuple of back pointers to the items from which it has

been inferred. Proven items that are still active are added to the list of active items

(line 7). Proven items that are passive are added to the list of passive items (line

10). Once all items rooted by X have been handled, the parser processes the items

rooted by S. When several equivalent items populate a cell, the one with the best

weight is kept, together with its back pointers. When the complete input sentence

has been processed, the parsing procedure ends. If the goal [S → α•, 0, |f |, w] has

been proved, the sentence f could be parsed successfully. The best derivation is

obtained by starting with the goal item [S → α•, 0, |f |, w] and following the back

pointers stored in each item.

7[Chiang, 2007] puts all rules in the same list. Because X rules have to be applied before S rules,
we found it convenient to put each rule type in a specific list.

75

4.2 Hierarchical Decoding

Algorithm 1 CYK+ search algorithm

Data structures:
- a[X]: list of axioms created from rules X w−→ α ∈ P
- a[S]: list of axioms created from rules S w−→ α ∈ P
- d[X, i, j]: list of active items rooted by X with span [i . . . j]
- h[X, i, j]: list of passive items rooted by X with span [i . . . j]
- d[S, i, j]: list of active items rooted by S with span [i . . . j]
- h[S, i, j]: list of passive items rooted by S with span [i . . . j]

1: for all axioms [Y → •α,w] do
2: Insert [Y → •α,w] into a[Y]
3: end for
4: for l← 1, · · · , |f | do
5: for all i, j | j − i = l do
6: for all items [Y → α1 •α2, i, j, w] (with α2 not empty) provable from items in a[Y]

and d[Y, i, j] and h[Y, i, j] do
7: Add [Y → α1 • α2, i, j, w] to d[Y, i, j]
8: end for
9: for all items [Y → α•, i, j, w] provable from items in in a[Y] and d[Y, i, j] and

h[Y, i, j] do
10: Add [Y → α•, i, j, w] to h[Y, i, j]
11: end for
12: end for
13: end for

76

4.2 Hierarchical Decoding

4.2.2 Translation Generation

Translation generation can be incorporated in the CYK+ parser by adding a com-

ponent to the items of the deductive proof system described above (Section 4.2.1).

In the same fashion as for rule weights, each axiom carries the target side γ of the

rule from which it was created. Equation 4.8 shows the axioms created for each

hierarchical rule, where γ is simply the target side of the rule from which the axiom

is created.

[X → •α,w, γ]
(X

w−→ 〈α, γ〉 ∈ P) (4.8)

Similarly to rule weights, all items created from these axioms carry a partial

translation that is either the target side γ of the axiom or the product ⊗ of two

target sides γ1 and γ2. The items created using lexical rules, shown in Equation

4.9, carry the same partial translation as their antecedent. As seen in Section 4.2.1,

these rules simply create new items by consuming terminal symbols in the source

side α of their antecedent.

[X → α1 • tj+1α2, i, j, w, γ]

[X → α1tj+1 • α2, i, j + 1, w, γ]
(4.9)

Non-lexical rules are shown in Equation 4.10. As seen above (Section 4.2.1),

these rules process a non-terminal symbol X in the source side α1 of an active an-

tecedent [X → α1 •Xα2, i, j, w1, γ1] using a passive antecedent [X → β • j, k, w2, γ2].

On the target language side of these items, a non-terminal X in γ1 of the first an-

tecedent is replaced by γ2. This operation is denoted by ⊗. Equation 4.10 shows the

non-lexical inference rule with integrated partial translations.

[X → α1 •Xα2, i, j, w1, γ1] [X → β•, j, k, w2, γ2]

[X → α1X • α2, i, k, w1 ∗ w2, γ1 ⊗ γ2]
(4.10)

While all parse items carry a partial translation γ, only passive items have con-

77

4.2 Hierarchical Decoding

sumed the input side of a rule corresponding to γ. We follow the terminology of

[Koehn et al., 2007] and denote the partial translations in passive parse items by

translation options. Translation options are used to generate the translations corre-

sponding to the parse tree resulting from CYK+ parsing.

When searching for the 1-best parse using CYK+ (Section 4.2.1) equivalent items

in the item lists are merged into the ones with highest weight. This notion of equiv-

alence does not consider the target sides γi of parse items. So the following items

are considered as equivalent:

[X → α1 •Xα2, i, j, w1, γ1]⇔ [X → α1 •Xα2, i, j, w2, γ2] (4.11)

Their merge is the item with highest weight.

4.2.3 Example

We illustrate CYK+ parsing with the hierarchical grammar given in Figure 4.6 as

well as the input sentence F :

F l’ingénérie informatique est pratique

From the hierarchical rules, the axioms in Figures 4.7 and 4.8 are created fol-

lowing Equation 4.8. According to Algorithm 1, these are put into the lists a[X] and

a[S]:

r1 : X
0.1−−→ 〈 pratique, process 〉 r2 : X

0.4−−→ 〈 pratique, practice 〉
r3 : X

0.5−−→ 〈 pratique, practical 〉 r4 : X
1.0−−→ 〈 l’ ingénérie, engineering 〉

r5 : X
0.6−−→ 〈 informatique, software 〉 r6 : X

0.4−−→ 〈 informatique, computer science 〉
r7 : X

1.0−−→ 〈 l’ ingénérie X1, X1 engineering 〉 r8 : X
1.0−−→ 〈 X1 est X2, X1 is X2 〉

r9 : S
1.0−−→ 〈 X1, X1 〉 r10 : S

1.0−−→ 〈 S X, S X 〉

Figure 4.6: Example hierarchical grammar

Using the inference rule for terminal symbols (Equation 4.9) on the in-

put sentence, a first series of items can be inferred from the axioms. For

78

4.2 Hierarchical Decoding

a1 :
X→• pratique, 0.1, process a2 :

X→• pratique, 0.4, practice
a3 :

X→• pratique, 0.5, practical a4 :
X→•l’ ingénérie, 1.0, engineering

a5 :
X→•informatique, 0.6, software a6 :

X→•informatique, 0.4, computer science
a7 :

X→•l’ ingénérieX1, 1.0, X1 engineering a8 :
X→• X1 est X2, 1.0, X1 is X2

Figure 4.7: Axioms created from rules having lhs X put into a[X].

a9 :
S→•X1, 1.0,X1

a10 :
S→• S X , 1.0, S X

Figure 4.8: Axioms created from rules having lhs S put into a[S].

instance, the passive item [X → informatique•, 2, 3, 0.6, software] can be in-

ferred from the axiom [X → •informatique, 0.6, software]. In the same fash-

ion, the active item [X → l’ • ingénérie, 0, 1, 1.0, engineering] can be inferred from

[X → • l’ ingénérie, 1.0, engineering]. As seen in Section 4.2.2 the partial transla-

tion of the inferred items is the same as for the antecedents. Further items

are created using the inference rules for non-lexical items given in Equation

4.10. For spans of length 3 in the input sentence, the passive item [X →

l’ ingénérie X1•, 0, 3, 0.6, software engineering] can be inferred from [X → l’ ingénérie •

X1, 0, 2, 1.0, X1 engineering] and [X → informatique•, 2, 3, 0.6, software]. As seen in Sec-

tion 4.2.2, the partial translation of this item is obtained by replacing the non-

terminal X1 in the partial translation “X1 engineering” (in the first antecedent) by

“software” (in the second antecedent).

Figures 4.9 to 4.11 show some8 items inferred from the axioms in Figures 4.7 and

4.8 on increasing spans of the sentence F . In addition to the item elements indi-

cated in Equations 4.9 and 4.10, each item carries an identity integer and a list of

back-pointers to the identity of its antecedents. For items without antecedent, the

back-pointers are omitted. We do not display the partial translation in active items

as these are not used for translation generation. Finally, according to Algorithm 1

the items spanning the entire sentence (Figure 4.11) are of two types. The first are

either rooted by X or by S. Except for their lhs, the items are exactly the same so

we write [X/S → α1 • α2, i, j, w] to denote two items, the first rooted by X and the

8For instance, for the span 0-5 (entire sentence) we only display a subset of items that can be
created from previous ones. Similarly, we do not display all items inferred for the span 0-3.

79

4.2 Hierarchical Decoding

second by S.

[X → l’ ingénérie •X1, 0, 2] [X → X1 est• X2, 2, 4]

[1.0, 13, (9)] [0.6, 11, (7)]

[X → l’ ingénérie•, 0, 2] [X → X1 est• X2, 2, 4]

[1.0, engineering, 12, (8)] [0.4, 10, (6)]

[X → l’ • ingénérie X1, 0, 1] [X → X1 • est X2, 2, 3]

[1.0, 9] [0.6, 7, (2)]

[X → l’ • ingénérie, 0, 1] [X → X1 • est X2, 2, 3] [X → pratique•, 4, 5]

[1.0, 8] [0.4, 6, (1)] [0.1, process, 5]

[X → informatique•, 2, 3] [X → pratique•, 4, 5]

[0.6, software, 2] [0.5, practical, 4]

[X → informatique•, 2, 3] [X → pratique•, 4, 5]

[0.4, computer science, 1] [0.4, practice, 3]

l’ ingénérie informatique est pratique

0 1 1 2 2 3 3 4 4 5

Figure 4.9: Active (in red at top) and passive parse items of spans 1 and 2 created
with rules having lhs X.

The CYK+ algorithm presented so far only searches for the 1-best parse of an

input sentence. As mentioned in Section 4.2.1, equivalent items in each cell of the

item lists are merged into the one with the highest weight. Figure 4.12 displays

the items generated by the CYK+ parser when equivalent items are merged. The

identity integers remain the same as in the previous figures. When several items

have the same weight, we randomly choose one.

4.2.4 N-best list Generation

For applications in statistical machine translation (SMT), it is not sufficient to obtain

the 1-best derivation for an input sentence. In order to tune SMT models using

Minimum Error Rate Training [Och, 2003], an n-best list of possible translations is

required. As partial translations for parse items are only provided in passive parse

items (see Section 4.2.2), n-best list generation only applies on these items, which

80

4.2 Hierarchical Decoding

[X → X1 est •X2, 0, 4]

[0.6, 17, (15)]

[X → X1 est •X2, 0, 4]

[0.4, 16, (14)]

[X → l’ ingénérie X1•, 0, 3]

[0.6, software engineering, 15, (13, 2)]

[X → l’ ingénérie X1•, 0, 3]

[0.4, computer science engineering, 14, (13, 1)]

[X → X1 est X2•, 2, 5]

[0.06, software is process, 23, (11, 5)]

[X → X1 est X2•, 2, 5]

[0.04, computer science is process, 22, (10, 5)]

[X → X1 est X2•, 2, 5]

[0.3, software is practical, 21, (11, 4)]

[X → X1 est X2•, 2, 5]

[0.2, computer science is practical, 20, (10, 4)]

[X → X1 est X2•, 2, 5]

[0.24, software is practice, 19, (11, 3)]

[X → X1 est X2•, 2, 5]

[0.16, computer science is practice, 18, (10, 3)]

l’ ingénérie informatique est pratique

0 1 1 2 2 3 3 4 4 5

Figure 4.10: Active (in red at top) and passive parse items of span 3 created with
rules having lhs X.

we call translation options. In [Chiang, 2007], n-best lists are generated following

Algorithm 2 below. Its core is the function GENBEST (l), which takes a tuple of

ordered lists Li of translation options as input and generates an ordered list of these.

GENBEST (l) is recursively applied each time a translation option is inferred.

To illustrate n-best list generation, suppose that we want to compute the n-best

list of translations for the parse items with ids 18 to 23 in the chart in Figure 4.10.

We recursively apply KBest(x) to all chart items used to infer 18 to 23, that is 10,

81

4.2 Hierarchical Decoding

[X/S → l’ingénérie X1, 0, 5]

[0.3, software is practical engineering, 31, (13, 21)]

[X/S → l’ingénérie X1, 0, 5]

[0.06, software is process engineering, 30, (13, 23)]

[X/S → X1 est X2•, 0, 5]

[0.06, software engineering is process, 29, (17, 5)]

[X/S → X1 est X2•, 0, 5]

[0.04, computer science engineering is process, 28, (16, 5)]

[X/S → X1 est X2•, 0, 5]

[0.3, software engineering is practical, 27, (17, 4)]

[X/S → X1 est X2•, 0, 5]

[0.2, computer science engineering is practical, 26, (16, 4)]

[X/S → X1 est X2•, 0, 5]

[0.24, software engineering is practice, 25, (17, 3)]

[X/S → X1 est X2•, 0, 5]

[0.16, computer science engineering is practice, 24, (16, 3)]

l’ ingénérie informatique est pratique

0 1 1 2 2 3 3 4 4 5

Figure 4.11: Active (in red at top) and passive parse items of span 5 created with
rules having lhs X or S.

11, 3, 4, 5 in Figure 4.10. As 3, 4 and 5 are directly inferred from axioms, they are

ordered and put together in a list L1 which is added to `. As 10 and 11 are inferred

from the further items 6 and 7, KBest(x) is applied to those items, which in turn

are inferred from 1 and 2. The application of KBest(x) to the items 1 and 2 returns

an ordered list of these two items, that is (2, 1). As 10 and 11 are directly inferred

from 6 and 7 which in turn are directly inferred from 1 and 2, the latter are put

in a second (ordered) list L2 which is also added to `. The function GENBEST (`)

is then applied to L1 and L2 and returns an ordered list of items 18 to 23, that is

(21, 19, 20, 18, 23, 22).

One way to define GENBEST (`) is to make it compute all elements of the

82

4.2 Hierarchical Decoding

[X/S → X1 est X2•, 0, 5]

[0.3, software engineering is practical, 27, (21, 4)]

[X → X1 • est X2, 0, 3]

[0.6, 17, (15)]

[X → l’ ingénérie X1•, 0, 3]

[0.6, software engineering, 15, (13, 2)]

[X → X1 est X2•, 2, 5]

[0.3, software is practical, 21, (11, 4)]

[X → l’ ingénérie •X1, 0, 2]

[1.0, 13, (9)]

[X → l’ ingénérie•, 0, 2] [X → X1 est• X2, 2, 4]

[1.0, engineering, 12, (8)] [0.6, 11, (7)]

[X → l’ • ingénérie X1, 0, 1] [X → X1 • est X2, 2, 3] [X → pratique•, 4, 5]

[1.0, 9] [0.6, 7, (2)] [0.5, practical, 4]

[X → l’ • ingénérie, 0, 1] [X → informatique•, 2, 3]

[1.0, 8] [0.6, software, 2]

l’ ingénérie informatique est pratique

0 1 1 2 2 3 3 4 4 5

Figure 4.12: Chart item lists with merged equivalent items.

product of the input lists, which generates a very large list of products although in

practice, only the top n elements of such a list are needed. So there is no need to

compute all products. In order to generate such n-best lists, [Chiang, 2007] uses

an algorithm that lazily computes the product of several ordered input lists. The

main idea of this procedure is that when the input lists are ordered9, some product

values are guaranteed to be smaller than others. For instance, the product between

the first element of all lists is always smaller than the product of all other elements

in the list. In the same fashion, the product of elements that are adjacent to the best

product are guaranteed to be smaller than all other products.

9We assume that ordered lists range from smaller to larger elements

83

4.2 Hierarchical Decoding

Algorithm 2 N-best list generation

Data structures:
- best[t]:ordered list of best translation options
- `:tuple of translation option lists

1: Function KBest(v)
2: for (u1, ..., un) such that v inferred from (u1, ..., un) do
3: Add 〈KBest(u1) · · ·KBest(un)〉 to `
4: end for
5: return GENBEST (`)

Lazy computation of sorted list products

The product computation procedure is given in Algorithm 4.2.4. It uses four data

structures:

• A tuple of virtual lists, denoted by `.

• A priority queue containing candidate values for products between lists, denoted by

prods[].

• A tuple 〈⊗iLi(k), L, r〉 containing the result of the product applied to the i input lists

Li, an index L over the lists and an i-dimensional list index r.

The algorithm begins by computing the product ⊗iLi(k) for the first element of

all lists and inserting it into prods[] (lines 2-5), its index, stored in the variable r, is

1, that is a sequence of 1. Then, the best element of prods[] is retrieved and stored

in bestProds[] (lines 18-20). As long as the size of bestProds[] is smaller than the

desired size n, the procedure continues by (i) determining the indices r′i of adjacent

elements to the one at index r (by adding the bolean vector bi to r) (line 10) and

(ii) computing the product of these elements which is then added to prods[] (lines

11-15) and (iii) retrieving the best element of prods[] which is stored in bestProds[]

(lines 18-20).

We illustrate the functioning of Algorithm 4.2.4 with two lists L1 and L2 con-

taining structures of two elements: (i) a partial translation and (ii) a probability

score:

84

4.2 Hierarchical Decoding

Algorithm 3 Lazy computation of sorted list products

Data structures:
- `:tuple of virtual lists
- prods[]:priority queue containing candidate products
- 〈⊗iLi(k), L, r〉:product of list cells at i-dimensional index r
- bestProds[]:ordered list of n-best products

1: FUNCTION MERGEPROD(`,⊗)
2: for L ∈ ` do
3: INSERT (prods[], 〈⊗iLi(k), L,1〉)
4: HEAPIFY(prods[])
5: end for
6: L← nil, r← nil
7: while | bestProds[] |< n do
8: if L 6= nil then
9: for i← 1, · · · , |L| do

10: r′ ← r + bi

11: if Li(r′)i defined then
12: if 〈⊗iLi(r′), L, r′〉 6∈ prods[] then
13: INSERT(prods[], 〈⊗iLi(r′), L, r′〉
14: end if
15: end if
16: end for
17: end if
18: if prods[] > 0 then
19: 〈x, L, r〉 ← EXTRACTBEST (prods[])
20: insert x into bestProds[]
21: else
22: return undefined
23: end if
24: end while
25: return bestProds[]

85

4.2 Hierarchical Decoding

L1:

1 〈software,0.6〉

2 〈computer science,0.4〉

L2:

1 〈X is practical,0.5〉
2 〈X is practice,0.4〉
3 〈X is process,0.1〉

We define the multiplication operator ⊗ in the same way as in Section 4.2.2. The

elements of L1 and L2 used for product computation can be illustrated using a 2-

dimensional grid such as the one in Figure 4.13. Suppose that we want to generate

the 3-best products of these two lists using Algorithm 4.2.4. We begin by computing

the product of the first elements of the lists (lines 2-5) and add it to prods[]. Then,

we extract 〈software is practical,0.3〉 from prods[] and add it to bestProds[] (lines

18-20, blue item (1) in Figure 4.13). At this point, bestProds[] has size 1 so we per-

form a second iteration and compute the indices of the elements that are adjacent

to the one at index (1, 1), that is (2, 1) and (1, 2)) (line 10) before calculating the

product of the corresponding elements in the lists, which we add to prods[] (lines

11-15, red items (2) in Figure 4.13). At this point, prods[] has size 2 so we perform

a second iteration and extract 〈 software is practice,0.24〉 from prods[] to put it into

bestProds[] (lines 19-20). Then, we compute the indices of the elements that are

adjacent to the one at index (2, 1), that is (3, 1) and (2, 2) (line 10) and calculate the

product of the corresponding elements in the lists, which we add to prods[] (lines

11-15, magenta items (3) in Figure 4.13). Finally we extract 〈 computer science is

practical,0.2〉 from prods[] and add it to bestProds[] which now has the desired size

3.

L1/L2 〈software,0.6〉 〈computer science,0.4〉

〈X is practical,0.5〉 (1) 〈 software is practical,0.3〉 (2) 〈 computer science is practical,0.2〉

〈X is practice,0.4〉 (2) 〈 software is practice,0.24〉 (3) 〈 computer science is practice,0.16〉

〈X is process,0.1〉 (3) 〈 software is process,0.06〉

Figure 4.13: Example of lazy product computation

86

4.2 Hierarchical Decoding

4.2.5 Language Model Integration

Besides rule specific features, the hierarchical translation model (Section 4.1.2)

consists of a language model feature. When computing n-best lists, this feature

must be integrated into the translation options. As seen in Section 4.2.2, translation

options carry, in addition to their weight, a translation γ of their source side. In

order to define a language model score over these items, two functions are added

to γ ([Chiang, 2007]):

- PLM(γ) computes the m-gram language model score for a segment of γ =

a1 . . . a|γ| of terminals, ignoring words marked with ∗:

PLM(γ) =
∏

m<i<|γ|
∗/∈ai−m+1...ai−1

p(ai | ai−m+1 · · · ai−1) (4.12)

- Markm marks words for which the language model has already been com-

puted in segments bigger than m:

Markm =

a1 · · · am−1 ∗ a|γ|−m+2 · · · a|γ| if | γ |≥ m

a1 · · · a|γ| otherwise
(4.13)

To illustrate the functioning of functions PLM and Markm, we compute the 3-

gram language model score of the segment γ = computer (c) science (s) engineering

(e) is (i) practical (p). The language model score is PLM(γ) = p(e|cs)ṗ(i|se)ṗ(p|ei).
The function Markm marks the third word of gamma, i.e. Mark3(γ) = cs ∗ ip.

For chart parsing and n-best list generation, the functions PLM and Markm are

applied on the partial translations γ. The resulting parse items are shown in Equa-

tions 4.14 and 4.15:

[X → α1 • tj+1α2, i, j, w, γ,Markm(γ), PLM(γ)]

[X → α1tj+1 • α2, i, j + 1, w, γ,Markm(γ), PLM(γ)]
(4.14)

87

4.2 Hierarchical Decoding

[X → α1 •Xα2, i, j, w1, γ1,Markm(γ1), PLM (γ1)] [X → α2•, j, k, w2, γ2,Markm(γ2), PLM (γ2)]

[X → α1X • α2, i, k, w1 ∗ w2,Markm(γ1 ⊗ γ2), PLM (γ1 ⊗ γ2)]
(4.15)

Following the terminology of [Koehn et al., 2007], we call translation options

that integrate language model scoring hypotheses. Algorithm 1 can easily be mod-

ified to integrate language model scoring by replacing the translation options in

h[X] and h[S] by the items of the form given in Equations 4.14 and 4.15. Note that

the correctness of the n-best algorithm is lost by integrating the language model.

