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Abstract

Lagrangian and Eulerian deformation tensors are a key tool in the study of deformation. Although many
methods have been proposed to calculate deformation tensor fields of the Earth surface, only few refer to the real
surface of the Earth. Most of these methods formulate the problem on reference surfaces such as projection plane
or sphere and consequently their results suffer from possible effects of incompleteness in the mathematical models
of projections. The surface deformation tensors and their associated invariants are critical for a meaningful study
of deformations and kinematics of the Earth. Moreover, their geodetic estimates are crucial as initial values for
geophysical models as well as quantifying potential seismic activities. Here we present a method of differential
geometry that allows deformation analysis of the real surface of the Earth on its own rights for a more reliable
and accurate estimate of the surface deformation measures. The method takes advantage of the simplicity of the
2-dimensional spaces versus 3-dimensional spaces without losing or neglecting information and effect of the third
dimension in the final results. The dissertation describes analytical modelling, derivation and implementation
of the surface deformation measures based on the proposed method with particular attention to the formulation
and implementation of the tensors of linearized rotation and change of curvature in Earth deformation studies.
Finally the method is applied to a real data set of space geodetic positions and displacement vectors. This

application reveals capabilities and strengths of the developed mathematical models of the suggested method.

Zusammenfassung

Lagrangesche und Eulersche Deformationstensoren sind ein wesentliches Werkzeug fiir die Untersuchung von
Deformationen. Obwohl eine Vielzahl von Methoden zur Berechnung von Deformationstensorfeldern fiir die
Erdoberflache existiert, beziehen sich nur wenige von ihnen auf die wahre Oberfldche der Erde. Die meisten dieser
Methoden formulieren das Problem beziiglich einer Referenzflache, wie eine Projektionsebene oder Kugel, und
folglich leiden ihre Ergebnisse unter moglichen Effekten, die durch die Unvollkommenheiten der mathematischen
Modelle der Projektionen verursacht werden. Die Oberflachendeformationstensoren und die mit ihnen verbun-
denen Invarianten sind wesentlich fiir eine aussagekréftige Untersuchung von Deformationen und Bewegungen
der Erdoberflache. Zusatzlich dazu sind ihre geodétischen Schétzwerte unverzichtbar als Anfangswerte fiir geo-
physikalische Modelle und die Quantifizierung moglicher seismischer Ereignisse. In dieser Arbeit wird eine Meth-
ode aus der Differentialgeometrie gezeigt, die eine Deformationsanalyse der wahren Erdoberflache ermoglicht und
so zu einer verlasslicheren und genaueren Bestimmung von Oberflichendeformationsgroflen fithrt. Die Methode
nutzt die Vorteile aus, die sich aus der Einfachheit zweidimensionaler gegeniiber dreidimensionalen R&éumen
ergeben, ohne die Informationen und Effekte der dritten Dimension in den Endergebnissen zu verlieren oder zu
vernachlassigen. Die Dissertation beschreibt die analytische Modellbildung, die Herleitung und die Implemen-
tierung der Oberflachendeformationsmafle, basierend auf der vorgeschlagenen Methode. Dabei wird vor allem
die Formulierung und Implementierung von Tensoren der linearisierten Rotation und Krimmungsénderung,
wie sie bei Deformationsuntersuchungen der Erde vorkommen, beachtet. Schliellich wird die Methode auf
einen realen Datensatz von rdumlichen geodatischen Positionen und Verschiebungsvektoren angewandt. Diese
Anwendung zeigt die Moglichkeiten und Stdrken der mathematischen Modelle der vorgeschlagenen Methode
auf.
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Chapter 1

Introduction

Geodesy has worked well and proved that measurement and representation of geodynamic phenomena such as
crustal motion, Earth rotation and Earth tides, are stated as one of its main goals. In particular, the study
of geometrical aspects of these geodynamic phenomena falls within the realm of geodesy. Crustal deformation
analysis based on classical geodetic measurements has been subject of a large number of studies in geodesy for
many years. In recent years, space geodetic techniques have provided a new, more accurate, and reliable source
of information for geodetic positioning which is used to detect and quantify deformations of the Earth surface.
Advents of these techniques have changed dramatically the rules of crustal deformation analysis. Moreover, it
is not difficult to foresee, thanks to the rapid progresses of the space geodetic techniques, that position accuracy
and density of point distribution in geodetic networks which play a key role in Earth deformation studies will
increase rapidly in the not too distant future. These practical progresses ask for new methodologies in Earth
surface deformation investigations that can take advantage of this invaluable source of information. Thus, the
theoretical principles and methods of the analysis have to be reconsidered and renewed. Based on this point,
with the aim to achieve a better representation of the kinematics of the Earth surface and to contribute to a

deeper understanding of the geodynamic processes involved, this study has been carried out.

Generally speaking, deformation is the alteration of form and shape of a material. Its scientific treatment
is linked to mechanics as a field of physical science which refers bodies of idealized properties reflecting the
characteristic response of the material to applied loads on the basis of experience and observation. In mechanics,
the bodies of idealized properties are called models. The continuous medium is one of the most successful
models widely used in mechanics. Two, idealized, main properties are assumed for the model. Firstly, the
geometrical space available is continuously filled by the material with the molecular structure neglected but not
forgotten. Secondly, the mathematical relations, describing the mechanical state and change of the state of the
model, are expressed by tensor functions of the position vector and time, and the functions together with their
derivatives of adequate orders are continuous. Continuum mechanics as a branch of the science of mechanics
has been designed to study the state and change of state, namely deformation, velocity distribution and wave
propagation, of deformable materials (gases, liquids and non-rigid solid bodies) by means of the continuum
model [A. C. Eringen (1962, 1967), L. E. Malvern (1969), G. E. Mase (1970), G. Beda et al. (1995)].

The principal subject of geodesy is the study of the size, shape, and gravity field of the Earth as well as the time
variations of all the above. The relevant concepts and mathematical tools of deformation analysis developed
in continuum mechanics have found manifold applications in geodesy even in geodetic problems which are
not directly related to deformation of a material body. In mechanics, the analysis is done by establishing a
one-to-one correspondence between two different states of the deformable body for comparison of its altered

geometrical characteristics. In order to apply the mathematical tools outside the realm of mechanics, it is only
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necessary that geometrical characteristics of physical or even abstract entities under investigation be brought
into a one-to-one correspondence in the same way. A direct application of the developed concepts and tools
of continuum mechanics in geodesy can be seen in the Earth deformation studies which clearly correspond to
the treatment of material deformable bodies in continuum mechanics. The deformations of the Earth due to
body tide, tidal loading and attraction, plate tectonic motion and so on, have been subjected to extensive
investigations from theoretical and practical points of view based on terrestrial and extra-terrestrial geodetic
observations. The study of temporal variations and deformations of the gravity field of the Earth is another
example of applications of deformation analysis in geodesy. In this case, the change of the gravity vector field
in the vicinity of a fixed point in geometry space can be regarded as deformation. Alternatively, the problem
can be formulated by studying the change of geometric positions identified by the same value of the gravity
vector or any other appropriate gravity field parameters with respect to two different states of gravity field.
As the third alternative, the problem can be studied by determining the changes of the both geometric and
gravity characteristics, as well as their interrelations, in the neighborhood of a point on the Earth surface.
Some examples of the application can be seen in the works of E. W. Grafarend (1978), E. Osada (1980), A.
Dermanis et al. (1983b), A. Filaretou (1986), E. Livieratos (1987), B. Heck (1985, 1986). Another interesting
application is the comparison of two forms of a geodetic network resulting from its adjustment by different
subsets of the available observations. In this case, deformation measures are used to analyze the impact of
incompatible observations or detect blunders in the network [K. Thapa (1980), P. Vanicek et al. (1981)]. A.
Fotiou and E. Liveratos (1984) apply deformation analysis techniques in network inconsistency studies when

two sets of coordinates of the same network referred to different datums are compared.

In continuum mechanics, deformation is not regarded by itself but mainly in connection with the underlying
forces, namely stress-strain relations. E. W. Grafarend (1977) applies the concept and derives stress-strain
relations, specially of local, homogenous and isotropic type, in geodetic networks. It should be mentioned that
in case of abstract entities with a non-material nature, the physical meaning of deformation varies depending on
each particular application. A comprehensive discussion of existing or possible future applications of deformation
analysis in geodesy and geodynamics was given by A. Dermanis and E. Liveratos (1983b) with special emphasis
to the study of crustal deformation, deformation of the gravity field and gravity field related deformations of
the Earth.

Continuum mechanics is divided into different subdomains. Some of these subdomains such as kinematics, which
deals with the displacement and deformation and study the time and space dependent tensor fields of continua
or basic principals, describing the general physical theorems and laws applied to continua independently of their
material characteristics, refer to every continua. Besides these subdomains of general theory, there exist special
continuum mechanical theories for formulation and solution of boundary condition and initial value problems
of special continua of idealized geometry under different external impacts on the basis of various methods and

laws, like fluid mechanics, theory of elasticity, theory of plasticity and shell theory.

A shell as an idealized continuum model, is a three-dimensional material body of which one dimension, namely
the thickness, is much smaller than the two other dimensions. Hence, a shell can be regarded as a surface-like
body. The theory of shell is destined to describe the three-dimensional behaviour of a deformable body of this
type by means of surface fields in a two-dimensional manner ,e.g. W. B. Kraetzig (1971), P. M. Naghdi (1972),
W. Pietraszkiewicz (1977), W. Olszak (1980). Any unique mapping from three- to two-dimensional space is
incompatible with our experience. Thus, the goal of dimensional reduction in shell theory can only be achieved in
an approximate sense. The replacement of three-dimensional mathematical models of shell by two-dimensional
ones is carried out by defining a reference surface called middle surface, that is, the surface which is equally
far from both the outer surfaces of shell, and transforming all basic three-dimensional mechanical equations
such that they remain functions of the two surface coordinates of the middle surface. Thus, we restrict the

deformations of the shell to surface deformations and end up with the two-dimensional shell equations. In fact,
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the thinner the shell the better is the approximation of its three-dimensional behaviour by two-dimensional
quantities describing the deformation of its middle surface. Therefore, an exact theory of surface deformation
based on differential geometry of surface builds the main theoretical foundation of shell theory. The concept and
developed mathematical tools of shell theory have found wider applications in civil, mechanical, architectural,
aeronautical and marine engineering in design and study of surface-like, man-made structures. In geodesy,
applications of mathematical methods of surface deformation analysis can be seen in map projection studies.
Interesting works have been done to the present time for the study of deformations induced when original
figures on a sphere or an ellipsoid, as two-dimensional Riemann manifolds, are mapped on a plane, as a two-
dimensional Euclidean space, see for examples the works of B. H. Chovitz (1979), V. Hojovec and L. Jokl (1981),
A. Dermanis and E. Livieratos (1983a), A. Dermanis et al. (1983a). An extensive and detailed review of surface
deformation measures with application to the optimal universal transverse Mercator projection is given by E. W.
Grafarend (1995). A. Dermanis et al. (1983b) utilize the surface deformation analysis for studying mappings
of geoid to ellipsoid. A possible application of techniques of surface deformation analysis into a traditional
geodetic problem, namely the surface mapping of a rotational ellipsoid onto a triaxial counterpart is shown by
M. Amalvict and E. Livieratos (1988).

The mathematical tools and concepts of deformation analysis, developed in continuum mechanics, have since
the late 1920’s been applied by geoscientists to Earth deformation studies based on geodetic measurements. The
repeated observations of geodetic networks, within a convenient interval, have become an important source of
information for the investigation of the contemporary kinematics of the Earth surface in seismic areas and along
the plate tectonic boundaries. The first studies of this type appear in literature in the works of Japanese seis-
mologists T. Terada and N. Miyabe (1929), and C. Tsuboi (1930), who developed computational and graphical
methods of strain determination from station coordinates of a horizontal geodetic network. Since then, great
efforts have been made by the geodetic community to improve the analysis methods from both practical and

theoretical aspects.

Following the classical separation of traditional geodetic techniques, namely triangulation and trilateration
versus levelling, deformation of the Earth surface has been separated into horizontal and vertical components and
has been treated individually. The main reason for this conventional separate treatment is due to the separately
available horizontal and vertical networks in classical geodesy. For the study of horizontal crustal deformations,
the two-dimensional plane deformation measures are considered for the description of the geometric alterations
in the positions of the projections of the surface points onto the reference plane. When analyzing crustal
deformations in a local geodetic network, namely in a local scale, a common horizontal reference plane is
assumed for the perpendicular projection of the network points. In case of the analysis in a regional scale,
a map projection plane is considered as a reference plane and the network points are projected to the plane
by means of mathematical models of the selected map projection system. There is an extensive literature
concerning the two-dimensional plane deformation analysis of the crust using classical geodetic results, e.g.
W. Baarda (1975), T. Harada and M. Shimura (1978), E. Livieratos (1979), D. Schneider (1982), P. Wellman
(1983), W. I Reilly (1989), R. Chen (1991), J. Kakkuri and R. Chen (1992), J. Pagarete et al. (1998).

Space geodesy has changed the rules of the game of positioning radically. Thanks to the space geodetic tech-
niques, such as GPS, VLBI, SLR and DORIS, three-dimensional positions of network points, containing both
horizontal and vertical components, can be determined with high precision, enough to be used as an accurate
and reliable source of information in Earth deformation studies. The great number of studies of this type using
displacement fields derived from repeated observations of space geodetic networks indicates how valuable and
important role the space geodetic techniques play in present and future states of geodynamics. Despite the
ability of space geodesy to provide three-dimensional displacement fields, the crustal deformation studies are
still carried out in horizontal and vertical components separately, e.g. Y. Bock and S. Shimada (1989), R. E.
Reilinger et al. (1997a, 1997b), P. Tregoning et al. (1998), H. -G. Kahle et al. (1998), P. G. Clarke et al.
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(1998), T. Kato et al. (1998), C. DeMets and T. H. Dixon (1999). The main reason of the separation is claimed
to be the non-sufficient accuracy of height component of point position due to unresolved modeling errors such
as the antenna phase center variations, path delays caused by atmospheric variations, and loading effects of
the ocean and atmosphere. Hence contrary to horizontal positions, there are still systematic effects that do not
cancel out in data processing steps and degrade the accuracy of the vertical positions which are determined

from extra-terrestrial observations.

Regarding the fact that in reality, crustal motions and deformations are of three-dimensional nature, purely
horizontal and purely vertical deformations do not exist. In the last two decades, some efforts have been made
to formulate the problem in three-dimensional space. J. Zaiser (1984) computes the displacement field, the
strain field and the rotation field in the context of arbitrary shaped geodetic networks and three-dimensional
finite elements. A curvilinear three-dimensional finite element method is introduced by E. W. Grafarend (1986)
for representation of local strain and local rotation tensors in terms of ellipsoidal, Gauss-Kriiger or UTM
coordinates. A study of the estimability-invariance characteristics of deformation parameters obtained through
the finite element method, by using a dimension free approach with results that can be immediately specialized

to three or two dimensions, has been carried out by A. Dermanis and E. W. Grafarend (1993).

However, existing methods of Earth deformation analysis suffer from some weaknesses and difficulties. Major

problems existing in practical application of these methods are summarized as follows:

e Real crustal motions and deformations are of three-dimensional nature. Modeling the problems connected
with deformations in three dimensions by computing separately the two-dimensional plane deformations

and vertical motions can’t portray the real state of crustal deformations.

e Deformation parameters are used as initial values for geophysical models. For example, an application of
geodetic strain tensor in computation of seismic moment rates and analysis of earthquake potential budget
of the study area are shown by S. N. Ward (1998a, 1998b). The planar deformation parameters, referring
to the reference plane, can’t be used as initial values for geophysical models. They have to be referred to
the real surface of the Farth.

e The two-dimensional plane deformation analysis of the crust is limited to investigation of the alteration of
the metric characteristics of the crust. In other words, the analysis allows us to bring the metric tensors
of the two states of the body into a one-to-one correspondence. The Earth surface deformations can’t be

completely specified by the change of the metric tensor of the surface.

o The three-dimensional methods of Earth deformation analysis lose the simplicity of computations in two-
dimensional spaces. Moreover interpretation of the result of the analysis, namely three-dimensional defor-

mation tensors and particularly invariants associated with them, is not an easy task.

e The geodetic measurements are connected to the surface of the Earth and are of a surface nature. A three-
dimensional deformation study of the whole Earth based on only displacement fields derived from surface
geodetic measurements, neglecting the deformation measurements related to the interior of the FEarth, can’t

reflect the real situation of the Farth deformations.

