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Abstract

Lagrangian and Eulerian deformation tensors are a key tool in the study of deformation. Although many

methods have been proposed to calculate deformation tensor fields of the Earth surface, only few refer to the real

surface of the Earth. Most of these methods formulate the problem on reference surfaces such as projection plane

or sphere and consequently their results suffer from possible effects of incompleteness in the mathematical models

of projections. The surface deformation tensors and their associated invariants are critical for a meaningful study

of deformations and kinematics of the Earth. Moreover, their geodetic estimates are crucial as initial values for

geophysical models as well as quantifying potential seismic activities. Here we present a method of differential

geometry that allows deformation analysis of the real surface of the Earth on its own rights for a more reliable

and accurate estimate of the surface deformation measures. The method takes advantage of the simplicity of the

2-dimensional spaces versus 3-dimensional spaces without losing or neglecting information and effect of the third

dimension in the final results. The dissertation describes analytical modelling, derivation and implementation

of the surface deformation measures based on the proposed method with particular attention to the formulation

and implementation of the tensors of linearized rotation and change of curvature in Earth deformation studies.

Finally the method is applied to a real data set of space geodetic positions and displacement vectors. This

application reveals capabilities and strengths of the developed mathematical models of the suggested method.

Zusammenfassung

Lagrangesche und Eulersche Deformationstensoren sind ein wesentliches Werkzeug für die Untersuchung von

Deformationen. Obwohl eine Vielzahl von Methoden zur Berechnung von Deformationstensorfeldern für die

Erdoberfläche existiert, beziehen sich nur wenige von ihnen auf die wahre Oberfläche der Erde. Die meisten dieser

Methoden formulieren das Problem bezüglich einer Referenzfläche, wie eine Projektionsebene oder Kugel, und

folglich leiden ihre Ergebnisse unter möglichen Effekten, die durch die Unvollkommenheiten der mathematischen

Modelle der Projektionen verursacht werden. Die Oberflächendeformationstensoren und die mit ihnen verbun-

denen Invarianten sind wesentlich für eine aussagekräftige Untersuchung von Deformationen und Bewegungen

der Erdoberfläche. Zusätzlich dazu sind ihre geodätischen Schätzwerte unverzichtbar als Anfangswerte für geo-

physikalische Modelle und die Quantifizierung möglicher seismischer Ereignisse. In dieser Arbeit wird eine Meth-

ode aus der Differentialgeometrie gezeigt, die eine Deformationsanalyse der wahren Erdoberfläche ermöglicht und

so zu einer verlässlicheren und genaueren Bestimmung von Oberflächendeformationsgrößen führt. Die Methode

nutzt die Vorteile aus, die sich aus der Einfachheit zweidimensionaler gegenüber dreidimensionalen Räumen

ergeben, ohne die Informationen und Effekte der dritten Dimension in den Endergebnissen zu verlieren oder zu

vernachlässigen. Die Dissertation beschreibt die analytische Modellbildung, die Herleitung und die Implemen-

tierung der Oberflächendeformationsmaße, basierend auf der vorgeschlagenen Methode. Dabei wird vor allem

die Formulierung und Implementierung von Tensoren der linearisierten Rotation und Krümmungsänderung,

wie sie bei Deformationsuntersuchungen der Erde vorkommen, beachtet. Schließlich wird die Methode auf

einen realen Datensatz von räumlichen geodätischen Positionen und Verschiebungsvektoren angewandt. Diese

Anwendung zeigt die Möglichkeiten und Stärken der mathematischen Modelle der vorgeschlagenen Methode

auf.
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Chapter 1

Introduction

Geodesy has worked well and proved that measurement and representation of geodynamic phenomena such as

crustal motion, Earth rotation and Earth tides, are stated as one of its main goals. In particular, the study

of geometrical aspects of these geodynamic phenomena falls within the realm of geodesy. Crustal deformation

analysis based on classical geodetic measurements has been subject of a large number of studies in geodesy for

many years. In recent years, space geodetic techniques have provided a new, more accurate, and reliable source

of information for geodetic positioning which is used to detect and quantify deformations of the Earth surface.