4.2.6 Pruning

The CYK+ chart parsing algorithm for hierarchical grammars generates a large

number of items in each cell of the chart. When language model scores are in-

tegrated into the parsing procedure, time and memory consumption of decoding

become prohibitive. In order to reduce these costs, [Chiang, 2007] removes items

with log score worse than:

(1) β added to the best score in the same cell

(2) the score of the b-th best item in the cell

When language model computation is added to translation options, those are not

directly comparable because the probability of generating the first (m − 1) words

of γ is not computed. For pruning, [Chiang, 2007] computes the language model

score of the m− 1 first words of γ for each cell and adds it to the score of the cell.

One way to prune the chart cells is to compute all items for each cell and then

remove the ones that meet the pruning conditions. But inferring items that are to

be removed later is suboptimal and [Chiang, 2007] defines a pruning procedure,

called cube pruning, that only computes chart items that will not be pruned away

later on.

88

4.2 Hierarchical Decoding

(i1) [informatique est •X,2,5,0.6,software is X]
(i2) [informatique est •X,2,5,0.4,computer science is X]

(j1) [pratique•,5,6,0.5,practical]
(j2) [pratique•,5,6,0.4,practice]
(j3) [pratique•,5,6,0.1,process]

Figure 4.14: Example Input lists to Cube Pruning

Cube Pruning

The main idea of cube pruning is the lazy computation of chart items in the CYK+

algorithm with integrated language model. In this procedure, chart items that are

combined to infer translation options are modeled as (ordered) n-best lists. Compu-

tation of inferred items is then done using the function MERGEPROD(`,⊗) given

in Algorithm 4.2.4. The integration of cube pruning in the CYK+ chart is simply a

matter of replacing line 9 of Algorithm 1 with the subroutine below. The pruning

conditions refer to conditions (1) and (2) in Section 4.2.6.

Algorithm 4 Cube pruning of chart cells

1: for all items [X → α•, i, j, w] provable from items in a[X] and d[X] and h[X] do
2: Lax ← Sort(a[X]) and Ldx ← Sort(d[X]) and Lhx ← Sort(h[X])
3: Add Lax, Ldx and Lhx to `
4: while h[X][i] does not meet pruning conditions do
5: h[X]←MERGEPROD(`,⊗)
6: end while
7: end for

To illustrate cube pruning, consider the item lists I = (i1, i2) and J = (j1, j2, j3),

given in Figure 4.14. They can be used to infer several hypotheses h(i, j) that go

to the same chart cell (spanning from 2 to 6). Instead of computing all possible

hypotheses for this cell, cube pruning lazily computes the hypotheses, as shown in

Figure 4.15. The 3-best hypotheses h(1, 1), h(1, 2) and h(2, 1) are given in Figure

4.16. We assume that the partial translations are scored using a 3-gram language

model.10

10The language model scores are constructed for the example.

89

4.3 SMT with syntactically annotated SCFG

I/J (j1) (j2) (j3)

(i1) h(1,1) h(1,2)

(i2) h(2,1)

Figure 4.15: Cube Pruning Example

1 [informatique est pratique•,2,6,0.3,software is practical,software is * is practical, 0.25]
2 [informatique est pratique•,2,6,0.24,software is practice,software is * is practice, 0.1]
3 [informatique est pratique•,2,6,0.2,computer science is practical,computer science * is practical,

0.15]

Figure 4.16: 3-best hypotheses computed using Cube Pruning

4.3 SMT with syntactically annotated SCFG

As seen in Section 2.2.1, several authors build SMT systems with syntactically an-

notated SCFG rules. In the next sections, we briefly present several strategies to ex-

tract such rules from parallel corpora. The rule extraction strategies for Sh-l-MBOT

grammars (Section 5.1) are extensions of the heuristics presented here.

4.3.1 Training Data for SMT with Syntactic annotation

The extraction and training of grammar rules that include syntactic annotation is

performed on a word aligned parallel corpus with corresponding parse tree on each

side. Such a tree pair is called a word aligned biparsed sentence pair. Figure 4.17

shows such a tree pair for English and German sentences. The leaves of each tree

are the words of the sentence pair. The non-terminals belong to the parse tree

of each sentence. The alignment is between the leaves of the trees. For a given

translation direction, e.g. English-to-German, we call the aligned tree of the input

language the source tree and the tree of the output language the target tree.

90

4.3 SMT with syntactically annotated SCFG

S

NP

JJ

Official

NNS

forecasts

VP

VBD

predicted

NP

QP

RB

just

CD

3

NN

%

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 4.17: Word aligned biparsed sentence pair

4.3.2 SCFG rules as Decorated Hierarchical Rules

The extraction of hierarchical rules decorated with source and target language syn-

tactic annotations follows the two-step heuristic in [Chiang, 2007], presented in

Section 4.1.1 except that (i) the extraction procedure is performed on word aligned

biparsed sentence pairs and (ii) additional conditions constrain the rule extraction

heuristic. This approach is implemented in the syntax component of the Moses open

source toolkit [Hoang et al., 2009]. The additional constraints on source and target

language sequences f ji and ej
′

i′ can be formulated as:

4. The source language phrase f ji must match a syntactic constituent in the

source parse tree.

5. The target language phrase ej
′

i′ must match a syntactic constituent in the target

parse tree.

91

4.3 SMT with syntactically annotated SCFG

The left-hand side of initial rules11 is a pair of non-terminals, namely those matched

in conditions 4 and 5.

The second step of the heuristic is the same as in Section 4.1.1: new rules are

created by excising already collected rules from larger ones. This process leads to

a rule containing gaps on the source and target rhs. These are replaced by the

(annotated) non-terminals in the source and target lhs of the excising rules.

To illustrate SCFG rule extraction with decorated non-terminals, we show the

word aligned segments in Figure 4.1 (Section 4.1.1) together with their parse trees

in Figure 4.18.

NP

N

pratique

PP

P

de

NP

D

l’

N

ingénérie

A

informatique

NP

NN

software

NN

engineering

NN

process

Figure 4.18: Word aligned biparsed sentence pair

The initial rules extracted from this pair are p1 to p4 below.12 Note that the rules r2,

r3 and r5 in Section 4.1.1 cannot be extracted anymore because they do not match

a syntactic constituent.

p1 (N,NN)→ 〈 pratique, process 〉

p2 (N,NN)→ 〈 ingénérie, engineering 〉

p3 (A,NN)→ 〈 informatique, software 〉

p4 (NP,NP)→ 〈 pratique de l’ ingénérie informatique, software engineering process 〉
11By initial rules, we denote the hierarchical rules that contain no non-terminals in their right-

hand sides.
12We use a notation similar to the one in Section 2.1.1 and write SCFG rules as (As, At) →
〈α, β, Ã〉, except that we indicate the alignment Ã by indexing non-terminal symbols.

92

4.3 SMT with syntactically annotated SCFG

In the second step of the rule extraction heuristic, rules p1 to p3 are subtracted from

p4 to create rules such as p5 to p7.

p5 (NP,NP)→ 〈 N1 de l’ ingénérie informatique, software engineering NN1 〉

p6 (NP,NP)→ 〈 pratique de l’ N1 informatique, software NN1 process 〉

p7 (NP,NP)→ 〈 pratique de l’ ingénérie A2, NN2 engineering process 〉

Because the annotated rule extraction yields much fewer rules than the hierarchical

rule extraction, the additional restrictions in [Chiang, 2007] (Section 4.1.1) can be

ignored. As a consequence, rules like p8 and p9 can be extracted:

p8 (NP,NP)→ 〈 pratique de l’ N1 A2, NN2 NN1 process 〉

p9 (NP,NP)→ 〈 N1 de l’ N2 A3, NN3 NN2 NN1 〉

For more flexibility, glue rules can be used in SCFG grammars with annotated non-

terminals. In this setup, the set of glue rules contains all rules that concatenate

labeled source and target non-terminals n ∈ Ns and n′ ∈ Nt

(S,S)→ 〈 S1 n, S1 n
′ 〉

(S,S)→ 〈 n, n′〉

The set of glue rules for syntactically annotated grammars contain all possible

rules obtained by annotating the non-terminals in rules g1 and g2 in Section 4.1.1

with syntactic labels.

4.3.3 Hierarchical rules with target annotations

Hierarchical rules with syntactic annotation on the target language side only can

easily be obtained by removing constraint (4) from the heuristic presented in the

previous section. Consequently, the non-terminal for the source side is X as in hier-

archical grammars. The input to this heuristic are word aligned parallel sentences

where only the target sentence carries a parse tree. An example is given in Figure

4.19.

Rules q1 to q9 below show example hierarchical rules with target side syntactic

annotations extracted from the sentence pair in Figure 4.19. Rules q1 to q5 are ex-

93

4.3 SMT with syntactically annotated SCFG

pratique de l’ ingénérie informatique

NP

NN

software

NN

engineering

NN

process

Figure 4.19: Word aligned sentence pair with parse tree on target language side.

tracted according to the first step of the heuristic presented in the previous section.

Rules q6 to q9 are extracted according to the second step. These example rules show

that the removal of the source syntactic constraint (4) allows to extract additional

rules such as q3 and q8

q1 (X,NN)→ 〈 pratique, process 〉

q2 (X,NN)→ 〈 ingénérie, engineering 〉

q3 (X,NN)→ 〈 de l’ingénérie, engineering 〉

q4 (X,NN)→ 〈 informatique, software 〉

q5 (X,NP)→ 〈 pratique de l’ ingénérie informatique, software engineering process 〉

q6 (X,NP)→ 〈 X1 de l’ ingénérie informatique, software engineering NN1 〉

q7 (X,NP)→ 〈 pratique de l’ X1 informatique, software NN1 process 〉

q8 (X,NP)→ 〈 pratique X1 informatique, software NN1 process 〉

q9 (X,NP)→ 〈 X1 de l’ ingénérie X2, NN2 engineering NN1 〉

The set of glue rules consists of all possible rules obtained by annotating the

target non-terminals X in rules g1 and g2 (Section 4.1.1) with syntactic labels.

4.3.4 SCFG Rules as Shallow STSG Rules

Shallow Synchronous Tree Substitution Grammars (sh-STSG) are a restricted vari-

ant of the STSG grammars presented in Chapter 2 (Section 2.1.2). The restriction

on STSG rules to obtain their shallow variant is that the left-hand-side (LHS) has

height at most 2.

94

4.3 SMT with syntactically annotated SCFG

Automatic extraction of Shallow Minimal STSG Rules

Shallow STSG rules are obtained by first extracting minimal STSG rules following

the procedure in [Liu et al., 2009] and then making those shallow by removing

their internal nodes.

Extraction of Minimal STSG Rules Given a word aligned biparsed parallel cor-

pus such as in Figure 4.17, the extraction procedure for minimal STSG rules can be

summarized as shown in Figure 4.20. The detailed steps are presented in Figures

4.21 to 4.24. Figure 4.25 displays all rules extracted after one iteration of the STSG

rule extraction procedure as well as the remaining word aligned tree pair. All words

could be extracted to form rules except predicted and sind ausgegangen because the

maximal source node consistent with the alignment to the leaves sind and ausge-

gangen is the root node of the word aligned tree pair. Extracting a rule that contains

this node requires to extract first all rules arising from tree pairs that are lower in

the source tree. Figures 4.26 and 4.27 show the rules extracted after a second and

third pass of the rule extraction algorithm. Finally, Figure 4.28 shows the last step

of the procedure, where the remaining tree pair is the rule containing predicted and

sind ausgegangen.

Step 1 Find a maximal source node consistent with a (minimal) set S of word
alignment links

Step 2 Find a maximal target node consistent with the minimal extension of S
Reiterate 1 and 2 if necessary

Step 3 Excise the rule with maximal source and target node from the biparsed
sentence pair and replace with parent labels

Step 4 Add the rule to the rule set
Step 5 Repeat

Figure 4.20: Main steps of the rule extraction procedure for minimal STSG rules.

95

4.3 SMT with syntactically annotated SCFG

Step 1 Find maximal source node consistent with word alignment links
Algorithm Given a lowest node ls in the source tree that is not a non-terminal leaf

and that is aligned to a set of leaves {lt1, ..., ltn} in the target tree, find the highest
node in the source tree such that no leaf in its subtree aligns to ltk /∈ {lt1, ..., ltn}.

Example We assume that the English tree is the source tree.
The source leaf node ls = Official is aligned to
the target leaf node lt1 = Offizielle.
The maximal node in the source tree that still aligns to only lt1 is labeled JJ .

S

NP

JJ

Official

NNS

forecasts

VP

VBD

predicted

NP

QP

RB

just

CD

3

NN

%

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 4.21: First step of STSG rule extraction procedure.

Step 2 Find maximal target node consistent with word alignment links
Algorithm Given a set of target leaves lti ∈ {lt1, ..., ltn} in the target tree that is aligned to

the source leaves {ls1, ..., lsm}, find the highest node in the target tree such that
it contains all leaves lti ∈ {lt1, ..., ltn}.

Example We assume that the English tree is the source tree.
The target leaf node is lt1 = Offizielle.
The source leaf node is ls = Official.
The maximal node in the target tree that still aligns to ls is labeled ADJA.

S

NP

JJ

Official

NNS

forecasts

VP

VBD

predicted

NP

QP

RB

just

CD

3

NN

%

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 4.22: Second step of STSG rule extraction procedure.

96

4.3 SMT with syntactically annotated SCFG

Step 3 Excise the rule with maximal source and target node
Remove the maximal node in the source tree as well as its subtree.
Replace the removed subtree by its root.
Remove the maximal node in the target tree as well as its subtree.
Replace the removed subtree by its root.
Align the remaining non-terminals.

Example Remove the source subtree rooted by JJ and replace with JJ .
Remove the target subtree rooted by ADJA and replace with ADJA.
Align JJ and ADJA.

S

NP

JJ NNS

forecasts

VP

VBD

predicted

NP

QP

RB

just

CD

3

NN

%

S

NP

ADJA NN

Prognosen

VAFIN

sind

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 4.23: Third step of STSG rule extraction procedure.

Step 4 Add rule to rule set
Create an STSG rule with the excised trees on the input and output sides.

Example
JJ

Official

ADJA

Offizielle

Figure 4.24: Fourth step of STSG rule extraction procedure.

97

4.3 SMT with syntactically annotated SCFG

S

NP

JJ NNS

VP

VBD

predicted

NP

QP

RB CD

NN

S

NP

ADJA NN

VAFIN

sind

VP

PP

APPR AP

ADV CARD

NN

VVPP

ausgegangen

JJ

Official

ADJA

Offizielle

NNS

forecasts

NN

Prognosen

RB

just

ADV

nur

CD

3

CARD

3

NN

%

NN

%

Figure 4.25: Word aligned biparsed sentence pair and extracted rules after the first
pass of the algorithm.

S

NP VP

VBD

predicted

NP

QP NN

S

NP VAFIN

sind

VP

PP

APPR AP NN

VVPP

ausgegangen

NP

JJ NNS

NP

ADJA NN

QP

RB CD

AP

ADV CARD

Figure 4.26: Word aligned biparsed sentence pair and extracted rules after the sec-
ond pass of the algorithm.

S

NP VP

VBD

predicted

NP

S

NP VAFIN

sind

VP

PP VVPP

ausgegangen

NP

QP NN

PP

APPR

von

AP NN

Figure 4.27: Word aligned biparsed sentence pair and extracted rules after the third
pass of the algorithm.

98

4.3 SMT with syntactically annotated SCFG

S

NP VP

VBD

predicted

NP

S

NP VAFIN

sind

VP

PP VVPP

ausgegangen

Figure 4.28: Rules extracted after last pass of STSG rule extraction algorithm.

Removal of Internal Nodes All STSG rules extracted above (Paragraph 4.3.4) are

shallow except the last one, shown in Figure 4.28. The shallow version of this rule

is given in Figure 4.29.

S

NP predicted NP

S

NP VAFIN

sind

VP

PP VVPP

ausgegangen

Figure 4.29: STSG rule after removal of internal nodes.

4.3.5 Shallow STSG Rules with Target Annotations

In the same fashion as shallow STSG rules with annotations on both sides, rules

with annotations on the target language (string-to-tree) side only can be obtained

by extracting STSG string-to-tree rules with the algorithm in [Galley et al., 2004,

Galley et al., 2006]. As seen in Section 2.2.1, this method is implemented in the

Moses open-source toolkit [Williams and Koehn, 2012]. The rule extraction proce-

dure works in the same way as the minimal rule extraction for STSG rules presented

in Section 4.3.4 except that there are no annotations on the source side. Figure

4.30 gives a summary of the extraction algorithm for string-to-tree STSG rules. We

also display the shallow version of the string-to-tree STSG rules extracted from the

training data in Figure 4.31 with this algorithm.

99

4.3 SMT with syntactically annotated SCFG

Step 1 Find the largest string consistent with the word alignment
Step 2 Find a maximal target node consistent with the word alignment

Reiterate 1 and 2 if necessary
Step 3 Excise the rule with largest string and target node from

the biparsed sentence pair and replace the source string
with X and the target tree with parent labels

Step 4 Add the rule to the rule set
Step 5 Repeat

Figure 4.30: Main steps of the rule extraction procedure for minimal STSG rules.

Official forecasts predicted just 3 %

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 4.31: Word aligned sentence pair with parse tree on target language side.

s1 (X,ADJA)→ 〈 Official, Offizielle 〉

s2 (X,NN)→ 〈 forecasts, Prognosen 〉

s3 (X,ADV)→ 〈 just, nur 〉

s4 (X,CARD)→ 〈 3, 3 〉

s5 (X,NN)→ 〈 %, %〉

s6 (X,NP)→ 〈 X1 X2, ADJA1 NN2 〉

s7 (X,AP)→ 〈 X1 X2, ADV1 CARD2 〉

s8 (X,PP)→ 〈 X1 X2, von AP1 NN2 〉

s9 (S,X)→ 〈 X1 predicted X2, NP1 sind PP2 ausgegangen 〉

In contrast to hierarchical rules with target side annotations, shallow

string-to-tree STSG rules can contain many adjacent non-terminals on the

source side of the rules, which makes decoding very expensive. To limit

100

4.4 SCFG Decoding with Syntactic Annotations

the decoding complexity, [Williams and Koehn, 2012] apply scope-3-pruning

[Hopkins and Langmead, 2010] to the obtained shallow STSG grammar.

4.4 SCFG Decoding with Syntactic Annotations

4.4.1 CYK+ Chart Parser with Syntactic Annotations

In a similar way to rule extraction, decoding with a syntactically annotated SCFG

can be obtained by augmenting the items in a hierarchical decoder (Section 4.2.1)

with source and target syntactic labels [Hoang, 2011]. Because non-terminals are

labeled, the inference process of the annotated SCFG decoder is more constrained

than in the hierarchical case. For instance, non-terminals in the source lhs of the

dotted rules must match the input parse tree. In such a setup, the axioms of the

chart parser have the form below. We use the notation in [Hoang, 2011] which is

based on [Satta and Peserico, 2005].

[•A→ •α,B → β, w]
(A,B)

w−→ 〈α, β〉 ∈ P (4.16)

Where A and B are the labeled source and target left-hand-sides (lhs) of the

rule and α and β the source and target right-hand sides (rhs). The dots indicate

that both, the source lhs A and the source string α remain to be recognized for

the subtree rooted by A to be processed. Thus, passive parse items have the form

in Equation 4.17, where the non-terminal A is recognized if it matches the input

parse tree.

[A• → α•, B → β, i, j, w] (4.17)

Processing of non-terminals in the source lhs of dotted rules is given in the fol-

lowing inference rule:

101

4.4 SCFG Decoding with Syntactic Annotations

[•A→ α1•, B → β, i, j, w]

[A• → α1•, B → β, i, j, w]
A ∈ Vi,j (4.18)

where Vi,j denotes parse labels of the input sentence spanning from i to j.

Lexical inference rules, given in Equation 4.19, work in the same way as in the

hierarchical case and simply consume a terminal symbol tj+1 spanning from j to

j + 1.

[•A→ α1 • tj+1α2, B → β, i, j, w]

[•A→ α1tj+1 • α2, B → β, i, j + 1, w]
(4.19)

In non-lexical inference rules, the consumed non-terminals and their correspond-

ing target sides are labeled. Hence, when a passive parse item is used to recognize a

non-terminal symbol, its source and corresponding target lhs must match the con-

sumed non-terminal as well as the target non-terminal to which it is aligned. The

non-lexical inference rule for annotated SCFG decoding is given in Equation 4.20.

The source lhs C and target lhs D of the passive item match the aligned source and

target non-terminals Cn and Dn that are being processed.

[•A→ α1 • Cnα2, B → β1Dnβ2, i, j, w1] [C• → γ•, D → δ, j, k, w2]

[•A→ α1Cn • α2, B → β1δβ2, i, k, w1 ∗ w2]
(4.20)

The goal of the system is the item [S• → α•, S → β, 0, |s|, w], where the rhs of a

rule starting with the start non-terminal (S, S) and spanning the entire input string

s has been processed.

4.4.2 Search Procedure and Translation Generation

The search procedure of the CYK+ chart parser for annotated SCFG works much

in the same way as the search procedure for the hierarchical decoder (Algorithm

1). The main differences are that (i) the used items are those given in Equations

102

4.4 SCFG Decoding with Syntactic Annotations

4.16 and 4.18 to 4.20 and (ii) source lhs non-terminal symbols must be consumed

in order to create passive parse items. When the complete source rhs of an item

has been consumed, the item is lost if its source lhs cannot be consumed, i.e. if

the root of the processed subtree does not match the input parse tree. Note that

the dotted chart parser cannot handle unary rules correctly and hence (potentially)

cannot parse input trees such as the one in Figure 4.32 correctly. This problem can

be alleviated by removing unary nodes in the input parse trees, as done in Figure

4.33.

