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ABSTRACT
Background. Today, redundancy in source code, so-called ‘‘clones’’ caused by copy
&paste can be found reliably using clone detection tools. Redundancy can arise also
independently, however, not caused by copy&paste. At present, it is not clear how only
functionally similar clones (FSC) differ from clones created by copy&paste. Our aim is
to understand and categorise the syntactical differences in FSCs that distinguish them
from copy&paste clones in a way that helps clone detection research.
Methods. We conducted an experiment using known functionally similar programs
in Java and C from coding contests. We analysed syntactic similarity with traditional
detection tools and explored whether concolic clone detection can go beyond syntax.
We ran all tools on 2,800 programs and manually categorised the differences in a
random sample of 70 program pairs.
Results. We found no FSCs where complete files were syntactically similar. We could
detect a syntactic similarity in a part of the files in <16% of the program pairs. Concolic
detection found 1 of the FSCs. The differences between program pairs were in the
categories algorithm, data structure, OO design, I/O and libraries. We selected 58 pairs
for an openly accessible benchmark representing these categories.
Discussion. The majority of differences between functionally similar clones are beyond
the capabilities of current clone detection approaches. Yet, our benchmark can help to
drive further clone detection research.

Subjects Programming Languages, Software Engineering
Keywords Code clone, Functionally similar clone, Empirical study, Benchmark

INTRODUCTION
As software is now a key ingredient of current complex systems, the size of software
systems is continuously increasing. While software with a code size of several thousand
lines has been considered large in the seventies and eighties, we now reach code sizes of
tens to hundreds of millions of lines of code. This has a strong effect on the complexity
and manageability of these systems and, as a result, on the cost of maintaining them.

By abstraction and code generation, modern programming languages and development
techniques help to reduce the amount of code we have to understand. Nevertheless,
it still tends to be overwhelming. A factor that aggravates the situation is that there is
unnecessary code in these huge code bases: unreachable code, never executed code and
redundant code. The latter has been of increasing interest in the software engineering
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research community under the term ‘‘cloning.’’ In particular, clones that resulted from
copy&paste can now be detected reliably (Rattan, Bhatia & Singh, 2013). In our own
research with companies, we often found rates of redundant code caused by copy&paste
in the range of 20%–30% (Wagner, 2013).

More challenging is the detection of functionally similar source code. We will refer to it
as functionally similar clones (FSCs). FSCs might not have been created by copy&paste but
developers independently needed and implemented certain functionalities in their code
base. We deliberately go beyond type-4 clones (Koschke, 2007) or simions (Deissenboeck
et al., 2012) which only include functional equivalence. In a refactoring session with
the goal to reduce the size of a code base, a developer would still be interested in mostly
similar and not only exactly equivalent functionality. Although this problem is in general
undecidable, there have been several heuristic efforts (Marcus & Maletic, 2001; Jiang & Su,
2009; Deissenboeck et al., 2012; Kim et al., 2011).

Juergens, Deissenboeck & Hummel (2010b) showed that traditional clone detection
approaches and tools are hardly able to detect functionally equivalent clones because they
rely on syntactic similarities.

Problem statement
So far, the work by Juergens, Deissenboeck & Hummel (2010b) is the only study investigat-
ing the syntactical differences in functionally similar clones. Furthermore, their study is
limited: they use only programs implementing a single specification in Java. Therefore,
we have no clear understanding of what differences make an individually developed
functionally similar clone really different from copy&paste clones. Hence, a realistic, open
benchmark for comparing and improving such approaches is also lacking although it is
necessary for faster progress in the field (Lakhotia et al., 2003).

Research objectives
The objective of this study is to better understand the differences that make up function-
ally similar clones to support future research on their detection. In particular, we want to
classify and rate differences and build a representative benchmark.

Contribution
We contribute a large-scale quantitative study combined with a qualitative analysis
of the differences. We selected 2,800 Java and C programs which are solutions to the
Google Code Jam programming contest and are therefore functionally similar. We
identified copy&paste clones by using two clone detection tools (ConQAT and Deckard)
to quantify syntactic similarities. We explored how a type-4 detection tool (CCCD) using
cocolic detection performs in detecting the not syntactically similar FSCs. We created a
categorisation of differences between undetected clones and quantified these categories.
Finally, we derived a benchmark based on real FSCs covering the categories and degrees of
differences which can drive the improvement of clone detection tools.

Terminology
The most important terminological issue for this study is whether we need a new term
for the phenomenon we investigate. The most established term is type-4 clone. Yet, the
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definition in Roy, Cordy & Koschke (2009) emphasises that the code fragments have to
perform the same computation. We want to emphasise the similarity, however. This is
expressed by the term simion, introduced in Juergens, Deissenboeck & Hummel (2010b),
but that term has not been used in other context. Therefore, we propose the more general
term functionally similar clone. Nevertheless, we believe the community should agree on
one of these terms to avoid confusion in the future.

We define functionally similar clones as two code fragments that provide a similar
functionality w.r.t a given definition of similarity but can be implemented quite differently.
With this definition, we are based on the general definition of a code clone: ‘‘two code
fragments form a clone pair if they are similar enough according to a given definition of
similarity’’ (Bellon et al., 2007). Intuitively, what we are interested in is similar enough
so that the clones are interesting for a developer of the system while changing it. For our
FSCs, we expect this to include similarity in terms of the same output on the same input
inmost cases. The data types of the input and output should be somehow transformable
into each other. The nonfunctional properties of the code fragments, however, can be very
different.

For example, as a developer, I would be interested in the different implementations
of search algorithms in my system also when they have quite different performance
characteristics. I could then decide if the used algorithms and implementations are
suitable for the context. Finally, as with other code clones, the similarity should be such
that the clones could potentially be refactored. If the fragments are so different that a
refactoring is very elaborate or results in a very complex design, a developer will not be
interested in it.

As there is a large diversity in how the further terms around FSCs are used, we provide
definitions for the clone types we investigate in this paper. Moreover, we define terms for
granularities of the software programs under analysis in Table 1.

The structure of the remainder of the paper follows the guidelines in Jedlitschka &
Pfahl (2005).