Advents of these techniques have changed dramatically the rules of crustal deformation analysis. Moreover, it

is not difficult to foresee, thanks to the rapid progresses of the space geodetic techniques, that position accuracy

and density of point distribution in geodetic networks which play a key role in Earth deformation studies will

increase rapidly in the not too distant future. These practical progresses ask for new methodologies in Earth

surface deformation investigations that can take advantage of this invaluable source of information. Thus, the

theoretical principles and methods of the analysis have to be reconsidered and renewed. Based on this point,

with the aim to achieve a better representation of the kinematics of the Earth surface and to contribute to a

deeper understanding of the geodynamic processes involved, this study has been carried out.

Generally speaking, deformation is the alteration of form and shape of a material. Its scientific treatment

is linked to mechanics as a field of physical science which refers bodies of idealized properties reflecting the

characteristic response of the material to applied loads on the basis of experience and observation. In mechanics,

the bodies of idealized properties are called models. The continuous medium is one of the most successful

models widely used in mechanics. Two, idealized, main properties are assumed for the model. Firstly, the

geometrical space available is continuously filled by the material with the molecular structure neglected but not

forgotten. Secondly, the mathematical relations, describing the mechanical state and change of the state of the

model, are expressed by tensor functions of the position vector and time, and the functions together with their

derivatives of adequate orders are continuous. Continuum mechanics as a branch of the science of mechanics

has been designed to study the state and change of state, namely deformation, velocity distribution and wave

propagation, of deformable materials (gases, liquids and non-rigid solid bodies) by means of the continuum

model [A. C. Eringen (1962, 1967), L. E. Malvern (1969), G. E. Mase (1970), G. Beda et al. (1995)].

The principal subject of geodesy is the study of the size, shape, and gravity field of the Earth as well as the time

variations of all the above. The relevant concepts and mathematical tools of deformation analysis developed

in continuum mechanics have found manifold applications in geodesy even in geodetic problems which are

not directly related to deformation of a material body. In mechanics, the analysis is done by establishing a

one-to-one correspondence between two different states of the deformable body for comparison of its altered

geometrical characteristics. In order to apply the mathematical tools outside the realm of mechanics, it is only

1



CHAPTER 1. INTRODUCTION

necessary that geometrical characteristics of physical or even abstract entities under investigation be brought

into a one-to-one correspondence in the same way. A direct application of the developed concepts and tools

of continuum mechanics in geodesy can be seen in the Earth deformation studies which clearly correspond to

the treatment of material deformable bodies in continuum mechanics. The deformations of the Earth due to

body tide, tidal loading and attraction, plate tectonic motion and so on, have been subjected to extensive

investigations from theoretical and practical points of view based on terrestrial and extra-terrestrial geodetic

observations. The study of temporal variations and deformations of the gravity field of the Earth is another

example of applications of deformation analysis in geodesy. In this case, the change of the gravity vector field

in the vicinity of a fixed point in geometry space can be regarded as deformation. Alternatively, the problem

can be formulated by studying the change of geometric positions identified by the same value of the gravity

vector or any other appropriate gravity field parameters with respect to two different states of gravity field.

As the third alternative, the problem can be studied by determining the changes of the both geometric and

gravity characteristics, as well as their interrelations, in the neighborhood of a point on the Earth surface.

Some examples of the application can be seen in the works of E. W. Grafarend (1978), E. Osada (1980), A.

Dermanis et al. (1983b), A. Filaretou (1986), E. Livieratos (1987), B. Heck (1985, 1986). Another interesting

application is the comparison of two forms of a geodetic network resulting from its adjustment by different

subsets of the available observations. In this case, deformation measures are used to analyze the impact of

incompatible observations or detect blunders in the network [K. Thapa (1980), P. Vani′ček et al. (1981)]. A.
Fotiou and E. Liveratos (1984) apply deformation analysis techniques in network inconsistency studies when

two sets of coordinates of the same network referred to different datums are compared.