SENT

NP

D

l’

N

ingénérie

AP

A

informatique

VP

VN

V

est

AP

A

pratique

Figure 4.32: Parse tree of French sentence F

SENT

NP

D

l’

N

ingénérie

A

informatique

VP

V

est

A

pratique

Figure 4.33: Parse tree of French sentence F after removal of unary nodes (except
POS tags).

Translation generation works exactly as in the hierarchical case (Section 4.2.2):

the partial translation carried by translation options is the target rhs β. The oper-

ation ⊗ replaces a target side non-terminal D in the first antecedent by the target

side γ of the passive rule used to process it.

4.4.3 Example

103

4.4 SCFG Decoding with Syntactic Annotations

p1 : (N,NN)
1.0−−→ 〈 pratique, process 〉 p2 : (A/ADJ)

0.6−−→ 〈 pratique, helpful 〉
p3 : (A/ADJ)

0.4−−→ 〈 pratique, practical 〉 p4 : (NP/NP)
1.0−−→ 〈 l’ ingénérie, engineering 〉

p5 : (A/NN)
1.0−−→ 〈 informatique, software 〉 p6 : (NP/NP)

1.0−−→ 〈 l’ ingénérie A1, NN1 engineering 〉
p7 : (V P/V P)

1.0−−→ 〈 est A1, is ADJ1 〉 p8 : (S/SENT)
1.0−−→ 〈 NP1 VP2, NP1 VP2 〉

Figure 4.34: Example annotated SCFG grammar

a1 :
•N→• pratique,NN→process, 1.0 a2 :

•A→• pratique,ADJ→helpful, 0.6
a3 :

•A→• pratique,ADJ→practical, 0.4 a4 :
•NP→•l’ ingénérie,NP→engineering, 1.0

a5 :
•A→•informatique,NN→software, 1.0 a6 :

•NP→•l’ ingénérie A1,NP→NN1 engineering, 1.0

a7 :
•V P→•est A1,V P→is JJ1, 1.0

a8 :
•S→•NP1 V P2,SENT→NP1 V P2, 1.0

Figure 4.35: Axioms created with annotated SCFG rules.

104

4.4
SCFG

D
ecoding

w
ith

Syntactic
Annotations

[S• → NP1V P2•, 0, 5]

[SENT → software engineering is practical, 0.4, 13, (11, 9)]

[S• → NP1V P2•, 0, 5]

[SENT → software engineering is helpful, 0.6, 12, (11, 8)]

[•S → NP1 • V P2, 0, 3]

[SENT → NP1V P2, 1.0, 11, (10)]

[NP• → l’ ingénérie A1•, 0, 3]

[NP → software engineering, 1.0, 10, (7, 1)]

[•NP → l’ ingénérie •A1, 0, 2] [V P• → est A1•, 3, 5]

[NP → NN1 engineering, 1.0, 7, (5)] [V P → is practical, 0.4, 9, (6, 3)]

[V P• → est A1•, 3, 5]

[V P → is helpful, 0.6, 8, (6, 2)]

[•NP → l’ • ingénérie A1, 0, 1] [A• → informatique•, 2, 3] [•V P → est •A1, 3, 4] [A• → pratique•, 4, 5]

[NP → NNP1 engineering, 1.0, 5] [NN → software, 1.0, 1] [V P → is ADJ1, 1.0, 6] [0.4, ADJ → practical, 3]

[•NP → l’ • ingénérie, 0, 1] [A• → pratique•, 4, 5]

[NP → engineering, 1.0, 4] [0.6, ADJ → helpful, 2]

l’ ingénérie informatique est pratique

0 1 1 2 2 3 3 4 4 5

Figure 4.36: CYK+ chart parsing with annotated SCFG rules.

105

4.5 Conclusion

The axiom a1 has been removed because its lhs N could not match the input

parse tree constituent A.

4.4.4 SCFG Decoding with Target Annotations

Decoding with SCFG grammars annotated on the target language side can be done

by removing the source non-terminal labels from the axioms and inference rules

given in Equations 4.16, 4.19 and 4.20. The inference rules obtained in this way

are given in Equations 4.21, 4.22 and 4.23 where the labeled source non-terminals

are simply replaced by X. Note that in this setup, there is no need for the source

left-hand-side (lhs) to match the input parse tree. Consequently, only the source rhs

of the rules is dotted.

[X → •α,B → β, w]
(X,B

w−→ α, β ∈ P) (4.21)

[X → α1 • tj+1α2, B → β, i, j, w]

[X → α1tj+1 • α2, B → β, i, j + 1, w]
(4.22)

[X → α1 •Xnα2, B → β1Dnβ2, i, j, w1] [X → γ•, D → δ, j, k, w2]

[X → α1Xn • α2, B → β1δβ2, i, k, w1 ∗ w2]
(4.23)

The goal of the system is the item [X → α•, S → β, 0, |s|, w], where the rhs of a

rule starting with the start non-terminal (X,S) and spanning the entire input string

s has been processed.

4.5 Conclusion

We have presented background knowledge in SCFG-based SMT necessary to under-

stand our contributions to the field, given in Chapters 5, 6 and 7. Our presentation

106

4.5 Conclusion

briefly introduced how SCFG grammars are obtained from parallel data before pro-

viding a detailed description of the decoding procedure for SCFG rules.

The contribution given in Chapter 5 is an extension of the SCFG rule extraction

and decoding procedures explained throughout this chapter.13 The contribution in

Chapter 6 extends the hierarchical systems explained in Section 4.1 while the con-

tribution in Chapter 7 is an extension of systems with target syntactic annotations,

introduced in Sections 4.3.3 and 4.4.4.

13A detailed description of the contributions and the sections providing background knowledge to
understand them are given at the beginning of Chapter 5.

107

Chapter 5

Shallow Local Multi Bottom-Up Tree

Transducers

We present our contribution to the field of SMT with synchronous grammars, that is

the implementation of a system based on the Shallow Local Multi Bottom-Up Tree

Transducer (Sh-l-MBOT). A formal definition of l-MBOT has been given in Section

2.1.3. A detailed overview of our contribution can be found in Section 2.3.

We begin our presentation by briefly explaining how to obtain Sh-l-MBOT rules

from parallel corpora (Section 5.1). The rule extraction procedures presented here

are extensions of SCFG rule extraction, which is explained in Sections 4.1.1 and

4.3. Then we present our main contributions: In Section 5.2, we describe the Sh-l-

MBOT translation model and its features. In Section 5.3, we introduce a decoding

strategy for Sh-l-MBOT rules without syntactic annotations before showing (in Sec-

tion 5.4) how to extend it to deal with rules that include syntactic annotations.

These contributions are extensions of the decoding procedures for SCFG rules pre-

sented in Sections 4.2 and 4.4. In Section 5.5, we present an extensive evaluation

of Sh-l-MBOT systems with linguistic annotations at different levels. We conclude

this chapter by explaining shortcomings of our approach and possible future work.

108

5.1 Shallow l-MBOT Grammars

5.1 Shallow l-MBOT Grammars

A shallow local multi-bottom-up tree transducer (Sh-l-MBOT) is a restricted variant

of the local multi bottom-up tree transducer (l-MBOT) described in Section 2.1.3.

The restriction of Sh-l-MBOT requires that the left-hand side (lhs) of each grammar

rule has height at most 2. Two procedures for the extraction of Sh-l-MBOT rules

have been proposed in the literature:

1. [Seemann et al., 2015a] extend the hierarchical rule extraction heuristic

[Chiang, 2007] to extract non-minimal shallow l-MBOT rules. These can ei-

ther be decorated with syntactic annotation or not. When using syntactic an-

notation, the rules can be decorated on both source and target language side

or on one side only.

2. [Maletti, 2011] presents an algorithm to extract minimal l-MBOT rules

with syntactic annotation on the source and target language side. In

[Braune et al., 2013] the obtained rules are made shallow by removing the

internal nodes of the trees composing these rules.

5.1.1 Sh-l-MBOT rules without syntactic annotation

The extraction procedure for non-minimal Sh-l-MBOT rules without syntactic anno-

tation in [Seemann et al., 2015a] extends the heuristic in [Chiang, 2007] to extract

hierarchical rules with multiple target language sides. The input to rule extraction

are word aligned sentence pairs as shown in Figure 5.1.

The rule extraction heuristic extends the notion of “initial phrase pairs”

[Chiang, 2007, p.266] to ”initial rules” that are defined as spans 〈p, p1 . . . pn〉 on

the input sentences. The target spans p1 . . . pn are the discontiguous target sides

of the undecorated Sh-l-MBOT rules. Initial rules can be extracted from a parallel

sentence pair if the following conditions hold:

109

5.1 Shallow l-MBOT Grammars

Official forecasts predicted just 3 %

Ofizielle Prognosen sind von nur 3 % ausgegangen

Figure 5.1: Word aligned sentence pair

Condition 1 There is at least one aligned word between the source words in span p
and the target words in spans p1 . . . pn.

Condition 2 All words aligned to the source words in span p are in
the target segments in spans p1 . . . pn.

Condition 3 All words aligned to the target segments in spans p1 . . . pn are in
the source language phrase p.

Figure 5.2: Heuristic to extract initial Sh-l-MBOT rules

Once initial rules have been extracted, further rules can be obtained by sub-

tracting smaller initial rules from bigger ones. To reduce the number of extracted

rules, [Chiang, 2007] restricts the rule extraction procedure as presented in Section

4.1.1. [Seemann et al., 2015a] apply the same restrictions to their heuristic. Exam-

ple Sh-l-MBOT rules extracted from the parallel sentences in Figure 5.1 are r1 to

r9 below. In our representation of the rules below we write the words covered by

the spans 〈p, p1 . . . pn〉 instead of the spans. We use the symbol “;” to separate target

sequences.

r1 X → 〈 predicted just 3 %, sind von nur 3 % ausgegangen 〉

r2 X → 〈 predicted, sind ; ausgegangen 〉

r3 X → 〈 predicted just, sind ; nur ; ausgegangen 〉

r4 X → 〈 predicted just, sind von nur ; ausgegangen 〉

r5 X → 〈 X1 just 3 %, X1 ; von nur 3 % X1 〉

r6 X → 〈 X1 just X2, X1 ; von nur X2 X1 〉

r7 X → 〈 predicted just X1, sind ; nur ; X1 ; ausgegangen 〉

r8 X → 〈 predicted just X1, sind von nur ; X1 ; ausgegangen 〉

r9 X → 〈 X1 forecasts, X1 Prognosen 〉

110

5.1 Shallow l-MBOT Grammars

5.1.2 Sh-l-MBOT rules with syntactic annotations on both sides

Sh-l-MBOT rules with syntactic annotations on both sides are extracted from a bi-

parsed and word aligned parallel corpus as shown in Figure 4.17 (Section 4.3).

Rules with source and target side syntactic annotation can either be extracted (i)

following [Seemann et al., 2015a] which yields a set of (potentially) non-minimal

rules or (ii) following [Maletti, 2011] which yields a set of minimal Sh-l-MBOT

rules.

Non-minimal Rules

Non-minimal Sh-l-MBOT rules are generated by adding the following constraints

to the heuristic presented in Section 5.1.1:

4. each target span p1 to pn matches a syntactic constituent in the target lan-

guage parse tree

5. each source span p matches a syntactic constituent in the source language

parse tree

Example Sh-l-MBOT rules extracted following this procedure are given in Figures

5.3 and 5.4.

JJ

Official

ADJA

Offizielle

NNS

forecasts

NN

Prognosen

NP

Official forecasts

NP

Offizielle Prognosen

QP

just 3

AP

nur 3

VBD

predicted

(VAFIN

sind
,

VVPP

ausgegangen

)

S

Official forecasts predicted just 3 %

S

Offizielle Prognosen sind von nur 3 % ausgegangen

Figure 5.3: Initial Rules extracted by the Sh-l-MBOT heuristic.

111

5.1 Shallow l-MBOT Grammars

NP

Official NNS

NP

Offizielle NN

S

NP predicted NP

S

NP sind PP ausgegangen

S

Official forecasts VP just 3 %

S

Offizielle Prognosen VAFIN von nur 3 % VVPP

Figure 5.4: Sh-l-MBOT rules obtained after subtraction step.

Minimal Rules

Minimal Sh-l-MBOT rules can be extracted according to the procedure summarized

in Figure 5.5. Unlike STSG rules, Sh-l-MBOT rules allow sequences of trees on

the target language side. This difference implies that in Step 2 of the rule extrac-

tion procedure, several target nodes are allowed to correspond to a given maximal

source node, in contrast to the STSG rule extraction (Section 4.3.4), where only

single target nodes were considered. We illustrate the Sh-l-MBOT rule extraction

in Figures 5.6 and 5.9. Figures 5.10 and 5.11 show the rules extracted after the 2

first passes of the algorithm. The illustrations show that unlike the STSG rule ex-

traction procedure, all words, including the pair predicted-sind ausgegangen, could

be extracted in the first pass of the Sh-l-MBOT rule extraction.

Step 1 Find a maximal source node consistent with a (minimal) set S of word
alignment links

Step 2 Find maximal target nodes consistent with the minimal extension of S
Reiterate 1 and 2 if necessary

Step 3 Excise the rule with maximal source and target nodes from the biparsed
sentence pair and replace with parent labels

Step 4 Add the rule to the rule set
Step 5 Repeat

Figure 5.5: Main steps of the rule extraction procedure for minimal Sh-l-MBOT
rules.

112

5.1 Shallow l-MBOT Grammars

Step 1 Find maximal source node consistent with word alignment links
Algorithm Given a lowest node ls in the source tree that is not a non-terminal leaf

and that is aligned to a set of leaves {lt1, ..., ltn} in the target tree, find the highest
node in the source tree such that no leaf in the subtree aligns to ltk /∈ {lt1, ..., ltn}.

Example We assume that the English tree is the source tree.
The source leaf node ls = predicted is aligned to
the target leaf nodes lt1 = sind and lt2 = ausgegangen.
The maximal node in the source tree that still aligns to lt1 and lt2 is V BD.

S

NP

JJ

Official

NNS

forecasts

VP

VBD

predicted

NP

QP

RB

just

CD

3

NN

%

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 5.6: First step of Sh-l-MBOT rule extraction procedure.

5.1.3 Sh-l-MBOT rules with target syntactic annotations

Shallow l-MBOT rules with syntactic annotation on the target language side are

extracted from pairs of word aligned strings and trees. An example is given in Figure

4.31 (Section 4.3.5). We give another example in Figure 5.12.

Sh-l-MBOT rules with syntactic annotation on the target language side are ob-

tained in the same way as rules with annotations on both sides (Section 5.1.2)

except that constraint (4) above is dropped. Example Sh-l-MBOT rules extracted

following this procedure are given in Figures 5.13 and 5.14. We represent the non-

annotated source side of the rules with trees rooted at the non-terminal X.

113

5.2 The Shallow l-MBOT Translation Model

Step 2 Find maximal target nodes consistent with word alignment links
Algorithm Given a set of target leaves {lt1, ..., ltn} in the target tree that is aligned to

the source leaves {ls1, ..., lsm}, find the highest nodes in the target tree
such that they contain all leaves {lt1, ..., ltn}.

Example We assume that the English tree is the source tree.
The target leaf nodes are lt1 = sind and lt2 = ausgegangen.
The source leaf node is ls = predicted.
The maximal nodes in the target tree that still align to ls are V AFIN and V V PP .

S

NP

JJ

Official

NNS

forecasts

VP

VBD

predicted

NP

QP

RB

just

CD

3

NN

%

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 5.7: Second step of Sh-l-MBOT rule extraction procedure.

5.2 The Shallow l-MBOT Translation Model

As for hierarchical machine translation, many Sh-l-MBOT rules can be applied

to an input sentence to derive different output sentences. In order to predict the

best translation e of an input sentence f , [Braune et al., 2013] define a translation

model for Sh-l-MBOT rules.

5.2.1 Mathematical Definition

The Shallow l-MBOT translation model is a log-linear model [Och and Ney, 2002]

over the derivations D. The probability P (D) of a derivation D = (Ss, St, Ã) ⇒
r1

(Tp1, Ts2, Ã)⇒
r2
...⇒

rl
〈f, e〉 is defined as the weighted product of the features in this

derivation.

114

5.2 The Shallow l-MBOT Translation Model

Step 3 Excise the rule with maximal source and target nodes
Remove the maximal node in the source tree as well as its subtree.
Replace the removed subtree by its root.
Remove the maximal nodes in the target tree as well as their subtrees.
Replace each removed subtree by its root.
Align the remaining non-terminals.

Example Remove the source subtree rooted at V BD and replace with V BD.
Remove the subtrees rooted at V AFIN and V V PP and replace with
V AFIN and V V PP .
Align V BD with V AFIN and V V PP .

S

NP

JJ

Official

NNS

forecasts

VP

VBD NP

QP

RB

just

CD

3

NN

%

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

Figure 5.8: Third step of Sh-l-MBOT rule extraction procedure.

Step 4 Add rule to rule set
Example

VBD

predicted

(VAFIN

sind
,

VVPP

ausgegangen

)

Figure 5.9: Fourth step of Sh-l-MBOT rule extraction procedure.

P (D) ∝ LM(e)λm
m−1∏
i=1

hi(D)λi (5.1)

whereD denotes an l-MBOT derivation and LM(e) is the evaluation of the language

model on e. We assume that the language model is the m-th feature. As seen in

Section 2.1.3, the weight of an l-MBOT derivation is the product of the rules used

115

5.2 The Shallow l-MBOT Translation Model

S

NP

JJ NNS

VP

VBD NP

QP

RB CD

NN

S

NP

ADJA NN

VAFIN VP

PP

APPR AP

ADV CARD

NN

VVPP

JJ

Official

ADJA

Offizielle

NNS

forecasts

NN

Prognosen

VBD

predicted

(VAFIN

sind
,

VVPP

ausgegangen

)

RB

just

ADV

nur

NN

%

NN

%

Figure 5.10: Word aligned biparsed sentence pair and extracted Sh-l-MBOT rules
after the first pass of the algorithm.

S

NP VP

VBD NP

QP NN

S

NP VAFIN VP

PP

APPR AP NN

VVPP

NP

JJ NNS

NP

ADJA NN

QP

RB CD

AP

ADV CARD

Figure 5.11: Word aligned biparsed sentence pair and extracted Sh-l-MBOT rules
after the second pass of the algorithm.

116

5.2 The Shallow l-MBOT Translation Model

Official forecasts predicted just 3 %

S

NP

ADJA

Offizielle

NN

Prognosen

VAFIN

sind

VP

PP

APPR

von

AP

ADV

nur

CARD

3

NN

%

VVPP

ausgegangen

Figure 5.12: Word aligned sentence pair with target parse tree.

X

Official

ADJA

Offizielle

X

forecasts

NN

Prognosen

X

Official forecasts

NP

Offizielle Prognosen

X

predicted

(VAFIN

sind
,

VVPP

ausgegangen

) X

predicted just

(VAFIN

sind
,

ADV

nur
,

VVPP

ausgegangen

)

X

Official forecasts predicted just 3 %

S

Offizielle Prognosen sind von nur 3 % ausgegangen

Figure 5.13: Initial rules extracted by the Sh-l-MBOT heuristic.

X

Official X

NP

Offizielle NN

X

X predicted X

S

NP sind PP ausgegangen

X

Official forecasts X just 3 %

S

Offizielle Prognosen VAFIN von nur 3 % VVPP

X

Official forecasts X 3 %

S

Offizielle Prognosen VAFIN von ADV 3 % VVPP

Figure 5.14: Sh-l-MBOT rules obtained after subtraction step.

117

5.2 The Shallow l-MBOT Translation Model

in this derivation. Hence, Equation 5.1 can be written as:

P (D) ∝ LM(e)λm
m−1∏
i=1

l∏
j=1

hi(rj)
λi (5.2)

5.2.2 Model Features

The estimate of the language model feature LM(e) has been adapted to score par-

tial translations consisting of discontiguous units. The details are explained in Sec-

tion 5.3.3. The features on Sh-l-MBOT rules include:

1. The indirect translation weight of a rule, which defines the probability P (T1 |
Ts2, Ã) to see the source tree T1 given the target tree sequence Ts2.

2. The direct translation weight of a rule, which defines the probability P (Ts2 |
T1, Ã) to see the target tree sequence Ts2 given the source tree T1.

3. The indirect lexical weight of a rule, which defines the probability Pw(T1 |
Ts2, Ã) to see the terminal leaves of T1 given the terminal leaves of Ts2.

4. The direct lexical weight of a rule, which defines the probability Pw(Ts2 |
T1, Ã) to see the leaves labeled with terminal symbols (terminal leaves) of Ts2

given the terminal leaves of the source tree T1.

5. A constant used to count the number of rules used in a derivation.

6. A constant used to count the number of glue rules used in a derivation.

7. A constant used to count the number of (potentially) non-contiguous glue

rules used in a derivation.

8. The number of terminal symbols in a rule.

9. The number of components in the target side sequence.

118

5.2 The Shallow l-MBOT Translation Model

5.2.3 Feature Training

Translation weights

The indirect translation weight P (T1 | Ts2, Ã) is computed through relative fre-

quency estimation. More precisely, the frequency of the rule is divided by the sum

of the frequencies of all rules with the same rhs. We illustrate (in Figure 5.15) this

scoring procedure with rules having syntactic annotations on the source and target

language side but it also applies to non-annotated or target-annotated Sh-l-MBOT

rules. The frequency is indicated at the right of each rule. Assuming that the dis-

played rules are the only ones with the shown lhs and rhs, each rule gets the indirect

translation score P (T1 | Ts2, Ã) = 1. The direct translation weight P (Ts2 | T1, Ã) is

obtained by dividing the frequency of the rule by the sum of the frequencies of the

rules with the same lhs. This yields the following scores: rule r1 gets 15
30

= 1
2
, rule r2

gets 10
30

= 1
3

and rule r3 gets 5
30

= 1
6
.

r1
VBD

predicted

(VAFIN

sind
,

VVPP

ausgegangen

)
15

r2
VBD

predicted

(VAFIN

haben
,

VVPP

vorausgesagt

)
10

r3
VBD

predicted

VAFIN

prognostizierten
5

Figure 5.15: Sh-l-MBOT rule with the same lhs

In addition to relative frequency estimation, an elementary discounting of rare

rules has been performed by multiplying the rule weight of rules extracted at most

10 times by 10−2.