RELATED WORK
A code clone consists of at least two pieces of code that are similar according to a definition
of similarity. Most commonly, clone detection approaches look for exact clones (also
called type-1) and clones with simple changes such as renaming (also called type-2). These
types of clones are detectable today in an efficient and effective way. Even clones with
additional changes (inconsistent, near-miss or type-3 clones) can be detected by several
detection approaches and tools (Kamiya, Kusumoto & Inoue, 2002; Deissenboeck et al.,
2008; Jiang et al., 2007a). There are also two surveys (Koschke, 2007; Roy & Cordy, 2007)
and a systematic literature review (Rattan, Bhatia & Singh, 2013) on this topic. Tiarks,
Koschke & Falke (2011) investigated in particular type-3 clones and also their differences.
They concentrated, however, on differences in code metrics (e.g., fragment size), low level
edits (e.g., variable) and abstracted them only slightly (e.g., to type substitution).

Juergens, Deissenboeck & Hummel (2010b) reported on an experiment to investigate the
differences between syntactical/representational and semantic/behavioural similarities of
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Table 1 Terminology.

Type-1 clone Similar code fragments except for variation in whitespace,
layout and comments (Bellon et al., 2007)

Type-2 clone Similar code fragments except for variation in identifiers,
literals, types, whitespaces layouts and comments (Bellon et
al., 2007)

Type-3 clone Similar code fragments except that some statements may
be added or deleted in addition to variation in identifiers,
literals, types, whitespaces, layouts or comments (Bellon et
al., 2007)

Type-4 clone Two or more code fragments that perform the same
computation but are implemented by different syntactic
variants. (Roy, Cordy & Koschke, 2009)

Functionally similar clone (FSC) Code fragments that provide a similar functionality w.r.t a
given definition of similarity but can be implemented quite
differently

Solution file A single program in one file implementing the solution to a
programming problem

Solution set A set of solution files all solving the same programming
problem

Clone pair Two solution files from the same solution set which we
assume to be functionally similar

code and the detectability of these similarities. They used a simple student assignment called
email address validator and also inspect the open-source software JabRef. Both of them are
in Java. To detect the clones of types 1–3, they used the clone detection tools ConQAT
and Deckard. They reviewed the open-source system manually to identify if behaviourally
similar code that does not result from copy&paste can be detected and occurs in real-world
software. The results indicate that behaviourally similar code of independent origin is highly
unlikely to be syntactically similar. They also reported that the existing clone detection
approaches cannot identify more than 1% of such redundancy. We build our work on their
study but concentrate on understanding the differences in more detail based on a diverse
sample with a larger sample size and different programming languages.

Several researchers have proposed to move away from the concrete syntax to detect what
they call semantic clones. Marcus & Maletic (2001) used information retrieval techniques
on source code to detect semantic similarities. Krinke (2001) proposed to use program
dependence graphs (PDG) for abstracting source code. Higo et al. (2011) extended this to
an incremental approach.Komondoor & Horwitz (2001) also used PDGs for clone detection
and see the possibility to find non-contiguous clones as a main benefit. Gabel, Jiang & Su
(2008) combined the analysis of dependence graphs with abstract syntax trees in the tool
Deckard to better scale the approach.

A very different approach to detecting semantic clones comes from Kim et al. (2011)
who use static analysis to extract the memory states for each procedure exit point. They
could show that they find more semantically similar procedures as clones than previous
clone detectors including PDG-based detectors. Finally,Kamiya (2013) proposed to analyse
potential executions by analysing method calls on the Bytecode level in Java programs.

Wagner et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.49 4/26

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.49


Nevertheless, the used approach as well as the examples of found semantic clones suggest
that the syntactic representation still plays a role and that the clones have been created by
copy&paste. These semantic clone detection techniques cannot guarantee that they also
find all functionally similar clones as a completely different structure and memory states
can generate similar functionality.

Jiang & Su (2009) were the first to comprehensively detect functionally similar code
by using random tests and comparing the output. Hence, they were also the first who
were able to detect clones without any syntactic similarity. They claim they are able to
detect ‘‘functionally equivalent code fragments, where functional equivalence is a particular
case of semantic equivalence that concerns the input/output behavior of a piece of code.’’
They detected a high number of functionally equivalent clones in a sorting benchmark
and the Linux kernel. Several of the detected clones are dubious, however, as it is not
clear how useful they are. They state: ‘‘Assuming the input and output variables identified
by EQMINER for these code fragments are appropriate, such code fragments are indeed
functionally equivalent according to our definition. However, whether it is really useful to
consider them functionally equivalent is still a question worth of future investigation.’’

Deissenboeck et al. (2012) followed an analogous approach to Jiang & Su (2009) to detect
functionally similar code fragments in Java systems based on the fundamental heuristic
that two functionally similar code fragments will produce the same output for the same
randomly generated input. They implemented a prototype based on their toolkit ConQAT.
The evaluation of the approach involved 5 open-source systems and an artificial system
with independent implementations of the same specification in Java. They experienced low
detection results due to the limited capability of the random testing approach. Furthermore,
they mention that the similarities are missed due to chunking, i.e., if the code fragments
perform a similar computation but use different data structures at their interfaces. They
emphasise that further research is required to understand these issues.

CCCD (Krutz & Shihab, 2013) also claims to detect functionally similar code for C
programs based on concolic analysis. Its creators evaluated their implementation of the
approach on the benchmarks mentioned below and found a 92% recall even in the type-4
clones in those benchmarks. As the tool is freely available in a virtual machine, we were
able to include it in our experiment.

A clear comparison and measurement of the improvement in clone detection research
would require a comprehensive benchmark. There have been few approaches (Lakhotia et
al., 2003; Roy, Cordy & Koschke, 2009; Tempero, 2013) trying to establish a benchmark but
they are either small and artificial or do not contain (known) FSCs. The only exception is
the recent BigCloneBench (Svajlenko et al., 2014) which has a huge number of clones mined
from source code repositories. Yet, they do not classify the types of differences and also
state ‘‘there is no consensus on the minimum similarity of a Type-3 clone, so it is difficult
to separate the Type-3 and Type-4 clones’’.

EXPERIMENTAL DESIGN
To reach our research objectives, we developed a study design based on the idea that we
investigate sets of programs which we knew to be functionally similar: accepted submissions
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to programming contests. We formulated four research questions which we all answer by
analysing these programs and corresponding detection results. All instrumentation, analysis
scripts and results are freely available inWagner et al. (2014).