In continuum mechanics, deformation is not regarded by itself but mainly in connection with the underlying

forces, namely stress-strain relations. E. W. Grafarend (1977) applies the concept and derives stress-strain

relations, specially of local, homogenous and isotropic type, in geodetic networks. It should be mentioned that

in case of abstract entities with a non-material nature, the physical meaning of deformation varies depending on

each particular application. A comprehensive discussion of existing or possible future applications of deformation

analysis in geodesy and geodynamics was given by A. Dermanis and E. Liveratos (1983b) with special emphasis

to the study of crustal deformation, deformation of the gravity field and gravity field related deformations of

the Earth.

Continuum mechanics is divided into different subdomains. Some of these subdomains such as kinematics, which

deals with the displacement and deformation and study the time and space dependent tensor fields of continua

or basic principals, describing the general physical theorems and laws applied to continua independently of their

material characteristics, refer to every continua. Besides these subdomains of general theory, there exist special

continuum mechanical theories for formulation and solution of boundary condition and initial value problems

of special continua of idealized geometry under different external impacts on the basis of various methods and

laws, like fluid mechanics, theory of elasticity, theory of plasticity and shell theory.

A shell as an idealized continuum model, is a three-dimensional material body of which one dimension, namely

the thickness, is much smaller than the two other dimensions. Hence, a shell can be regarded as a surface-like

body. The theory of shell is destined to describe the three-dimensional behaviour of a deformable body of this

type by means of surface fields in a two-dimensional manner ,e.g. W. B. Kraetzig (1971), P. M. Naghdi (1972),

W. Pietraszkiewicz (1977), W. Olszak (1980). Any unique mapping from three- to two-dimensional space is

incompatible with our experience. Thus, the goal of dimensional reduction in shell theory can only be achieved in

an approximate sense. The replacement of three-dimensional mathematical models of shell by two-dimensional

ones is carried out by defining a reference surface called middle surface, that is, the surface which is equally

far from both the outer surfaces of shell, and transforming all basic three-dimensional mechanical equations

such that they remain functions of the two surface coordinates of the middle surface. Thus, we restrict the

deformations of the shell to surface deformations and end up with the two-dimensional shell equations. In fact,

2



CHAPTER 1. INTRODUCTION

the thinner the shell the better is the approximation of its three-dimensional behaviour by two-dimensional

quantities describing the deformation of its middle surface. Therefore, an exact theory of surface deformation

based on differential geometry of surface builds the main theoretical foundation of shell theory. The concept and

developed mathematical tools of shell theory have found wider applications in civil, mechanical, architectural,

aeronautical and marine engineering in design and study of surface-like, man-made structures. In geodesy,

applications of mathematical methods of surface deformation analysis can be seen in map projection studies.

Interesting works have been done to the present time for the study of deformations induced when original

figures on a sphere or an ellipsoid, as two-dimensional Riemann manifolds, are mapped on a plane, as a two-

dimensional Euclidean space, see for examples the works of B. H. Chovitz (1979), V. Hojovec and L. Jokl (1981),

A. Dermanis and E. Livieratos (1983a), A. Dermanis et al. (1983a). An extensive and detailed review of surface

deformation measures with application to the optimal universal transverse Mercator projection is given by E. W.

Grafarend (1995). A. Dermanis et al. (1983b) utilize the surface deformation analysis for studying mappings

of geoid to ellipsoid. A possible application of techniques of surface deformation analysis into a traditional

geodetic problem, namely the surface mapping of a rotational ellipsoid onto a triaxial counterpart is shown by

M. Amalvict and E. Livieratos (1988).

The mathematical tools and concepts of deformation analysis, developed in continuum mechanics, have since

the late 1920’s been applied by geoscientists to Earth deformation studies based on geodetic measurements. The

repeated observations of geodetic networks, within a convenient interval, have become an important source of

information for the investigation of the contemporary kinematics of the Earth surface in seismic areas and along

the plate tectonic boundaries. The first studies of this type appear in literature in the works of Japanese seis-

mologists T. Terada and N. Miyabe (1929), and C. Tsuboi (1930), who developed computational and graphical

methods of strain determination from station coordinates of a horizontal geodetic network. Since then, great

efforts have been made by the geodetic community to improve the analysis methods from both practical and

theoretical aspects.