119

5.2 The Shallow l-MBOT Translation Model

Lexical weights

The lexical weights are obtained by multiplying the lexical probabilities of aligned

words in a rule, across all trees in the target side sequence. Each time a

word is aligned to multiple words, the average of the lexical probabilities is

taken. The computation of the indirect lexical weight is given by Pw(v | u) =∏|v|
j=1

1
|{i|(i,j)∈A}|

∑
(i,j)∈A lex(vj | ui), where (i) v and u denote the string of the ter-

minal symbols in the leaves of T1 and Ts2, (ii) A stands for the word alignment

between the leaves of T1 and Ts2, (iii) lex(vj | ui) denotes the word translation

probability of the j-th word in v given the i-th word in u. In the same fashion, the

direct lexical weight is computed as Pw(u | v) =
∏|u|

i=1
1

|{j|(i,j)∈Aj |
∑

(i,j)∈A lex(ui | vj).
Unaligned words are considered as being aligned to a special empty word, which

also has lexical translation probabilities. To illustrate the training of lexical weights,

consider rules r1 to r3. The alignments between terminal symbols in these rules are

given in Figure 5.16. The indirect lexical weight of r1 is Pw(v | u) = 0.01+0.15
2

= 0.08.

The direct lexical weight is Pw(u | v) = 0.01 ∗ 0.15 = 0.0015. For rule r2, we have

Pw(v | u) = 0.05+0.30
2

= 0.35
2

and Pw(u | v) = 0.05 ∗ 0.30 = 0.015. Finally, for r3 the

direct and indirect lexical weights are 0.2.

The example above shows that the estimation of lexical probabilities for shallow

l-MBOT rules is suboptimal. The translations sind ausgegangen and haben voraus-

gesagt of predicted are at least as good as prognostizierten but their lexical proba-

bilities are much lower. Note that because they model discontiguous lexical units

all syntax-based approaches potentially have the same problem. For instance, the

lexical scores of the hierarchical rule X → 〈 predicted X, haben X vorausgesagt 〉
is the same as for rule r3.

Count features

The count features 5 to 8 in the translation model assign a negative weight or

penalty to the elements they are defined on, in the same way as for the hierarchi-

120

5.3 Decoding without syntactic annotation

r1
VBD

predicted

(VAFIN

sind
;

VVPP

ausgegangen

)

r2
VBD

predicted

(VAFIN

haben
;

VVPP

vorausgesagt

)

r3
VBD

predicted

VAFIN

prognostizierten

English Word German Word Weight
predicted sind 0.01
predicted ausgegangen 0.15
predicted prognostizierten 0.20
predicted haben 0.05
predicted voausgesagt 0.30

Figure 5.16: Lexical weight of aligned words in rules r1 to r3.

cal model. The count c of target fragments in the sequence is scored as 1001−c to

discourage rules with many fragments.

Weight training

The weights of the features in the hierarchical translation model are trained using

minimum error rate training [Och, 2003].

5.3 Decoding without syntactic annotation

A rule extraction procedure yielding Sh-l-MBOT rules without syntactic annotation

has been presented in Section 5.1.1. In order to build a SMT system using these

rules, the hierarchical decoding procedure presented in Section 4.2 has to be ex-

tended to deal with rules having (possibly) discontiguous target sides.

5.3.1 CYK+ parsing and Translation Generation

As opposed to the hierarchical case, decoding with Sh-l-MBOT rules requires to

integrate the target side of the rules into the deductive inference process presented

in Section 4.2.1. This needs to be done because Sh-l-MBOT rules with multiple

target side components γ1, . . . , γn can only be plugged into rules with the same

121

5.3 Decoding without syntactic annotation

number of target non-terminalsX1, . . . , Xn aligned to the same source non-terminal

X. To illustrate this point, consider the Sh-l-MBOT grammar in Figure 5.17. Rule

r1, which has 3 target side components can only be composed with rule r7, which

has the same number of target non-terminals (X1). In the same way, rule r2 can

only be assembled with rule r5.

r1 : X 0.6−−→ 〈 predicted, sind ; von; ausgegangen 〉 r2 : X 0.3−−→ 〈 predicted, haben ; vorausgesagt 〉
r3 : X 0.1−−→ 〈 predicted, prognostizierten 〉 r4 : X 1.0−−→ 〈 increase, Erhöhung 〉
r5 : X 0.5−−→ 〈 They X1 an X2, Sie X1 eine X2 X1 〉 r6 : X 0.2−−→ 〈 They X1 an X2, Sie X1 eine X2 〉
r7 : X 0.3−−→ 〈 They X1 an X2, Sie X1 X1 einer X2 X1 〉

Figure 5.17: Example Sh-l-MBOT grammar without syntactic annotations

In order to capture this specificity, the deductive proof system in Section 4.2.1 can

be extended in two distinct ways:

1. By explicitly representing the target side of the rules in the axioms and parse

items.

2. By using the same items as for hierarchical decoding and only taking the

target sides into account to restrict non-lexical inference.

Although option (2) is simpler and closer to the proof system already presented

in Section 4.2.1, we find that (1) leads to a more generic description because it

already integrates all components required to define translation generation.

CYK+ parsing for Sh-l-MBOT grammars

The axioms of the Sh-l-MBOT parser can be written as:

[X → •α,w, γ1 . . . γn]
(X

w−→ 〈α, γ1 . . . γn〉 ∈ P) (5.3)

where X w−→ 〈α, γ1 . . . γn〉 is a Sh-l-MBOT rule with target side sequence γ1 . . . γn.

Lexical inference rules can be written as:

122

5.3 Decoding without syntactic annotation

[X → α1 • tj+1α2, i, j, w, γ1 . . . γn]

[X → α1tj+1 • α2, i, j + 1, w, γ1 . . . γn]
(5.4)

In these rules, the consequent simply carries the same sequence of partial transla-

tion as the antecedent. Non-lexical inference rules, given in Equation 5.5, are more

constrained. In these rules, a non-terminal X in an active parse item is processed

using a passive item provided that the number of target non-terminals X in the

active item is the same as the number n of target side components in the passive

item.

[X → α1 •Xα2, i, j, w1, γ11 . . . γ1n] [X → β•, j, k, w2, γ21 . . . γ2m]

[X → α1X • α2, i, k, w1 ∗ w2, γ11 . . . γ1n ⊗ γ21 . . . γ2m]
, ∗ (5.5)

where ∗ means that the number of non-terminals in γ11 . . . γ1n is limited to m. On

the target language side of these items, all non-terminals in the sequence γ11 . . . γ1n

that are aligned to X are replaced by the sequence γ21 . . . γ2m in left to right order.

This operation is denoted by ⊗. Translation generation is included in the inference

rules above. Following the terminology adopted in Section 4.2.2, we call the target

language sides of passive parse items translation options. In Sh-l-MBOT parsing,

translation options can consist of several discontiguous segments. The goal of the

system is the item [S → α•, 0, |s|, w, β], where the rhs of a rule starting with the

start non-terminal S and spanning the entire input string s has been processed.

When the goal is reached, i.e, when the entire input sentence has been processed,

there are no target side discontiguities anymore.

Because the source side of Sh-l-MBOT rules is the same as for hierarchical rules,

the CYK+ search procedure and the n-best list generation for Sh-l-MBOT grammars

are the same as those given in Algorithms 1 and 2.

5.3.2 Example

We illustrate CYK+ parsing with the Sh-l-MBOT grammar in Figure 5.17 as well as

the input sentence E :

123

5.3 Decoding without syntactic annotation

E They predicted an increase

From these Sh-l-MBOT rules, the axioms in Figure 5.18 are created following

Equation 5.3. As seen in Section 5.3.1, the axioms can:

(i) carry multiple target language sides γ1, . . . , γn (such as the sequence sind; von;

ausgegangen in axiom a1).

(ii) contain multiple target non-terminals aligned to a single source side non-

terminal (such as three X1 in axiom a7)

a1 :
X→• predicted, 0.6, sind ; von ; ausgegangen a2 :

X→• predicted, 0.3, haben ; vorausgesagt
a3 :

X→• predicted, 0.1, prognostizierten a4 :
X→• increase, 1.0,Erhöhung

a5 :
X→•They X1 an X2, 0.5, Sie X1 eine X2 X1

a6 :
X→•They X1 an X2, 0.2, Sie X1 eine X2

a7 :
X→•They X1 an X2, 0.3, Sie X1 X1 einer X2 X1

Figure 5.18: Axioms created with rules having lhs X into a[X]

During CYK+ chart parsing, rules are assembled according to the combina-

tion operator ⊗ defined in Section 5.3.1. Figure 5.19 shows the items inferred

from the axioms in Figure 5.18 on increasing spans of sentence E. For bet-

ter readability we only display the target sides γ1 . . . γn of passive rules (the

translation options). This illustration shows, for instance, that the passive item

[X → predicted•, 1, 2, 0.6, sind ; von ; ausgegangen] cannot be combined with

[X → They • X1 an X2, 0, 1, 0.2,Sie X1 eine X2] because the number of its target

sides (3) is different from the number (1) of aligned target non-terminals in the

active item. The translation options sind ; von ; ausgegangen and haben ; vorausge-

sagt covering span 1 are discontiguous.

5.3.3 Language Model Integration

When parsing with Sh-l-MBOT grammars, translation options can be discontiguous.

This means that instead of a contiguous target language segment γ, a sequence of

124

5.3 Decoding without syntactic annotation

discontiguous segments γ1 . . . γn are passed to the language model scoring func-

tions. To LM-score such segments, we define the function PSLM which applies to

discontiguous segments of terminals γ1 . . . γn and multiplies the language model

score for each segment. PSLM can be written as:

PSLM(γ1 . . . γn) =
n∏
i=1

PLM(γi) (5.6)

where PLM is defined as in Equation 4.12. For each segment γi bigger than the size

m of the m-gram language model, we apply the function Markm defined in Equa-

tion 4.13. The function PSLM(γ1 . . . γn) yields unprecise language model scores for

translation options consisting of many small discontiguous units because it treats

these as being independent although those will be combined into a single string.

However, as soon as segments in γ1 . . . γn are assembled to form larger units, these

are scored. This means that the LM scores get more accurate as the span size in-

creases. As in the final rules only one component is allowed, the final LM score is

computed for the complete output sentence.

The functions PSLM(γ1 . . . γn) and Markm(γ) are added to the Sh-l-MBOT infer-

ence rules. The axioms become:

[X → •α,w, γ1 . . . γn,Markm(γi), PSLM(γ1 . . . γn)]
(X

w−→ 〈α, γ1 . . . γn〉 ∈ P)

(5.7)

The lexical inference rule becomes:

[X → α1 • tj+1α2, i, j, w, γ1 . . . γn,Markm(γi), PSLM(γ1 . . . γn)]

[X → α1tj+1 • α2, i, j + 1, w,Markm(γi), PSLM(γ1 . . . γn)]
(5.8)

The non-lexical inference rule is given by the following equations where 5.9 and

5.10 are the antecedents of the item and 5.11 is the consequent.

[X → α1 •Xα2, i, j, w1, γ11 . . . γ1n,Markm(γ1i,), PSLM(γ11 . . . γ1n)] (5.9)

125

5.4 Decoding with syntactic annotation

[X → β•, j, k, w2, γ21 . . . γ2k,Markm(γ2j,), PSLM(γ21 . . . γ2k)] (5.10)

[X → α1X •α2, i, k, w1∗w2,Markm(γ1i⊗γ2j), PSLM(γ11 . . . γ1n⊗γ21 . . . γ2k)] (5.11)

Figure 5.20 illustrates language model scoring with a 4-gram language model us-

ing PSLM(γ1 . . . γn) on the translation options in Figure 5.23. The example shows

that for the discontiguous sequences sind; von; ausgegangen and haben; vorausge-

sagt, language model scoring is applied to all components of the translation options.

The scores obtained there are quite unprecise, as the components of the sequences

are treated as independent unigrams. But later on, these units are assembled into

contiguous segments such as Sie sind von einer Erhöhung ausgegangen and the lan-

guage model score is recomputed for such larger segments. However, due to the

inexact language model estimation, good parse items are subject to be pruned out

due to their inexact language model score.

With these new inference rules, the CYK+ search algorithm as well as cube prun-

ing can be performed as described in Sections 4.2.1 and 4.2.6.

5.4 Decoding with syntactic annotation

The decoding procedure for unannotated Sh-l-MBOT grammars can be extended to

handle grammars with syntactic annotation on the source and target language side

or on the target language side only. We begin by presenting decoding with syntactic

annotations on the source and target language side.

126

5.4 Decoding with syntactic annotation

5.4.1 Source and Target Syntactic Annotations

Decoding with annotated Sh-l-MBOT rules is done by augmenting the items in

Equations 5.3, 5.4 and 5.5 with labels taken from source and target non-terminal

alphabets. In this setup, the axioms of the Sh-l-MBOT chart parser have the form:

[•A→ •α,B1, . . . , Bn → β1 . . . βn, w]
(A,B1, . . . , Bn)

w−→ 〈α, β1 . . . βn〉 ∈ P
(5.12)

where A is the labeled source left-hand-side (lhs) of the Sh-l-MBOT rule and

B1 . . . Bn are the head labels of the components in the target lhs of the rule. The

dots indicate that both, the source lhs A and the source string α remain to be rec-

ognized for the subtree rooted at A to be processed. Passive parse items have the

form in Equation 5.13, where the non-terminal A is recognized if it matches the

input parse tree.

[A• → α•, B1, . . . , Bn → β1 . . . βn, i, j, w] (5.13)

The inference rule in Equation 5.14 specifies how non-terminals in the source

lhs of dotted rules are processed. Vi,j denotes parse labels of the input sentence

spanning from i to j.

[•A→ α1•, B1, . . . , Bn → β1 . . . βn, i, j, w]

[A• → α1•, B1, . . . , Bn → β1 . . . βn, i, j, w]
A ∈ Vi,j (5.14)

Lexical inference rules, given in Equation 5.15 work in the same fashion as Sh-l-

MBOT rules without syntactic annotation. They simply consume a terminal symbol

tj+1 spanning from j to j + 1.

[•A→ α1 • tj+1α2, B1, . . . , Bn → β1 . . . βn, i, j, w]

[•A→ α1tj+1 • α2, B1, . . . , Bn → β1 . . . βn, i, j + 1, w]
(5.15)

127

5.4 Decoding with syntactic annotation

Non-lexical inference rules, given in Equation 5.16, process source and tar-

get non-terminals that are labeled. When a passive parse item such as [C• →

γ•, D1 . . . Dn → δ1 . . . δn, j, k, w2] is used to recognize a source non-terminal in an active

item, its source lhs C as well as its target side components D1 . . . Dn must match

the source non-terminal of the active item as well as all the target non-terminals

aligned to it.

[•A→ α1 • Cmα2, B1, . . . , Bn → β11D1mβ12 . . . βl1Dlmβl2, i, j, w1]
[C• → γ•, D1 . . . Dl → δ1 . . . δl, j, k, w2]

[•A→ α1Cm • α2, B1, . . . , Bn → β11δ1β12 . . . βl1δlβl2, i, k, w1 ∗ w2]
(5.16)

The goal of the system is the item [S• → α•, S → β, 0, |s|, w], where the rhs of a

rule starting with the start non-terminal S and spanning the entire input string has

been processed.

Given these items, the parsing procedure is the same as for non-annotated Sh-l-

MBOT grammars.

5.4.2 Example

We now illustrate CYK+ parsing with Sh-l-MBOT grammars having source and tar-

get syntactic annotations. We decode the parsed English sentence E in Figure 5.21

using the axioms in Figure 5.22. As opposed to the non-annotated case, the axioms

created from annotated Sh-l-MBOT rules carry the head labels of the target side

components as well as the labels of the source lhs.

During CYK+ chart parsing, the input sentence is processed according to the

inference rules in Equations 5.14, 5.15 and 5.16. As opposed to non-annotated

decoding, the labels of the source parse tree must be matched for parse items to

become passive. For instance, the item [V BD• → predicted•, 1, 2] could only be

created because the span 1-2 in the input parse tree carries the label V BD.

128

5.4 Decoding with syntactic annotation

[X → They X1 an X2 •, 0, 4]

[Sie sind von einer Erhöhung ausgegangen, 0.18, 16, (13, 4)]

[X → They X1 an X2 •, 0, 4]

[Sie haben eine Erhöhung vorausgesagt, 0.15, 15, (12, 4)]

[X → They X1 an X2 •, 0, 4]

[Sie prognostizierten eine Erhöhung, 0.02, 14, (11, 4)]

[X → They X1 an • X2 , 0, 3]

[0.18, 13, (10)]

[X → They X1 an • X2 , 0, 3]

[0.15, 12, (9)]

[X → They X1 an • X2, 0, 3]

[0.02, 11, (8)]

[X → They X1 • an X2, 0, 2]

[0.18, 10, (7, 3)]

[X → They X1 • an X2, 0, 2]

[0.15, 9, (6, 2)]

[X → They X1 • an X2, 0, 2]

[0.02, 8, (5, 1)]

[X → They • X1 an X2, 0, 1] [X → predicted•, 1, 2] [X → increase•, 3, 4]

[0.3, 7] [0.6, sind ; von ; ausgegangen, 3] [1.0, Erhöhung, 4]

[X → They • X1 an X2, 0, 1] [X → predicted•, 1, 2]

[0.5, 6] [0.3, haben ; vorausgesagt, 2]

[X → They • X1 an X2, 0, 1] [X → predicted•, 1, 2]

[0.2, 5] [0.1, prognostizierten, 1]

They predicted an increase

0 1 1 2 2 3 3 4

Figure 5.19: Active (in red at top) and passive items created during parsing with
Sh-l-MBOT.

129

5.4 Decoding with syntactic annotation

[X → They X1 an X2 •, 0, 1]

[Sie sind von einer Erhöhung ausgegangen, 0.18, (7, 3, 4)]

[PLM (Sie sind von einer Erhöhung ausgegangen)]

[Markm(Sie sind von einer Erhöhung ausgegangen)]

[X → They X1 an X2 •, 0, 1]

[Sie haben eine Erhöhung vorausgesagt, 0.15, (6, 2, 4)]

[PLM (Sie haben eine Erhöhung vorausgesagt)]
[Markm(Sie haben eine Erhöhung vorausgesagt)]

[X → They X1 an X2 •, 0, 1]

[Sie prognostizierten eine Erhöhung, 0.02, (5, 1, 4)]

[PLM (Sie prognostizierten eine Erhöhung)]

[X → predicted•, 1, 2] [X → increase•, 3, 4]

[sind ; von ; ausgegangen, 0.6, 3] [Erhöhung, 1.0, 4]

[PLM (sind) ∗ PLM (von) ∗ PLM (ausgegangen)] [PLM (Erhöhung)]

[X → predicted•, 1, 2]

[haben ; vorausgesagt, 0.3, 2]

[PLM (haben) ∗ PLM (vorausgesagt)]

[X → predicted•, 1, 2]

[prognostizierten, 0.1, 1]

[PLM (prognostizierten)]

They predicted an increase

0 1 1 2 2 3 3 4

Figure 5.20: Language model scoring of translation options.

TOP

NP

PR

They

VP

VBD

predicted

NP

DT

an

NN

increase

Figure 5.21: English sentence E with parse tree

130

5.4 Decoding with syntactic annotation

a1 :
•V BD→• predicted,0.6,V AFIN ;V V PP→ haben ; vorausgesagt

a2 :
•V BD→• predicted,0.4,V V PP→ prognostizierten

a3 :
•NN→• increase ,1.0,NN→ Erhöhung

a4 :
•S→•They V BD1 an NN2,0.7,S→ Sie V AFIN1 eine NN2 V V PP1

a5 :
•S→•They V BD1 an NN2,0.3,S→ SieV V PP1 eine NN2

Figure 5.22: Axioms created with syntactically annotated Sh-l-MBOT rules.

131

5.4
D

ecoding
w

ith
syntactic

annotation

[S• → They V BD1 an NN2•, 0, 4]

[S → Sie prognostizierten eine Erhöhung, 0.12, 11, (9, 3)]

[•S → They V BD1 an NN2•, 0, 4]

[S → Sie haben eine Erhöhung vorausgesagt, 0.42, 10, (8, 3)]

[•S → They V BD1 an • NN2, 0, 3]

[S → Sie V V PP1 eine NN2, 0.12, 9, (7)]

[•S → They V BD1 an • NN2, 0, 3]

[S → Sie V AFIN1 eine NN2 V V PP1, 0.42, 8, (6)]

[•S → They V BD1• an NN2, 0, 2]

[S → Sie V V PP1 eine NN2, 0.12, 7, (5, 2)]

[•S → They V BD1• an NN2, 0, 2]

[S → Sie V AFIN1 eine NN2 V V PP1, 0.42, 6, (4, 1)]

[•S → They • V BD1 an NN2, 0, 1] [V BD• → predicted•, 1, 2] [NN• → increase•, 3, 4]

[S → Sie V V PP1 eine NN2, 0.3, 5] [V V PP → prognostizierten, 0.4, 2] [NN → Erhöhung, 1.0, 3]

[•S → They • V BD1 an NN2, 0, 1] [V BD• → predicted•, 1, 2]

[S → Sie V AFIN1 eine NN2 V V PP1, 0.7, 4] [V AFIN ;V V PP → haben ; vorausgesagt, 0.6, 1]

They predicted an increase

0 1 1 2 2 3 3 4

Figure 5.23: Chart parsing with annotated Sh-l-MBOT rules.

132

5.4 Decoding with syntactic annotation

Pruning and language model scoring are done in exactly the same way as for

non-annotated Sh-l-MBOT grammars.

5.4.3 Target Syntactic Annotations

Decoding with Sh-l-MBOT grammars annotated on the target language side can

be done by simply removing the source non-terminal labels from the axioms and

inference rules given in Equations 5.13, 5.15 and 5.16. The inference rules obtained

in this way are given in Equations 5.17, 5.18 and 5.19, where the labeled source

non-terminals are simply replaced byX. As in this configuration there is no need for

the source left-hand-side of the rules to match any input parse tree, the inference

rule in Equation 5.14 is dropped. Only the source right-hand sides of the rules are

dotted.