These facts indicate the need for reevaluation of the theoretical foundations of the Earth deformation analysis
methods. Regarding these disadvantages and difficulties and also the fact that we have only surface geodetic
measurements in our hands, it seems that a surface approach in Earth surface deformation analysis based on
three-dimensional displacement fields is an appropriate solution. In other words, an approach that keeps the
simplicity of computations in two-dimensional spaces, includes both vertical and horizontal components of the
Earth deformations, and refers to the real surface of the Earth will be able to resolve the problems of the existing

methods. Moreover, the space geodetic techniques can now provide accurate and dense geodetic data that can
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model the geometry of the real surface of the Earth at a level of accuracy convenient for developing an approach
of Earth deformation analysis referring to the real surface of the Earth. The first fundamental study of geodetic
surface deformation analysis has been performed by S. Heitz and worked out in detail by his Ph.D. student Y.
Altiner (1996, 1999) who developed a method of analytical surface deformation analysis of the Earth’s crustal

movements.

This dissertation presents an analytical formulation and implementation of a method of Earth surface deforma-
tion analysis referring to the real surface of the Earth. We benefit from the mathematical models and tools of
surface deformation analysis in shell theory to develop appropriate models of the analysis applicable to defor-
mation studies of the Earth surface. The Earth surface is considered as a two-dimensional Riemann manifold,
namely a curved surface, embedded in a three-dimensional Euclidean space. Thus, deformation of the surface
can be completely specified by the change of the first and second fundamental tensors, namely metric tensor and
curvature tensor, of the surface. Special emphasis is given to definition of proper invariants of the introduced

surface deformation tensors with meaningful physical interpretations. The main contributions of this study are,

e Introduction of intrinsic surface deformation analysis as a standard approach in shell theory to

the realm of the Earth deformation studies in geodesy

o New mathematical formulations for the tensor of change of curvature of the Farth surface as a
function of the difference vector of the unit normal vectors in addition to the displacement vector

for both the extrinsic and intrinsic approaches in surface deformation analysis.

The new formulation produces meaningful numerical results for the tensor of change of curvature and its
associated invariants, and allows us to apply it as a powerful surface deformation measure in studies of the
current kinematics of the Earth surface. The role and placement of the intrinsic approach in geometrical

modelling of Earth surface deformations has been shown using a diagram in Figure 1-1.

The surface deformation analysis in shell theory is developed on the fundamental mathematical foundations of
type differential geometry and tensor analysis. The basic definitions and principles of the foundation within
the scope necessary for this study are recapitulated in Chapter 2. Particularly, the main concepts of the theory
of differential manifolds are reviewed. Tensors take a prominent role in the mathematical models of the study.

Thus, the notions of covariant and contrvariant components of the tensor fields are introduced.

Chapter 3 begins with an introduction into the concept of surface deformation within the notion of Riemann
manifolds. The general theories of the methods of the extrinsic and intrinsic surface deformation analysis are
developed and various types of Lagrangian and Eulerian surface deformation measures are defined. The defined
measures are described in terms of the displacement vector and the difference vector of unit normal vectors. The
linearized theory of surface deformation analysis is presented with emphasis to the notion of linearized surface
rotation tensor. The Euler-Lagrange deformation tensor of the second kind (tensor of change of curvature) is
introduced as a measure of surface deformation and formulated in terms of the displacement vector and the
difference vector of the unit normal vectors. The associated invariants of the surface deformation tensors such
as surface dilatation, linearized rotation around the normal and changes of the mean and Gaussian curvatures,

with certain physical meanings are discussed in the last section of the chapter.

The general theory of the extrinsic and intrinsic surface deformation analysis is tailored and applied to study
surface deformations of the real surface of the Earth in Chapter 4. A Gaussian representation of the Earth surface
in terms of the geodetic coordinates with respect to the reference ellipsoid is assumed. Analytical formulation
of the mathematical tools of the extrinsic and intrinsic surface deformation analysis is developed for this special
case. An important step for application of the intrinsic approach in Earth surface deformation analysis is the
conversion of space Cartesian components of the displacement vector, resulting from data processing of geodetic
measurements, onto the surface curvilinear components. We conclude the chapter with the development of
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Figure 1-1: Methods of geometrical modelling of Earth surface deformations in geodesy

exact and approximate methods of the conversion.

Chapter 5 reviews the main causes of the Earth deformation in the first section. The second section deals with
a brief introduction of the space geodetic techniques that can provide us with dense and accurate displacement
fields of the Earth surface. In order to compute the surface deformation tensors and consequently their associated
invariants, it is necessary to know the continuous field of displacement, for evaluation of its partial derivatives,
at every point of the surface or, at least, in the neighborhood of specific points where surface deformation tensors
are to be calculated. Geodetic observations and displacement fields derived from them are usually discrete. In
such a case, the displacement field and its partial derivatives have to be approximated numerically. The finite
element method provide the necessary tools to achieve the goal. A review of the method and the role that it
plays in the context of the intrinsic and extrinsic surface deformation analysis of the Earth surface, are treated
in the third section of the chapter.

The efficiency of the developed method for geometrical modelling of the Earth surface deformations is demon-

strated in Chapter 6 by analysis of a real data set. The position and displacement rates of the data set are dense
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and accurate enough to be utilized in the numerical part of the study. The European and Mediterranean areas,
which are selected for the analysis of the capabilities of the intrinsic approach, are known as an extraordinary
natural laboratory for the study of geodynamics processes. Abundance of the preexisting deformation studies
in the region enable us to compare our numerical results with independent studies. We will investigate the links
between various patterns of the surface deformation measures with geophysical and seismological evidences of

the area to judge the validity of our numerical results.

Chapter 7 concludes the study. In the chapter, the main contributions of the study are summarized. The ad-
vantages and the main features of the application of the intrinsic versus extrinsic approach in Earth deformation

analysis will be critically discussed.



Chapter 2

Theory of Manifolds

As mentioned previously, the concept of deformation will be presented in the next chapter based on the notion
of differentiable manifolds. Thus, the basic definitions and principles of the theory of manifolds, within the scope
necessary for this study, are recapitulated here. In fact, this chapter introduces the mathematical language of
the thesis. A more comprehensive treatment of the theory may be found in standard textbooks, e.g. T. J.
Willmore (1972), N. Prakash (1981), D. Martin (1991), and A. Visconti (1992).

From the point of view of structure mathematics the theory of manifolds is developed on the fundamental
structures of type algebra and topology. Adequate treatments of the materials of the structures required for
the theory of manifolds are provided by T. A. Whitelaw (1983), E. M. Patterson (1959) and W. A. Sutherland
(1975).

2.1 Differentiable Manifolds

Generally speaking, a manifold is a topological space which is locally Euclidean. This means that a short-
sighted observer at any point on it would regard his neighborhood as flat. The differentiable manifold is the one
which the existence of a unique tangent space is guaranteed at each point on it. Even in this elementary defi-

nition of the differentiable manifolds, there are a few fundamental mathematical terms which have to be defined.

Hausdorff Topological Space:

A topological space M is called a Hausdorff (separated) topological space if for any two distinct points = and y
of M, there exist separated neighborhoods Uy(x) and Un(y), open sets of M, that do not intersect each other,
ie. Um(z) NUu(y) = 0.

Homeomorphism and Diffeomorphism:

The notion of homeomorphism plays an essential role in the theory of manifold. It can be defined as a bicon-
tinuous bijection ¢ between two open sets. This means that ¢ and its inverse ¢~! are both continuous bijective
mappings. Two topological spaces are said to be equivalent if they are homeomorphic with respect to each
other. If the mappings ¢ and ¢! are differentiable mapping of class C*, ¢ will be called a C* diffeomorphism.
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Manifold:

A Hausdorff topological space M is called an n-dimensional topological manifold, if to any point x € M there
exists a homeomorphism ¢ mapping an open neighborhood Uw(z) onto an open set ¢(Unr) of n-dimensional real
vector space R™. Thus, M is supposed to be locally equivalent to R™. The dimension of M is defined as the
dimension n of R™ and the space will be denoted by M™.

Chart and Atlas of a Manifold:

A manifold M"™ was defined as a Hausdorff topological space with further provision that every point x of it has
a neighborhood U(z) homeomorphic to an open set in R”, i.e. ¢ : U(x) — R™. The pair (U(z), ¢) is called an
n-dimensional chart on M™ and U(z) is the domain of the chart. It is almost impossible to find a single chart
covering the whole of a given manifold M", in which case it is necessary to introduce a family of charts whose
domains take together M™ entirely. A family ® = (U;, ¢;),c; of charts on M", I being an index set, is called
an atlas of M™ if the domains U; of ¢; cover M"™ completely, i.e. M"™ = U;c;U;. Furthermore, ® is said to be
a C* atlas if for each two of these charts (U;, ¢;) and (Uj, ¢;) on the manifold, with a non-empty intersection
U;NU; €0, the mapping ¢; o ¢; * is a C* diffeomorphism of ¢;(U; N U;) onto ¢;(U; N U;). In such a case,

K2

(U;, ¢:) and (Uj, ¢;) will be compatible charts.

Differentiable Manifolds:

A C* differentiable manifold of dimension n is a topological n-dimensional manifold with a complete ( or
maximal) C* atlas of charts (U;, ¢;), defined over it. The term complete atlas is given to a C* atlas on a
manifold if any chart, which is compatible to each chart (U;, ¢;), is itself contained in the atlas. A well-known
example of differentiable manifolds is the real vector space R™. R™ is a manifold covered by the single chart
(U, ¢), where U = R™ and ¢ is the identity mapping.

2.2 Coordinates of Points on a Manifold

A way to describe the geometry of an n-dimensional manifold M" is assuming the manifold as an embedded
submanifold of a higher dimension manifold, usually M™*!, which is called the hypersurface of M™ C M"*!,
The embedding manifold is usually assumed to be an Euclidean space E"t!. The most convenient way of
describing Euclidean spaces is by means of Cartesian orthonormal coordinate systems. Thus, a point p € M" is

parametrized in the frame {o, i1, 12, ...,in,41} of the embedding space E"*! by its coordinates z*,

op = x = zFiy, k=1,..n+1 (2-1)

x* are called space Cartesian coordinates of point p € M". Thus, each point on the manifold M™ corresponds

to a vector x as a position vector.

In accordance with the summation convention, when an index appears in a product term once as a subscript
and once as a superscript, e.g. Equation (2-1), then unless the contrary is stated, the index is given all its
possible values and the resulting terms added together. Hereafter, the summation convention is applied to all

the statements.

Besides the embedding space E"*! and the embedded manifold M", one more space is involved here: a real

vector space R™ which is the image of M under the homeomorphism ¢, as a chart of the manifold. Any point
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p € M is consequently considered either as a point E"*! and is parametrized by its coordinates (z!,...,z"+1),
or as a point of M™ and its image in R™ through the chart (U, ¢) which is parametrized by its local curvilinear
coordinates (¢!, ...,q™). In order to express the fact that p belong to M", it is supposed that every single space
coordinate z¥ is a function of n curvilinear coordinates (¢!, ...,¢"). Therefore, a parametric representation of

the manifold M"™ is given by,

zF =2*(gt . q") k=1,..,n+1 . (2-2)

The point p, as a point of Euclidean manifold E**!, can be also parametrized by space curvilinear coordinates

1

(¢, ...,q" 1) through the chart representation of En*1.

2.3 Tensor Fields

Tensor fields, as differentiable entities associated with any manifold, play an important role in determining the
geometry of a manifold. The fact that a tensor equation is true in all coordinate systems if it is true in one,
makes tensors so useful not only in the theory of manifold but also in many other disciplines. A comprehensive
treatment of tensor analysis can be read in the standard textbooks such as J. L. Synge and A. Schild (1949), J.
A. Schouten (1951, 1954).

A tensor field on a manifold may be viewed either as a multilinear mapping from Cartesian product of vector
spaces to the real or as a set of special type of functions, namely coordinates of the tensor, which obey certain
given transformation laws. The first approach is an indez-free approach as opposed to the second, which leans
heavily on usage of indices. Selecting the second approach as a more familiar one to physicists, we restrict

ourselves to defining a tensor in index notation instead of invariant notation.

The n-dimensional manifold M™ can be parametrized locally by a set of curvilinear coordinates (¢!, ...,q").
Introducing another set of curvilinear coordinates (g1, ..., ¢™) on the manifold, the point transformation between

the two coordinate systems is given by

/7

q = q/i(q17 “"qn)’ 1= ]-7 PR L (2_3)

The inverse transformation (¢', ...,¢'™) — (¢*, ..., q") exists if the Jacobian |%‘Z];-i | does not vanish. Various kinds

of tensor fields can be introduced according to the defined coordinate transformation.

A Scalar Field ( Tensor of Type(0,0) ):

It corresponds to a real function f of n variables ¢® such that if (¢*, ..., ¢") is changed into (¢'%, ..., ¢'™)

(@' q") = (@ d™) = F(d7 o d™) = Fd 0" (2-4)

Hence, the value of the scalar field f at a point on the manifold does not depend on the choice of the curvilinear

coordinate system.

A Contravariant Vector Field (Tensor of Type(1,0) ):

At each point p € M", there is a tangent space T,M" of dimension n. By assigning an element v of T,M" to

each point p € M"™, we obtain a contravariant vector field over M™.

10
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— aflg. i — -
v: i y s
=v'a 1=1 n (2-5)

where a; are base vectors of T,M". Thus, a contravariant vector field may be given by its n coordinates v’

which are functions of curvilinear coordinates (¢!, ...,¢") and obey the following transformation law.

B aq/i
= aqj

1 /1

(@' @) = (¢ e 0™) = V(™) = St (g ") (2-6)

A Covariant Vector Field (Tensor of Type (0,1) ):

At each point p € M", besides the tangent space T,M", its dual space T;M" also of dimension n can be

considered. A covariant vector field over M" assigns an element v of T;M" to each point p € M".

— . qt | — -
. 14 PR
vV i=uy;a 1=1,..,n (2-7)

where, a’ are base vectors of the dual space T,M™. Similar to the contravariant vector field, the coordinates of

covariant vector v satisfy the transformation law which is given as

/1

o7
(6% @) = (6 er0™) = VU@ 0™ = 05" (2-8)

aq/i J

A Tensor Field of Type (r,s):

By taking tensor products of the tangent space T,M™ and its dual space T,M", we can define a tensor field
of any desired covariant and contravariant type. Hence, an r times contravariant and s times covariant tensor

field T can be defined as

T :=t1""a, ®.0a 0a'®..0a" (2-9)

The transformation laws between the coordinates of the tensor with respect to two related base vectors of T,M"

can be given as

- 8(]”1 aq/ir 3ql1 aqls Kk
= qul m@qkr aq'jl ...8qus lh. 1

(q',....q") — (¢, ....,d™) = t;illh'.'.';:(q’l, e @) (q*,....,q") . (2-10)

Techniques that constitute tensor algebra, namely sums, products, contractions, etc. or properties of tensors

such as symmetry, skew-symmetry, ..., can be well defined in terms of components of tensors via an index

notation.

2.4 Riemann Manifolds

Before proceeding with the definition of Riemann manifolds, we have to introduce two more elementary con-

cepts, namely tangent space and metric tensor field.