Following the classical separation of traditional geodetic techniques, namely triangulation and trilateration

versus levelling, deformation of the Earth surface has been separated into horizontal and vertical components and

has been treated individually. The main reason for this conventional separate treatment is due to the separately

available horizontal and vertical networks in classical geodesy. For the study of horizontal crustal deformations,

the two-dimensional plane deformation measures are considered for the description of the geometric alterations

in the positions of the projections of the surface points onto the reference plane. When analyzing crustal

deformations in a local geodetic network, namely in a local scale, a common horizontal reference plane is

assumed for the perpendicular projection of the network points. In case of the analysis in a regional scale,

a map projection plane is considered as a reference plane and the network points are projected to the plane

by means of mathematical models of the selected map projection system. There is an extensive literature

concerning the two-dimensional plane deformation analysis of the crust using classical geodetic results, e.g.

W. Baarda (1975), T. Harada and M. Shimura (1978), E. Livieratos (1979), D. Schneider (1982), P. Wellman

(1983), W. I. Reilly (1989), R. Chen (1991), J. Kakkuri and R. Chen (1992), J. Pagarete et al. (1998).

Space geodesy has changed the rules of the game of positioning radically. Thanks to the space geodetic tech-

niques, such as GPS, VLBI, SLR and DORIS, three-dimensional positions of network points, containing both

horizontal and vertical components, can be determined with high precision, enough to be used as an accurate

and reliable source of information in Earth deformation studies. The great number of studies of this type using

displacement fields derived from repeated observations of space geodetic networks indicates how valuable and

important role the space geodetic techniques play in present and future states of geodynamics. Despite the

ability of space geodesy to provide three-dimensional displacement fields, the crustal deformation studies are

still carried out in horizontal and vertical components separately, e.g. Y. Bock and S. Shimada (1989), R. E.

Reilinger et al. (1997a, 1997b), P. Tregoning et al. (1998), H. -G. Kahle et al. (1998), P. G. Clarke et al.
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(1998), T. Kato et al. (1998), C. DeMets and T. H. Dixon (1999). The main reason of the separation is claimed

to be the non-sufficient accuracy of height component of point position due to unresolved modeling errors such

as the antenna phase center variations, path delays caused by atmospheric variations, and loading effects of

the ocean and atmosphere. Hence contrary to horizontal positions, there are still systematic effects that do not

cancel out in data processing steps and degrade the accuracy of the vertical positions which are determined

from extra-terrestrial observations.

Regarding the fact that in reality, crustal motions and deformations are of three-dimensional nature, purely

horizontal and purely vertical deformations do not exist. In the last two decades, some efforts have been made

to formulate the problem in three-dimensional space. J. Zaiser (1984) computes the displacement field, the

strain field and the rotation field in the context of arbitrary shaped geodetic networks and three-dimensional

finite elements. A curvilinear three-dimensional finite element method is introduced by E. W. Grafarend (1986)

for representation of local strain and local rotation tensors in terms of ellipsoidal, Gauss-Krüger or UTM

coordinates. A study of the estimability-invariance characteristics of deformation parameters obtained through

the finite element method, by using a dimension free approach with results that can be immediately specialized

to three or two dimensions, has been carried out by A. Dermanis and E. W. Grafarend (1993).

However, existing methods of Earth deformation analysis suffer from some weaknesses and difficulties. Major

problems existing in practical application of these methods are summarized as follows:

• Real crustal motions and deformations are of three-dimensional nature. Modeling the problems connected
with deformations in three dimensions by computing separately the two-dimensional plane deformations

and vertical motions can’t portray the real state of crustal deformations.