Research questions
As we have independently developed but functionally similar programs, we first wanted
to establish how much syntactic similarity is in these programs. We can investigate this by
quantifying the share of type-1–3 clones
RQ 1: What share of independently developed similar programs are type-1–3 clones?

Then we wanted to understand what is different in clones not of type-1–3. This should
result in a categorisation and rating of the differences between FSCs.
RQ 2: What are the differences between FSC that go beyond type-1–3 clones?

Although we could not fully evaluate type-4 detectors, we wanted at least to explore
what a modern clone detection approach can achieve on our FSCs. This should give us an
indication how much more research is needed on those detection approaches.
RQ 3: What share of FSC can be detected by a type-4 clone detector?

Finally, to make our results an operational help for clone detection research, we wanted
to create a representative benchmark from the non-detected clones.
RQ 4: What should a benchmark contain that represents the differences between FSC?

Hypotheses
We define two hypotheses regarding RQ 1. As we investigate the share of detectable
Type-1–3 clones, we wanted to understand if there are differences between the used tools
and analysed languages because this might have an influence on the generalisability of our
results. We formulated the two null hypotheses:
H1: There is no difference in the share of detected Type-1–3 clones between the
analysed programming languages.
H2: There is no difference in the share of detected Type-1–3 clones between the
analysed clone detection tools.

Moreover, in RQ 2, we wanted to understand the characteristics of non-detected clone
pairs and, therefore, categorised them. In this categorisation, we also rated the degree of
difference in each category. An ideal categorisation would have fully orthogonal categories
and, hence, categories would not be correlated in the degree of difference:
H3: There is no correlation between the degrees of difference between categories.

Furthermore, we could imagine that different programming languages might cause
disparately strong differences in certain categories. As this again has an impact on the
generalisability of our results, we formulated this null hypotheses:
H4: There is no difference in the degree of difference between the analysed
programming languages.

Design
The overall study design is a combination of quantitative and qualitative analysis. For the
quantitative part of our study, we used a factorial design with two factors (programming
language and clone detection tool). As applying the treatments of both factors was mostly
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Table 2 The factorial design used in this experiment.

Programming
language

Java C

Clone CCCD – �

Detection ConQAT � �

Tool Deckard � �

automated we could apply almost all factor levels to all study object programs (which we
call solutions). Only if a detection tool did not support a certain programming language,
we would not apply it. We tried to minimise that but to include a contemporary tool, we
accepted an unbalanced design. Table 2 shows the factors in our experiment.

We will describe the programming languages, clone detection tools and corresponding
programs under analysis in more detail in the next subsection.

Objects
The general idea of this experiment was that we analyse accepted solutions to programming
contests because we know that for a given problem, the solutions must be functionally
similar. Therefore, our selection of study objects needed to include clone detection tools
we could access and execute as well as solutions in programming languages supported by
most of the detection tools.

Clone detection tools
Primarily, we needed clone detection tools for detecting type-1–3 clones to investigate with
RQ 1 the syntactic similarity of FSCs. We did a literature and web search for available tools.

Many research prototypes were not available or could not be brought to execute
correctly. Several tools were not included in the study due their lower performance and
scalability or their lack of support for some clone types. CloneDR and CPMiner have
lower performance and scalability compared to Deckard (Jiang et al. 2007a). CCFinder has
also lower performance than Deckard and does not support type-3 clones (Svajlenko &
Roy, 2014).

In the end, we chose two clone detection tools that both can analyse Java and C
programs: ConQAT (Deissenboeck et al., 2008) and Deckard (Jiang et al., 2007a). ConQAT
is described in Rattan, Bhatia & Singh (2013) as modern, useful and fast open-source clone
detector framework. In the studies we mentioned above, Deckard has shown to have
good performance and scalability. Hence, both are well established and have been used in
previous studies, especially Juergens, Deissenboeck & Hummel (2010b). At the time of the
study, those were the two tools which were both freely available and were possible to make
them work for us.

ConQAT is a stable open-source dashboard toolkit also used in industry. It is a general-
purpose tool for various kinds of code measurement and analysis. For our experiment,
ConQAT offers several specific clone detection configurations for various programming
languages including Java, C/C++, C# and Cobol. It has separate detection algorithms
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for type-1/2 clones and type-3 clones. We employed the latter algorithm. ConQAT has
been used in various studies on clone detection (Juergens et al., 2009; Juergens et al., 2010a)
including the study we build on Juergens, Deissenboeck & Hummel (2010b).

The language-independent clone detection tool Deckard works on code in any
programming language that has a context-free grammar. Deckard uses an efficient
algorithm for identifying similar subtrees and applies it to tree representations of source
code. It automatically generates a parse tree builder to build parse trees required by its
algorithm. By a similarity parameter it is possible to control whether only type-1/2 clones
or type-3 clones are detected. Deckard is a stable tool used in other studies (Gabel, Jiang &
Su, 2008; Jiang, Su & Chiu, 2007b) including the study we build on.

To explore the state of type-4 clone detection tools, we also searched for such tools. Most
existing tools, however, could not be used. For example, EqMiner (Jiang & Su, 2009) was
too tightly coupled with the Linux kernel and MeCC (Kim et al., 2011) could not detect
clones across files. Finally, we were able to only include a single type-4 detector.

CCCD (Krutz & Shihab, 2013) is a novel clone detection tool that uses concolic analysis
as its primary approach to detect code clones. Concolic analysis combines symbolic
execution and testing. CCCD detects only clones in programs implemented in C. The
concolic analysis allows CCCD to focus on the functionality of a program rather than the
syntactic properties. Yet, it has the restriction that it only detects function-level clones.

Solution sets and solutions
We looked at several programming contests and the availability of the submitted solutions.
We found that Google Code Jam (https://code.google.com/codejam/) provided us with the
broadest selection of programming languages and the highest numbers of submissions.
Google Code Jam is an annual coding contest organised by Google. Several tens of
thousands of people participate each year. In seven competition rounds, the programmers
have to solve small algorithmic problems within a defined time frame. Although over one
hundred different programming languages are used, the majority of the solutions are in C,
C++, Java and Python. Most solutions of the participants are freely available on the web
(http://www.go-hero.net/jam/14/).