[X → α•, B1, . . . , Bn → β1 . . . βn, i, j, w] (5.17)

[X → α1 • tj+1α2, B1, . . . , Bn → β1 . . . βn, i, j, w]

[X → α1tj+1 • α2, B1, . . . , Bn → β1 . . . βn, i, j + 1, w]
(5.18)

[X → α1 •Xmα2, B1, . . . , Bn → β11D1mβ12 . . . βl1Dlmβl2, i, j, w1]
[X → γ•, D1 . . . Dl → δ1 . . . δl, j, k, w2]

[X → α1Xm • α2, B1, . . . , Bn → β11δ1β12 . . . βl1δlβl2, i, k, w1 ∗ w2]
(5.19)

With this new parse items, the decoding procedure works in exactly the same

way as for Sh-l-MBOT grammars annotated on source and target language sides.

133

5.5 Evaluation of Shallow l-MBOT

5.5 Evaluation of Shallow l-MBOT

In [Seemann et al., 2015b], a systematic evaluation of SMT systems with Sh-l-

MBOT grammars is given. We present this result here. This evaluation measures

translation quality for three types of Sh-l-MBOT grammars:

1. Without syntactic annotations

2. With annotations on source and target language side

3. With annotations on target language side only

All systems are evaluated on three language pairs:

1. English-to-German

2. English-to-Arabic

3. English-to-Chinese

We begin by describing the linguistic resources used for the experiments.

5.5.1 Linguistic Resources

The data for the English-to-German translation task is given in Table 5.1.

[Seemann et al., 2015b] parsed the German side of the training data using Bit-

Par [Schmid, 2004] without the morphological annotations. We used the Berkeley

Parser [Petrov et al., 2006] to prepare the English side of the training data.

The data for the English-to-Arabic translation task is given in Table 5.2.

Both sides of the training data have been parsed using the Berkeley Parser

[Petrov et al., 2006]. In addition, we used MADA [Habash et al., 2009] to tokenize

the Arabic data. Transliteration was done according to [Buckwalter, 2002].

The data for the English-to-Chinese translation task is given in Table 5.3. The

Berkeley Parser [Petrov et al., 2006] was used to prepare both sides of the training

data.

For all data sets, we performed length-ratio filtering. Furthermore, we word

134

5.5 Evaluation of Shallow l-MBOT

Resources for English-to-German translation task
training data 7th EuroParl corpus [Koehn, 2005]

training data size ≈ 1.8M sentence pairs
language model 5-gram SRILM [Stolcke, 2002]

add. LM data WMT 2013 [Bojar et al., 2013]
LM data size ≈ 57M sentences
tuning data WMT 2013
tuning size 3,000 sentences

test data WMT 2013
test size 3,000 sentences

Table 5.1: Summary of resources for the English-to-German task.

Resources for English-to-Arabic translation task
training data MultiUN corpus [Eisele and Chen, 2010]

training data size ≈ 5.7M sentence pairs
language model 5-gram SRILM [Stolcke, 2002]

add. LM data Arabic in MultiUN
LM data size ≈ 9.7M sentences
tuning data held out from MultiUN
tuning size 2,000 sentences

test data held out from MultiUN
test size 1,000 sentences

Table 5.2: Summary of resources for the English-to-Arabic task.

aligned all training sets using GIZA++ [Och and Ney, 2003] together with the

grow-diag-final-and heuristic [Koehn et al., 2005].

5.5.2 Results

[Seemann et al., 2015b] evaluate the Sh-l-MBOT systems 1-3 enumerated above

(Section 5.5) against the corresponding components of the Moses open source

toolkit [Hoang et al., 2009]. The toolkit implements hierarchical rules extracted

following the procedure in [Chiang, 2005] as well the decorated rules described

in Section 4.3. These systems serve as baseline and their Sh-l-MBOT variants are

the contrastive systems. We call configurations without syntactic annotations Hier-

135

5.5 Evaluation of Shallow l-MBOT

Resources for English-to-Chinese translation task
training data MultiUN corpus [Eisele and Chen, 2010]

training data size ≈ 1.9M sentence pairs
language model 5-gram SRILM [Stolcke, 2002]

add. LM data Chinese in MultiUN
LM data size ≈ 9.5M sentences
tuning data NIST 2002, 2003, 2005
tuning size 2,879 sentences

test data NIST 2008 [NIST, 2010]
test size 1,859 sentences

Table 5.3: Summary of resources for the English-to-Chinese task.

archical, systems with source and target side syntactic annotations Tree-to-tree and

systems with annotations only on the target side String-to-tree. For tree-to-tree sys-

tems, we compare systems using the minimal rules presented in Section 5.1.2 and

non-minimal ones (Section 5.1.2). Sh-l-MBOT grammars have been extracted ac-

cording to [Maletti, 2011] and [Seemann et al., 2015a]. The decoding procedures

used are the ones that have been discussed in the present chapter (in Sections

5.3.1 and 5.4). The procedure for tree-to-tree decoding has also been presented in

[Braune et al., 2013]. To better put Sh-l-MBOT systems in the context of SMT sys-

tems, we also present the results obtained by high-ranked systems on public shared

tasks [Bojar et al., 2014] such as phrase-based systems [Koehn et al., 2003] or

string-to-tree systems obtained following [Galley et al., 2004, Galley et al., 2006].

Translation quality is measured in terms of BLEU [Papineni et al., 2002] and sig-

nificance testing is done according to [Koehn, 2004]. The results obtained by each

system are reported in Tables 5.5, 5.6 and 5.7. For hierarchical Sh-l-MBOT systems,

rule extraction did not scale to the size of the training data for the English-to-Arabic

task. So we omit the evaluation of hierarchical Sh-l-MBOT systems on this language

pair.

We begin by presenting the results of hierarchical systems, then we discuss tree-

to-tree systems before concluding with string-to-tree systems.

136

5.5 Evaluation of Shallow l-MBOT

5.5.3 Hierarchical systems

On all language pairs, hierarchical systems yield the best translation quality or at

least comparable to the best performing system (on the English-German task). In

the hierarchical setup, translation quality achieved with Sh-l-MBOT systems is com-

parable to the hierarchical system on the English-Chinese task and slightly worse

on the English-German task. This lack of improvement is due to the fact that rules

without syntactic annotations are very flexible and thus achieve high coverage. In

such a scenario, the additional flexibility provided by target side discontiguities is

limited. A detailed analysis of rule applications in hierarchical Sh-l-MBOT systems

in [Seemann et al., 2015b] shows that in this setup Sh-l-MBOT rules are barely

used by the SMT system.

5.5.4 Tree-to-tree systems

For both, the baseline and the contrastive systems, the tree-to-tree configuration

performs worse than any other configuration. For the baseline, i.e. a system built

on Synchronous Context Free Grammars (SCFG), our results confirm previous eval-

uations, such as [Ambati and Lavie, 2008] which we discuss in Section 2.2.1. Our

evaluation shows that for Sh-l-MBOT systems, the same result holds on all language

pairs. Moreover, the results show that making rules more flexible by allowing se-

quences of trees on the target language side hurts performance rather than yielding

improvements. The results obtained by systems with minimal Sh-l-MBOT rules are

particularly bad. By substituting minimal rules with non-minimal ones, large im-

provements are obtained. These are, however, not sufficient to beat the tree-to-tree

baseline. This result is quite opposed to the results presented in [Sun et al., 2009]

which report that STSSG yield very large improvements for a Chinese-English trans-

lation task (see Section 2.2.3). This divergence is probably due to the fact that our

system is quite different from [Sun et al., 2009] as has been shown in Section 2.3.

Another reason is that we evaluate on English-to-Chinese.

137

5.5 Evaluation of Shallow l-MBOT

System BLEU
Moses tree-to-tree Baseline 12.60

sh-`MBOT ∗13.06

Table 5.4: Evaluation of a system combining SCFG and sh-`MBOT rules. The starred
results are statistically significant improvements over the baseline (at confidence
p < 0.05).

In [Braune et al., 2013], we have shown that systems where minimal Sh-l-MBOT

rules are combined with SCFG rules yield modest but significant improvements over

a tree-to-tree baseline. The compared systems have been evaluated on the news

translation task of WMT 2009 [Callison-Burch et al., 2009]. The training data for

both systems is from the 4th version of the Europarl [Koehn, 2005] and the News

Commentary corpus. The English side of the training data was parsed with the

Charniak parser of [Charniak and Johnson, 2005], and the German side with Bit-

Par [Schmid, 2004] without function and morphological annotations. Our German

language model (4-gram) was trained on the German side of the training data

augmented by the Stuttgart SdeWaC corpus [Web-as-Corpus Consortium, 2008],

detailed in [Baroni et al., 2009]. The result is given in Table 5.4 where Sh-l-MBOT

denotes our system using a tree-to-tree SCFG grammar combined with a tree-to-tree

Sh-l-MBOT grammar.

5.5.5 String-to-tree systems

An extensive evaluation of string-to-tree systems has been presented in

[Seemann et al., 2015a]. In this section we discuss these systems in terms of trans-

lation quality. The results for the baseline and contrastive systems show that on all

language pairs, string-to-tree systems achieve better quality than tree-to-tree con-

figurations. The results show improvements up to 5 BLEU points on the English-

Arabic language pair. For SCFG based systems, this result confirms previous work

([Ambati and Lavie, 2008],[Williams and Koehn, 2012],[Galley et al., 2004]). We

show that for Sh-l-MBOT systems a similar improvement is observed. A very in-

138

5.6 Conclusion

Results of English-to-German translation task
Setting System BLEU

tree-to-tree
Moses tree-to-tree Baseline 14.50

minimal tree-to-tree sh-`MBOT 14.09
non-minimal tree-to-tree sh-`MBOT 14.41

string-to-tree
Moses string-to-tree Baseline 14.96

non-minimal string-to-tree sh-`MBOT ∗15.49
GHKM string-to-tree 17.10

hierarchical
Moses hierarchical Baseline 17.00

hierarchical sh-`MBOT 16.57
phrase-based Moses 16.80

Table 5.5: Evaluation results for the English-to-German translation task. The starred
results are statistically significant improvements over the baseline (at confidence
p < 1%).

teresting result in the evaluation of string-to-tree systems is that in this configura-

tion, Sh-l-MBOT systems significantly beat the Moses string-to-tree baseline on all

language pairs. This shows that when (i) syntactic constraints are removed on the

source language side of Sh-l-MBOT rules and (ii) there is no need for the rules to

match an input parse tree, then having target side discontiguities improves transla-

tion quality.

The GHKM string-to-tree system implemented in Moses, which we dis-

cussed in Section 2.2.1 has been a high-ranked system on public shared tasks

[Bojar et al., 2014]. Our results show that this system significantly outperforms

other types of string-to-tree systems on the English-German task. However, for the

English-Arabic language pair, it achieves the worst performance, while on English-

Chinese it is comparable to Sh-l-MBOT.

5.6 Conclusion

We have presented a SMT system based on Sh-l-MBOT, a synchronous grammar

which allows sequences of trees on the target side of the rules (see Section 2.1.3).

139

5.6 Conclusion

Results of English-to-Arabic translation task
Setting System BLEU

tree-to-tree
Moses tree-to-tree Baseline 43.49

minimal tree-to-tree sh-`MBOT 32.88
non-minimal tree-to-tree sh-`MBOT 41.37

string-to-tree
Moses string-to-tree Baseline 48.23

non-minimal string-to-tree sh-`MBOT ∗49.10
GHKM string-to-tree 46.66
phrase-based Moses 50.71

hierarchical phrase-based Moses 51.90

Table 5.6: Evaluation results for the English-to-Arabic translation task. The starred
results are statistically significant improvements over the baseline (at confidence
p < 1%).

After a brief introduction of Sh-l-MBOT rule extraction, we have presented the

translation model and decoding procedures of our Sh-l-MBOT system. Our ap-

proach can deal with rules without syntactic annotations or with annotations at dif-

ferent levels such as, for instance, tree-to-tree or string-to-tree rules. An extensive

evaluation of SMT with Sh-l-MBOT, given in Section 5.5, has shown that string-

to-tree Sh-l-MBOT significantly outperform SCFG-based string-to-tree systems on

several language pairs. In all other configurations (such as tree-to-tree) Sh-l-MBOT

achieves performance that is either worse (tree-to-tree) or comparable (hierarchi-

cal) to the corresponding SCFG-based baselines. However, we have also shown

that tree-to-tree systems combining Sh-l-MBOT rules with SCFG outperform SCFG-

based tree-to-tree systems.

The major shortcoming of this work is the computation of the language model

scores. Our scoring function assumes that the elements of discontiguous translation

options are independent although it is known in advance that they will eventually

be combined. Interesting future work on this topic would be to use a dependency-

based language model to score discontiguous translation options.

140

5.6 Conclusion

Results of English-to-Chinese translation task
Setting System BLEU

tree-to-tree
Moses tree-to-tree Baseline 17.63

minimal tree-to-tree sh-`MBOT 12.01
non-minimal tree-to-tree sh-`MBOT 16.77

string-to-tree
Moses string-to-tree Baseline 17.69

non-minimal string-to-tree sh-`MBOT ∗18.35
GHKM string-to-tree 18.33

hierarchical
Moses hierarchical Baseline 18.74

hierarchical sh-`MBOT 18.60
phrase-based Moses 18.09

Table 5.7: Evaluation results for the English-to-Chinese translation task. The starred
results are statistically significant improvements over the baseline (at confidence
p < 1%).

141

Chapter 6

Improved Rule Selection for

Hierarchical Machine Translation

We present our first contribution to the topic of syntax-based SMT with soft syn-

tactic constraints: the definition of a global rule selection model and its integration

into a hierarchical system. Hierarchical SMT has been introduced in Section 4.1. A

detailed overview of this contribution is given in Section 3.4.

We begin by presenting the general idea behind our rule selection model in Sec-

tion 6.1. This overall presentation can also be found in [Tamchyna et al., 2014]

who describe the integration of a discriminative classifier in a phrase-based as well

as a hierarchical system. Then we present the definition of our model as well as

the used training procedure in Sections 6.2 and 6.3. The integration of the model

in the hierarchical decoding process is presented in Section 6.4. Finally, we discuss

the advantages of our model over previous work in Section 6.5, which we confirm

empirically in our evaluation (Section 6.6). We conclude this chapter by explaining

shortcomings of our approach and possible future work.

142

6.1 Overall Presentation

6.1 Overall Presentation

The goal of our model is to improve the hierarchical rule application process pre-

sented in Section 3.1 with a global syntactic rule selection model. Each time a rule

is applied to translate a given span in the input sentence, we check whether or

not this rule is the only candidate for this source segment. If there are multiple

candidate rules (i.e with the same source side) we query a model that resolves the

ambiguity between these rules by using richer information than relative frequencies

in the training data or any other feature of the hierarchical translation model (in

Section 4.1.2). By “resolving the ambiguity”, we denote the assignment of a score

to the considered rule. This score is drawn from a probability distribution over all

candidate rules.

To illustrate our approach, consider rules q1 and q2 introduced in Section 3.1 as

well as Sentence F1. Suppose that the weights of the rules are the direct translation

probabilities in Section 4.1.2. Rule q2 has been observed more frequently in the

training data and hence has a weight of 0.4 compared to 0.2 for q1.

q1 X
0.2−−→ 〈 X1 pratique X2, practical X1 X2 〉

q2 X
0.4−−→ 〈 X1 pratique X2, X1 X2 process 〉

F1 Une étude de l’ (intérêt)X1 pratique (de notre approche)X2 .

A study on the (interest)X1 practical (of our approach)X2 .

During decoding, rules q1 and q2 are candidate rules to apply on the segment intérêt

pratique de notre approche. Instead of relying on the weights of the rules, which

would lead to the erroneous application of q2, our system queries a rule selection

model M that integrates rich information (i.e. more than relative frequencies in

training), such as the structure of the source sentence or the shape of the candidate

rules. For our illustration, we suppose that M uses the pieces of information I1 to

I4 given in Figure 6.1.

143

6.2 Rule Selection Model

Id Description Rule q1 Rule q2
I1 Relative position of non-terminals straight straight
I2 Pair of terminals in rule pratique-practical pratique-process
I3 Syntactic structure of application segment Incomplete
I4 POS to the left of application segment Determiner

Figure 6.1: Information used by model M

In order to query M , the pieces of information I1 to I4 must be provided. Con-

sequently, our system extracts this information from the required sources, i.e. sen-

tence F1 and its syntactic structure, given in Figure 8.2.2, as well as q1 and q2. The

query then returns the probability of a candidate rule to be correct given the pro-

vided information. In our example, we suppose that the used information allows a

good disambiguation between q1 and q2 and hence returns the probabilities 0.8 for

q1 and 0.2 for q2.

SENT

NP

D

Une

N

etude

PP

P

de

NP

D

l’

N

(interet)X1

N

pratique

PP

P

(de

D

notre

N

approche)X2

Figure 6.2: Parse tree of Sentence F1

In the next sections, we first discuss how to define and train M (Section 6.2)

and how to integrate it in a hierarchical decoder to obtain the desired predictions

(Section 6.4) during rule application.

6.2 Rule Selection Model

The disambiguation function of the rule selection model M can be formulated as

the task of choosing the correct target side of a hierarchical rule given knowledge

144

6.2 Rule Selection Model

about its source side as well as additional pieces of information such as I1 to I4.

This task can be modeled as a multi-class classification problem where each target-

side corresponding to a source side gets a label. The pieces of information taken

into account by M are the features of the model. A first set of features for our

model includes the shape of hierarchical rules. Examples of such features are I1

and I2 above. A second set contains information about the structure of the source

sentence such as I3 and I4 above.

6.2.1 Model Definition

In order to define a rule selection model, a formal representation of hierarchical

rules is needed. We use the same notation as in Section 4.1.1 and denote hierar-

chical rules by X → 〈α, γ,∼〉, where α and γ are the source and target language

strings and ∼ the correspondence between non-terminal symbols. In a second step,

we define representations for our features. The features on the shape of hierarchi-

cal rules are denoted by R(α, γ). The features on the source sentence f are denoted

by C(f, α). Our rule selection model estimates P (γ | α,C(f, α), R(α, γ)), which is

the probability to see the target side of a rule given its source side and the features

presented above. This distribution can be written as:

P (γ | α,C(f, α), R(α, γ)) =

∏
i hi(α,C(f, α), R(α, γ))λi∑

γ′∈GTO(α)

∏
i hi(α,C(f, α), R(α, γ′))λi

(6.1)

The model score is normalized over the set G′ of candidate target sides γ′ for a

given α. The function GTO : α→ G′ generates, given the source side, the set G′ of

all corresponding target sides γ′.

As seen in Section 3.2, rule selection models proposed in the literature are of two

types. Local models [Chan et al., 2007, He et al., 2008, He et al., 2010] train one

classifier for each source side of a rule. In contrast, global models [Cui et al., 2010]

train a single classifier on all rules. Our model is global.

145

6.2 Rule Selection Model

6.2.2 Feature templates

A seen in the previous section, the features of our model are of the following types:

1. The rule shape features R(α, γ) model the structure of hierarchical

rules. These features are similar to [Setiawan et al., 2009, Cui et al., 2010,

Simianer et al., 2012] (see Section 3.2).

2. The source context features C(f, α) model the structure of the input sentence.

In the same fashion as [Marton and Resnik, 2008, Cui et al., 2010] our con-

textual features include soft syntactic constraints. Additionally, we combine

these features with a set of lexical features. For comparison to approaches that

only work with lexical features, such as [Chan et al., 2007, He et al., 2008,

He et al., 2010] (see Section 3.2), we also train models using lexical features

only.

The rule shape features of our model are given in Figure 6.3. They capture in-

formation about the source side α and target side γ of hierarchical rules. Examples

are the words in α and γ or the alignment between the non-terminals in a rule. To

illustrate these features, suppose that rule shape features are extracted from rule q2

above. These features are given in the rightmost column of Figure 6.3. For instance,

the words in the source side of q2 are X1 pratique X2. The alignment between non-

terminals is X1 ↔ X1 X2 ↔ X2.

The syntactic source context features are given in Figure 6.4. They capture in-

formation about the syntactic structure of the source sentence. More precisely, they

describe the position of the application span in the parse tree of the source sen-

tence. They indicate, for instance, if a rule is located in a complete or incomplete

syntactic constituent. If the rule is in a complete syntactic constituent, the type of

constituent is reported as well as its parent. If it is in an incomplete constituent,

it is labeled with NOTAG and its lowest parent is indicated. Another feature is the

application span width in the input parse tree. To illustrate the syntactic source

context features, suppose that syntactic features are extracted from the parse tree

of sentence F1 given in Figure 6.2. The candidate rules are q1 or q2. These features

146

6.2 Rule Selection Model

Feature Template Example
Source side α X1 pratique X2 (one feature)
Words in α X1 pratique X2 (three features)
Target side γ X1 X2 process
Words in γ X1 X2 process
Aligned terminals in α and γ pratique↔process
Aligned non-terminals in α and γ X1↔X1 X2↔X2 (two features)
Best baseline translation probability Most Frequent

Figure 6.3: Rule shape features

Feature Template Example
Does α match a constituent no match
Type of matched constituent NOTAG
Parent of matched constituent NOTAG
Lowest parent of unmatched constituent NP
Span width covered by α 5

Figure 6.4: Syntactic features

are given in the rightmost column in Figure 6.4. For instance the applied rule does

not match any syntactic constituent and its lowest parent is an NP.

The lexical source context features are given in Figure 6.5. They capture infor-

mation about the lexical structure of the sentence to be translated. Examples are

the enriched words to the right and left of the application span of a rule. Each en-

riched word is composed of a surface form, POS tag and lemma. To illustrate these

features, consider that lexical features are extracted from sentence F1 to which q1

or q2 is applied. These features are given in the rightmost column of Figure 6.5. For

instance, the words to the right and left of the rule application are the determiner

l’ and the punctuation mark column (.).