Tangent Vector Space to a Manifold:

The tangent vector space is defined here in an extrinsic manner. The n-dimensional differentiable manifold M™

is assumed to be embedded in E"*!. Point p € M™ with position vector x, Equation (2-1), is considered on the

11
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manifold. The infinitesimal vector

- dg’ (2-11)

is an element of an affine n-dimensional vector space, called tangent space to M"™ at p and denoted by T,M".

The associated vector space T,M" has a basis consisting of the covariant vectors g—;,i =1,...,n

Metric Tensor:

Assuming every point p on the differentiable n-dimensional manifold M" possesses a mapping A: T,M" x
T,M" — R which satisfies

i) A(v,w)=A(w,v)

i) A(a1vy + agva, w) = a1 A(vi, W) + as A(va, W)
i) A(v, 1wy + aawsy) = a1 A(v, wy) + as A(v, wa)
w) A(v,v) >0

v) Alv,v)=0 = v=0

for all v,w € T,M". The mapping A as a symmetric, bilinear, positive definite tensor field of type(0,2) over
M™ is called the metric tensor or first fundamental tensor of the surface. The metric tensor A gives rise to an
inner product on each tangent space T,M" of M". Thus, the inner product < v,w > is simply defined to be
A(v,w). The differentiable manifold equipped with such an inner product, is named Riemann manifold. The

metric tensor field A(q, ...,q™) can be represented by a n by n symmetric matrix of its covariant coordinates,

A = [Cbij ]an 5 (2—12)
with elements a;;(¢', ..., ¢™) that are real and given by

ox 0Ox

== —_—, 2—1
<o 0¢8> (2-13)

Qi

Covariant Derivatives:

The problem of defining the derivative of a tensor field on an n-dimensional manifold can be solved by introducing
an operator of differentiation such as exterior differentiation or Lie derivatives [K. Yano (1957)]. These operators
have some limitations : the exterior differentiation is only applicable to differential forms and Lie derivatives
depend on field vectors in the neighborhood of the point of differentiation [D. Martin (1991)]. The covariant

derivative is given as an operator of differentiation on the manifold which is free of such limitations.

Assuming the contravariant vector field v(g?, ..., ¢") over the manifold M"™ with the contravariant coordinates

v%, one can obtain partial derivative of the vector field as

(2-14)
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where the F}'d are three-index functions of curvilinear coordinates (q!, ..., ¢") called affine connection coefficients.
They describe an affine connection field whose components are the affine connection coefficients. The equation
2-14 may be abbreviated by

ov ;
v|x are coordinates of a tensor of contravariant order 1 and covariant order 1. They define the covariant partial

derivative of a contravariant vector field as

. O’ o
1)7’|k = 8—qk —+ F;ij] . (2—16)
Similarly, the covariant partial derivative of a covariant vector field v(q',...,¢q™) will be a covariant tensor of

order 2. The coordinates of the tensor, namely Vj;, are obtained by using v = v;a’ as follows

ov i
dq* =v;ka , (2-17)
where 5
(7 ;
vi|k = a—qk — F'ZkU] . (2—18)

In the particular case of Riemann manifold of dimension n without torsion, with symmetric affine connection,
ie. Fj-k = F};j, the connection coefficients are named the Christoffel symbols of the second kind, due to E. B.
Christoffel (1869). They can be uniquely determined as functions of the coordinates of the covariant metric

tensor A defined over the manifold.

. 1 ., (0Oaj Oayy 0a i,
L—— - 2-1
k=4 <8qk * O¢? g (2-19)

a’, as the contravariant coordinates of A, are specified by the following property

a'® akj = Qi aki = 6; = 6{ (2-20)

2.5 Geometry of 2-dimensional Riemann Manifolds

In this section the main objective is to present a concise introduction to the geometry of an ordinary surface.
The surface is assumed to be a 2-dimensional Riemann manifold M? embedded in a 3-dimensional Euclidean
space E3. After introducing the notions of normal vector field and fundamental forms of the surface, we proceed
with defining some of the geometric invariants of the surface which will be of importance in our considerations

on surface deformation.

Unit Normal Vector:

Considering the parametric representation of the surface in terms of surface curvilinear coordinates (q',q?),
Equation (2-2), there exists a vector field n(q!,¢?) on M? at least locally, if not globally, such that at every
point p € M?

<n,,x>=0 (2-21)

13
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for every x € T,M?. The vector field n is called unit normal vector field if n is assumed to be a unit vector,
< n,n >= 1. The unit normal vector at point p with surface curvilinear coordinates (q', ¢) will be obtained as

a; X as

n ———"~" "= 2-22
» = Tl < aa] (2-22)

where a; = g—;‘l and as = g_qxz are base vectors of the 2-dimensional tangent vector space ']T,,M2 and A denotes

vector product.

The Gaussian Moving Frame:

The Gaussian moving frame in 3-dimensional space is constructed using three linearly independent vectors,
namely the unit normal vector n and two tangent base vectors a; and as, associated to any point on the
surface. The moving frame plays an essential role in deformation analysis of surfaces based on the intrinsic

approach discussed in the next chapter.

First and Second Fundamental Forms:

The function I(¢', ¢?), defined as
I(¢', ¢%) :=< dx,dx >= aap dq®dq®, (2-23)

is a quadratic form which is called the first fundamental form of the surface. The coefficients a3 are coordinates
of a surface symmetric tensor of type (0,2), named the first fundamental tensor of the surface. It can be easily
checked that ang are coordinates of the metric tensor of the surface. The first fundamental form I is invariant
with respect to coordinate transformations. In fact, I depends only on the surface and not on any particular
representation of the surface.

The second fundamental form II is defined as,

II(¢", ¢%) := — < dn,dx >= bag dq™ dq”, (2-24)

where, the coefficients b, are given by

b __ On 0Ox
af = aqa ) 8(15
(2-25)
=—-< 8_1’1 ag>=<n % >
= aqa , ap = s 8qﬁ .

bag are known as the coordinates of a surface symmetric tensor Bof type(0,2), which is known as the second fun-
damental tensor of the surface. The second fundamental form II is invariant under a coordinate transformation
in the same sense that the first fundamental form I is invariant. It should be noted that IT remains invariant as
long as the coordinate transformation preserves the direction of n. Otherwise the second fundamental formII
changes its sign.

Gaussian and Mean Curvatures:

Having the covariant coordinates of the first fundamental tensor a,g and the second fundamental tensor b,z
of the surface, Gaussian curvature k and mean curvature h can be determined as two geometric invariants

associated with these tensors.
det(bag)

k(q' ¢%) = m (2-26)

14



Section 2.5

1
h(q', q?) = ia”‘ﬁbalg (2-27)
det(aqp) and det(bqs) denote the determinants of the matrices formed by the covariant coordinates of the metric

tensor and curvature tensor, respectively.

Gaussian curvature is unaffected by change of sign of the unit normal vector while the mean curvature reflects
the change. This significant invariance property of the Gausssian curvature function k(q', ¢?), besides its in-
variant nature with respect to a change of surface coordinates, makes it the most appropriate tool to determine

the geometry of the surface.

Gauss-Weingarten Equations:

The Gauss- Weingarten equations are partial differential equations for surfaces that play a role somewhat anal-

ogous to the role of the Frenet equations for space curves. They express the derivatives of the tangent base

vectors aj,as and unit normal vector n with respect to surface coordinates g',q¢? as linear combinations of
o On

these vectors. In fact, they present a decomposition of the vectors %, Do a8 second order derivatives of the

position vector x(g', ¢?), in the Gaussian moving frame.

The first group of the partial differential equations to be introduced is due to C. F. Gauss (1827).

Gauss Differential Equations of a Surface

daq
da, = F'g,y dq” ag + bap dqﬂn — 8;; = Fgfy ag + boyn a,B,y=1,2 (2—28)

The coefficients 1"27 and b, g are already known as the Christoffel symbols of the second kind and the covariant

coordinates of the curvature tensor of the surface, respectively.

The second group of differential equations involving the derivatives of the unit normal vector n are given by
the so-called Weingarten differential equations. The equations introduced for the first time by J. Weingarten
(1861).

Weingarten Differential Equations of a Surface

dn = —by,aPdg®as % = —boya"P ag a,B,y=1,2 (2-29)

The Weingarten equations 2-29 may be abbreviated by

On
G = ~Vada (2-30)
where, fbg are coordinates of a mixed tensor Cof type (1,1), namely contravariant order 1 and covariant order
1, which is called Gaussian curvature tensor of the surface. General eigenvalue problem of the pair (B, A),

namely det(B — AA) = 0, or special eigenvalue problem of the pair (C,I), namely det(C — AI) = 0, lead us the

15
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principal curvatures k1 and ko of the surface as eigenvalues of the tensor Bor C[E. W. Grafarend (1995)].

Gaussian Curvature Tensor of a Surface

C=-BA"' «— &= b, a" (2-31)

The mean curvature h(q',q?) and Gaussian curvature k(q',¢?) are two important geometrical quantities in
theory of surfaces because of their invariant property. They are defined as the average and the product of the

principal curvatures, respectively.

h(g',¢%) = % (K1 + K2) (2-32)

k(ql7 q2) = K1 K2 (2-33)

16
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Surface Deformation Analysis

By a surface deformation we understand the changes in the characteristics of the geometry of the surface, namely
length of the line segments and angles included by them, curvature, and so on during the motion of the surface.
Surface deformation is always analyzed on the basis of comparisons of the differential invariants I, II, and IIT
of the deforming surface between two chosen states labelled as the reference versus current state. Hence, we

denote the deforming surface as reference surface and current surface in these two different states.

Two different ways of describing deformation may be used in general: Lagrangian or Fulerian. In the Lagrangian
portray, the geometry of the reference surface, defined by the first and second fundamental tensors of the surface,
is supposed to be known and all the tensor fields defined over the surface are connected to the geometrical points
of the surface in the reference state. We can then speak of Lagrangian tensor fields. In Lagrangian portray,
a coordinate system which is defined in connection with the reference surface, is called material coordinate
system and coordinates of geometrical points in such a system are referred to as material coordinates. In the
Eulerian portray, the geometry of the surface in the current state is assumed to be known. Hence, the Eulerian
tensor fields of the surface are expressed in terms of coordinates of geometrical points of the current surface. In
Eulerian portray, coordinate systems related to the current state are called spatial coordinate systems. Thus,
in this case spatial coordinates are used in place of material coordinates. In this chapter, relations valid for
arbitrary smooth deformation of a surface are treated in both Lagrangian and Eulerian portrays.

Following the conventions of continuum mechanics, all the material coordinates, coordinates of tensor fields
and indices are printed in capital letters wherever they are connected to the reference surface and given in
Lagrangian portray. Small letters are used for all the notations in Eulerian portray and spatial coordinates
of the current surface. If Roman letters are used as an index, they will assume the values of 1,2,3. An index
printed in Greek letter will take only values of 1,2. Hence, Roman indices will refer to the space coordinates,
namely to coordinates which cover 3-dimensional Euclidean space, while Greek indices will be assumed for the

surface coordinates.

3.1 The Concept of Surface Deformation

Here, the notion of surface deformation is discussed with reference to Riemann manifolds introduced in chapter
2. Let there be given the left 2-dimensional Riemann manifold M? and the right 2-dimensional Riemann
manifold M2. We start from these two 2-dimensional Riemann manifolds {M?, Ape} and {M? ayg}, with
standard metric tensor A; = [Apre] = [Aoa] and A, = [axg] = [agx] both symmetric and positive-definite,

which represent the reference surface and current surface, respectively. The open subsets U; C I\/JIZ2 and u, C M2
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Figure 3-1: The fundamental commutative digram

are covered by charts {®, U;} and {¢, u,}. Such charts are constituted by surface curvilinear (local) coordinates
{QY,Q?*} € ®(U;) C R? and {q¢*,¢*} € ¢(ur) C R? over open sets ®(U;) and ¢(u,). Figure 3-1 illustrates
the fundamental commutative diagram that governs the descriptive elements once we transform from the left

Riemann manifold M7 onto the right Riemann manifold M?2.

The mapping f : M? — M2 and its local representation f : ®(U;) — ¢(u,) = ¢ o fo ®~! are assumed to be a
homeomorphism. A system of classification, based upon mapping equations f from a left chart to a right chart,
namely of type isoparametric, identical charts, conformal, equiareal, equidistant, cocircular, geodesic, harmonic,
and the general case, has been given by E. W. Grafarend (1982). The mapping f is called deformation.

3.2 Surface Deformation Measures

A comparative analysis of the metric tensors of the two manifolds under comparison is the standard way for
the description of deformation in continuum mechanics [G. Beda et al. (1995), p.18; D. B. Macvean (1968),
p-158]. A comprehensive review of various local as well as global multiplicative and additive measures of surface
deformation, based on comparison of the metric tensors of the two parametrized surfaces, is given in E. W.
Grafarend (1995). In addition to the metric tensors, a comparative analysis of the second fundamental tensors
of the reference and current surfaces is considered as a way of describing surface deformation in shell theory.
In this study, we concentrate on the most common measures of surface deformation which are derived from the

first and second fundamental tensors of the two surfaces and some certain invariants of these derived measures.
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3.2.1 Cauchy-Green deformation tensor

Referring to the fundamental commutative diagram of Figure 3-1, the homeomorphism f and its inverse f -1
will be represented by the chart mapping qA(QA) and QA(q)‘), respectively. The two point tensors J; and J,.
defined as,

Jy = JNay @ AL versus J. = i Ax @ a?, (3-1)
where
dq* A 0QA
AL AL

are termed the deformation gradients in the Lagrangian versus Eulerian portray. The coordinates of the defor-

mation gradients determine the elements of the Jacobi matrices of the mapping f and its inverse arf 1.

Assuming the two Riemann manifolds {M?, Axe} and {M?2, axg} as embedded submanifolds of two different
3-dimensional Euclidean space E} and E2, the first fundamental forms I; of M7 and I, of M2 in surface local

coordinates of the manifolds are specified by

I = Aro(Q%) dQ dQ® versus I = axo(q®) dg* dg® (3-3)

The left versus right Cauchy-Green deformation tensor are introduced in Box 3-1 as a multiplicative measure of

deformation. The tensors are positive-definite, symmetric tensors of type (0, 2).

Box 3-1: Left versus right Cauchy-Green deformation tensor

/ ( Lagrangian portray ] [ Eulerian portray ] \

I, = aydg*dg® I = ArodQ%dQ®
8q>\ 8q9 A [e) 8QA 8Q® A g0
= —— ——=dQ"d = Aro— ——dqg’d
DOFOR 3o QR"dQ re 5 x ggr 4474
Left Cauchy-Green deformation tensor Right Cauchy-Green deformation tensor
C = Cro(Q®) AM® A° versus C.= cy(¢®)a*®a’
where
3q)‘ 8q9 8QA aQ@
Py . o P = A H=_ =
CA@(Q ) CI,)\G(Q )8QA aQ@ C)\G(q ) A@(q )8q/\ aq@
= a(Q®) J3 J§ = Ane(q®) 3 7§

o /

By means of the left Cauchy-Green deformation tensor we have succeeded to represent the first fundamental

tensor (metric tensor) of the current surface in terms of the material coordinates of the reference surface.
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Similarly, the right Cauchy-Green deformation tensor portrays the first fundamental tensor of the reference

surface in the spatial coordinates of the current surface.

3.2.2 FEuler-Lagrange deformation tensor of the first kind (Tensor of change of

metric)

For the description of surface deformations, we can also look at the difference between corresponding first
fundamental forms of the deforming surface at the reference- and current state. The difference I, — I; leads us
to the definition of a well-known additive measure of deformation called Fuler-Lagrange deformation tensor of
the first kind or tensor of change of metric. The Euler-Lagrange deformation tensor(I) is also known widely as

strain tensor. Box 3-2 introduces left versus right Euler-Lagrange deformation tensor of the first kind.