We define a solution as a single code file delivered by one participant during the
contest. We define a solution set as a set of solutions all solving the same problem.
A typical solution set consists of several hundred to several thousand solutions. We
can be sure that all solutions in a solution set should be FSCs because they passed the
judgement of the programming contest. This is also implemented as automated tests
(https://code.google.com/codejam/quickstart.html). Even if there are differences in the
programs, e.g., in the result representation, these are instances of similarity instead of
equivalence.

We selected 14 out of 27 problem statements of the Google Code Jam 2014. For every
problem we randomly chose 100 solutions in Java and 100 solutions in C from sets of
several hundreds to several thousands of solutions. Table 3 shows a summary of the size of
the chosen solution sets. Hence, on average a C solution has a length of 46 LOC and a Java
solution of 94 LOC.
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Table 3 Summary of the solution sets.

#No. sets #Files/set #Procedures LOC

C 14 100 2,908 64,826
Java 14 100 8,303 131,398

Table 4 Information on the solution sets.

Java C

Set #Files LOC #Proc. Set #Files LOC #Proc.

1 100 11,366 823 1 100 3,917 233
2 100 7,825 523 2 100 3,706 167
3 100 10,624 575 3 100 4,750 265
4 100 6,766 473 4 100 3,928 219
5 100 7,986 585 5 100 4,067 187
6 100 10,137 611 6 100 6,840 166
7 100 13,300 869 7 100 4,701 263
8 100 8,568 614 8 100 4,679 176
9 100 8,580 717 9 100 6,831 227
10 100 9,092 459 10 100 4,063 159
11 100 8,536 584 11 100 4,624 266
12 100 11,412 648 12 100 3,574 163
13 100 9,436 465 13 100 3,335 168
14 100 7,770 357 14 100 5,811 249

In Table 4, we detail the size of the selected solution sets. The solution sets differ in size
but the means all lie between 33 and 133 LOC per solution.

Data collection procedure
Preparation of programs under analysis
We implemented an instrumentation which automatically downloaded the solutions
from the website, sampled the solution sets and solutions and normalised the file names.
The instrumentation is freely available as Java programs in Wagner et al. (2014). Every
downloaded solution consisted of a single source code file.

Configuration of clone detection tools
We installed ConQAT, Deckard and CCCD and configured the tools with a common
set of parameters. As far as the parameters between the tools were related to each other,
we tried to set the same values based on the configuration in Juergens, Deissenboeck &
Hummel (2010b). We set the parameters conservatively so that the tools find potentially
more clones as we would normally consider valid clones. This ensured that we do not reject
our null hypotheses because of configurations. We based the minimal clone length on
the parameters for practical use mentioned in Juergens, Deissenboeck & Hummel (2010b)
and experimented with lower values. Finally, we decide to make 6 the threshold, because
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lower values created many findings which we did not consider a valid clone. For the gap
clone ratio, we also tried different values, but decided to use 0.3 as it was close to the
recommended value, generated reasonable clones and clones similar to the ones detected
by CCCD with the Levenshtein score of 35. All the detailed configurations are available
inWagner et al. (2014).

For CCCD, we only included clone pairs which have a Levenshtein similarity score
below 35 as advised in Krutz & Shihab (2013) where the score is calculated for the concolic
output for each function. The detection failed for 4 of the solutions of our sample set. We
had to exclude them from further analysis.

Executing clone detection tools
We manually executed the clone detection tools for every solution set. ConQAT generated
an XML file for every solution set containing a list of found clone classes and clones.
Deckard and CCCD generate similar CSV files. Our instrumentation tool parsed all these
result files and generated reports in a unified format. The reports are tables in which
both rows and columns represent the solutions. The content of the table shows the lowest
detected clone type between two files. Additionally, our tool calculated all shares of syntactic
similarity as described in the next section and wrote the values into several CSV files for
further statistical analysis. We also wrote all the detected clones into several large CSV files.
Altogether, the tools reported more than 9,300 clones within the Java solutions and more
than 22,400 clones within the C solutions.

Analysis procedure
Share of syntactic similarity (RQ 1)
All solutions in a solution set solve the same programming problem and were accepted by
Google Code Jam. Hence, their functionality can only differ slightly and, therefore, they are
functionally similar. To understand how much of this similarity is expressed in syntactic
similarity, we calculate the share of FSCs which are also type-1–2 or type-1–3 clones.

Inspired by Juergens, Deissenboeck & Hummel (2010b), we distinguish partial and full
syntactic similarity. The share of full syntactic similarity is the ratio of clone pairs where all
but a defined number of the statements of the solutions of the pair were detected as a clone
in relation to all clone pairs. We set the threshold of this to a maximum of 16 lines of code
difference within a clone pair, which leads to ratios of 5%–33% of difference based on the
solutions’ lines of code.

Share of full syntactic similarity=
|Found full clone pairs|
|All clone pairs|

. (1)

Because we expected the share of full syntactic similarity to be low, we wanted to check
whether there are at least some parts with syntactic similarity. It would give traditional
clone detection tools a chance to hint at the FSC. Furthermore, it allowed us to inspect
more closely later on what was not detected as a clone. We called the ratio share of partial
syntactic similarity.

Share of partial syntactic similarity=
|Found partial clone pairs|
|All clone pairs|

. (2)
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For a more differentiated analysis, we calculated two different shares each representing
certain types of clones. We first computed the share for type-1–2 clones. This means we
only need to accept exact copies, reformatting and renaming. Then, we determined the
shares for type-1–3 clones which includes type-1–2 and adds the additional capability to
tolerate smaller changes.

In ConQAT andDeckard, we can differentiate between type-1/2 clones and type-3 clones
by configuration or result, respectively. In ConQAT, clones with a gap of 0 are type-1/2
clones. In Deckard, analysis results with a similarity of 1 are type-1/2 clones. The others
are type-3 clones. The instrument tooling described in ‘Data collection procedure’ directly
calculated the various numbers. We computed means per clone type and programming
language.

For a further statistical understanding and to answer the hypotheses H1–H4, we did
statistical hypotheses tests. For answering H1 and H2, we performed an analysis of variance
(ANOVA) on the recall data with the two factors programming language and detection tool.
We tested the hypotheses at the 0.05 level. All analyses implemented in R together with the
data are available inWagner et al. (2014).