147

6.3 Model training

Feature Template Example
first factored form left of α la, D, la
second factored form left of α de, P, de
first factored form right of α ., PONCT, .
second factored form right of α None, None, None

Figure 6.5: Lexical features

6.3 Model training

As seen above, the goal of our rule selection model is to choose the correct target

language side of a hierarchical rule given its source side. Learning such a model

requires training data that indicates, for each possible source side of a hierarchical

rule which corresponding target language sides are correct1 and which ones are

not. Moreover the training data needs to indicate under which features a given

target language side is correct or incorrect. Such training data can easily be cre-

ated by using the hierarchical rule extraction heuristics [Chiang, 2007] presented

in Section 4.1.1.

6.3.1 Creation of Training Examples

To create the training examples for our model, we first use the input to the hierar-

chical rule extraction, i.e, a word aligned parallel corpus such as the one in Figure

4.1, Section 4.1.1. Each time a rule r can be extracted according to the heuristics in

[Chiang, 2007], we create a new training example. The set of rule shape features

for this example are extracted from the source and target sides α and γ of r. The set

of source context features are obtained by looking at the source sentence S from

which the rule has been extracted. The target language side γ of r is the right one

in the context of S. Consequently, it is a correct class for this example and gets a

cost of 0. The incorrect classes are all rules qi that have the same source side as
1Due to unaligned words, several target sides can be correct given a source side.

148

6.3 Model training

r but a different target side. These can be obtained by consulting the hierarchi-

cal grammar (HG) extracted from the considered parallel corpus and collecting all

rules that have the same source side as r. All target sides that are different from γ

are incorrect classes and get a cost of 1.

To illustrate this procedure, consider (i) that rule q1 has been extracted from the

parallel sentences F2 and E2, (ii) that the HG contains rules q2 to q6 which have the

same source side as q1, and (iii) rules get a label corresponding to the number of

their entry in the rule table.2

F2 Les avantages de l’ (aspect)X1 pratique (de la robotique)X2.

E2 The advantages of the practical (aspect)X1 (of robotics)X2.

q1 X
0.2−−→ 〈 X1 pratique X2, practical X1 X2 〉

q2 X
0.4−−→ 〈 X1 pratique X2, X1 X2 process 〉

q3 X
0.1−−→ 〈 X1 pratique X2, X1 practical X2 〉

q4 X
0.15−−→ 〈 X1 pratique X2, X1 helpful X2 〉

q5 X
0.05−−→ 〈 X1 pratique X2, X1 X2 practice 〉

q6 X
0.1−−→ 〈 X1 pratique X2, practice X2 X1 〉

The created training example is given in Figure 6.6. The example contains features

about the source and target side of q1 such as the rule shape features given in the

rightmost column of Figure 6.6. The lexical and syntactic source context features

are the same as in Figures 6.5 and 6.4 (Section 6.2.2). The target side of q1 given

in the first row is the correct class and gets a cost of 0. The target sides of rules q2

to q6 are incorrect classes and get a cost of 1.

The procedure above leads to a huge number of training examples, which we

present in Section 6.5.2. For each training example there are many incorrect classes.

We reduce these by applying significance testing [Johnson et al., 2007] on the HG

used to collect the incorrect classes. Aside of that, we do not perform any further

pruning of negative instances (incorrect classes) in contrast to [Cui et al., 2010]

(see Section 3.2). As a consequence, we can only train our model with a restricted

2For instance, the 10th rule in the rule-table gets the label 10.

149

6.4 Decoding with Improved Rule Selection

Target Side Label Cost Rule Shape features of q1 Values
practical X1 X2 10 0 Source side α X1 pratique X2
X1 X2 process 15 1 Words in α X1 pratique X2
X1 practical X2 16 1 Target side γ practical X1 X2
X1 helpful X2 17 1 Words in γ practical X1 X2
X1 X2 practice 18 1 Aligned terminals pratique↔practical
practice X2 X1 19 1 Aligned non-terminals X1↔X1 X2↔X2

Figure 6.6: Training Example for rule q1 extracted from F2, E2 with rule shape fea-
tures.

amount of training data. Note that the global model in [Cui et al., 2010] uses the

same amount of training data and still needs to prune out negative samples.

6.3.2 Training Algorithm

To train our model, we use the high-speed classifier Vowpal Wabbit3 (VW) with the

cost-sensitive one-against-all-reduction [Beygelzimer et al., 2005]. More precisely,

this is the label dependent version of Cost -Sensitive One-Against-All which uses

classification.4

6.4 Decoding with Improved Rule Selection

During decoding, our rule selection model is queried to disambiguate between can-

didate rules. In terms of the hierarchical search procedure in Section 4.2.1, this

means that each time a new item is proved for a span [i, j], the rule selection model

is queried to get an additional weight w′ for this item. As the weight of the parse

items is in fact a combination of the features in the translation model, our model

prediction is an additional feature taken into account to compute w.

In order to get the model prediction, the decoder must provide the features de-

fined in the rule selection model. This requires to have access to (i) the source

3http://hunch.net/~vw/. Implemented by John Langford and many others.
4The command line parameter to VW is “csoaa ldf mc”.

150

6.4 Decoding with Improved Rule Selection

and target side of the rule in the parse item as well as (ii) the source sentence

that is being processed with lemma and POS tags as well as syntactic structure.

To access the source and target side (γ) of the rule during decoding, the parsing

procedure in Section 4.2.1 needs to be adjusted to integrate γ. As seen in Section

4.2, γ is dropped when non-terminal symbols are processed and is replaced by a

partial translation which is a combination γ1 ⊗ γ2 of two target sides. The operator

⊗ denotes the replacement of non-terminal symbols with the target sides of passive

items. Second, the source sentence must be accessed during decoding and hence

be part of the parse items. We integrate source sentence information in the items

through a function that queries the model for prediction and updates the weight of

the item. This function replaces the weight of each item.

6.4.1 Adjustments to the CYK+ Parsing Algorithm

To include a rule selection model in the hierarchical decoding process, we have

to include the target side of the rules into the parse items. Each item carries the

original target side Γ of a hierarchical rule in addition to its source side and partial

translation. When new items are created using lexical rules, antecedent and conse-

quent carry Γ. When non-lexical rules are applied, the consequent carries the target

side Γ1 of the item that is active during inference. Consequently, Equations 4.9 and

4.10 in Section 4.2.2 are rewritten as:

[X → α1 • tj+1α2, i, j, w, γ,Γ]

[X → α1tj+1 • α2, i, j + 1, w, γ,Γ]
(6.2)

[X → α1 •Xα2, i, j, w1, γ1,Γ1] [X → β•, j, k, w2, γ2,Γ2]

[X → α1X • α2, i, k, w1 ∗ w2, γ1 ⊗ γ2,Γ1]
(6.3)

The adjusted parse items in Equations 6.2 and 6.3 must further be modified

to include the access to the source sentence and the integration of model predic-

tions. This is done by replacing the weight w of each parse item with the function

151

6.4 Decoding with Improved Rule Selection

f([i, j], S[0, . . . , i − 1, j + 1, . . . , |s|], α, γ, h, w) where s is the source sentence. We

simply denote our function by F (). Its arguments are:

1. The span [i, j] of the item.

2. The segment S[0, . . . , i− 1, j + 1, . . . , |s|] of the source sentence around [i, j].

3. The source and target sides α and γ of the rule.

4. The weight w of the parse item without the prediction of the rule selection model.

5. The list h[X] of translation options for span [i, j].

The first three arguments are used to compute the model features. The fourth ar-

gument is the current weight of the item, which is updated by F (). The first three

arguments are easily accessible during decoding. The last argument is the list h[X]

containing the translation options spanning from i to j with the same source side

α. This list is required to transform the output of the classifier, i.e. the numerator of

Equation 6.1, into a probability distribution over all rules. In fact, the sublist h[X] is

the output value of the function GTO : α→ G′ in Equation 6.1. In contrast to stan-

dard weight computation5, this normalization can only take place when all trans-

lation options have been collected. This means that the function F () can only be

evaluated when the list h[X] is complete. To allow this, the standard CYK+ search

procedure in Algorithm 1 must be adjusted. The adjustment consists in replacing

lines 9 and 10 with lines 1 to 7 below.

Algorithm 5 CYK+ search algorithm with evaluation of F ()

1: for all items [X → α•, i, j, w, γ,Γ] provable from items in a[X] and d[X] and h[X] do
2: Add [X → α•, i, j, w, γ,Γ] to h[X]
3: end for
4: for all items [X → α•, i, j, w, γ,Γ] in h[X] do
5: Compute w′ = F (w) // The value of w′ can only be computed after having collected

all translation options
6: Update weight w
7: end for

Note that we do not adjust glue-rule applications as glue rules have no competing

5Which takes place as soon as a new item is created.

152

6.4 Decoding with Improved Rule Selection

rules.

6.4.2 Example

We illustrate our adjusted procedure by decoding the segment l’ intérêt pratique

de notre approche using the axioms b1 to b6 given in Table 6.7. These axioms carry

rules q1 to q4 presented in the previous sections as well as r1 and r2 below. The

translation options h[X] created during decoding are given in Table 6.8. For the

translation options spanning [1, 2] and [3, 6], we assume that F () has already been

computed. As there are no competing axioms for those spans, we assume that our

model prediction is 1.0. For span [1, 6], axioms b1 to b4 are competing because they

carry rules with the same source side X1 pratique X2. For each of the translation

options created using these axioms (together with the translation options of sub-

spans [1, 2] and [3, 6]), the weight Fi() that includes our rule selection model has to

be computed.

r1 X
1.0−−→ 〈 intérêt, interest 〉

r2 X
1.0−−→ 〈 de notre approche, of our approach 〉

b1 :
X→•X1 pratique X2,0.2,practical X1 X2

b2 :
X→•X1 pratique X2,0.4,X1 X2 process

b3 :
X→•X1 pratique X2,0.3,X1 practical X2

b4 :
X→•X1 pratique X2,0.3,X1 helpful X2

b5 :
X→•intérêt,1.0,interest b6 :

X→•de notre approche,1.0, of our approach

Figure 6.7: Axioms created from rules q1 to q4 and r1 to r2

Table 6.4.2 shows the computation of the weight function w for each translation

option (TO). The arguments of the function are (i) the source sentence segment

surrounding the span of the TO (denoted by Source Sent.), (ii) the source side α in

the TO, (iii) the target side Γ in the TO (iv) the weight of the TO and (v) the list of

all TO for this span with the same α. Using these arguments we extract the features

of the rule selection model presented in Section 6.2, query the model and multiply

the obtained prediction to the weight of the translation option.

153

6.5 Advantages over Previous Rule Selection Models

[X1 pratique X2•, 1, 6]

[F4, interest helpful of our approach, X1 helpful X2, 6, (1, 2)]

[X1 pratique X2•, 1, 6]

[F3, interest practical of our approach, X1 practical X2, 5, (1, 2)]

[X1 pratique X2•, 1, 6]

[F2, interest of our approach process, X1X2 process, 4, (1, 2)]

[X1 pratique X2•, 1, 6]

[F1, practical interest of our approach, practicalX1X2, 3, (1, 2)]

[X → intérêt•, 1, 2] [X → de notre approche•, 4, 6]

[1.0, interest, interest, 1] [1.0, of our approach, of our approach, 2]

l’ intérêt pratique de notre approche .

0 1 1 2 2 3 3 4 4 5 5 6 6 7

Figure 6.8: Rule application with rule selection model.

TO Id Source Sent. α γ weight TO list
3 [l’ .] X1 pratique X2 practicalX1X2 0.2 {3, 4, 5, 6}
4 [l’ .] X1 pratique X2 X1X2 process 0.4 {3, 4, 5, 6}
5 [l’ .] X1 pratique X2 X1 practical X2 0.3 {3, 4, 5, 6}
6 [l’ .] X1 pratique X2 X1 helpful X2 0.3 {3, 4, 5, 6}

Figure 6.9: Arguments of the weight calculation for TO 3 to 6.

6.4.3 Integration into the Hierarchical Translation Model

Our model is integrated in the hierarchical translation model as an additional fea-

ture of hierarchical rules in Equation 4.3.

6.5 Advantages over Previous Rule Selection Models

As seen in Section 3.4, our contribution to hierarchical rule selection is the def-

inition of a model that (i) is global and (ii) performs no pruning of negative in-

stances (incorrect classes). In this section, we discuss why global models with-

out pruning should perform better than local [Chan et al., 2007, He et al., 2008,

He et al., 2010] or pruned [Cui et al., 2010] models. We will show that global mod-

154

6.5 Advantages over Previous Rule Selection Models

els are better than local ones because they allow feature sharing (Section 6.5.1) and

that aggressive pruning of negative instances hurts the quality of model predictions

(Section 6.5.2). In our evaluation (Section 6.6) we show empirically that global

models without pruning outperform their local or pruned counterparts.

6.5.1 Feature Sharing

Because they train one classifier for each set of hierarchical rules with the same

source side, local models cannot share features between rules with different source

sides. As opposed to these models, ours can perform feature sharing. To illustrate

sharing, consider rule q2, extracted from sentence F2 (in Section 6.1). Also suppose

that rules q7 and q8 below have been extracted from sentence F3. The parse of F3 is

given in Figure 6.10.

F3 Un article sur les modèles (statistiques)X1 de (bas niveau)X2

A paper on the models (statistical)X1 of (low-level)X2

q2 X 0.4−−→ 〈 X1 pratique X2, X1 X2 process 〉:

q7 X 0.7−−→ 〈 modèles X1 de bas X2, X1 X2 models 〉

q8 X 0.3−−→ 〈 modèles X1 X2, X1 X2 models 〉

Rules q2, q7 and q8 have completely different source sides. However, they share

many features such as:

1. the POS tags of the first and second words to the left of the segment where

they are applied (which are P and D)

2. the syntactic structure of this segment (which is that (i) it is not a complete

constituent and (ii) it has a NP as its lowest parent)

3. the rule span width (which is 5)

Local models consider (and thus weight) these features independently for q2, q7

and q8 while a global model considers these rules together. In the presence of data

155

6.5 Advantages over Previous Rule Selection Models

SENT

NP

D

Un

N

article

PP

P

sur

NP

D

les

N

modeles

A

(statistiques)X1

PP

P

(de

NP

A

bas

N

(niveau)X2

PONCT

.

Figure 6.10: Parse tree of Sentence F3

sparsity or lack of training data, the first option leads to a bad weighting of features

(1)-(3). For instance, suppose that among rules with the same source side as q2

only a few are correctly applied in presence of features (1) to (3). A local model

will give very low weights to these features. If these features model a frequent

linguistic phenomenon but have simply not been seen often in the presence of q2 in

the training data, then a local model misses an important generalization and cannot

provide a good prediction for rule application in the presence of features (1) to (3).

6.5.2 Training without Pruning of Negative Examples

The procedure to create training instances for a global model leads to a very large

collection of training examples, and for each of those a very large amount of in-

correct classes, which we also call negative examples. As an illustration, Table 6.1

displays the total number of training examples for all data sets used in our evalua-

tion (in Section 6.6).

In order to train a model with this amount of training data, a highly scalable

classification framework must be used. As seen in Section 3.2, previous approaches

using global models did not use such a framework and had to heavily prune out

incorrect classes in the training examples in order not to ”choke the training proce-

dure” [Cui et al., 2010, p.8]. As Vowpal Wabbit (VW) is extremely fast and supports

156

6.5 Advantages over Previous Rule Selection Models

Data Science Medical News
Sentences 139,215 111,165 150,000
Examples 47,952,867 25,435,958 40,062,073

cost 0 50,718,190 26,458,411 41,115,656
cost 1 493,271,397 170,064,556 446,105,435
avg 1 10.29 6.69 11.14

Table 6.1: Number of training examples. The last line shows the average number of
negative samples (avg 1) for each training example.

online streaming we can train a global rule selection model without pruning out in-

correct classes.

By avoiding pruning of negative examples, we keep important information for

model training. As an illustration, consider rules q2, q3 and q5. Suppose that a train-

ing example has been created from sentence F1 (in Figure 6.2) where q3 is a positive

instance and q2 and q5 incorrect classes.

q2 X
0.4−−→ 〈 X1 pratique X2, X1 X2 process 〉: 0

q3 X
0.1−−→ 〈 X1 pratique X2, X1 practical X2 〉: 1

q5 X
0.05−−→ 〈 X1 pratique X2, X1 X2 practice 〉: 0

The incorrect classes indicate that in the context of sentence F1, the internal fea-

tures of q2 and q5 are not correct. The information provided to the model by these

classes can be paraphrased into I.

I In the syntactic and lexical context of F1 the terminal pratique should neither

be translated into practice nor into process

If rules q2 and q5 appear infrequently in the extracted hierarchical grammar, they

are pruned out and information I is lost. This loss hurts the accuracy of the rule

selection model. To illustrate this point, consider sentence F4, which has a context

similar to F1 in terms of the lexical and syntactic features described in Section 6.2.2.

The parse tree of F4 is given in Figure 6.11.

157

6.5 Advantages over Previous Rule Selection Models

F4 Les avantages de l’ (aspect)X1 pratique (de la robotique)X2.

The advantages of the (aspect)X1 practical (of robotics)X2.

SENT

NP

D

Les

N

avantages

PP

P

de

NP

D

l’

N

(aspect)X1

N

pratique

PP

P

(de

D

la

N

robotique)X2

Figure 6.11: Parse tree of sentence F4

If at decoding time competing rules sharing features with q2 and q5 are bad can-

didates to apply on F1 and F4 then the rule selection model cannot block their

application based on information I. E.g, if rules q6 and q7 have high scores in the

hierarchical model but are bad candidates to translate F1 and F4, then a pruned

model fails to block their application: the discriminative model does not know that

rules with lexical items practice and process on the target language side are bad

candidates to translate F1 and F4. Consequently, the incorrect translations E∗1 and

E∗2 might be created.

q6 X→ 〈 X1 pratique X2, X2 X1 practice 〉

q7 X→ 〈 X1 pratique X2, X1 X2 process 〉

E∗1 The advantages of the of robotics aspects practice

E∗2 The advantages of the aspects of robotics process

6.5.3 Feature combination

As seen above (Section 6.5.1), feature sharing between rules with different source

sides improves the accuracy of rule selection models. Sharing can be done even

more effectively when different feature templates are combined with each other.

158

6.5 Advantages over Previous Rule Selection Models

As an example, consider rules q2, q7 and q8 presented in Section 6.5.1 which share

features (1) to (3):6

1. the POS tags of the first and second words to the left of the segment where

they are applied (which are P and D)

2. the syntactic structure of this segment (which is that (i) it is not a complete

constituent and (ii) it has a NP as its lowest parent)

3. the rule span width (which is 5)

By combining these features with each other, new templates can be generated,

which allow to share more complex features. For instance by combining features

(1),(2) and (3), a complex pattern can be generated, which indicates that in addi-

tion to sharing features (1) to (3) above, rules q2, q7 and q8 also share different con-

catenations of these features such as (1)+(2) or (1)+(2)+(3) or (1)+(3), where

+ denotes the concatenation of two features. These combinations allow to better

capture the similarities between rules like q2, q7 and q8 and distinguish them from

rules such as q4 or q5 which share completely different features. A key advantage

of combined features is that they allow to distinguish rules from others that share

only a subset of their features.

We perform feature combination by taking the cross product of all features in our

training examples. This generates a very large number of features. In order to deal

with those, we use two functions of Vowpal Wabbit: feature hashing and quadratic

feature expansion. Feature hashing [Weinberger et al., 2009] is important for scal-

ing the classifier to the enormous number of features created by the cross-product

expansion. The quadratic expansion allows us to take the cross-product of features

without having to actually write this expansion to disk, which would be prohibitive.

6These features have already been presented above. For better readability, we present them again
here.

159

6.6 Evaluation

6.6 Evaluation

We present an evaluation of our rule selection model. We first present the setup of

our experiment before discussing the systems we compare. Finally, we discuss the

obtained results.

6.6.1 Experimental Setup

We evaluate our rule selection model on three domains which we denote by (i)

news, (ii) medical, and (iii) science. The training data for news is from the

Europarl-v4 corpus. Development and test sets are taken from the news translation

task of WMT 2009 [Callison-Burch et al., 2009]. For medical we use the biomed-

ical data from EMEA [Tiedemann, 2009]. Because EMEA is a parallel corpus only,

we had to further process it to construct training and evaluation data. To this aim,

we first removed duplicate sentences from the parallel corpus and then randomly

removed sentence pairs to build the development and test data. The training data

for science is the scientific abstracts data provided by [Carpuat et al., 2013]. We

give an overview of the corpora sizes in Table 6.2.

The translation model is trained in the standard way by computing word align-

ments with GIZA++ [Och and Ney, 2003]. After training we reduced the size of

the obtained grammar with significance testing [Johnson et al., 2007]. For fea-

ture extraction, we parsed the French part of the training data with the Berkeley

parser [Petrov et al., 2006]. Lemmas and POS tags were obtained using Morfette

[Chrupała et al., 2008]. We trained our rule selection model with Vowpal Wabbit7.

For tuning, we used batch MIRA [Cherry and Foster, 2012]. We measured trans-

lation quality with 4-gram BLEU [Papineni et al., 2002], which we computed on

tokenized and lowercased data. The pairwise bootstrap resampling technique of

[Koehn, 2004] was used to compute statistical significance.

7http://hunch.net/~vw/. Implemented by John Langford and others.

160

6.6 Evaluation

news medical science

training data 4th EuroParl corpus [Tiedemann, 2009] [Carpuat et al., 2013]
training data size 149,986 sentence pairs 111,081 sentence pairs 139,199 sentence pairs
development size 1,025 sentences 2,000 sentences 2,907 sentences

test size 1,026 sentences 1,999 sentences 3,915 sentences

Table 6.2: Overview of the sizes of the three domains.

6.6.2 Compared Systems

We compare our global rule selection model against three different baselines:

(i) A hierarchical system with standard parameters as in [Chiang, 2005].