Box 3-2: Left versus right Euler-Lagrange deformation tensor of the first kind (Lagrangian versus Eulerian
tensor of change of metric)

/ ( Lagrangian portray ] [ Eulerian portray ] \

I, — I, = axpdgdg’ — AredQ"dQ® L — L= axedg*d¢® — ApedQ*dQ®
o> 9q¢° Q" 9Q°
— 0w g0r 5o Q0% ~ Ared@"iQ° — anadg e’ ~ Ano 55 GEdg
o> d¢° A 31O Q" aQ° g 6
— (axg L 9 4, 6)dQM = (aro — Aro 22— L& ) aghd
(‘“"aQA 2Q° r0)dQ dQ (axe — Ape 90" aqo) q"dq
=2 Eje dQ" dQ°® = 2 ey dg* dg’
Left Euler-Lagrange deformation tensor(I) Right Euler-Lagrange deformation tensor(I)
E = Ejo(Q%) AN A® VErsus E. = ex(¢?) a*®a’
where
1 aq)‘ 8q0 1 8QA 8@6
oy._ e\ Y4 Y4 @ ¢y .— — by _ o\ T
Ere(Q%): Q(CLAB(Q )8QA 90° Are(Q )) exo(q”): 2(CL,\G(Q ) — Aprelq )8q’\ aqg)
1 1
=5 (Cre — Ane) =3 (axo — co)

o /

The left Euler-Lagrange deformation tensor of the first kind Ej, namely Lagrangian strain tensor, is sometimes

associated with the names of Green and St.Venant while the right Euler-Lagrange deformation tensor of the
first kind E,, namely Eulerian strain tensor, is associated with the names Almansi and Hamel [K. Wilmanski
(1998)]. The symmetric deformation tensors E; and E, are powerful tools in studying deformations. In surface
deformation analysis, they allow us a pointwise illustration of alteration of the metric properties of the deforming
surface.

Apart from the Cauchy-Green and Euler-Lagrange(I) deformation tensors used to describe the changes in the
geometry of the deforming body induced by the deformation, it is often convenient in continuum mechanics to
employ other equivalent deformation measures. Table 3-1 collects the most common deformation tensors and

their definitions appearing in various applications in continuum mechanics.
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Table 3-1: The most common deformation tensors and their definitions [D. B. Macvean (1968)]

Name ‘ Symbol Definition ‘
Left Euler-Lagrange(I) E, 1O - A)
Right Euler-Lagrange(I) E, 1A, - C))
Hencky E; % In(C;)
Hencky E, 1 In(C;)
Left Cauchy-Green Ex JZTATJI
Right Cauchy-Green Eg J,TA;JT
Left stretch E; J, = RE; ( Polar decomposition of the left Jacobi matrix)
Right stretch Eg J. = REg ( Polar decomposition of the right Jacobi matrix)
Piola Ey C’fl
Finger Ey ct
Karni-Reiner Eq %(Al — C’fl)
Karni-Reiner Eis %(C’T_1 —-A,)

3.2.3 Euler-Lagrange deformation tensor of the second kind (Tensor of change of

curvature)

In surface deformation analysis, as another additive measure of surface deformation we can take into account
the difference between the second fundamental forms of the deforming surface at the reference- and current
state. The additive comparison of the second fundamental forms II; of Ml2 and II,. of M2 leads us to definition
of Fuler-Lagrange deformation tensor of the second kind or tensor of change of curvature, introduced in Box
3-3. The Euler-Lagrange deformation tensors of the first- and second kind (tensor of change of metric and the
tensor of change of curvature) are considered as the two basic measures of surface deformation in literature of
shell theory, e.g. W. Pietraszkiewicz (1977), L. J. Ernst (1981).

Box 3-3: Left versus right Euler-Lagrange deformation tensor of the second kind (Lagrangian versus Eulerian

tensor of change of curvature)

/ ( Lagrangian portray ] [ Eulerian portray ] \

I1, — IT; = bygdg*dq® — BredQ"dQ® I1, — IT; = byodg’dq® — BredQ"dQ®
> 9q¢° A 31O A 3O Q" 0Q°
= bzt 2-5dQ"dQ° — BredQ"d = bapdq*dq® — Bano - ——5dqdq’
ABaQA)\ 8Q@0 Q"dQ r0dQ"dQ xodqdg 1:\@ 3q’g ag7 49" da
g 9q A 11O 0Q" 9Q 0
= (b’\gc’?Q—A 862—@ - BA@)dQ dQ = (b/\G - BAGW 8—q9)dq)\dq
= Kpeo dQA ng =kxo qu dqg
Left Euler-Lagrange deformation tensor (IT) Right Euler-Lagrange deformation tensor(II)
K = Kpro(Q®) A*® A° versus K, = ky(¢?)a*®a’
where
aq)‘ 8q9 aQA aQ@
Kro(Q®) :=b0(Q%)Z5x === — B ® kxo(q?) == bro(q?) — Bae(q?) = —r
K 20(Q7) = br(Q )8QA aQ° 2r0(Q) 20(q%) :=bro(q”) — Bael(q )8(1’\ g

It should be noted that the definition of the Euler-Lagrange deformation tensor(I) (strain tensor), Box 3-2, is
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generally accepted in the literature of shell theory. However, the definition of the Euler-Lagrange deformation
tensor(II) (tensor of change of curvature) varies depending on the applications. One important difference comes
from a sign convention adopted. Besides, any functionally independent combination of the strain tensor E;/E,
and second fundamental tensor B;/B, may be chosen as a measure for the surface curvature changes [W.
Pietraszkiewicz (1977)].

3.3 Surface Deformation Measures and the Displacement Vector

We recall the assumption that the reference- and current surface are considered as two 2-dimensional Riemann
manifolds M7 and MZ2embedded in two different 3-dimensional Euclidean spaces E? and E3. On the reference
surface, the place in the embedding space of a generic point is given by the placement vector X(Q™"). After
deformation the place in space of the same point is given by a new placement vector x(¢*). Referring to Figure

3-2, the displacement vector u is defined as
u=t+x-X (3-4)

where the translation vector t serves to locate the origin o of the spatial coordinate system ox'z?z3 with

respect to origin O of the material coordinate system OX!X?2X3.

Rreference S""face

Qg u

X

Ne)
X
-

o~

A

Figure 3-2: The dispacement vector, the reference- and the current surface in a commutative diagram
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3.3.1 Surface deformation measures as functions of the displacement vector

For practical application of the theory, it is more convenient that measures of deformation be described in terms
of the displacement vector u. Moreover, various approximate theories in continuum mechanics and particularly
shell theory are developed by dropping or approximating nonlinear terms in relations of the deformation
measures expressed as functions of the displacement vector. Thus, we proceed with expressions of the surface

deformation measures as functions of the displacement vector.

The covariant base vectors

X
;Q—A versus ay = ox (3-5)

Ay =
A 20

span the tangent space ToM? and T,M2 of the reference- and current surface at @ and g, respectively. Their
inner products lead to the covariant coordinates of the metric tensors A; and A, of the left and right manifolds,

respectively.

Apo =< Ap, Ao > versus axg :=< ay,ag > (3-6)

Similar to the metric tensors A; and A,, left and right Cauchy-Green deformation tensor can be defined as

scalar product of new base vectors Ca(Q?®) and cy(¢?) which are given as

dg* ox O¢* 0x

ON@Y) = g T ap agr T agn

o Q" 9X 8@ 09X
A = MG = er o g

Thus, left versus right Cauchy-Green deformation tensor can be written in terms of the new base vectors as

Chro = Cop =< CA,C@ > versus Crg = Cox =< C),Chp > (3—8)

To derive Cauchy-Green and Euler-Lagrange deformation tensors in terms of the displacement vector, we con-
sider the relations of these tensors using the scalar product of the base vectors Cao/crg, Equation (3-8), and
the definition of the displacement vector as difference of the placement vectorsX/x, Equation (3-4). Box 3-4

highlights the main steps of the derivation for these deformation tensors in Lagrangian versus Eulerian portray.

It should be noted that the derived expressions for the deformation tensors C;/C, and E;/E, in Box 3-4, are
general and exact formulae without any approximation being applied to extract them. Another important result
is that these deformation tensors are insensitive to the translation vector t. Hence, the translation vector t is

not considered in our computations any more.

Analogous to Cauchy-Green deformation tensors and Euler-Lagrange deformation tensors of the first kind, it
is more adequate to express the Euler-Lagrange deformation tensors of the second kind (tensor of change of
curvature) as functions of the displacement vector. Unfortunately, similar relations for the tensor of change of
curvature happen to be more complicated, see for example the work of L. J. Ernst (1980). To overcome this
problem and obtain less sophisticated relations, E. Stein (1980) takes into account another difference vector

called difference vector of the unit normal vectors in addition to the displacement vector. Having the unit
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Box 3-4: The left versus right Cauchy-Green deformation tensor (Cj versus C), and the left versus right

Euler-Lagrange geformation tensor(I) (E; versus E,) as functions of the displacement vector u

[ Lagrangian portray ]

Coordinates of the left Cauchy-Green

deformation tensor:

Chro:=< Cy R Co >

. ox ox -
T oM 7 aQe

B du+X-—1t) 8(u+X+t)>

- oQA ’ oQe°

. ou ou _— ou oX o

T oQN 7 0Q° oQA 7 8Q®°
oX ou o0X 0X

“agr oo

Coordinates of the left Euler-Lagrange

deformation tensor(I):

_1(_u X 90X du
~ 2" 9t Qe

< ou ou S
oQA 7 8Q®°

<208 908 ~

>+<862—A,862—@>

[ Eulerian portray ]

Coordinates of the right Cauchy-Green

deformation tensor:

Crg: =< C), Cg>

__OX X
T 9 9¢f

__O(x—u+t) 8(x—u+t)>
N dg* ’ dq?
_ ow ou  _duox
T 9gr T 9¢° Og* 7 9q?
0x Ou ox  Ox

< 5, 75>+ <o, 25>
Og* ' 9q° 0g* ’ Oq?

Coordinates of the right Euler-Lagrange

deformation tensor(I):

1
exg = 5(%9 —Cx)

_l(dw o x L Oxou
2 Og* ’ Oq? Og* ’ 0q®
Lou ou

Og* 7 Oq°

~

o /

normal vectors IN of the reference surface and n of the current surface, the difference vector of the unit normal

vectors w can be defined as

w:=n-N (3-9)

Figure 3-3 shows the role of the vector in linking the reference- and current surface in a commutative diagram.
The difference vector of the unit normal vectors is used to formulate Lagrangian and Eulerian tensors of change
of curvature as functions of the difference vectors u and w in less complicated features. Box 3-5 summarizes

the main steps towards this goal.

As can be seen in Box 3-5, we end up with the expressions of the left and right Euler-Lagrange deformation
tensor(I) (Lagrangian and Eulerian tensors of change of curvature) as inner products of the displacement vector
and the difference vector of the unit normal vectors. Thanks to the use of the difference vector of the unit
normal vectors, the expressions of the left and right Euler-Lagrange deformation tensors of the second kind are
derived in a less sophisticated manner. Here, the difference vectors u and w appeared in the final relations
of the deformation tensors in an invariant notation. They will be decomposed to coordinates in the following

sections.
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Figure 3-3: The difference vector of the unit normal vectors, the reference- and the current surface in a com-

mutative diagram

Box 3-5: Left versus right Euler-Lagrange deformation tensor(II) (Tensor of change of curvature) in terms of

) N

the displacement vector u and the difference vector of the unit normal vectors w

/ [ Lagrangian portray ] [ Eulerian portray
Coordinates of the left Euler-Lagrange Coordinates of the right Euler-Lagrange
deformation tensor(II): deformation tensor(II):
o¢> 94’ oQ" 0Q°
K = b B kxo :=bxo — — =5
A0 908 9Q° A0 A® Y A6 ¢ 0 Y
o> 9q° On Q" 0Q° ON
_ —_1 -B =b A
GQA8Q9<8q’\’a0> A© ,\9+8q/\ 2q° <8QA’ e >
og* 9q° 0 N 0 Q" 0Q°  o(w — 0X
=1 1 < (w + )7_x>_BA® =bxg — Q_9Q < (w n), >
QN 9Q° og? dq° a¢* 9q° QA aQ°
ow+N) 90X +u) Ow—n) IJx—u)
= -B =bro—
aQr T aqe <~ e VTS T T o T
__ Ow X _Ow Odu __ow x 6w Ou_
QN 7 aQe QN 7 aQe dg* 7 9q? ag* ' 9q?
< ON - ou comou
QA 7 aQ° g’ 9q°

N
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3.3.2 Surface deformation measures (Extrinsic approach)

We derived the expressions of the various surface deformation measures as functions of the difference vectors u
and w where they are considered in an invariant notation. For practical applications of the theory, we should
take into account the decomposition of the difference vectors in convenient coordinate systems. This is the point
of departure for two different approaches called extrinsic approach versus intrinsic approach. In the extrinsic

approach, a class of coordinate systems are considered which are defined in relation to the embedding spaces.

Here, the embedding spaces of reference- and current surface are assumed to be 3-dimensional Euclidean spaces.
A way of describing Euclidean spaces is by means of Cartesian orthonormal coordinate systems. The space
Cartesian coordinates of a point with the placement vector X in the reference state and x in the current state

with respect to the orthonormal fixed frames {Iy,Is,I3} and {i,i2,i3} are given by

X =XE1x versus x=zFip . (3-10)

The displacement vector can also be decomposed in these Cartesian coordinate systems as

u=UK1g versus u=u"i; . (3-11)

where UK and u* are titled space Cartesian coordinates of the displacement vector in Lagrangian- and Eulerian
portray, respectively. Box 3-6 includes the expressions of the Cauchy-Green- and Euler-Lagrange(I) deformation

tensors as functions of the space Cartesian coordinates of the displacement vector.