The combined descriptive statistics and hypothesis testing results answered RQ 1.

Classifying differences (RQ 2)
For the categorisation of the differences of FSCs that were not syntactically similar, we
took a random sample of these clone pairs. As we had overall 69,300 clone pairs for Java
and C, we needed to restrict the sample for a manual analysis. We found in an initial
classification (see also ‘Validity procedure’) that a sample of 0.5h per language and
fully/partially different clone pairs is sufficient for finding repeating categories and getting
a quantitative impression of the numbers of clone pairs in each category. With larger
samples, the categories just kept repeating. Therefore, we took a sample of 2h of the
syntactically different clone pairs: 70 pairs each of the fully and partially different clone
pairs (35 C and 35 Java).

The set of fully syntactically different clone pairs is the set of all pairs in all solution sets
minus any pair detected by any of the type-1–3 detection. We apply random sampling
to get pairs for further analysis: first, we randomly selected one of the solution sets in a
language. Second, we randomly selected a solution file in the solution set and checked if it
was detected by Deckard or ConQAT. If it was detected, we would discard it and select a
new one. Third, we randomly picked a second solution file, checked again if it was detected
and discard it if it was.

The set of partially syntactically different clone pairs is then the superset of all partially
different clone pairs minus the superset of all fully different clone pairs. From that set, we
randomly selected clone pairs from all partially different pairs of a programming language
and checked if it was fully different. If that was the case, we would discard it and take a
new random pair. We found their analysis to be useful to understand also smaller syntactic
differences.

We then employed qualitative analysis. We manually classified the characteristics in the
clone pairs that differed and, thereby, led to being not detected as type-1–3 clone. This
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classification work was done in pairs of researchers in three day-long workshops in the
same room. It helped us to discuss the categories and keep them consistent. The result is
a set of categories of characteristics that describe the differences. We added quantitative
analysis to it by also counting how many of the sampled clone pairs have characteristics of
the found types.

After the creation of the categories we also assessed the degree of difference (high,
medium, or low) per category. From the discussion of the categories, we discovered
that this gave us a comprehensive yet precise way to assign clone pairs to the categories.
Furthermore, it gave us additional possibilities for a quantified analysis. First, we wanted
to understand better how we categorised and assessed the degrees of difference as well as
answer H3. Therefore, we performed correlation analysis on them. We chose Kendall’s tau
as the correlation coefficient and tested all correlations on the 0.05 level.

For answering H4, we performed a multivariate analysis of variance (MANOVA) which
allows more than one dependent variable to be used. Here, our dependent variables are
the degrees of difference and the independent variable is the programming language. In
this analysis, we have a balanced design because we ignored the category OO design which
was only applicable to Java programs. We use the Pillar-Bartlett statistic for evaluating
statistical significance. We checked H4 also on the 0.05 level.

These categories with frequencies as well as the results of the hypothesis tests answered
RQ 2.

Running a type-4 detector (RQ 3)
As this part of the study is only for exploratory purposes, we focused on the recall of CCCD
in the FSCs. As all solutions contain amain function, we expected it to find eachmain-pair
as clone. We calculate the recall as the number of detected clone pairs by the sum of all
clone pairs. A perfect clone detection tool would detect all solutions from a solution set as
clones.

Creating a benchmark (RQ 4)
After the categorisation to answer RQ 2, we had a clear picture of the various differences.
Therefore, we could select representative examples of each difference for each programming
language and put them into our new benchmark. To check that the clone pairs cannot be
detected by the tools, we run the tools again on the benchmark. If one of the tools still
detected a clone, we would replace the clone pair by another representative example until
no clones are detected.

We created the benchmark by choosing clone pairs consisting of two source code files
out of the same solution set. The two files therefore solve the same problem. We selected
three pairs where the difference between the files belong to that category for each of the
categories we created by answering RQ 2. We chose three pairs for all of the three levels
of difference. The other categories of the pairs are low or non-existent so that the pair
is focused on one category. Additionally, we added one extra clone pair with extreme
differences in all categories.

Preferably, we would provide the source code of the chosen solutions directly all in
one place. Yet, the copyright of these solutions remains with their authors. Therefore, we
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Table 5 Full and partial syntactic similarity (in %).

Partially similar Fully similar

Type 1–2 Type 1–3 Type 1–2 Type 1–3

Lang. Tool Mean SD Mean SD Mean SD Mean SD

ConQAT 6.36 0.05 11.53 0.07 0.00 0.00 0.00 0.00
Deckard 0.33 0.00 0.87 0.01 0.00 0.00 0.00 0.00Java

Mean 3.35 0.03 6.11 0.04 0.00 0.00 0.00 0.00
ConQAT 5.24 0.09 11.48 0.13 1.30 0.00 1.73 0.00
Deckard 0.28 0.00 1.44 0.01 0.01 0.00 0.01 0.00C

Mean 1.82 0.00 4.32 0.06 0.47 0.00 0.58 0.00

Grand
mean

2.45 0.04 5.07 0.04 0.26 0.00 0.35 0.00

provide source files following the same structure as the original files but not violating the
copyright.

A final set of clone pairs that are not detected as full clones by any of the tools constitutes
the benchmark and answered RQ 4.

Validity procedure
To avoid selection bias, we performed random sampling where possible. We randomly
selected the solution sets and solutions that we use as study objects. In addition, before
we manually analysed the category of syntactically different clone pairs, we chose random
samples of clone pairs.

To avoid errors in our results, we manually checked for false positives and clone types
with samples of clones in the solution sets. Furthermore, by working in pairs during all
manual work, we controlled each other and detected problems quickly. Overall, the manual
inspection of 70 clone pairs for RQ 2 also was a means to detect problems in the detection
tools or our instrumentation.

For the manual categorisation, we started by categorising 30 syntactically different clone
pairs to freely create the categories of undetected clone pairs. Afterwards, we discussed
the results among all researchers to come to a unified and agreed categorisation. The
actual categorisation of clone pairs was then performed on a fresh sample. Additionally,
we performed an independent categorisation of a sample of 10 categorised clone pairs and
calculated the inter-rater agreement using Cohen’s kappa.

ANALYSIS AND RESULTS
We structure the analysis and results along our research questions. All quantitative and
qualitative results are also available inWagner et al. (2014).