(ii) A hierarchical system augmented with a local rule selection model as in

[He et al., 2008, He et al., 2010]

(iii) A hierarchical system augmented with a pruned rule selection model as in

[Cui et al., 2010].

The three evaluations are presented in Tables 6.3, 6.4 and 6.5 in the next section.

Our global rule selection model as well as its local variants are trained using the

feature templates presented in Section 6.2.2. We combine the templates into three

setups:

1. Rule shape and lexical features (denoted by Lexical)

2. Rule shape and syntactic features (denoted by Syntactic)

3. Rule shape, lexical and syntactic features (denoted by Lexical and Syntactic)

We constructed our third baseline (system augmented with pruned model) by

training a global rule selection model and heavily pruning out negative samples.

More precisely, we reproduced the context-based target model in [Cui et al., 2010],

presented in Section 3.2, by pruning as many negative examples as required to ob-

tain approximately the same number of positive and negative samples they report.

To this aim, we removed negative instances created from rules with target side fre-

quency < 5000. For this third evaluation, we used the setup that performed best

with global models, that is syntactic features only (see Section 6.6.3).

161

6.6 Evaluation

6.6.3 Results

Our first evaluation compares our global rule selection model in all setups against a

hierarchical system with standard features. The results are given in Table 6.3. These

show that on science, our global rule selection model outperforms the hierarchi-

cal baseline in all setups. Among these, the model including syntactic features only

performs best. On medical all setups outperform the baseline but only the model

with syntactic features yields significant improvements. The good results obtained

by systems with syntactic features only are due to the better generalization of these,

which are less sparse than the lexical ones. This ability to generalize is especially

important in a global model with feature combination. Our experiments show that

even a combination of syntactic and lexical features underperforms syntactic fea-

tures alone because of the sparse lexical features. Our evaluation also shows that on

news no improvements were observed. This result can be explained by the fact that

news is much more heterogeneous than science or medical. For this task, a rule

selection model should be trained on more data than our framework can handle.

Our second evaluation compares global rule selection models against local ones.

The results are given in Table 6.4. The evaluation shows that on science and

medical, global models outperform their local variants for all feature templates.

However, on science only the system with syntactic features yields significant im-

provements. These results show that the feature sharing enabled by global models

(see Section 6.5.1) yields improvements in translation quality. The results also show

that global models are especially helpful when trained with syntactic features only.

On news, global models do no perform better than local ones. This result is again

caused by the heterogeneity of the news data.

Our third evaluation compares our global model with a pruned version. The re-

sults are given in Table 6.5. On science and medical the global model without

pruning significantly outperforms its pruned variant. This shows that pruning hurts

translation quality. On news no difference is observed which is due to the fact that

in general rule selection models do not help on this heterogeneous domain.

162

6.7 Conclusion

System Science Medical News
Hierarchical 31.22 48.67 17.28

Global lexical (1) 31.69 48.94 16.89
Global syntactic (2) 32.27 49.66 17.38

Global lexical and syntactic (3) 31.89 48.97 17.26

Table 6.3: Evaluation results. The results in bold are statistically significant im-
provements over the Baseline (at confidence p < 0.05).

System Science Medical News
Hierarchical 31.22 48.67 17.28

Local lexical (1) 31.50 48.43 17.08
Local syntactic (2) 31.85 48.76 17.50

Local lexical and syntactic (3) 31.74 48.51 17.30
Global lexical (1) 31.69 *48.94 16.89

Global syntactic (2) *32.27 *49.66 17.38
Global lexical and syntactic (3) 31.89 *48.97 17.26

Table 6.4: Evaluation results. The results in bold are statistically significant im-
provements (at confidence p < 0.05) over the hierarchical baseline. We use * to
mark global systems that yield significant improvements over the local variants.

6.7 Conclusion

We have presented a discriminative rule selection model to improve hierarchical

SMT. In contrast to previous work on this topic [He et al., 2008, He et al., 2010,

Cui et al., 2010], we defined a model that (i) is global and (ii) does not prune

out negative instances before training. After a brief overview of our approach, we

presented our global rule selection model and showed its advantages over local and

pruned models. These advantages have been confirmed by an extensive empirical

evaluation which yielded up to 1 BLEU improvements over a hierarchical baseline.

A shortcoming of this work is that our approach does not scale to training data

containing more than 300,000 sentence pairs. An important piece of future work

is to improve our classification framework to scale to the size of public evaluation

163

6.7 Conclusion

System Science Medical News
Hierarchical 31.22 48.67 17.28

Global syntactic (2) *32.27 *49.66 17.38
Global syntactic pruned 31.00 48.61 17.18

Table 6.5: Evaluation results. The results in bold are statistically significant im-
provements (at confidence p < 0.05) over the hierarchical baseline. We use * to
mark global systems that yield significant improvements over the pruned variant.

campaigns such as [Bojar et al., 2014]. Another direction would be to use a more

fine-grained set of syntactic features.

164

Chapter 7

Improved Rule Selection for

String-to-Tree Machine Translation

We present our second contribution to the topic of syntax-based SMT with soft syn-

tactic constraints, that is the definition of a global rule selection model for string-to-

tree SMT. This work is an extension of the rule selection model presented in Chap-

ter 6 to work on the string-to-tree system described in [Williams and Koehn, 2012]

and implemented in Moses [Hoang et al., 2009]. We describe the inner workings of

this system in Sections 4.3.5 and 4.4.4. A detailed overview of our contribution is

given in Section 3.4.

We begin by showing how to adapt the hierarchical rule selection problem de-

scribed in Section 3.3 to string-to-tree systems. Then we present our model in Sec-

tion 7.2 and evaluate it in Section 7.3. We conclude this chapter by explaining

shortcomings of our approach and possible future work.

7.1 String-to-Tree Rule Selection

As seen in Section 3.3, a syntactic rule selection model for string-to-tree SMT tackles

the problem of selecting the rule with the correct target side among rules with

165

7.1 String-to-Tree Rule Selection

the same source side. A possible formulation of this problem would be to choose,

among rules such as q3 to q6, the one that correctly applies to sentence F .

(q3) X/NP → 〈 X1 caractéristiques X2, JJ1 characteristic JJ2 〉

(q4) X/NP → 〈 X1 caractéristiques X2, NNS1 characteristic JJ2 〉

(q5) X/NP → 〈 X1 caractéristiques X2, JJ1 properties JJ2 〉

(q6) X/NP → 〈 X1 caractéristiques X2, JJ1 JJ2 features 〉

F (Diverses)X1 caractéristiques (importantes)X2 n’ont pas été prises en compte.

(Various)X1 characteristics (important)X2 were not considered.

E (Various)JJ1 (important)JJ2 characteristics were not considered.

This way to consider string-to-tree rule selection relies on the assumption that

competing rules during decoding are the ones with the same source side. This

assumption is reasonable, as it considers those rules which (i) are applied to

the same segments in the input sentence and (ii) produce the same target head

labels, are competing. However, this mechanism is not fully compatible with

the representation and normalization of string-to-tree rules in the Moses toolkit

[Hoang et al., 2009], which is the framework used in this thesis. The string-to-tree

rules encode target non-terminals in the source side of the rules and the default

scoring procedure normalizes rules over the source side and target non-terminals.

This second perspective strictly takes into account partial target trees built during

decoding. For instance, when a rule is selected to translate sentence F given the

partial translations in Figure 7.1, then the non-terminals in the target side of this

rule must match the constituents selected so far. Following this second perspective,

rules q3 and q4 above are not competing during rule selection because their target

side non-terminals are different. Competing rules for q3 would be q5 and q6.

As a first attempt to model rule selection for string-to-tree rules, we implement

the second variant described above and empirically evaluate it.

166

7.2 Rule selection model

Diverses caractéristiques importantes

JJ

Various

JJ

important

Figure 7.1: Partial translation during decoding.

7.2 Rule selection model

We denote string-to-tree rules with X/A → 〈α, γ,∼〉. By Ñtt, we represent the

sequence of non-terminals in the target side of the rules with their alignment to

non-terminals in the source side. For rules q3, q5 and q6, Ñtt would be JJ1 and

JJ2. To denote the context information of the source sentence f and the source

side α of the rules, we use the same notation as for the hierarchical rule selection

model in Section 6.2: C(f, α) is the context information in the source sentence f

and the source side α. R(α, γ) are the features on the structure of the string-to-

tree rules. The rule selection model estimates P (γ | C(f, α), R(α, γ), α, Ñtt) and is

normalized over the set G′ of candidate target sides γ′ for a given α and Ñtt. The

function GTO : α→ G′ generates, given the source side α and target non-terminals

Ñtt , the set G′ of all corresponding target sides γ′. The estimated distribution can

be written as:

P (γ | C(f, α), R(α, γ), α, Ñtt) =∏
i hi(C(f, α), R(α, γ), α, Ñtt)

λi∑
γ′∈GTO(α,Ñtt)

∏
i hi(C(f, α), R(α, γ′), α, Ñtt)λi

In the same way as our hierarchical rule selection model, our string-to-tree

model is global instead of being local to the source side of each rule. The feature

templates we use are the syntactic context features and the rule shape features

presented in Section 6.2.2. Our rule selection model is an additional feature in the

string-to-tree translation model.

We create training examples using the shallow string-to-tree STSG procedure in

167

7.2 Rule selection model

Ces robots ont des comportements caractéristiques similaires

S

NP

DT

These

NNS

robots

VP

VBP

have

NP

JJ

similar

JJ

characteristic

NNS

behaviours

Figure 7.2: Training example for string-to-tree rule extraction.

[Williams and Koehn, 2012], which is presented in Section 4.3.5.1 We first gener-

ate an SCFG grammar with target side annotations using this procedure. Then, each

time a rule r : X/A → 〈α, γ,∼〉 can be extracted from the training data, we create

a new training example. In this example, the target side γ of the extracted rule

is a positive instance and gets a loss of 0. To create negative samples, we search

in our grammar for all rules r2, . . . , rn with the same source language side as r as

well as the same aligned target non-terminals Ñtt. Each of these constitutes a neg-

ative example and gets a cost of 1. To illustrate this example acquisition procedure,

consider that rule q3 above has been extracted from the training example in Fig-

ure 7.2. The target side ”JJ1 characteristic JJ2 ” is a correct class and gets a cost of

0. The target side of all other rules having the same source side and aligned target

non-terminals, such as rule r5 and r6, are incorrect classes.

We train our string-to-tree model in the same way as for the hierarchi-

cal model (see Section 6.3): with the cost-sensitive one-against-all-reduction

[Beygelzimer et al., 2005] of Vowpal Wabbit. We avoid overfitting the training

data by employing early stopping once classifier accuracy decreases on a held-out

dataset.
1Which is based on [Galley et al., 2004, Galley et al., 2006, DeNeefe et al., 2007].

168

7.3 Experiments

7.3 Experiments

7.3.1 Experimental Setup

As our baseline system, we use the string-to-tree system implemented in

Moses [Hoang et al., 2009, Williams and Koehn, 2012] with standard param-

eters. The implemented rule extraction [Williams and Koehn, 2012] is per-

formed as in [Galley et al., 2004] with rule composition [Galley et al., 2006,

DeNeefe et al., 2007]. Non-lexical unary rules are removed [Chung et al., 2011]

and scope-3 pruning [Hopkins and Langmead, 2010] is applied on the grammar.

Default rule scoring is done with relative frequencies normalized over the source

side and aligned non-terminals in the target rhs. The contrastive system is the

same system augmented with our rule selection model as a feature of the log-linear

model.

We train and evaluate the baseline and our global model on the same data as

done in the hierarchical case (see Section 6.6), that is (1) news, (2) medical,

and (3) science. The data is processed in exactly the same way as explained

in Section 6.6 except that the English side has been parsed with the Berke-

ley parser [Petrov et al., 2006]. Translation and language models are trained

using GIZA++ [Och and Ney, 2003] and the SRI Language Modeling Toolkit

[Stolcke, 2002]. After training, we reduced the number of translation rules by only

keeping the 30-best rules with the same source side according to the direct rule

translation probability. The rule selection model was trained with Vowpal Wabbit2

and tuning was done with batch MIRA [Cherry and Foster, 2012]. We measured

the overall translation quality with 4-gram BLEU [Papineni et al., 2002], which was

computed on tokenized and lowercased data for all systems. Statistical significance

is computed with the pairwise bootstrap resampling technique of [Koehn, 2004].

2http://hunch.net/~vw/

169

7.3 Experiments

System science medical news

Baseline 34.06 49.87 18.35
Contrastive 34.36 49.57 18.59

Table 7.1: String-to-tree system evaluation results.

7.3.2 Results

Table 7.1 shows the BLEU scores obtained by the evaluated systems: On science

and news, small improvements are observed while for medical a small decrease is

observed. None of these differences is statistically significant.

An analysis of the system outputs for each domain shows that the lack of sig-

nificant improvements is caused by the lack of diversity between competing rules.

The amount of competing rules can be estimated by counting the negative samples

collected for each training example. This analysis shows that the diversity of rules

containing non-terminal symbols is limited. For instance, rules s1 to s3 below are

the only competing rules with source side à X1 X2 éventail X3.

(s1) X/PP → 〈 à X1 X2 éventail X3, to DT1 JJ2 variety PP3 〉
(s2) X/PP → 〈 à X1 X2 éventail X3, to DT1 JJ2 range PP3 〉
(s3) X/PP → 〈 à X1 X2 éventail X3, to DT1 JJ2 array PP3 〉

This number is very low given that the rules contain three non-terminal symbols

out of which two are adjacent. Moreover, the difference between s1 to s3 is lim-

ited to the lexical translation of éventail. Clearly, this low diversity is caused by

the constraint that competing string-to-tree rules must have the same aligned non-

terminal symbols. In other words, the ambiguity between translation rules in a

string-to-tree system is heavily restricted by the target side syntax. Better diversity

could be obtained by allowing rules with the same source side to have different

aligned target non-terminals, i.e. by implementing option (1) presented in Sec-

tion 7.1. This would require to normalize rule counts over the source side only as

in [Williams and Koehn, 2012]. The rule selection model in Section 7.2 should then

be redefined and normalized over all rules with the same source side.

170

7.4 Conclusion

A comparison between the scores obtained by the evaluated string-to-tree sys-

tems and the hierarchical system evaluation in Section 6.6 shows that although

rule selection models significantly improve hierarchical machine translation, the

BLEU scores obtained by these systems are significantly lower than those of the

string-to-tree systems. This shows that systems with target side syntax better dis-

ambiguate than hierarchical models with rule selection. An interesting extension to

the work in this thesis would be to implement string-to-tree rule selection with a

normalization over all rules with the same source side.

7.4 Conclusion

We have extended the discriminative rule selection model presented in Chapter 6

to work on string-to-tree systems. Our evaluation has shown that although rule

selection significantly improves hierarchical SMT, no improvement is observed on

string-to-tree systems.

A shortcoming of our contribution is the requirement that only rules with the

same aligned target non-terminals are considered as competing during decoding

(see Section 7.1). In future work, the string-to-tree rule selection model could be

redefined to consider all rules with the same source side as competing, indepen-

dently of the target non-terminals.

171

Chapter 8

Conclusion and Future Work

We begin by discussing again the contributions listed in Section 1.2 in the light of

their presentation in Chapters 5, 6 and 7. Then we discuss the shortcomings of our

approaches and future work.

8.1 Contributions

We have built the first SMT system based on the Shallow Local Multi Bottom Up

Tree Transducer (Sh-l-MBOT). This effort required the definition of a translation

model specific to Sh-l-MBOT and the implementation of a customized decoding

procedure. Our system works for Sh-l-MBOT without syntactic annotations or with

annotations at different levels. An extensive evaluation has shown that Sh-l-MBOT

outperform SCFG-based systems when they carry syntactic annotations on the tar-

get sides of the translation rules.

Through the integration of a high-speed classifier in the Moses toolkit, we have

been able to define a rule selection model that is global, i.e. trained over the com-

plete set of hierarchical rules, and that performs no pruning. We compared our

system to previous work, which either defines models that are local to the source

side of the rules or that heavily prune the training data. We showed that our global

172

8.2 Shortcomings and Future Work

model significantly outperforms local or pruned approaches by keeping important

information for model training.

We applied our global rule selection model to approaches using syntactic annota-

tions on the target language side (string-to-tree systems). We showed that in order

to work with these models, the rule selection problem had to be reformulated. A

preliminary evaluation has shown that models with improved rule selection do not

outperform standard string-to-tree systems. A detailed analysis revealed that the

lack of improvement has two causes : (i) there is not enough diversity in competing

rules and (ii) the target side syntactic labels already perform the desired disam-

biguation.

Finally, we contributed to research in SMT by making our systems publicly avail-

able. The released code allows other researchers to replicate our experiments and

to improve on our work.

8.2 Shortcomings and Future Work

In this section, we present shortcomings of our work and discuss how to improve

on it in future work.

8.2.1 Language Model Scoring in Sh-l-MBOT Decoding

As discussed in Section 5, the major shortcoming of our Sh-l-MBOT system is the

computation of Language Model (LM) scores. To illustrate this weakness, we show

again the LM computation for the sentence They predicted an increase. Figure 8.1

shows LM scoring when decoding the word predicted. The complete decoding pro-

cess is illustrated in Figure 5.20 (Section 5.3.3). The function PLM(w) computes a

4-gram LM for the (contiguous) sequence w. For better illustration, we display in

red at the top of each item the rule from which it was created.

Figure 8.1 shows that for the discontiguous translation options sind; von; ausge-

173

8.2 Shortcomings and Future Work

X 0.6−−→ 〈 predicted, sind ; von; ausgegangen 〉

[X → predicted•, 1, 2]

[sind ; von ; ausgegangen, 0.6, 3]

[PLM (sind) ∗ PLM (von) ∗ PLM (ausgegangen)]

X 0.3−−→ 〈 predicted, haben ; vorausgesagt 〉]

[X → predicted•, 1, 2]

[haben ; vorausgesagt, 0.3, 2]

[PLM (haben) ∗ PLM (vorausgesagt)]

X 0.1−−→ 〈 predicted, prognostizierten 〉

[X → predicted•, 1, 2]

[prognostizierten, 0.1, 0, 1]

[PLM (prognostizierten)]

They predicted an increase

0 1 1 2 2 4

Figure 8.1: Language model scoring of translation options for span 1-2

gangen and haben; vorausgesagt, the 4-gram LM is applied to each (discontiguous)

component of the translation model. The computed scores are then multiplied. In

our example, this comes down to a multiplication of independent unigrams, which

is an imprecise approximation of the LM scores for the verbal complexes sind; von;

ausgegangen and haben; vorausgesagt. In general, our scoring strategy produces

lower scores for discontiguous units. For instance the sequence sind; von; ausgegan-

gen gets a much lower score than prognostizierten although it is an equally good

translation of predicted. In a decoding procedure with pruning, this leads to the re-

moval of potentially good translation options.

This problem could be avoided by using a language model that can capture de-

pendencies between discontiguous units. Future work on decoding for Sh-l-MBOT

could replace our scoring method with a model considering the target segments as

being dependent of each other.

174

8.2 Shortcomings and Future Work

8.2.2 Finer-grained Syntactic Features for Rule Selection

The rule selection models presented in Chapters 6 and 7 can be improved by defin-

ing a finer-grained set of syntactic features. The features of the rule selection model

presented in Section 6.2.2 can be summarized as:

1. The matching or crossing of a syntactic constituent

2. The type of the matched constituent

3. The parent of the matched constituent

4. The lowest parent of an unmatched constituent

5. The span width covered by the rule

To illustrate these features, consider that rule q1 is applied to sentence F1 in Figure

8.2.

q1 X 0.2−−→ 〈 X1 pratique X2, practical X1 X2 〉

In our rule selection model, the syntactic features for this example are:

1. There is no matching of a syntactic constituent

2. There is no type of matched constituent

3. There is no parent of matched constituent

4. The label of the lowest parent is NP

5. The span covered by the rule has width 5

SENT

NP

D

Une

N

etude

PP

P

de

NP

D

l’

N

(interet)X1

N

pratique

PP

P

(de

D

notre

N

approche)X2

Figure 8.2: Parse tree of Sentence F1

These features could be more fine-grained by using a tagset similar to Combina-

tory Categorial Grammars (CCG) [Steedman, 1996]. For instance, instead of simply

175

8.2 Shortcomings and Future Work

indicating a constituent mismatch (feature (1)), further features could capture the

type of segment that is missing. In our example, the determiner D at the left of the

rule application is missing to match a NP . Two additional features could be used

to indicate (i) the type of the missing constituent and (ii) its position relative to the

lowest parent. For instance, a feature D/NP would indicate that the constituent D

at the left of rule application is missing to match a NP . Based on this information,

further features can be defined such as the span of the missing constituent.

Future work on hierarchical rule selection could extend our approach to include

such features and empirically compare this new system to our rule selection model.

8.2.3 Improved Diversity in String-to-Tree Rule Selection

Our rule selection model for string-to-tree SMT did not improve over a string-to-

tree baseline (see Section 7.3). An analysis of competing rules during decoding has

shown that one reason for this lack of improvement could be that there are too few

competing rules. As an example, we have shown that the only competing rules with

source side à X1 X2 éventail X3 found in our training data are:

(s1) X/PP → 〈 à X1 X2 éventail X3, to DT1 JJ2 variety PP3 〉
(s2) X/PP → 〈 à X1 X2 éventail X3, to DT1 JJ2 range PP3 〉
(s3) X/PP → 〈 à X1 X2 éventail X3, to DT1 JJ2 array PP3 〉

Given that the source side of s1 to s3 contains adjacent non-terminals, this number

is very low. The main reason for that is that our rule selection model considers

rules with the same source side and aligned non-terminals as being competing. As

shown in Section 7.1, this restriction was necessary to make our model compatible

with the default string-to-tree rule scoring procedure implemented in Moses. By

dropping the requirement that aligned target non-terminals in candidate rules must

be the same, rule diversity can be improved. For instance, rules t1 to t3 would be

competing with s1 to s3.