Box 3-6: Left versus right Cauchy-Green deformation tensor (C versus C,.) and left versus right Euler-Lagrange

deformation tensor(I) (E; versus E,) as functions of the space Cartesian coordinates of the displacement vector
UK/uk

4 N

[ Lagrangian portray ] [ Eulerian portray ]
Coordinates of the left Cauchy-Green Coordinates of the right Cauchy-Green
deformation tensor: deformation tensor:

C = A +8U18UI+8UI8XI+ c =a +8_ui8_ui_3_ui3_$i_
A® - A® aQA aQ@ 8QA aQQ O = axe aq}\ aqg aq}\ aqg
ox' ou! or' ont
Q" 9Q° dq* dq?
Coordinates of the left Euler-Lagrange Coordinates of the right Euler-Lagrange
deformation tensor(I): deformation tensor(I):
> 1 out 8XI+3XI 8UI+ . 1 ou’ 8zi+8xi 8ui7
Ao T2\ 008008 T aQr 9Q° Mo T2\ 9 0 T g dgP
vt v ou' o'
oQ" 0Q° dg> 9g°
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Similarly, left and right Euler-Lagrange deformation tensors of the second kind (Lagrangian and Eulerian tensors
of change of curvature) can be introduced in terms of space Cartesian coordinates of the displacement vector and
space Cartesian coordinates of the difference vector of the unit normal vectors, Box 3-7. The Space Cartesian

coordinates of the difference vector w are

w=WHIg versus w = whiy (3-12)

and its partial derivatives with respect to the surface curvilinear coordinates Q* /¢ are given by

ow  OWE ow  Owk,
versus — =

Q" ~ agh X o~ o " 19)

Box 3-7: Left vesus right Euler-Lagrange deformation tensor of the second kind (Lagrangian versus Eulerian
tensor of change fo curvature) as functions of the space Cartesian coordinates of the displacement vector u and

the difference vector of the unit normal vectors w

[ Lagrangian portray ] [ Eulerian portray ] \
Coordinates of the left Euler-Lagrange Coordinates of the right Euler-Lagrange
deformation tensor(II): deformation tensor(II):

K —_<8_W 8_X>_<8_w 8_u>_ versus k —_<8_w 8_X>+<8_W @>_
AT T 908 0 98 aQ" * aQ® MTTT 990 9P 9" * dqP
ON Ou On Ou
—, —=& > < — , =5
QA 7 0Q° dg* ’ 0q°
_B(I)@XK oUK _GWK 0xXK _GWK oUK B ¢8_mk8_uk _kaa_av’“+8wk8_1ﬂ“
S oQT 0 9N 9Q°  9QM 9Q° - 9¢? a®  9¢r 0 9g> O

o /

Instead of Cartesian coordinates, the embedding spaces in the reference- and current state can be parametrized

locally by means of space curvilinear coordinates Q% (K = 1,2,3) and ¢*(k = 1,2,3) through the chart repre-
sentations of the Euclidean spaces. In extrinsic approach, the surface deformation tensors can be expressed as
functions of the space curvilinear coordinates of the difference vectors u and w as well. The space curvilinear
coordinates of a vector are those coordinates which are obtained by the decomposition of the vector in the 3-

dimensional orthogonal moving frames which are established by means of the triads of the covariant base vectors
0X 0x

= —— = — -14
Gg FToLs versus Sk o (3-14)

at each point of the embedding spaces with the space curvilinear coordinates Q¥ and ¢*. The covariant and
contravariant curvilinear coordinates of the displacement vector, referred to the triads of base vectors Gk /gk

and their reciprocal (contravariant) base vectors GK / g | are given by

u=UKGg =UxGE VErsus u=a"g, = urg® (3-15)

where the space curvilinear coordinates are barred in order to distinguish them from the space Cartesian

coordinates.
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The partial derivatives of the placement vectors X/x and the displacement vector u with respect to surface
curvilinear coordinates Q* /q*, given in invariant notation in Box 3-4, can be rewritten for the placement vectors

as

ox QK oxX ox aq¢¢ ox
oQ*  9Q* 9QK o 9¢ d¢*
versus (3-16)
- aQK G _ aqk
= W K = 3—q)‘ gk,

and for the displacement vector as

ou 00" ou ou o o
QY 9QN aQK > 9g* dg*
versus (3-17)
QK Qr - " o"
= 8QA UJ|KGJ:6Q—AUJ|KGJ :8—(]/\U]|kgj:8—q/\uj\kgja

where U” |k /u?|, and Uk /@), denote the covariant derivatives of the displacement vector in terms of its

contravariant and covariant curvilinear coordinates.

ou’

_ _ oW 4
Uk = 90K + UM versus W, = 8—:;’“ + all“{k (3-18)
_ oU _ ou

Unk = aQ—}]{ — UL, versus Ujjp = a—q; — ﬂlfé-k (3-19)

Regarding Equations (3-16) and (3-17), Cauchy-Green and Euler-Lagrange(I) deformation tensors can be ex-
pressed as functions of the space curvilinear coordinates of the displacement vector. Box 3-8 summarizes the

final results.

Box 3-8: Left versus right Cauchy-Green deformation tensor (C) versus C,.) and left versus right Euler-Lagrange
deformation tensor(I) (E; versus E,) as functions of the space curvilinear coordinates of the displacement vector
UK/ﬂ,k and UK/ﬂk

[ Lagrangian portray ] [ Eulerian portray ] \
Coordinates of the left first fundamental Coordinates of the right first fundamen-
tensor: tal tensor:

A 00K Q7 0w
A® = 8QA aQ@ KJ A0 — 8q>\ aqo gk]
Coordinates of the left Cauchy-Green Coordinates of the right Cauchy-Green
deformation tensor: deformation tensor:
QK ., i Q" oq* o oq'
Cre = 0% (U \kUpr + Uk + U g + GKL)aQ—Q N = 55 (@ |ptj — Uppp — Uy + Grt) By
oK ST 2 - oQ* ogk . _ N
K = 304 (U |xUsp + Uk + UL\K)aQ—Q + Ape =7 (@ Rt — g — ul|k)a_qg +axe J
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Box 3-8(Contd.): Left versus right Cauchy-Green deformation tensor (C; versus C,) and left versus right
Euler-Lagrange deformation tensor(I) (E; versus E,) as functions of the space curvilinear coordinates of the

displacement vector UX /a* and Uy /ux

Coordinates of the left Euler-Lagrange Coordinates of the right Euler-Lagrange
deformation tensor(I): deformation tensor(I):
1 1
Ere= i(CAe — Ape) exo= §(a>\e — )
1 QK oQx 1 0¢* dq'
=308 (U + U + U7 |KUJ|L)8Q@ = 5@(%\1‘*‘“1\1@ — U |ku]|l)aq9

\ /

The partial derivatives 2 BQA / g% are the coordinates of the Jacobi matrices of the coordinate transformations

from surface curvilinear coordmates Q" /q* to the space curvilinear coordinates Q% /¢*.

To complete this section, Euler-Lagrange deformation tensor of the second kind (tensor of change of curvature)
has to be evaluated in terms of the space curvilinear coordinates of the displacement vector and the difference
vector of the unit normal vectors. The partial derivatives of w with respect to the surface curvilinear coordi-
nates Q*/¢* can be written in terms of covariant derivatives of contravariant and covariant space curvilinear

coordinates of w as

ow Q¥ ow o og ow
QN T 9QN QK d¢*  9g* O¢*
versus (3-20)
QK 0Qx o . ot
— GQA WJ|KGJ:8Q—AWJ|KGJ :8—@“’]|kgj:8—qijlkgj

Final results of the formulations have been collected in Box 3-9.

Box 3-9: Left versus right Euler-Lagrange deformation tensor of the second kind (tensor of change of curvature)
as functions of the space curvilinear coordinates of the displacement vector u and the difference vector of the

unit normal vectors w

/ [ Lagrangian portray ] [ Eulerian portray ] \

Coordinates of the left Euler-Lagrange Coordinates of the right Euler-Lagrange
deformation tensor(II): deformation tensor(II):
K __<_8w —8X>—<—8W —8u>— k ——<a—W §>+<8—W 8_u>_
AT 908 0 9P QY 9Q® MTTT 0 9P dg  9g°
ON Ou On  Ou
_ s —_ > < _ s —_
aQr 7 0Q° dg* ' 0q°
Q! 0Q’ 9q' 0¢
Wpir < G Gy > — =—— - Wy; < g’,g; >
QN age P J D> 0gf Pl < 88 +
8Q1 3QK M P 3qi aqk o
Wp U <G7,Gy > — —— Wy "k < P, gm >
90~ 0Q° PV | M >+ dg* dq° Wyt < 8", 8 +

/
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Box 3-9(Contd.):Left versus right Euler-Lagrange deformation tensor of the second kind (tensor of change of
curvature) as functions of the space curvilinear coordinates of the displacement vector u and the difference
vector of the unit normal vectors w

4 N

2 0Q 9QK _ d¢' 9q* m
A@Q‘b 900 Umix < Gr,GM > bfaqu 9P Uk < 81,8 >
o 0Q" 0Q7 7, Q! 0Q’ Wy _ 004 00 g 09 N
AE)Q‘I’ 0Q° \ QA 3@9 \ )‘8(]4’ 3q ilj o> 8(] Jli
Q" 9Q’ = ot d¢7
aQA aQ@ WK|IUK|J aq)\ aqe wk|zu |]

o /

3.3.3 Surface deformation measures (Intrinsic approach)

In the previous section, surface deformation analysis was presented based on the extrinsic approach where all
the surface deformation measures were investigated and formulated from the viewpoint of the embedding spaces.
Unlike the extrinsic approach, the intrinsic approach formulates the surface deformation measures in connection
to the geometry of the deforming surface in its own right. In the intrinsic approach, the surface deformation
measures are written alternatively in terms of surface curvilinear coordinates of the displacement vector and
the difference vector of the unit surface normal vectors. The surface curvilinear coordinates of a vector are
obtained by the decomposition of the vector in the Lagrangian and Eulerian Gaussian surface moving frames.
The Gaussian surface moving frames are built by the triads of the two tangent base vectors A*/a* and the
unit normal vector N/n, with

A1XA2

N := =NEIx wversus n:=—"""_=nFi,, (3-21)

[ A1 x Az || a1 x az ||

Figure 3-4: The Gaussian surface moving frames of the reference- and current surface

In such a case, the displacement vector can be decomposed in the Lagrangian and Eulerian three-dimensional

surface moving frames as
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u =UMA,+U3N u =7aay,+%°n

versus

(3-22)

u =UpAA + U3N u =auya* +@°n

The contravariant coordinates U* /a* and U®/@® or their covariant counterparts Uy /@y and Us /13 are called

surface curvilinear coordinates of the displacement vector. It should be noted that because of the normality

of the unit normal vector N/n and its orthogonality to the tangent base vectors, the unit normal vector and

its reciprocal vector are equal and consequently there is no difference between the contravariant and covariant

coordinates of u with respect to N/n, i.e. U? = Us and @® = 3.

Considering the above decomposition of the displacement vector, Equation (3-22), the partial derivatives of the

vector with respect to the surface coordinates @ /¢* can be given as follows

du O(UPAg) O(UN) du d(@%ay)  O(u’n)
= + VErsus = = +
oA oA oA o o o
_ ~ ou? —5 ON ou? on
— [7© e 3 — 0 =0 =3
=U |AA@+U BA@N‘FTC)AN‘FU&?—A —u|,\a9+ub,\an+a—q)\n+ua—q)\
70 773 RO 70 ou® =6 =316 = ou’
=U |AA97U BYAeg +U BA@NJrWN :u|>\a9—u b/\ag+u b)\gnJra—(J)\n
70 73 O oU° | o g .0 o,
Z(U |A—U BA)A®+(8QA+U BA@)N :(u |,\—’LL b)\)aa—l-(a—q)\-‘ru bxe)n
= UI?A@ + UZN = u?\ag + u?\n
(3-23)
where the surface tensors UY /u§ and U} /u3 are considered to have the form of,
UL :=0U°|s - U3BY versus u§ = af|y — @’bs | (3-24)
and
ous ou?
U3 = a0~ +U®Bype versus u3 = 3—7;)‘ + @%by . (3-25)

To achieve the above results for partial derivatives of u, we have taken into account the Gauss-Weingarten

equations introduced in chapter 2,

0A 0

Wf = I‘j{{@A@ + BpaoN versus E%z = I‘fga(z, + bygn (3-26)
ON 0
W ‘= —BpoA° = fBI(?A@ versus 8—; = —bypa’ = fbgag . (3-27)
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The surface covariant derivatives of the surface curvilinear contravariant coordinates of the displacement vector

are given as
Ute = Uf(\a +TA,0° versus g == ﬂi‘g + F§‘¢ﬂ¢ .

With similar computations, it can be also proved that

ou ou

A = U@AAe + UspaN versus o = ua,\a‘9 + usgyn

0Q 9q
where

7 73 . -3

Uen :=Ug|a — U’ Bea versus Ugx 1= Ug)y — U bgx ,

and
Usp = U3 =u}
3an = Uy Versus Uzy = Uy -

Now, we can derive expressions of the Cauchy-Green and Euler-Lagrange(I) deformation tensors
of the surface curvilinear coordinates of the displacement vector. Box 3-10 highlights the main

computations.

(3-28)

(3-29)

(3-30)

(3-31)

as functions
steps of the

Box 3-10: Left versus right Cauchy-Green deformation tensor (Cj versus C,.) and left versus right Euler-Lagrange

deformation tensor(I) (E; versus E,) as functions of the surface curvilinear coordinates of the displacement

vector
/ [ Lagrangian portray ] [ Eulerian portray j \
Coordinates of the left Cauchy-Green Coordinates of the right Cauchy-Green
deformation tensor: deformation tensor:
Cro =< (u,A + AA), (u,@ + A@) > crng =< (a>\ - u,)\), (ag — u’e) >
=< (UsarA® + UspaN + A,), (Ugo A+ =< (a) — ugra? —uz\n), (ag—
UseN + A@) > uwgad’ — U39n) >
= UsaUgpo A®Y + Usp b + Uge by + = Uprtyga®’ — U¢/\5$ - uweéf\b-&-
UsaUsze + Ape U3AU39 + Axg
=UYUygo + Uoa + Ure + UsaUse + Ape = uqfque — Upx — Uxg + U3NU3G + Axg
Coordinates of the left Euler-Lagrange Coordinates of the right Euler-Lagrange
deformation tensor: deformation tensor:
1 1
Ere =3 (Cre — Ane) e =3 (axe — cx)
1 v 1 v
=3 (Une + Uen + Uy Uye + UspUse) =3 (U,\e + Upx — Uy Uyy — U3/\U39)

/
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Again, we have to consider the surface curvilinear coordinates of the difference vector of the unit normal vectors
in addition to the surface curvilinear coordinates of the displacement vector to obtain expressions of the left
and right Euler-Lagrange deformation tensors of the second kind (tensors of change of curvature). The surface

curvilinear coordinates of w of contravariant and covariant types are defined by

w =WArAL+W3N w =wtay+a°n
versus (3-32)
=WrA A+ W3N =wya*+win,

The coordinates of the left and right Euler-Lagrange deformation tensors of the second kind (tensor of change of
curvature) K;/K, can now be evaluated as functions of the surface curvilinear coordinates (Wy, W?)/(ws, w®)

and the surface curvilinear coordinates of the displacement vector, Box 3-11.

Box 3-11: Left versus right Euler-Lagrange deformation tensor of the second kind (Lagrangian versus Eulerian
tensor of change of curvature) in terms of the surface curvilinear coordinates of the displacement vector u and

the difference vector of the unit normal vectors w

4 N

[ Lagrangian portray ] [ Eulerian portray ]
Coordinates of the left Euler-Lagrange Coordinates of the right Euler-Lagrange
deformation tensor(II): deformation tensor(II):

ow ON 0X Ou ow On 0x ou
Krpo=—-< , > —B kxo=byo— < (35— 55), (s —55) >
A© (8Q@ + 8Q9) (8QA + 8QA) r® 20 = bxo (8q9 8q9) (8(1)‘ 8q")

ON on
= — < (WeoA® + W3eN + E)Q—Q)’ (An+ = bro— < (wgpa® + wzen — 8—(19)’ (ar—
UgnAY + UspyN) > —Bpe upra? — uzxn)
= B& Ugyn — Ware — W3 Ugp — Wse Usp = bfgp Uy — Wrp + w;" Uy + W3p U3
where

WP :=W°|y — B W? wf = 0|\ — b§ w3

Wae := Waje — Boa W3 Wxg := Wyjg — box W*

Wap = B/(? W@—&-W?}\ ws) 1= biﬂ)a +’LTJ?’)\
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CHAPTER 3. SURFACE DEFORMATION ANALYSIS

3.4 Linearized Theory of Surface Deformation Analysis

All the expressions of the surface deformation tensors derived so far are non-linear formulae referred to the space
and surface coordinates of the displacement vector and the difference vector of the unit normal vectors. They
form a basis for various approximate theories in different applications of the surface deformation analysis. The
linear expressions of the surface deformation tensors in terms of the displacement vector and the difference vector
of the unit normal vectors can be determined by dropping the nonlinear terms in the non-linear mathematical
relations of the previous section for surface deformation measures, Box 3-6 through Box 3-11. The developed
linearized theory of surface deformation analysis performs a theoretical base for the widely used so-called
infinitesimal approach in deformation analysis. For more details on the infinitesimal approach in deformation
analysis, we refer to A. C. Eringen (1962). In addition to the simplicity of the formulae in linearized theory,
another advantage of the approach is the determination of a skew-symmetric tensor, the so-called linearized
surface rotation tensor R, / R, which represents the infinitesimal rotation of a small neighborhood of the point
in question with respect to its original orientation. Box 3-12 reviews the final expressions of the linearized
Cauchy-Green deformation tensors C; / C, and the linearized Euler-Lagrange deformation tensors of the first
kind El / ET as well as the linearized surface rotation tensors Rl / RT in the cases that space Cartesian or space

curvilinear coordinates of the displacement vector are known, namely the extrinsic approach.