Share of syntactic similarity (RQ 1)
We summarised the results of the calculated shares for fully and partially syntactically
similar clone pairs in Table 5. We divided the results by programming languages, detection
tools and detected clone types. The results differ quite strongly from tool to tool but only
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Table 6 ANOVA results for variation in recalls (Type II sum of squares, * denotes a significant result).

Sum of squares F value Pr(>F )

Partial type 1–2
Language 0.0005 0.2352 0.6294
Tool 0.0491 12.2603 3 ·10−5 *
Partial type 1–3
Language 0.0010 0.0210 0.8853
Tool 0.1884 20.5846 1 ·10−7 *
Full type 1–2
Language 1 ·10−7 7.8185 0.0072 *
Tool 2 ·10−8 1.1566 0.2871
Full type 1–3
Language 2 ·10−7 7.7757 0.0074 *
Tool 5 ·10−8 1.9439 0.1692

slightly between the programming languages. The average syntactic similarities and the
standard deviations (SD) are all very low. ConQAT detects more full and partial clones in
clone pairs.

Table 6 shows the ANOVA results which we need for answering hypotheses H1 and
H2. As our experiment is unbalanced, we use the Type II sum of squares. This is possible
because we found no significant interactions between the factors in any of the ANOVA
results.

The results give us no single evaluation of the hypotheses H1 and H2. We have to
differentiate between partial and full syntactic similarity. For the partial similarity, we
consistently see a significant difference in the variation in the detection tools but not in the
programming languages. Hence, for partial clone similarity, we corroborate H1 that there
is no difference in recall between the analysed programming languages. Yet, we reject H2 in
favour of the alternative hypothesis that there is a difference in the similarity share between
different tools. For full similarity, we reject H1 in favour of the alternative hypothesis that
there is a difference between the analysed programming languages. Instead, we accept H2
that there is no difference between the analysed detection tools.

How can we interpret these results? The overall interpretation is that the share of syntactic
similarity in FSCs is very small. There seem to be many possibilities to implement a solution
for the same problem with very different syntactic characteristics. When we only look at the
full syntactic similarity, the results are negligible. Both tools detect none in Java and only a
few clone pairs for C. Hence, the difference between the tools is marginal. The difference is
significant between C and Java, however, because we found no full clone pairs in Java. As
we saw in a manual inspection, the full detection is easier in C if the developers implement
the whole solution in one main function.

For partial syntactic similarity, we get higher results but still stay below 12%. Hence,
for almost 90% of the clone pairs, we do not even detect smaller similarities. We have no
significant difference between the languages but the tools. ConQAT has far higher results
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Figure 1 The categories of characteristics of differences between clone pairs.

than Deckard in the type-1–3 clones. The distinct detection algorithms seem to make a
difference here. For the further analysis, we accept an FSC as syntactically similar if one of
the tools detected it.

Categories of differences (RQ 2)
Initially, we created 18 detailed categories. In our qualitative analysis and discussions, we
finally reduced them to five main categories of characteristics describing the differences
between the solutions in a clone pair. The five categories are algorithm, data structure,
object-oriented design, input/output and libraries. We could assign each of the 18 initial
categories there and realised that we can assign them to different degrees of difference.
Therefore, we ended up with a categorisation including an ordinal quantification of the
degree of difference with the levels low, medium and high. The overall categorisation is
shown in Fig. 1. The centre of the dimensions would be a type-1 clone. The further out we
go on each dimension, the larger the difference.

To make the categories and degrees of difference clearer, we give examples of
characteristics in clone pairs in Table 7 that led us to classify them in the specific degrees
of difference. The guiding principle was how much effort (in terms of edit operations) it
would be to get from one solution to the other.

The two main aspects in any program are its algorithms and its data structures. This is
reflected in our two main categories. Our corresponding degrees of difference reflect that
there might be algorithms that are almost identical with e.g., only a switch instead of nested
if statements up to completely different solutions, e.g., iterative vs. recursive. Similiarly, in
data structures, we can have very simple type substitutions which change the behaviour but
are still functionally very similar (e.g., from int to long ) but also completely user-defined
data types with strong differences.

Related to data structures is the category OO design. We made this a separate category
because it only applies to OO languages and it had a particular kind of occurrence in the
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Table 7 Examples for the levels in the degree of difference per category.

Algorithm low Only syntactic variations
medium Similarity in the control structure but different method

structure
high No similarity

Data structure low Different data types, e.g., int—long
medium Related data types with different interface, e.g., array vs. List
high Standard data types vs. own data classes or structs

OO design low Only one/few static methods vs. object creation
medium Only one/few static methods vs. data classes or several

methods
high Only one/few static methods vs. several classes with

methods
Library low Different imported/included but not used libraries

medium Few different libraries or static vs. non-static import
high Many different or strongly different libraries

I/O low Writing to file vs. console with similar library
medium Strongly different library, e.g., Scanner vs. FileReader
high Strongly different library and writing to file vs. console

programs we inspected. Some developers tended to write Java programs as if there were no
object-oriented features, while others created several classes and used their objects.

As our programming environments and languages are more and more defined by
available libraries, this was also reflected in the differences between solutions. If one
developer of a solution knew about a library with existing functionality needed, and the
other developer implemented it herself, this created code that looks strongly different but
can have similar functionality.

Finally, maybe a category that arose because the programming contest did not specify if
the input and output should come from a console or a file was the usage of I/O. Nevertheless,
we think that this might also be transferable to other FSCs and contexts because we might
be interested in functionally similar code even if one program writes the output on a
network socket while the other writes into a file.

Table 8 shows descriptive statistics for the categories in our sample of undetected clone
pairs. The column Share shows the ratio of clone pairs with a degree of difference higher
than 0 in relation to all clone pairs in that language. The median and median absolute
deviation (MAD) give the central tendency and dispersion of the degrees in that category.
For that, we encoded no difference = 0, low = 1, medium = 2 and high = 3.

All categories occur in the majority of clone pairs. The categories algorithm and libraries
even occur in about three quarters of the clone pairs. The occurrence of categories is
consistently smaller in C than in Java. The medians are mostly low but with a rather large
deviation. Only input/output in C has a median of 0. This is consistent with our observation
during the manual inspection that I/O is done similarly in the C programs.