(t1) X/PP → 〈 à X1 X2 éventail X3, to JJ1 JJ2 variety PP3 〉

176

8.2 Shortcomings and Future Work

(t2) X/PP → 〈 à X1 X2 éventail X3, to NN1 JJ2 range PP3 〉
(t3) X/PP → 〈 à X1 X2 éventail X3, to JJ1 NN2 array NP3 〉

Future work on string-to-tree rule selection could redefine our rule selection

model by dropping the constraint on aligned target non-terminals. To achieve that,

the default rule scoring procedure should be replaced by one that normalizes rules

over the source side only as in [Williams and Koehn, 2012]. An empirical evalua-

tion could compare the new model to ours.

8.2.4 Scalability of Rule Selection Models

We have mentioned in Section 6.7 that a shortcoming of our rule selection models

is that they do not scale to training data containing more than 300,000 sentence

pairs. This bottleneck prevents us to train systems on enough data to participate

in public evaluation campaigns such as [Bojar et al., 2014]. An important future

work would be to improve our framework to scale to the size of the training data

provided in shared tasks.

8.2.5 Rule Selection for Sh-l-MBOT

In this thesis, we have applied rule selection to hierarchical and string-to-tree SMT.

An interesting research direction would be to define rule selection models for Sh-l-

MBOT systems. Because Sh-l-MBOT rules allow target side discontiguities, there are

very large amounts of rules with the same source side (which are thus competing

during decoding). This makes Sh-l-MBOT systems very good candidates for rule

selection models. Moreover, as these systems work with syntactic annotations at

any level, rule selection could be tested in different settings such as hierarchical or

string-to-tree.

177

Bibliography

[Aho and Ullman, 1969] Aho, A. V. and Ullman, J. D. (1969). Syntax directed

translations and the pushdown assembler. J. Comput. Syst. Sci.

[Almaghout et al., 2011] Almaghout, H., Jiang, J., and Way, A. (2011). CCG con-

textual labels in hierarchical phrase-based SMT. In Proc. EAMT.

[Ambati and Lavie, 2008] Ambati, V. and Lavie, A. (2008). Improving syntax

driven translation models by re-structuring divergent and non-isomorphic parse

tree structures. In Proc. AMTA.

[Ambati et al., 2009] Ambati, V., Lavie, A., and Carbonell, J. (2009). Extraction

of syntactic translation models from parallel data using syntax from source and

target languages. In Proc. MT Summit.

[Baroni et al., 2009] Baroni, M., Bernardini, S., Ferraresi, A., and Zanchetta, E.

(2009). The WaCky Wide Web: A collection of very large linguistically processed

web-crawled corpora. Language Resources and Evaluation.

[Beygelzimer et al., 2005] Beygelzimer, A., Langford, J., and Zadrozny, B. (2005).

Weighted one-against-all. In Proc. AAAI.

[Blunsom et al., 2009] Blunsom, P., Cohn, T., Dyer, C., and Osborne, M. (2009). A

Gibbs sampler for phrasal synchronous grammar induction. In Proc. ACL.

[Blunsom et al., 2008] Blunsom, P., Cohn, T., and Osborne, M. (2008). A discrim-

inative latent variable model for statistical machine translation. In Proc. ACL.

178

Bibliography

[Bojar et al., 2013] Bojar, O., Buck, C., Callison-Burch, C., Federmann, C., Haddow,

B., Koehn, P., Monz, C., Post, M., Soricut, R., and Specia, L. (2013). Findings of

the 2013 Workshop on Statistical Machine Translation. In Proc. WMT.

[Bojar et al., 2014] Bojar, O., Buck, C., Federmann, C., Haddow, B., Koehn, P., Lev-

eling, J., Monz, C., Pecina, P., Post, M., Saint-Amand, H., Soricut, R., Specia, L.,

and Tamchyna, A. (2014). Findings of the 2014 Workshop on Statistical Machine

Translation. In Proc. WMT.

[Braune et al., 2013] Braune, F., Maletti, A., Quernheim, D., and Seemann, N.

(2013). Shallow local multi bottom-up tree transducers in statistical machine

translation. In Proc. ACL.

[Brown et al., 1990] Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek,

F., Lafferty, J. D., Mercer, R. L., and Roossin, P. S. (1990). A statistical approach

to machine translation. Comput. Linguist.

[Brown et al., 1993] Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L.

(1993). The mathematics of statistical machine translation: Parameter estima-

tion. Comput. Linguist.

[Buckwalter, 2002] Buckwalter, T. (2002). Arabic transliteration. http://www.

qamus.org/transliteration.htm.

[Callison-Burch et al., 2009] Callison-Burch, C., Koehn, P., Monz, C., and

Schroeder, J. (2009). Findings of the 2009 workshop on statistical machine

translation. In Proc. WMT.

[Carpuat et al., 2013] Carpuat, M., Daume III, H., Henry, K., Irvine, A., Jagarla-

mudi, J., and Rudinger, R. (2013). Sensespotting: Never let your parallel data

tie you to an old domain. In Proc. ACL.

[Carpuat and Wu, 2007] Carpuat, M. and Wu, D. (2007). Improving statistical ma-

chine translation using word sense disambiguation. In Proc. EMNLP.

179

Bibliography

[Chan et al., 2007] Chan, Y. S., Ng, H. T., and Chiang, D. (2007). Word sense

disambiguation improves statistical machine translation. In Proc. ACL.

[Chappelier et al., 1998] Chappelier, J.-C., Rajman, M., et al. (1998). A general-

ized CYK algorithm for parsing stochastic CFG. TAPD.

[Charniak and Johnson, 2005] Charniak, E. and Johnson, M. (2005). Coarse-to-

fine n-best parsing and MaxEnt discriminative reranking. In Proc. ACL.

[Cherry and Foster, 2012] Cherry, C. and Foster, G. (2012). Batch tuning strategies

for statistical machine translation. In Proc. NAACL.

[Chiang, 2005] Chiang, D. (2005). Hierarchical phrase-based translation. In Proc.

ACL.

[Chiang, 2006] Chiang, D. (2006). An introduction to synchronous grammars.

[Chiang, 2007] Chiang, D. (2007). Hierarchical phrase-based translation. Comput.

Linguist.

[Chiang, 2010] Chiang, D. (2010). Learning to translate with source and target

syntax. In Proc. ACL.

[Chrupała et al., 2008] Chrupała, G., Dinu, G., and Van Genabith, J. (2008). Learn-

ing morphology with morfette. In Proc. LREC.

[Chung et al., 2011] Chung, T., Fang, L., and Gildea, D. (2011). Issues concerning

decoding with synchronous context-free grammars. In Proc. ACL.

[Cohn and Blunsom, 2009] Cohn, T. and Blunsom, P. (2009). A Bayesian model of

syntax-directed tree to string grammar induction. In Proc. EMNLP.

[Cui et al., 2010] Cui, L., Zhang, D., Li, M., Zhou, M., and Zhao, T. (2010). A joint

rule selection model for hierarchical phrase-based translation. In Proc. ACL.

[DeNeefe and Knight, 2009] DeNeefe, S. and Knight, K. (2009). Synchronous tree

adjoining machine translation. In Proc. EMNLP.

180

Bibliography

[DeNeefe et al., 2007] DeNeefe, S., Knight, K., Wang, W., and Marcu, D. (2007).

What can syntax-based MT learn from phrase-based MT. In Proc. EMNLP.

[Ding and Palmer, 2005] Ding, Y. and Palmer, M. (2005). Machine translation us-

ing probabilistic synchronous dependency insertion grammars. In Proc. ACL.

[Eisele and Chen, 2010] Eisele, A. and Chen, Y. (2010). MultiUN: A multilingual

corpus from United Nation documents. In Proc. LREC.

[Eisner, 2003] Eisner, J. (2003). Learning non-isomorphic tree mappings for ma-

chine translation. In Proc. ACL.

[Fossum et al., 2008] Fossum, V., Knight, K., and Abney, S. (2008). Using syntax

to improve word alignment precision for syntax-based machine translation. In

Proc. WMT.

[Galley et al., 2006] Galley, M., Graehl, J., Knight, K., Marcu, D., Deneefe, S.,

Wang, W., and Thayer, I. (2006). Scalable inference and training of context-

rich syntactic translation models. In Proc. ACL.

[Galley et al., 2004] Galley, M., Hopkins, M., Knight, K., and Marcu, D. (2004).

What’s in a translation rule? In Proc. NAACL.

[Gao et al., 2011] Gao, Y., Koehn, P., and Birch, A. (2011). Soft dependency con-

straints for reordering in hierarchical phrase-based translation. In Proc. EMNLP.

[Graehl and Knight, 2004] Graehl, J. and Knight, K. (2004). Training tree trans-

ducers. In Proc. HLT-NAACL.

[Graehl et al., 2008] Graehl, J., Knight, K., and May, J. (2008). Training tree trans-

ducers. Comput. Linguist.

[Habash et al., 2009] Habash, N., Rambow, O., and Roth, R. (2009).

MADA+TOKAN: A toolkit for Arabic tokenization, diacritization, morpho-

logical disambiguation, POS tagging, stemming and lemmatization. In Proc.

MEDAR.

181

Bibliography

[Hanneman and Lavie, 2013] Hanneman, G. and Lavie, A. (2013). Improving

syntax-augmented machine translation by coarsening the label set. In Proc.

NAACL-HLT.

[He et al., 2008] He, Z., Liu, Q., and Lin, S. (2008). Improving statistical machine

translation using lexicalized rule selection. In Proc. COLING.

[He et al., 2010] He, Z., Meng, Y., and Yu, H. (2010). Maximum entropy based

phrase reordering for hierarchical phrase-based translation. In Proc. EMNLP.

[Hoang, 2011] Hoang, H. (2011). Improving statistical machine translation with

linguistic information. PhD Thesis: The University of Edinburgh.

[Hoang and Koehn, 2010] Hoang, H. and Koehn, P. (2010). Improved translation

with source syntax labels. In Proc. WMT.

[Hoang et al., 2009] Hoang, H., Koehn, P., and Lopez, A. (2009). A unified frame-

work for phrase-based, hierarchical, and syntax-based statistical machine trans-

lation. In Proc. IWSLT.

[Hopcroft et al., 2006] Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2006).

Introduction to Automata Theory, Languages, and Computation (3rd Edition).

Addison-Wesley Longman Publishing Co., Inc.

[Hopkins and Langmead, 2010] Hopkins, M. and Langmead, G. (2010). SCFG de-

coding without binarization. In Proc. EMNLP.

[Huang et al., 2006] Huang, L., Knight, K., and Joshi, A. (2006). A syntax-directed

translator with extended domain of locality. In Proc. AMTA.

[Huang et al., 2009] Huang, L., Zhang, H., Gildea, D., and Knight, K. (2009). Bi-

narization of synchronous context-free grammars. Comput. Linguist.

[Huang et al., 2010] Huang, Z., Čmejrek, M., and Zhou, B. (2010). Soft syntactic

constraints for hierarchical phrase-based translation using latent syntactic dis-

tributions. In Proc. EMNLP.

182

Bibliography

[Johnson et al., 2007] Johnson, H., Martin, J., Foster, G., and Kuhn, R. (2007).

Improving translation quality by discarding most of the phrasetable. In Proc.

EMNLP.

[Koehn, 2004] Koehn, P. (2004). Statistical significance tests for machine transla-

tion evaluation. In Proc. EMNLP.

[Koehn, 2005] Koehn, P. (2005). Europarl: A parallel corpus for statistical machine

translation. In Proc. MT Summit.

[Koehn et al., 2005] Koehn, P., Axelrod, A., Mayne, A. B., Callison-Burch, C., Os-

borne, M., and Talbot, D. (2005). Edinburgh system description for the 2005

IWSLT Speech Translation Evaluation. In Proc. IWSLT.

[Koehn et al., 2007] Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico,

M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O.,

Constantin, A., and Herbst, E. (2007). Moses: Open Source Toolkit for Statistical

Machine Translation. In Proc. ACL: Demo.

[Koehn et al., 2003] Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical phrase-

based translation. In Proc. ACL.

[Lavie, 2008] Lavie, A. (2008). Stat-xfer: a general search-based syntax-driven

framework for machine translation. In Proc. CICLing.

[Lavie et al., 2008] Lavie, A., Parlikar, A., and Ambati, V. (2008). Syntax-driven

learning of sub-sentential translation equivalents and translation rules from

parsed parallel corpora. In Proc. SSST.

[Li et al., 2014] Li, J., Marton, Y., Resnik, P., and Daumé III, H. (2014). A unified

model for soft linguistic reordering constraints in statistical machine translation.

In Proc. ACL.

183

Bibliography

[Li et al., 2009] Li, Z., Callison-Burch, C., Dyer, C., Ganitkevitch, J., Khudanpur, S.,

Schwartz, L., Thornton, W. N. G., Weese, J., and Zaidan, O. F. (2009). Joshua:

An open source toolkit for parsing-based machine translation. In Proc. WMT.

[Liu et al., 2011a] Liu, L., Zhao, T., Wang, C., and Cao, H. (2011a). A unified

and discriminative soft syntactic constraint model for hierarchical phrase-based

translation. In Proc. MT Summit.

[Liu et al., 2008] Liu, Q., He, Z., Liu, Y., and Lin, S. (2008). Maximum entropy

based rule selection model for syntax-based statistical machine translation. In

Proc. EMNLP.

[Liu et al., 2007] Liu, Y., Huang, Y., Liu, Q., and Lin, S. (2007). Forest-to-string

statistical translation rules. In Proc. ACL.

[Liu et al., 2006] Liu, Y., Liu, Q., and Lin, S. (2006). Tree-to-string alignment tem-

plate for statistical machine translation. In Proc. ACL.

[Liu et al., 2011b] Liu, Y., Liu, Q., and Lü, Y. (2011b). Adjoining tree-to-string

translation. In Proc. ACL.

[Liu et al., 2009] Liu, Y., Lü, Y., and Liu, Q. (2009). Improving tree-to-tree trans-

lation with packed forests. In Proc. ACL.

[Maletti, 2010] Maletti, A. (2010). Why synchronous tree substitution grammars?

In Proc. NAACL.

[Maletti, 2011] Maletti, A. (2011). How to train your multi bottom-up tree trans-

ducer. In Proc. ACL.

[Marcu et al., 2006] Marcu, D., Wang, W., Echihabi, A., and Knight, K. (2006).

SPMT: Statistical machine translation with syntactified target language phrases.

In Proc. EMNLP.

184

Bibliography

[Marton et al., 2012] Marton, Y., Chiang, D., and Resnik, P. (2012). Soft syntactic

constraints for Arabic—English hierarchical phrase-based translation. Machine

Translation.

[Marton and Resnik, 2008] Marton, Y. and Resnik, P. (2008). Soft syntactic con-

straints for hierarchical phrased-based translation. In Proc. ACL.

[May et al., 2010] May, J., Knight, K., and Vogler, H. (2010). Efficient inference

through cascades of weighted tree transducers. In Proc. ACL.

[Melamed, 2004] Melamed, I. D. (2004). Statistical machine translation by pars-

ing. In Proc. ACL.

[Mi and Huang, 2008] Mi, H. and Huang, L. (2008). Forest-based translation rule

extraction. In Proc. EMNLP.

[Mi et al., 2008] Mi, H., Huang, L., and Liu, Q. (2008). Forest-based translation.

In Proc. ACL.

[Mylonakis and Sima’an, 2010] Mylonakis, M. and Sima’an, K. (2010). Learning

probabilistic synchronous CFGs for phrase-based translation. In Proc. CoNLL.

[Mylonakis and Sima’an, 2011] Mylonakis, M. and Sima’an, K. (2011). Learning

hierarchical translation structure with linguistic annotations. In Proc. ACL.

[Nesson et al., 2006] Nesson, R., Shieber, S., and Rush, A. (2006). Induction of

probabilistic synchronous tree-insertion grammars for machine translation. In

Proc. AMTA.

[NIST, 2010] NIST (2010). NIST 2002 [2003, 2005, 2008] open machine transla-

tion evaluation. Linguistic Data Consortium.

[Och, 2003] Och, F. J. (2003). Minimum error rate training in statistical machine

translation. In Proc. ACL.

185

Bibliography

[Och and Ney, 2002] Och, F. J. and Ney, H. (2002). Discriminative training and

maximum entropy models for statistical machine translation. In Proc. ACL.

[Och and Ney, 2003] Och, F. J. and Ney, H. (2003). A systematic comparison of

various statistical alignment models. Comput. Linguist.

[Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., and jing Zhu, W. (2002).

BLEU: a method for automatic evaluation of machine translation. In Proc. ACL.

[Petrov et al., 2006] Petrov, S., Barrett, L., Thibaux, R., and Klein, D. (2006).

Learning accurate, compact, and interpretable tree annotation. In Proc. ACL.

[Quirk et al., 2005] Quirk, C., Menezes, A., and Cherry, C. (2005). Dependency

treelet translation: Syntactically informed phrasal SMT. In Proc. ACL.

[Riezler and Maxwell III, 2006] Riezler, S. and Maxwell III, J. T. (2006). Gram-

matical machine translation. In Proc. NAACL-HLT.

[Satta and Peserico, 2005] Satta, G. and Peserico, E. (2005). Some computational

complexity results for synchronous context-free grammars. In Proc. EMNLP.

[Schmid, 2004] Schmid, H. (2004). Efficient parsing of highly ambiguous context-

free grammars with bit vectors. In Proc. COLING.

[Seemann et al., 2015a] Seemann, N., Braune, F., and Maletti, A. (2015a). String-

to-tree multi bottom-up tree transducers. In Proc. ACL.

[Seemann et al., 2015b] Seemann, N., Braune, F., and Maletti, A. (2015b). A sys-

tematic evaluation of MBOT in statistical machine translation. In Proc. 15th MT

Summit.

[Setiawan et al., 2009] Setiawan, H., Kan, M.-Y., Li, H., and Resnik, P. (2009).

Topological ordering of function words in hierarchical phrase-based translation.

In Proc. ACL.

186

Bibliography

[Simianer et al., 2012] Simianer, P., Riezler, S., and Dyer, C. (2012). Joint feature

selection in distributed stochastic learning for large-scale discriminative training

in SMT. In Proc. ACL.

[Steedman, 1996] Steedman, M. (1996). Surface structure and interpretation. MIT

Press.

[Stolcke, 2002] Stolcke, A. (2002). SRILM — an extensible language modeling

toolkit. In Proc. INTERSPEECH.

[Sun et al., 2009] Sun, J., Zhang, M., and Tan, C. L. (2009). A non-contiguous tree

sequence alignment-based model for statistical machine translation. In Proc.

ACL.

[Tamchyna et al., 2014] Tamchyna, A., Braune, F., Fraser, A., Carpuat, M.,

Daume III, H., and Quirk, C. (2014). Integrating a discriminative classifier into

phrase-based and hierarchical decoding. In The Prague Bulletin of Mathematical

Linguistics.

[Tiedemann, 2009] Tiedemann, J. (2009). News from OPUS : A collection of mul-

tilingual parallel corpora with tools and interfaces. In Recent Advances in Natural

Language Processing V, volume V. John Benjamins.

[Vilar et al., 2012] Vilar, D., Stein, D., Huck, M., and Ney, H. (2012). Jane: An ad-

vanced freely available hierarchical machine translation toolkit. Machine Trans-

lation.

[Vilar et al., 2008] Vilar, D., Stein, D., and Ney, H. (2008). Analysing soft syntax

features and heuristics for hierarchical phrase based machine translation. In

Proc. IWSLT.

[Wang et al., 2007] Wang, W., Knight, K., and Marcu, D. (2007). Binarizing syntax

trees to improve syntax-based machine translation accuracy. In Proc. EMNLP.

187

Bibliography

[Wang et al., 2010] Wang, W., Knight, K., May, J., and Marcu, D. (2010). Re-

structuring, re-labeling, and re-aligning for syntax-based machine translation.

In Comput. Linguist.

[Web-as-Corpus Consortium, 2008] Web-as-Corpus Consortium (2008). SDeWaC

— a 0.88 billion word corpus for German. Website: http://wacky.sslmit.

unibo.it/doku.php.

[Weinberger et al., 2009] Weinberger, K., Dasgupta, A., Langford, J., Smola, A.,

and Attenberg, J. (2009). Feature hashing for large scale multitask learning.

In Proc. ICML.

[Williams and Koehn, 2012] Williams, P. and Koehn, P. (2012). GHKM rule extrac-

tion and scope-3 parsing in Moses. In Proc. WMT.

[Wu, 1997] Wu, D. (1997). Stochastic inversion transduction grammars and bilin-

gual parsing of parallel corpora. Comput. Linguist.

[Xiao et al., 2009] Xiao, T., Li, M., Zhang, D., Zhu, J., and Zhou, M. (2009). Better

synchronous binarization for machine translation. In Proc. EMNLP.

[Yamada and Knight, 2001] Yamada, K. and Knight, K. (2001). A syntax-based

statistical translation model. In Proc. ACL.

[Yamada and Knight, 2002] Yamada, K. and Knight, K. (2002). A decoder for

syntax-based statistical MT. In Proc. ACL.

[Zhai et al., 2013] Zhai, F., Zhang, J., Zhou, Y., and Zong, C. (2013). Handling

ambiguities of bilingual predicate-argument structures for statistical machine

translation. In Proc. ACL.

[Zhang et al., 2006] Zhang, H., Huang, L., Gildea, D., and Knight, K. (2006). Syn-

chronous binarization for machine translation. In Proc. NAACL-HLT.

188

Bibliography

[Zhang et al., 2008] Zhang, M., Jiang, H., Aw, A., Li, H., Tan, C. L., and Li, S.

(2008). A tree sequence alignment-based tree-to-tree translation model. In

Proc. ACL.

[Zhang et al., 2007] Zhang, M., Jiang, H., Aw, A. T., Sun, J., Li, S., and Tan, C. L.

(2007). A tree-to-tree alignment-based model for statistical machine translation.

In Proc. MT Summit.

[Zollmann and Venugopal, 2006] Zollmann, A. and Venugopal, A. (2006). Syntax

augmented machine translation via chart parsing. In Proc. WMT.

189