Box 3-12: The linearized surface deformation tensors C‘l / @’T and El / ET, and the linearized surface rotation

~

tensors R, / R, in the extrinsic approach

[ Lagrangian portray ] [ Eulerian portray ]

eCoordinates of the linearized surface deformation tensors

in terms of the space Cartesian coordinates of u

Cre —ap  UNOXT | ox! ou b Qw0 000w
. 1 /oUT axT  ox! ou! 3 1 /0ul 8" Oz '
Exe =3 + exo =5
2 \ 902 aQ® " 9QA 5Q° 2\ 9¢* 9¢° * g 9¢°
Ao 1 ou’ 9x’  ax! ou! o _1 (0w od' 0’ 0u’
A0 =5\ 908 00Q° ~ 802 0Q° Mmoo\ 0204 9g> g°

eCoordinates of the linearized surface deformation tensors

in terms of the space curvilinear coordinates of u

= Apre +

oQA 0Q° ( oQL 3QK_

2TM Unr)

QK aQr = . ¢ 04" _
Cre = Apre + 30" 9Q° (UL + ULk ) Crg = Axg — > 0 (U + Uyjk)
0QK 9QF Uk _ OUL d9¢" a¢ o, O

2T )

=% "o o Cog T ag
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Box 3-12(Contd.): The linearized surface deformation tensors é’l / CT and El / ET, and the linearized surface

rotation tensors R; / R, in the extrinsic approach

-

~

_ ~19QK aQr . 1 d¢8 oq¢" ~
Epe = 3308 90° (UkiL+ULik) €xg = §a—q,\a—qe(uku+uz\k)
1008 0Q Ui o0, 1o od ow  om
T 20QM 9Q° toQL  9QK 2 9g* 9¢° * 9¢! aq
2TM, Unr) AN
N _19QK aQr . _19¢" 84
Rre =3 90k 90° (Ukie — ULk ) ™ =5 0% ag (U — )
_laQKaQL aU_K_aUL) _la_qka_ql(%_@)
NG ~ 290" 9Q° ' 9Q ~ aQK “ 204 04 0f oG /)

Box 3-13 presents expressions of the above linearized tensors in the intrinsic approach where the surface curvi-
linear coordinates of the displacement vector are known. In this case, the linearized deformation tensors will
be linear functions of the surface coordinates U”/a* and U®/@3. Note the simple expressions of the linearized
Euler-Lagrange deformation tensors of the first kind and particularly the linearized rotation tensors in the

intrinsic approach in comparison to the extrinsic approach.

Box 3-13: The linearized surface deformation tensors C‘l / C‘T and El / ET, and the linearized surface rotation

~

tensors Ry / R, in the intrinsic approach

( Lagrangian portray ] [ Eulerian portray ]

Cro = Ane + Une + Usn Cro = Gxg — Uxrg — Ugx
= Apre + Upje + Uoja — 2 BroU? = axg — Uxjp — Ug|x + 2 breT®
Uy  OUg ouy Oug
7AA6+6Q9 aQA QFA@Uq> :am—a—qafa/\JrQI‘wu¢+
QBA@U3 2b)\0ﬂ3
- 1 - - 1 ~
Epye = §(CA® — Ape) €xg = 5(%9 — o)
1 aUA aU@ P 75 1 aﬂ)\ aﬂe b —
=3(5ge Tagn) ~ (Thelet =30 T ap) T (et
BA@ US) b>\0 'L_LS)
N 1 - _ 5 1 _
Rpre = §(UA‘@ —Ue|a) T = 5(“/\\0 — Ug|x)
1(8UA73(7@) 1(%7%)
NG 2'0Q° ~ 2QA 2 9¢  9g> J
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CHAPTER 3. SURFACE DEFORMATION ANALYSIS

We can also define the linearized Euler-Lagrange deformation tensors of the second kind (linearized tensors of
change of curvature by dropping nonlinear terms in relations of the tensors in Box 3-7 and 3-9. The linearization
can be done nicely due to expressions of the tensors in terms of the coordinates of the difference vector of the unit
normal vectors in addition to the coordinates of the displacement vector. This should be considered as another
main advantage of the use of the difference vector w in the expressions of the Euler-Lagrange deformation
tensors of the second kind. Box 3-14 includes the final results of the linearization of the left versus right Euler-
Lagrange deformation tensor of the second kind (Lagrangian versus Eulerian tensor of change of curvature) in
case that the tensors are functions of the space Cartesian and space curvilinear coordinates of u and w, namely

in the extrinsic approach.

Box 3-14: Left versus right linearized Euler-Lagrange deformation tensor of the second kind (Lagrangian versus

Eulerian linearized tensor of change of curvature) in the extrinsic approach

/ [ Lagrangian portray ] [ Eulerian portray ] \

Left linearized Euler-Lagrange deformation Right linearized Euler-Lagrange deformation

tensor(II) as function of the space Cartesian tensor(II) as function of the space Cartesian

coordinates of u and w:

~ ow 0X ON ou
Kro=—-< 308 * 50° > =
_pgo OX® Uk owr 9x K
A 0Qr 0Q°  9QA 0Qe

Left linearized Euler-Lagrange deformation
tensor(II) as function of the space curvilinear

coordinates of u and w:

~ I J I J o
ro 5202007 5 9@! 00

\

00t 905

2Q%® 8Q° IJ — 00N 9Q° WJ\I

coordinates of u and w:

g < W Ox _om  Ou
A dg* 7 9¢? dg* 7 9¢?

4 02" ouF Owk Ok

Right linearized Euler-Lagrange deformation
tensor(II) as function of the space curvilinear

coordinates of u and w:

/

We complete this section by introducing the Left and right linearized Euler-Lagrange deformation tensor of the
second kind in case of the intrinsic approach. The relations of Box 3-15 show efficiency of the intrinsic approach
in leading us to the compact and simplified relations of the tensors after linearization with respect to the surface

curvilinear coordinates of the difference vectors u and w.

Box 3-15: Left versus right linearized Euler-Lagrange deformation tensor of the second kind (Lagrangian versus

Eulerian linearized tensor of change of curvature) in the intrinsic approach

/ [ Lagrangian portray ] [ Eulerian portray ] \

Left linearized Euler-Lagrange deformation Right linearized Euler-Lagrange deformation

tensor(IT) as function of the surface curvilin- tensor (IT) as function of the surface curvilinear

ear coordinates of u and w: coordinates of u and w:

Kro = BY Ugo — Wae kxo = bf Uy — WY

= B;{’U\m@ - V_VA|@ + U3(BA@ - BK/B\I/@) = bl){)ﬂ,qmg — Wy + ﬂs(bAQ - bi}bw)

N
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The linearized surface deformation tensors, which are introduced in this section, are the most appropriate

deformation measures in infinitesimal approach where

ou oX ou ox
||3Q—A||<<||WH versus ||8_(ﬁ||<<||8_(ﬁ|| . (3-33)

However, for arbitrarily large displacement, different deformation measures will be needed to describe finite

strain and finite rotations of the deforming surface.

3.5 Associated Invariants of the Surface Deformation Tensors

The coordinates of the surface deformation tensors introduced in Section 3.4 depend on the surface coordinates
and consequently the moving reference frame used for the decomposition of the displacement vector and the
difference vector of the unit surface normal vectors. Thus, we have to look for scalar functions of the elements of
the surface deformation tensors which are invariant with respect to the change of surface coordinates. Moreover,
these associated invariants should have evident physical interpretations to be of any use. We should emphasize
here that in contrast to the classical 2-dimensional plane deformation analysis, where for example the coordinates
of the strain tensor have direct physical interpretations, we can’t proceed in this way because of the curvilinear

nature of the methods of the analysis.

E. W. Grafarend (1995) treats the method of general eigenvalue problem for the pair of two second order
tensors, one symmetric and one symmetric and positive-definite, to determine eigenvalues associated with the
deformation and strain tensors. The general eigenvalue problem is equivalent to the standard problem of the
simultaneous diagonalization of two symmetric matrices in matriz algebra. Taking into account the matrix
representation of the metric tensors of the reference- and current surface and left and right Cauchy-Green

deformation tensors

A; = [Apro]ax2 versus A, = [axrg]ax2 (3-34)

C; = [Chol2x2 versus C, = [cao)2x2 (3-35)

for the pair of positive-definite, symmetric matrices {Cj, 4;} or {C,, A} a simultaneous diagonalization is

obtained from the general eigenvalue problem. Then, the associated eigenvalues are determined by

1 _ 1 _
A2, =3 {tr(ClAl )+ o =3 {tr(CTAT L+
versus
\/{tr(ClAl_l)}Q - 4det(C’lAl_1)} \/{tr(CTAT_l)}? - 4det(CTA;1)}

(3-36)
where, tr and det denote trace and determinant of the corresponding matrices, respectively. The eigenvalues
are usually numbered according to the inequalities A2 < A? and A3 < A2. They are positive real numbers for
symmetric, positive-definite second order tensors C; and C,. The square roots of the eigenvalues A%Q / )\%,2 are
interpreted physically as the maximum and minimum values of stretch (dilatation factor or length distortion)

at the points with the surface curvilinear coordinates Q® / ¢° on the reference- or current surface.

2 2
A%(Q°) := ds versus N (g% = ds

= 52 = (3-37)
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It is a well-known fact in matrix algebra that eigenvalues are invariant quantities independent of the selected
coordinate system. Thus, principal stretches are convenient scalar invariants associated with the left and right

Cauchy-Green deformation tensors.

With reference to the general eigenvalue problem we experienced for the left and right Cauchy-Green deformation
tensors, we arrive at the general eigenvalue problem for the pair of symmetric matrices {E;, A4;} or {E,, A, },
where

E; = [Epo)2x2 versus E,. = [exglax2 - (3-38)

The eigenvalues of the left and right Euler-Lagrange deformation tensors of the first kind E; and E, can be

determined analogously as

)

1 1
Ny =3 {tr(ElA;l)i =5 {tr(ETA;l)i
versus

\/{tr(ElAl_l)}z - 4det(ElAl_1)} \/{tr(ETAZI)}Z - 4det(ETA;1)}

(3-39)

Unlike the eigenvalues of the Cauchy-Green deformation tensors which are positive due to positive-definite
property of the deformation tensors, the eigenvalues of the Euler-Lagrange deformation tensors can be negative
or positive. The invariant quantities (A}, Aj)versus(A], A;) are called the Lagrangian versus Eulerian principal
strains. A deformation portrait with a positive principal strain is referred to as extension, while that with a
negative principal strain as compression. Two well-known associated invariants of the left versus right Euler-
Lagrange deformation tensors of the first kind (Lagrangian versus Eulerian strain tensors are defined in terms

of principal strains. They are surface dilatation

A=A+ Ay =tr(EB A versus §:= XN + )y =tr(E. A" (3-40)
and surface maximum shear strain
I:i= A, — A V= A=A
versus (3_41)
= Jlr(BA))? — ddet(B A = J{tr(B, A7) — ddet(E, A; )

Surface dilatation represents the isotropic part and surface maximum shear strain the anisotropic part of de-
formation in the infinitesimal vicinity of the point of interest. They are both point functions with the following
physical interpretation: A/¢ is the areal change per unit area which is positive for an increase in area, and '/~
is the shear across the direction of its maximum value which has always positive sign. When the linearized
Cauchy-Green deformation tensors C / C, and the the linearized Euler-Lagrange deformation tensors of the first
kind E, / E, are considered, their corresponding associated invariants may be determined in the same fashion as

the exact tensors.

For the linearized surface rotation tensor R; / R, the associated invariant ® /@, titled linearized rotation around
the normal is introduced [W. Pietraszkiewicz (1977)] with

1 - 1
P .= 3 ®Rpo Versus ¢ = 5 Mo (3-42)

and ¢*© /e* being the contravariant coordinates of the surface alternation tensor given by
1 1

det(A;) I )

versus (3-43)
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The linearized rotation around the normal can be interpreted as the third component of the linearized rotation
vector along the unit normal vector to the surface. Once, we made use of the property to map the skew-
symmetric tensors onto a vector. The uniqueness of the unit normal vector N /n assures the invariant property

of ®/¢.

Analogous to the Cauch-Green deformation tensors and Euler-Lagrange deformation tensors of the first kind,
the general eigenvalue problem can be applied to the pair of symmetric matrices { K;, A;} or {K,., A, } to obtain
the eigenvalues of the left or right Euler-Lagrange deformation tensors of the second kind (tensor of change of

curvature), named principal curvature differences,
K; = [Kpo]ax2 versus K, = [kxolax2 - (3-44)

Thus, the principal curvature differences are achieved as result of simultaneous diagonalization of the left versus
right Euler-Lagrange deformation tensor of the second kind (Lagrangian versus Eulerian tensor of change of

curvature) along with their corresponding metric tensors,

N, = % (oA + N, = % {tr(K. A%
versus
Vit (KA} — ddet(K A7) | V(& A7) - 1det(K, A7)}

(3-45)
We can look at the sum A} + A} or the difference AY — A} of Lagrangian principal curvature differences or
their Eulerian counterparts as invariant measures of surface deformation. However, in differential geometry we
learn about two well-known scalar invariants connected to the second fundamental tensor of the surface, namely
mean curvature H/h and Gaussian curvature K/k, Box 3-16. Therefore, the differences of the Gaussian or
mean curvatures of the current- and reference surface are considered as more appropriate surface deformation
measures. They find a gentle physical interpretation relevant to sinking and rising regions. We will discuss

about it more later when the practical applications of the theory are treated.

Box 3-16: The change of the mean- and Gaussian curvature in the Lagrangian versus Eulerian portray

/ ( Lagrangian portray ] [ Eulerian portray ]

The change of mean curvature:

1 1
h—H = [a*by — A% Bye] h—H = [a*byy — A" Bhe]
1 1
= 5 [(AA@ + QEA@)(BA@ + KA@) - AA@BA@} = 5 [a)‘eb)\e - (a)‘e — 26)‘0)(1))\9 - k)\g)}
1 1
=5 [4% Ko + 2B Bre +2 B9 K o] =5 [0¥kre +26¥brg — 26Xk

The change of Gaussian curvature:

1 1
kK = (€Y brobgy — €"*€®Y Bro Bow) kK =3 (€ brgbgy — €**€®Y Bro Bow)
_ det(b)\g) B det(BA@) _ det(b)\e) B det(BA@)
o det(a,\g) det(AA@) o det(a,\g) det(AA@)
_ det(BA@ + KA@) B det(BA@) _ det(b)\e) 7 det(b)\e — k)\g)
det(AA@ + 2 Epo) det(AA@) det(a,\g) det(a,\g -2 €>\9)

\ /
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Chapter 4

The Earth Surface Deformation
Analysis

The general theory of the extrinsic versus intrinsic surface deformations analysis, developed in Chapter 3, is
formulated here for the particular case of deformations of the Earth surface. By the Earth surface, we mean
the realistic (topographic or physical) surface of the Earth with a mathematical description. The surface
is assumed to be a star-shaped orientable, smooth surface (no sharp point, edges or self-interaction), a 2-
dimensional Riemann manifold which is being isometrically embedded into a 3-dimensional Euclidean space
with the mass center of the Earth as its origin. The Earth surface is called star-shaped if the mapping of the
surface onto the Earth reference surface is one-to-one. The geometry of the Earth surface in the reference or
current surfaces has to be known as a parametrized curved surface. In this chapter, we focus on the Lagrangian
portray of the surface deformation measures where we assume the first and second fundamental tensors of the
Earth surface as two known surface tensor fields. The parameterization of the Earth surface in the reference
state should be done by means of appropriate surface coordinates. This will be the topic of the first section
of this chapter. The remaining sections deal with the formulation of the surface deformation measures for the

Earth surface as a deforming surface.