For evaluating H3, we calculated Kendall’s correlation coefficients for all combinations
of categories. The results are shown in Table 9. The statistical tests for these correlations
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Table 8 Descriptive statistics of degrees of difference over categories and programming languages.

Lang. Category Share Median MAD

Algorithm 96% 3 0.0
Libraries 86% 1 1.5
I/O 83% 2 1.5
Data structure 72% 1 1.5

Java

OO design 71% 1 1.5
Algorithm 76% 2 1.5
Libraries 73% 1 1.5
Data structure 66% 1 1.5

C

I/O 38% 0 0.0
Algorithm 86% 2 1.5
Libraries 79% 1 1.5
OO design 71% 1 1.5
Data structure 69% 1 1.5

Total

I/O 60% 1 1.5

Table 9 Correlation matrix with Kendall’s correlation coefficient for the category degrees (all are sig-
nificant).

Algo. Data struct. OO design I/O Libraries

Algorithm 1.00 0.38 0.44 0.15 0.31
Data struct. 0.38 1.00 0.26 0.25 0.21
OO design 0.44 0.26 1.00 0.29 0.39
I/O 0.15 0.25 0.29 1.00 0.27
Libraries 0.31 0.21 0.39 0.27 1.00

Table 10 MANOVA results for variation in degree of differences (Type I sum of squares, * denotes a
significant result).

Pillai-Bartlett Approx. F Pr(>F )

Language 0.1513 6.0196 0.0002 *

showed significant results for all the coefficients. Therefore, we need to reject H3 in favour
of the alternative hypothesis that there are correlations between the degrees of difference
between different categories.

Finally, for evaluating H4, we show the results of the MANOVA in Table 10. We can
reject H4 in favour of the alternative hypothesis that there is a difference between the
degrees of difference between the analysed programming languages. This is consistent with
the impression from the descriptive statistics in Table 8.

In summary, we interpret these results such that there are differences in FSC pairs in their
algorithms, data structures, input/output and used libraries. In Java, there are also differences
in the object-oriented design. On average, these differences are mostly small but the variance
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Table 11 Full and partial clone recall means over solution sets for CCCD (in%).

Mean SD

Partial 16.03 0.07
Full 0.10 0.00

is high. Hence, we believe that with advances in clone detectors for tolerating the smaller
differences, there could be large progress in the detection of FSCs. Yet, there will still be
many medium to large differences. We also saw that the programming languages vary in
the characteristics of undetected difference. Therefore, it might be easier to overcome those
differences in non-object-oriented languages, such as C, than in object-oriented languages
which offer even more possibilities to express solutions for the same problem. Yet, we were
impressed by the variety in implementing solutions in both languages during our manual
inspections.

Our categories are significantly correlated with each other. This can mean that there
might be other, independent categories with less correlation. Nevertheless, we believe the
categories are useful because they describe major code aspects in a way that is intuitively
understandable tomost programmers. It would be difficult to avoid correlations altogether.
For example, a vastly different data structure will always lead to a very different algorithm.

Type-4 detection (RQ 3)
Table 11 shows the recall of fully and partially detected clone pairs in our sample. CCCD
has a considerable recall for partial clones in the clone pairs of about 16%. It does, however,
detect almost none of the clone pairs as full clones. The overlap with ConQAT andDeckard,
and therefore type-1–3 clones, is tiny (0.05% of the recall).

We interpret this result such that also contemporary type-4 detection tools have still
problems detecting real-world FSCs and to handle the differences we identified in RQ 2.

Benchmark (RQ 4)
The number of study objects used in our analysis is quite high. As described above, we
examined 1,400 Java files and 1,400 C files. For many demonstrations and clone detection
tool analyses a much smaller file set is sufficient. We call this smaller set of files benchmark.

The first half of the benchmark we provide consists of 29 clone pairs. For Java, we
include 16 clone pairs. The set of clone pairs we provide for C is structured in exactly the
same way as the Java samples except that we do not have the three clone pairs that differ
only in object-oriented design. Therefore, we do not have 16 samples here but 13 which
make the 29 clone pairs for both languages.

Figure 2 shows a rating of an example clone pair in the benchmark set where the two
files only differ significantly in the kind of input/output, but not in the other categories.
Figure 3 shows how such a high difference in the category input/output could look like
between two solutions in a solution set.

We provide this distribution of clone pairs for both partial clones and full clones. Hence,
the total number of clone pairs within the benchmark is 58. Figure 4 shows an overview
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Figure 2 Example category rating of a clone pair in the benchmark set.

Figure 3 Example of a high difference in the category Input/Output.

Figure 4 Structure of the benchmark set (overview).
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Table 12 Kappa values for difference categories.

Category Kappa

Data structures 0.41
OO design 0.35
Algorithms 0.47
Libraries 0.36
Input/Output 0.47

of the structure of the whole benchmark set. This structure enables developers of a clone
detection tool to test their tool easily as well analyse the nature of the clones found and not
found by a tool.

Our benchmark provides several advantages to the research community. First, developers
of a clone detection tool can easily test their tool with the source files as input. They can see
whether their tool detects the clones or they can analyse why it did not. Second, the
clones in the benchmark are easily understandable examples for the categories we created.
Third, the clones in the benchmark were not built artificially; the solutions were implemented
independently by at least two persons during the Code Jam contest. Despite ourmodifications
to avoid copyright problems, neither changing structure nor algorithm, the code clones
are more realistic than fully artificial copies where one file is modified as part of a study.

THREATS TO VALIDITY
We analyse the validity threats for this study following common guidelines for empirical
studies (Yin, 2003;Wohlin et al., 2012).

Conclusion validity
As most of our measurements and calculations were performed automatically, the threats
to conclusion validity are low. For the corresponding hypothesis tests, we checked all
necessary assumptions. Only the classification and rating of the degree of difference is
done manually and, hence, could be unreliable. We worked in pairs to reduce this threat.
Furthermore, one of the researchers performed an independent classification of a random
sample of 10 clone pairs to compare the results. We calculated Cohen’s kappa for the
categories of differences between clone pairs as presented in Table 12.

We interpret the kappa results according to the classification by Landis & Koch (1977).
Hence, our results are a moderate agreement between the categories: data structures,
algorithms and input/output. For the categories object-oriented design and libraries we
have a fair agreement. We consider this to be reliable enough for our investigations.

Internal validity
There is the threat that the implementation of our instrumentation tooling may contain
faults and, therefore, compute incorrect results for the detected clones and recalls. We
reduced this threat inherently by the manual inspections done to answer RQ 2 and
independently to investigate the type-4 clones.
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A further threat to internal validity is that we took our solution sets from Google Code
Jam. We cannot be sure that all the published solutions of the Code Jam within a solution
set are actually functionally similar. We rely on the fact that the organisers of the Code Jam
must have checked the solutions to rank them. Furthermore, we assume to have noticed
in the manual inspections if there were solutions in a solution set with highly differing
functionality.

Construct validity
To fully understand the effectiveness of a clone detection approach, we need to measure
precision as well as recall. In our study, we could not measure precision directly because
of the large sample size. We checked for false positives during the manual inspections
and noted only few rather short clones. Our minimal clone length is below recommended
thresholds. This is a conservative approach to the problem. By that, we will find more
clones than in an industrial approach. We decided to use this threshold to be sure that we
cover all the interesting clone pairs that would be lost due to variation in the precision of
the tools.

There is a threat because we count each clone pair only once. In partial clones, one clone
pair might contain a type-2 as well as a type-3 partial clone. In those cases, we decided
that the lower type—the easier detection—should be recorded. Hence, the assignment to
the types might be imprecise. We accept this threat as it has no major implication for the
conclusions of the experiment.

External validity
There is also a threat to external validity in our usage of solutions from Google Code Jam.
The submitted programsmight not represent industrial software very well. Participants had
a time limit set for turning in their solutions. Furthermore, the programming problems
contained mostly reading data, performing some calculations on it and writing data.
This might impact the method structure within the solutions. This threat reduces the
generalisability of our results. Yet, we expect that other, more complex software will
introduce new kinds of difference categories (e.g., differences in GUI code) and only
extend but not contradict our results.

For the study, we chose three well-known and stable clone detection tools. Two of
them analyse Java and C programs detecting type-1 to type-3 clones. The third one detects
type 4 clones and supports only programs written in C and only finds clones in complete
functions. Overall, we are confident that these tools represent the available detection
tools well.

CONCLUSIONS AND FUTURE WORK
In this paper, we investigated the characteristics of clones not created by copy&paste. We
base our study on Juergens, Deissenboeck & Hummel (2010b), but this is the first study
with programs implementing different specifications in diverse programming languages
including CCCD as concolic clone detector for type-4 clones. We found that a full syntactic
similarity was detected in less than 1% of clone pairs. Even partial syntactic similarity
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was only visible in less than 12%. The concolic approach of CCCD can detect FSCs without
syntactic similarity as type-4 clones. Yet, a full detection was only possible in 0.1% of
clone pairs.

Our categorisation of the differences of clone pairs that were not syntactically similar
showed that usually several characteristics make up these differences. On average, however,
the differences weremostly small. Hence, we believe there is a huge opportunity to get a large
improvement in the detection capabilities of type-4 detectors evenwith small improvements
in tolerating additional differences. We provide a carefully selected benchmark with
programs representing real FSCs. We hope it will help the research community to make
these improvements.

Relation to existing evidence
We can most directly relate our results to Juergens, Deissenboeck & Hummel (2010b). We
support their findings that using type-1–3 detectors, below 1% is fully and below 10% is
partially detected. We can add that with the type-4 detection of CCCD, the partial clone
recall can reach 16%. They introduce categories which were derived from other sources
but not created them with a systematic qualitative analysis. Yet, there are similarities in the
categories.

Their category syntactic variation covers ‘‘if different concrete syntax constructs are used
to express equivalent abstract syntax.’’ We categorised this as small algorithm difference.
Their category organisational variation ‘‘occurs if the same algorithm is realized using
different partitionings or hierarchies of statements or variables.’’ We categorise these
differences as a medium algorithm difference. Their category delocalisation ‘‘occurs since
the order of statements that are independent of each other can vary arbitrarily between
code fragments’’ is covered as difference in algorithm in our categorisation. Their category
generalisation ‘‘comprises differences in the level of generalization’’ which we would cover
under object-oriented design. They also introduce unnecessary code as category with the
example of a debug statement. We did not come across such code in our sample but could
see it as a potential addition.

Finally, they clump together different data structure and algorithm which we categorised
into separate categories. We would categorise these variations as either data structure or
algorithm differences with probably a high degree of difference. They found that 93% of
their clone pairs had a variation in the category different data structure or algorithm. We
cannot directly support this value but the tendency. We found that 91% of the inspected
clone pairs had a difference at least in either algorithm or data structure and especially for
algorithm the difference was on average large.

Tiarks, Koschke & Falke (2011) created a categorisation for differences in type-3 clones.
Therefore, their focus was on classifying syntactic differences that probably hail from
independent evolution of initially copied code. Yet, the larger the differences, the more
their categories are similar to ours. For example, they abstract edit operations to type
substitution or different algorithms. We believe, however, that our categorisation is more
useful for FSCs and to improve clone detection tools along its lines.
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Impact
Independently developed FSCs have very little syntactic similarity. Therefore, type-1–3
clone detectors will not be able to find them. Newer approaches, such as CCCD, can find
FSCs but their effectiveness still seems limited. Hence more research in approaches more
independent of syntactic representations is necessary. We will need to find ways to transfer
the positive results of Jiang & Su (2009) with the Linux kernel to other languages and
environments while overcoming the challenges in such dynamic detections as discussed,
for example, in Deissenboeck et al. (2012). We hope our benchmark will contribute to this.

Limitations
The major limitation of our study is that we did not use a wide variety of types of programs
that exist in practice. The programs from Google Code Jam all solve structurally similar
problems, for example, without any GUI code. We expect, however, that such further
differences would rather decrease the syntactic similarity even more. The categories might
have to be extended to cover these further differences. Nevertheless, the investigated
programs were all developed by different programmers and are not artificial.

Furthermore, we had to concentrate on three clone detectors and two programming
languages. Other tools and languages might change our results but we are confident that
our selection is representative of a large class of detectors and programming languages.

Future work
We plan to investigate the differences between the tools and the detected clone pairs of
different types in more detail. In particular, we would like to work with researchers who
have built type-4 detectors to test them against our clone database and to inspect the found
and not found clones.
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