4.1 Surface-normal Coordinates

The embedding space E* can be covered by a chart of space curvilinear coordinates Q”, (J = 1,2,3). In geodesy,
the space curvilinear coordinates are usually defined by means of an Earth-fixed, 3-dimensional coordinate
system, whose geometry is a good regional or global approximation of the geometry of the Earth gravity field.
Such coordinate systems are preferred for representing points on the Earth surface. They are generally defined
based on a geodetic reference surface, which roughly represents an equipotential surface near the Earth surface.
As a restriction for the surface, the points on the Earth surface are assigned to their corresponding points on a
geodetic reference surface using a one-to-one mapping. Projection by means of surface normals is often selected
for the purpose of the mapping from the Earth surface onto this geodetic reference surface. Thus, a class of space
curvilinear coordinates, so-called surface-normal coordinates, is introduced. A comprehensive introduction of
the surface-normal coordinates and their geometric principals from a geodetic standpoint is provided by S. Heitz
(1985).

The geodetic reference surface, which gives a good mean approximation of the equipotential surfaces near
the Earth surface, is considered as a surface with a well known geometry. The geodetic reference surface
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is parametrized by means of surface curvilinear coordinates Q*(A = 1,2). The surface-normal coordinates
Q7,(J =1,2,3) of a point on the Earth surface consist of the surface coordinates Q™ of the foot point of its
normal to the reference surface and the height H of the point above the reference surface, namely the distance

along the surface normal.

(Q17Q27Q3) = (Q17Q27H) - (QAvH) (4_1)

Geodetic coordinates

Geodetic coordinates are a special type of surface-normal coordinates for which the geodetic reference surface is
referred to as an ellipsoid of revolution , i.e. a biaxial ellipsoid. In this case, the surface-normal coordinate H is
named ellipsoidal height. If the ellipsoidal (geographic) longitude L and ellipsoidal (geographic) latitude B play
the role of surface coordinates of the ellipsoid of revolution, the geodetic coordinates are named geographically
geodetic coordinates or geographic coordinates. Hence, the geographic coordinates of a point on the Earth
surface is given by

(QV H) = (L, B H) . (4-2)

The geographically geodetic coordinates are of main interest in this study. Hereafter, we refer to them as simply

geodetic coordinates.

According to E. W. Grafarend and P. Lohse (1991), and E. W. Grafarend and J. Engels (1992), a Gaussian

representation of the Earth surface in terms of the geodetic coordinates with respect to the reference ellipsoid

2 .
IE1417142 18

X(L,B) = §; XY(L,B)+1I,X2(L,B)+1sX3(L,B)

$+H(L,B) cos Lcos B +

V11— E?sin’ B |

r 4 7 (4-3)
L + H(L,B)|sinLcosB +

V1- E2?sin’ B

-1,

I,

+ H(L,B)|sinB

Ai(1 - E?)

V1 - E2sin’ B

I;

where

A2 — A2

E:= 71141 2 (4-4)
is called first relative eccentricity in terms of semi-major axis A; and semi-minor axis Ay of Eih 4, Here, the
geodetic longitude L and the geodetic latitude B serve as surface coordinates of the Earth surface. In this
case, the geodetic height H is considered as a function of surface curvilinear coordinates L and B and not as
an independent coordinate. In order to apply this representation, Equation (4-3), in deformation studies of
the Earth surface, the theory of differential geometry requests at least C? continuity. Namely, the embedding
functions XX (L, B) and H(L, B) should enjoy at least continuity up to the second derivatives.

4.2 Extrinsic Deformation Analysis of the Earth Surface

In chapter 3, we derived the expressions of Lagrangian surface deformation tensors as functions of space Cartesian

coordinates of the displacement vector and the difference vector of unit normal vectors, Box 3-6 and Box 3-7.
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We also obtained the linearized relations of these tensors, Box 3-12 and Box 3-14. According to Equation (4-3),

. . . K . . . .
the partial derivatives %r which are necessary in this case, are acquired as

Xl Xl
g—Ql: 83L = cosB[HpcosL — (N + H)sin L]
X2 X2
g—Ql: 88—L: cos Bl[Hpsin L + (N + H) cos L]
ax3 ax3 .
an = 8—L: HL sin B

(4-5)
ax! ax!
TQQ: 55 cos L[Hg cos B — (M + H) sin B]
X2 X2
g—Qz: aaB = sinL[Hpcos B — (M + H)sin B|
X3 X3
g—Q?: 88—32 [Hpsin B + (M + H) cos B|

Hj and Hp stand for partial derivatives of the height function with respect to the surface coordinates L and
B. The normal curvature radius N and meridional curvature radius M of the reference ellipsoid are given as
follows

A
M(B) := A4l = B (4-7)

(1-E? sin® B)%

Besides the above partial derivatives, we also need to have the partial derivatives % and gTWAI and the
coordinates of the mixed tensor BY that will be discussed later.

The second method of the extrinsic deformation analysis was presented by formulating the surface deformation
measures in terms of space curvilinear coordinates of the difference vectors u and w, Box 3-8 and Box 3-9. In
Lagrangian portray, the method asks for the coordinates of the Jacobi matrix of the coordinate transformation
from surface curvilinear coordinates Q to the space curvilinear coordinates Q¥. The Jacobi matrix can be
derived for the particular case for which the geodetic coordinates serve as the space curvilinear coordinates and
geodetic longitude and geodetic latitude (L, B) as the surface coordinates.

1 0
o K
=[5 ] -1 o o 8
H; Hp

In addition to the coordinates of the Jacobian matrix, we also need the analytical expressions of the space
Christoffel symbols F§ x for computing the surface deformation measures of the Earth surface. They have been
computed and listed in Box 4-2 for the geodetic coordinates (L, B, H).
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Box 4-1: The covariant and contravariant coordinates of the embedding space metric tensor for the geodetic
coordinates (L, B, H)

4 N

eThe covariant coordinates of the metric tensor of the embedding space E3

(N + H)?cos’B 0 0
(G1s(L, B, H)] = 0 (M+H)2 0
0 0 1

eThe contravariant coordinates of the metric tensor of the embedding space E?

[GI7(L,B,H)| =|[Grs(L,B,H)]™!

(N + H; cos? B ) 0
= 0 areap °
0 0 1
ePartial derivatives of G;; with respect to (L, B, H)
% =—(N+ H)(M + H)sin2B
85}; =2(N + H)cos? B
%? =2Mp(M + H)
%? =2 (M + H)

0Gzz  0Gs3  0Gss
oL 0B  OH

=0
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Box 4-2: Space Christoffel symbols I'. . /T as functions of the geodetic coordinates (L, B, H
JK/L Gk

4 N

K lGKL(aGLI 0GLy _ 8GU)
Q7 Q! oQr

Fh :Féz = F%s :F:l’,s =0

Lo — (M + H) tan B
12 (N+H)

r} -1

13 = (N+H)
2 (N + H)sin2B
T 2(M+H)

If, =T =T%=0

rz, — M5

22 (M+H)
1

T2, = —

23 (M+H)

F?z :1—?3 :F§3 :ng =0
'3, =—(N+H)cos’B

rs, =—(M+H)

where

34 E? (1 — E?) sin Bcos B
B (1 - E2?sin® B)3

o /

MB:

Having the partial derivatives 2%5 and %‘g‘}( and also the space Christoffel symbols, the space covariant deriva-
tives Ug|; and Wi jcan be computed. Consequently, the surface deformation measures of the Earth surface
can be determined based on the second procedure of the extrinsic approach. The linearized surface deformation
tensors and the linearized surface rotation tensor have a less complicated form, Box 3-12. The analytical expres-
sions of the coordinates of the tensors have been calculated explicitly as functions of the geodetic coordinates

in Box 4-3.
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Box 4-3: The left linearized Cauchy-Green deformation tensor C"l, the left linearized Euler-Lagrange deformation

tensor El, and the Left linearized rotation tensor R; of the Earth surface in terms of the space curvilinear

~

coordinates of the displacement vector (Extrinsic approach)

eCoordinates of the left Cauchy-Green deformation tensor:

~ o 801 8(71 8(73 2 803 201 sin2B —
Cn = 2[(% FHL (G ) HE G = o = (N H) (i U
U5 cos? B)} + H2 + (N + H)?cos® B
~ ~ oUy U, oU, ~ 0Us oUy  0Us oUs
Ci2 =C9 = a—B+8—L+HL(a—H+8—B)+HLHB+HB(8—H+8—L)+2HLH38—H+
2[Ul[(M+H)tamB—HB]_ U, Hy, ]
(N +H) (M + H)
s 8[72 8[72 8[73 2 8[_]3 Mp+2HpB\ - _
Cao = 2[33 + B(aH+ 8B)+H38H ( Of 8 >U2+(M+H)U3}+

H%, +(M+ H)?

eCoordinates of the left Euler-Lagrange deformation tensor of the first kind:

~ 8[_]1 8[71 8[73 2 803 2 Ul sin 2B —
Bu= 20 g, (9 0%y g2 9% g 2L gy SRED
n= op tH G+ T g — My ~ W D G U
Us cos® B)
_ _ 1 roU; AU, U,  0U; U, 9Us oU;
Brp= By = |92 4 9% g (9Y%2 98y g (91 O] g g, 008
12 = B2 2[8B+8L+ t(om o)t B(8H+8L)}+ LBt

[Ul[(M+H)tanBHB] U Hp ]

(N + H) (M + H)

5 8U2 8U2 8(73 2 8(73 Mp+2Hp\ - _

eCoordinates of the Left linearized rotation tensor:

Rii=Ryp= 0
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4.3 Intrinsic Deformation Analysis of the Earth Surface

Taking into account the parameterization of the Earth surface in terms of the geodetic longitude L and geodetic
latitude B as surface coordinates Equation (4-3), the geometric quantities of the Earth surface in the reference

state can be identified.

e Covariant tangent base vectors of the Earth surface A, :

X(L,B
A = % = I cosB[HLcosL — (N+H)sinL} +IgcosB[HLsinL+
(N +H)cosL| +I3sin B Hp
(4-9)
X(L,B
Ay = 0 éé ) = I cosL[HB cos B — (M + H)sinB} +IQSiHL[HB cos B—
(M + H)sin B| +I3[Hp sin B+ (M + H) cos B]
e Covariant coordinates of the metric tensor of the Earth surface Ao :
An(L,B) = H?+(N+H)%*cos’B
A12(L,B) = Ax1(L,B) = HpHp (4-10)
Ax(L,B) = HE+(M+H)?
e Determinant of the covariant metric tensor A :
A= det(AAq))
(4-11)
= H?(M+ H)?>+ (N + H)?cos? B[(M + H)? + H%]
e Contravariant coordinates of the metric tensor of the surface AA? :
Az
AL, B) = ==
( ? ) A
B [HE + (M + H)?|
 H}(M+H)?2+(N+H)2cos2 B[(M + H)? + H3]
12 21 Axo
(4-12)

—HpHp
H2 (M +H)?+ (N+H)?cos? B[(M + H)? + HZ]

A
A

A%(L, B)

[H? + (N + H)? cos® B]
H? (M +H)?+(N+H)?cos? B[(M + H)?> + H3]
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e Contravariant tangent base vectors of the topographic surface A% :
Al = AYMA,

1
=7 {(M+H)2cosB[HLcosL — (N+H)sinL|+ H,Hp cosLsinB(M + H) —

1
H2 cos Bsin L(N + H)}L + - {(M + H)?cos B[Hy sin L + (N + H) cos L] +
HpHp sin Lsin B(M + H) + H cos B cos L(N + H)}I2 +

1
< {(M + H)?sin BHy, — HyHp(M + H) cos B}Ig
(4-13)

A2 = A2AAA
1
= Z{(N—l—H)QcosQBcosL[HBcosB— (M + H)sinB]+ H Hgcos Bsin L(N + H) —

1
H2 cos L(M + H) sinB} I + Z{(N + H)? cos® Bsin L[Hp cos B — (M + H)sin B] —

1
HpHp(N + H)cos Lcos B — H? sin L(M + H) sinB} L + Z{Hﬁ(M + H)cos B+

(N + H)?cos® B[Hp sin B + (M + H) cos B]} I

Taking a closer look at the relations of the tensors of change of curvature in intrinsic and extrinsic approaches,
Box 3-9 and Box 3-11, and their corresponding linearized tensors, Box 3-14 and Box 3-15, one notes the need
for the covariant coordinates of the second fundamental tensor Bpg of the reference surface. The covariant
coordinates of the second fundamental tensor of the Earth surface have been computed explicitly in terms of
the surface coordinates (L, B) and listed in Box 4-4.

Box 4-4: Covariant coordinates of the second fundamental tensor Bpas of the Earth surface as functions of

(L, B)
\

1
Bu(L,B) = 77 B{HLL(N +H)M + H)—2H;(M + H) — (N + H)?cos Bsin BHp—

cos? B(N + H)?(M + H)}
Bis(L,B) = B (L, B)

= ﬁ{COSB(N-i-H)[HBL(M-i-H) —HBHL] +HL(M+H)[SinB(M+H)—

HBCOSB]}

K Bss(L,B) = %COSB(N+H){HBB(M+H)—2H%—HBMB—(M+H)2} J
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The coordinates of the mixed tensor Bf can be obtained by the rule of raising indices applied to the second

fundamental tensor Bag as

BY = A% B,o . (4-14)

The surface Christoffel symbols of the second kind I'$g are another important geometrical quantity of the
intrinsic surface deformation analysis. They enter in all the relations of the surface deformation measures in
the intrinsic approach via the surface covariant derivatives, Equation (3-28). The surface Christoffel symbols of
the second kind of the Earth surface have been computed and included in Box 4-5 along the partial derivatives

of the covariant coordinates of the metric tensors with respect to (L, B), necessary in the computations.

Box 4-5: Christoffel symbols of the second kind I‘ge computed for the Earth surface

Dire N

e Partial derivatives of the covariant coordinates of the metric tensor

oQ° -

A
8851 = QHL(N+H)COS2.B+2HLHLL
aAll 2 .
35 2Hp(N + H)cos* B+2H Hp —2sin Bcos B(N + H)(M + H)
0A12

= H; H HprH
oL Ldp+ HprHyp

= HpgpH H;gH
9B BpHp + HrpHp
0A
8—£2= 2H (M + H) + 2HpHp|,
Az
OB = 2(MB+HB)(M+H)+2HBHBB

e Surface Christoffel symbols of the second kind of the Earth surface '} :

1
T'ho = §AA\II (Avs,e + Ave,e — Ase,v)
1
Iy = Z{HL(M+H)2[(N+H)COSZB+HLL] + H Hp(N + H) cos B[2Hp cos B fsinB(MJrH)}
1
i, = Z{[H?B + (M + H)?|[Hg(N + H) cos® B — sin Bcos B(N + H)(M + H)]+

Hp(M + H)[Hyp(M + H) — HLHB]}

rl, = %HL(M—i—H){(M—&-H)[HBB (M + H)] - Hg (2Hp +MB)}
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Box 4-5(Contd.): Christoffel symbols of the second kind '} of the Earth surface

1
I = I (N + H) cosB{HB(N + H)cos B[Hp, — (N + H)cos? B] —2H}Hp cos B+

sin B(M + H)[H2 + (N + H)? cos? B]}

1
I3y = = {Hu(M + H)H} + (N + H)? cos* B + Hg sin Beos BN + H)] +

(N + H)Hg cos® B[(N + H)Hpr, — HLHB]}

1
U3y = = {(M+H) (2 Hp + Mp) H} + (N + H)? cos B[ Hg Hp + (Mg + Hg) (M + )]}

where

02H(L, B) 82H(L, B) 82H(L, B)
Hpr = Yz Hpp = o Hpp=Hpr = “ LB

o /

We specified the explicit relations of most of the geometrical quantities and the terms which are involved in
the extrinsic and intrinsic deformation measures of the Earth surface. The only terms that have not been
discussed yet, are the partial derivatives of the coordinates of the difference vector functions u and w with
respect to the surface and space curvilinear coordinates. In practical applications, these vector valued functions
rarely exist analytically. The values of these functions, given at nodal points of geodetic networks on the Earth
surface, are the only available information. Thus, we are confronted with the problem of propagating the vector
valued functions from nodal point values of coordinates of the difference vector functions in order to estimate the
necessary partial derivatives. In the same manner, the scalar valued function H (L, B) has to be propagated from

geodetic height values of nodal points in order that the partial derivatives of the function can be approximated.

4.4 Transformations of Space and Surface coordinates of a Vector

The space geodetic techniques provide us with Cartesian coordinates of nodal points at different time epochs
on the Earth surface. The observed coordinates of a point are related to space Cartesian coordinates of the

displacement vector of the point (U, U2 U?) as follows

Ul = z(t) — X(to)
U2 = 22(t) — X2(to) (4-15)
U3 = 23(t) — X3(to)

where [z!(t), 2%(t), 23(t)] and [X(t9), X?(to),23(to)] are point Cartesian coordinates observed at time epoch ¢
and tp in a common reference fixed frame. The developed theory of the extrinsic versus intrinsic deformation

49
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analysis of the Earth surface in the previous sections asks for space and surface curvilinear coordinates of the
displacement vector. Therefore, conversion of the observed Cartesian coordinates into the space and surface
curvilinear coordinates will be the subject of this section.

4.4.1 Conversion of the space Cartesian coordinates into the space curvilinear
coordinates

The placement vector X of a point on the Earth surface can be represented in terms of the geodetic coordinates
(L,B,H) as

X(L,B,H)= T, X'(L,B,H)+1,X?(L,B,H)+1, X3(L, B, H)
(4-16)
= Ii(N+ H)cosLcosB+1Iy(N + H)sin Lcos B+ 13 [N(1 — E?) + H|sin B

This representation of the placement vector with respect to the fixed frame {I;,I5,I3} is used to derive the

covariant base vectors of the geodetic coordinate system in the following manner

0X(L, B, H)

GlzT = -Li(N+H)sinLcosB+1y(N+ H)cosLcosB
X(L,B,H

GQZ% = -I;(M+H)cosLsinB— 1 (M + H)sin Lsin B+ I3 (M + H) cos B (4-17)
0X(L,B,H

ng% = I cosLcosB+1ysinLcosB+1I3sinB .

The contravariant base vectors G are computed by means of the covariant base vector G; and contravariant

coordinates of the metric tensor G/, presented in Box 4-1, as

in L cos L
G'=GYG; = -I S I
J 1(N+H)cosB+ 2(NJrH)cosB
G2 _ GQJGJ - cosLsin B sin L sin B cos B (4—18)

M+ H) 2 M+m TP r+m

G} =@G3G; = IycosLcosB+1I,sinLcosB+1I3sinB .

With respect to the orthogonal, non-normalized moving frames {G1, Gz, G3} or {G!, G?, G3}, the space curvi-
linear coordinates of the displacement vector of covariant type can be derived as

Uk = <u, Gg >
(4-19)
= <U'L;),Gx > = <1;,Gg > U’ .

Thus, the conversion of the space Cartesian coordinates U into the curvilinear coordinates Uy has been derived.

In matrix representation, the final form of the conversion is written as follows
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—(N+H)cosBsinL (N + H)cosBcosL 0
Uy Ut
Us =| —-(M+H)sinBcosL —(M+ H)sinBsinL (M + H)cosB U? (4-20)
U?’ space U
cos Bcos L cos Bsin L sin B

Similarly, the space curvilinear coordinates of the displacement vector of contravariant type are computed from

the Cartesian coordinates,

UK = <u,GK>

(4-21)
UK = <(U1;),GE > = <1I;,GK > U’
and the conversion into contravariant coordinates U¥ is specified in matrix representation as
—sin L cos L 0 1
(N+H)cosB (N+ H)cosB

Ul Ul

2 _ —sin Bcos L —sin Bsin L cos B U2 ) (4-22)

3 (M + H) (M + H) (M + H) U3

space
cos Bcos L cos Bsin L sin B

As can be seen from the Equations (4-20) and (4-22), the coefficient matrices of the conversions are presented in
terms of the geodetic coordinates. Hence, the conversions request the geodetic coordinates to be available. While
transformation of the geodetic coordinates onto the Cartesian coordinates can be carried out straightforwardly,
as in Equation (4-16), the inverse transformation raises certain difficulties. The inverse transformation is usually
done by successive approximations in an iterative process [W. A. Heiskanen and H. Moritz (1967)], or using
closed form solutions [M. K. Paul (1973); K. M. Borkowski (1989)]. We should not forget the presence of the
two parameters semi-major axis A; and relative eccentricity F in all the above transformations which reflect

the role of the reference ellipsoid of revolution in final results.

The left and right Euler-Lagrange deformation tensors of the second kind (Lagrangian and Eulerian tensors of
change of curvature) require that the coordinates of the difference vector of unit normal vectors w as well as
the coordinates of the displacement vector u, Box 3-7, Box 3-9 and Box 3-11 be specified. The space Cartesian
coordinates W+ of the difference vector of the unit normal vectors at a point on the Earth surface can be

determined by means of Cartesian coordinates of the unit normal vectors

Wl — Nl _ 7’L1
W2= N2_n? (4-23)
W3 = N3-n3 .

The Cartesian coordinates N7 and n/ can be determined in terms of geodetic longitudes and geodetic latitudes

of the point at the reference- and current state, respectively. Box 4-6 presents the final derivations.
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Box 4-6: Space Cartesian coordinates of the unit normal vectors N(L, B) and n(l,b)

/ The Reference Surface The Current Surface \

1 1

NYL,B) = \/_Z{ sin L(M + H)Hp, + cos Bcos L(N+ nt(l,b) = %{ sinl(m + h)h; + cosbcosl(n+
H)[sin BHp + cos B(M + H)]} h)[sin bhy + cos b(m + h)]}

N2(L,B) = JLZ{ cos Bsin L(N + H)[sin BHp+ n2(l,b) = %{ cosbsinl(n + h)[sin bhy+
cos B(M + H)] — cos L(M + H)HL} cosb(m + h)] — cosl(m + h)hl}
1 1

N3(L,B) = \/—Z{ cos B(N + H)[sin B(M + H)— n3(l,b) = %{ cosb(n + h)[sin b(m + h)—

Hp cosB]} hy cosb]}
o /

Having the space Cartesian coordinates of w, they can be converted into the space or surface curvilinear

coordinates using the convenient methods of conversions, established in the remainder of this section.

4.4.2 Conversion of the space Cartesian coordinates into the surface curvilinear
coordinates

The intrinsic approach is based on the surface curvilinear coordinates of the displacement vector as well as
the difference vector of the unit normal vectors. Thus, we have to establish a sort of conversion from space
Cartesian coordinates, which are usually available, into the surface curvilinear coordinates, which are requested.
The procedure here is the same as conversion into the space curvilinear coordinates, discussed in Section 4.4.1.
The surface curvilinear coordinates of the displacement vector of type covariant can be obtained as orthogonal

projections of the displacement vector onto the covariant base vectors of the reference surface.

Up = <11,AA>
(4-24)
= <(U'Iy),Ar> = <I;,Ay\> U’ .

The out of surface coordinate Us of the displacement vector is derived by inner product of the displacement

vector and the unit normal vector of the surface N

U3=0U>= <u,N>
= <U'I;),N> = <I;,N> U’ (4-25)
= NW'+ N2U?2+ N3U3 .
The covariant base vectors A, have been represented with respect to the fixed frame {I;,I>,I3}, Equation
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(4-9). The representation of the unit normal vector N with respect to this frame can be established as follows,

N(L,B)= I,NY(L,B)+I,N2(L, B) + IsN3(L, B)

1
- { sin L(M + H)Hp, + cos B cos L(N + H) [sin BHp + cos B(M + H) ]} I, +
(4-26)

1
\/—Z{cosBsinL(N—i—H)[sinBHB + cos B(M + H)] —COSL(M+H)HL}IQ+

\/LZ{ cos B(N + H)[sin B(M + H) — Hg cos B]} L .

Finally, the conversion of the Cartesian coordinates into the surface curvilinear coordinates can be shown in

matrix representation as

[cos B[Hy cos L — (N + H) sin L] cos B[Hy sin L+ (N + H) cos L sin B Hy, T
U, )
7 cos L[Hp cos B — (M + H) sin B] sin L[ Hp cos B — (M + H) sin B] [HpsinB+ M+ H)cosB] || U
2
gl U2
Us s
wrfoce | L (LM HYH ! Bsin L(N + H)[sin BH 1
7a {{sin LM + H)HE+ ﬁ{cos sin L(N + H)[sin BHp+ ——{ cos B(N + H)[sin B(M+
cos Beos L(N + H) [sin BHg+  cos B(M + H)] — cos L(M+ VA
cosB(M+H)]} H)HL} H)*HBCOSB]} |
(4-27)

Analogous to the covariant surface curvilinear coordinates of the displacement vector, their contravariant coun-
terparts can be computed. In this case, the coefficient matrix will be much more complicated because of the
form of contravariant base vectors A*, Equation (4-13).

Ur= <u, Ar>

(4-28)
= <(U'I;), A > = <1;, A > U’
The conversion in matrix representation will be written as follows
- 1 2 1 2 . T
Z{(M+H) cos B[Hp cosL — Z{(M+H) cos B[Hp, sin L+ 1
(N+H)sinL]+ H Hgp (N+H)cosL] + H Hp Z{(M+H)25iHBHL—
cos Lsin B(M + H) — sin Lsin B(M + H)+ HLHB(M+H)COSB}
H%cosBsinL(N-l—H)} H%cosBcosL(N—i—H)}
Ul
1 2 2 1 2 2. U?
_ il - 1
2 A{(N+H) cos” Becos L[Hp A{(N+H) cos” Bsin L[Hp Z{HE(M+H)COSB+ 2
_ = cos B — (M + H)sin B]+ cos B — (M + H)sin B] — 2 2 .
3
U Hyp Hp cos Bsin L(N + H) — HpHp(N + H) cos L cos B— (N'+ H)" cos” B{Hp sin B+ 3
2 . 2 . . (MJrH)CosB]} U
surface H7 cosL(MJrH)smB} HLsmL(M+H)smB}
1{'LMHH 1{ Bsin L(N + H)[sin BH 1
ﬁ sin L(M + H)Hy + ﬁ cos Bsin L(N + H)[sin B+ —{COSB(NJrH)[SinB(MJr
cos Beos L(N + H) [sin BHg+ cos B(M + H)] — cos L(M+ \/5 s
cosB(M+H)]} H)HL} ) — Hp cos ]} |
(4-29)
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4.4.3 Conversion of the space curvilinear coordinates into the surface curvilinear

coordinates

In the same manner, we can obtain the conversion of the curvilinear coordinates into the surface curvilinear
coordinates. The conversion is developed for the case of transformation from space contravariant coordinates
into the surface covariant and contravariant coordinates. Again, the coordinates of the coefficient matrices can
be written as inner products of the base vectors of the space moving frame {G1, Gz, Gs,} and the surface
moving frames {A', A2, N} and {A;, Ay, N}
U= <u,Ap>
(4-30)
= <(U’Gy),Ar> = <Gy, Ay > U’

The out of surface component of the displacement vector Us is derived by the inner product of the displacement

vector and the unit normal vector of the surface N

U3=U%= <u,N>
(4-31)
= <({U’Gy),N> = <G;,N> U’

The coefficient matrix in case of transformation from space contravariant coordinates onto surface covariant

coordinates will be written as

(N + H)? cos? B 0 Hp,
U1 Ut
7, _ 0 (M + H)? Hp 72
_ 73
U3 Surface U Space
—(N+H)(M+H)HcosB —(N+H)(M+H)HgcosB (N+H)(M + H) cosB
VA VA VA

(4-32)

In the same manner, the space contravariant coordinates can be converted onto the surface contravariant

coordinates ~
UM= <u, A* >
(4-33)
= <(U'Gy), A > = <Gy, A>T/
The conversion in matrix representation has the final form as
U? (N + H)? [HE + (M + H)?] cos® B —(M + H)? Hy Hp Hp (M + H)? Ut
U? :% —(N + H)?HL Hp cos® B (M + H)?[H? + (N + H)? cos® B| (N + H)?Hp cos® B U?
U3 ~VAN+H)(M+H)H,cosB —VA(N+H)(M+ H)HgcosB +A(N+ H) (M + H) cos B 3 Space
- - Surf(;ce )
(4-34)
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The transformations from the space curvilinear coordinates into the surface curvilinear coordinates can be
useful in the linearized theory of deformation where we assume the displacement vector and the coordinates of
its gradients are small. In such a case, the space curvilinear coordinates of the displacement vector of a point

on the Earth surface can be written with sufficient accuracy as

] lEE

where (L(to), B(to), H(to)) and (I(¢), b(¢), h(t)) are geodetic coordinates of the material point observed at time

epoch ty and t, respectively. Thus, having the geodetic coordinates of a point on the Earth surface in the

/R w

reference and current states, space curvilinear contravariant coordinates of the displacement vector of the point
can be obtained in the first order approximation from the difference of these coordinates. Then, the space
curvilinear coordinates can be converted into the surface curvilinear coordinates of the displacement vector, by
means of Equations (4-32) and (4-34), which are requested in the intrinsic approach of the surface deformation
theory.

4.4.4 Conversion of the space Cartesian coordinates into the surface curvilinear
coordinates based on the least square solution

As an alternative approach to the problem of the conversion of the space Cartesian coordinates of the displace-
ment vector into its surface curvilinear coordinates in a particular case of small displacements, the generalized
inverse method can be applied. Taking into account the Gaussian representation of a surface X(Q!, Q?), the
differential of the vector valued function X is defined as,

0X o0X
dX = —dQ" + —— dQ? 4-36
201 Q' + 90? Q (4-36)
or in terms of Cartesian coordinates as,
ox’ ox”’
dx’ .= dQ* dQ? 4-37
901 Q' + 907 Q (4-37)
Then, the matrix representation of the differential can be written in the form,
roxt ox!' T
ol 0Q?
dx?!
2 2 d 1
dx? | = 2—2; 2—2; [ de ] or Y=A4X (4-38)
axs3
0x3 9Xx3
L 0Q! 0Q2 |

In the language of the least square theory, we encounter the following problem: Find the vector of unknown
parameters X from the vector of observations Y subject to rankA =2, Y € R3*1 A € R3*2 X € R?2*!, The
least squares solution of this overdetermined problem based on ||Y — A X|| = min., is given by means of left
inverse Azl. The reader interested in an in-depth treatment of the generalized inverse techniques is referred to
E. W. Grafarend and B. Schaffrin (1993); K. R. Koch (1999).
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-~

X=A;'Y=(AT4)1'A"Y (4-39)

As application of this theory, in a special case of small displacements the space Cartesian coordinates of the
displacement vector U’ can be considered as the differentials dX” and its surface curvilinear coordinates U
as differentials dQ™. Thus, the solution of the transformation from the space Cartesian coordinates onto the

surface curvilinear coordinates is introduced.

_ Ut
1
v ~ (ATA)1AT | U2 (4-40)
U2
Sur face U3

Space

In this case, the coefficient matrix A can be specified based on the geodetic longitude and geodetic latitude as

the surface coordinates.

r Xt X! T
oL 0B
2 2
S
ox3® ax3
L 0L 0B -
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Chapter 5

The Earth Surface Deformations and

Displacement Fields

This chapter deals with the practical aspects of the Earth surface deformation analysis. The developed theory of
the surface deformation analysis for the Earth surface in Chapter 4 requests a known displacement field. Geodesy
as a discipline of geosciences which treats the geometrical modelling of the Earth surface, provides us valid
knowledge of these displacement fields thanks to the advances in the space geodetic techniques. Displacement
is understood as an effect of (visco-) elastic deformations of the Earth in response to time-varying surface loads
and other causes. We start with considering the main causes of the Earth temporal deformations and proceed
with the role of space geodesy in geometrical modellin