• Deformation parameters are used as initial values for geophysical models. For example, an application of
geodetic strain tensor in computation of seismic moment rates and analysis of earthquake potential budget

of the study area are shown by S. N. Ward (1998a, 1998b). The planar deformation parameters, referring

to the reference plane, can’t be used as initial values for geophysical models. They have to be referred to

the real surface of the Earth.

• The two-dimensional plane deformation analysis of the crust is limited to investigation of the alteration of
the metric characteristics of the crust. In other words, the analysis allows us to bring the metric tensors

of the two states of the body into a one-to-one correspondence. The Earth surface deformations can’t be

completely specified by the change of the metric tensor of the surface.

• The three-dimensional methods of Earth deformation analysis lose the simplicity of computations in two-
dimensional spaces. Moreover interpretation of the result of the analysis, namely three-dimensional defor-

mation tensors and particularly invariants associated with them, is not an easy task.

• The geodetic measurements are connected to the surface of the Earth and are of a surface nature. A three-
dimensional deformation study of the whole Earth based on only displacement fields derived from surface

geodetic measurements, neglecting the deformation measurements related to the interior of the Earth, can’t

reflect the real situation of the Earth deformations.

These facts indicate the need for reevaluation of the theoretical foundations of the Earth deformation analysis

methods. Regarding these disadvantages and difficulties and also the fact that we have only surface geodetic

measurements in our hands, it seems that a surface approach in Earth surface deformation analysis based on

three-dimensional displacement fields is an appropriate solution. In other words, an approach that keeps the

simplicity of computations in two-dimensional spaces, includes both vertical and horizontal components of the

Earth deformations, and refers to the real surface of the Earth will be able to resolve the problems of the existing

methods. Moreover, the space geodetic techniques can now provide accurate and dense geodetic data that can
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model the geometry of the real surface of the Earth at a level of accuracy convenient for developing an approach

of Earth deformation analysis referring to the real surface of the Earth. The first fundamental study of geodetic

surface deformation analysis has been performed by S. Heitz and worked out in detail by his Ph.D. student Y.

Altiner (1996, 1999) who developed a method of analytical surface deformation analysis of the Earth’s crustal

movements.

This dissertation presents an analytical formulation and implementation of a method of Earth surface deforma-

tion analysis referring to the real surface of the Earth. We benefit from the mathematical models and tools of

surface deformation analysis in shell theory to develop appropriate models of the analysis applicable to defor-

mation studies of the Earth surface. The Earth surface is considered as a two-dimensional Riemann manifold,

namely a curved surface, embedded in a three-dimensional Euclidean space. Thus, deformation of the surface

can be completely specified by the change of the first and second fundamental tensors, namely metric tensor and

curvature tensor, of the surface. Special emphasis is given to definition of proper invariants of the introduced

surface deformation tensors with meaningful physical interpretations. The main contributions of this study are,

• Introduction of intrinsic surface deformation analysis as a standard approach in shell theory to
the realm of the Earth deformation studies in geodesy

• New mathematical formulations for the tensor of change of curvature of the Earth surface as a
function of the difference vector of the unit normal vectors in addition to the displacement vector

for both the extrinsic and intrinsic approaches in surface deformation analysis.

The new formulation produces meaningful numerical results for the tensor of change of curvature and its

associated invariants, and allows us to apply it as a powerful surface deformation measure in studies of the

current kinematics of the Earth surface. The role and placement of the intrinsic approach in geometrical

modelling of Earth surface deformations has been shown using a diagram in Figure 1-1.

The surface deformation analysis in shell theory is developed on the fundamental mathematical foundations of

type differential geometry and tensor analysis. The basic definitions and principles of the foundation within

the scope necessary for this study are recapitulated in Chapter 2. Particularly, the main concepts of the theory

of differential manifolds are reviewed. Tensors take a prominent role in the mathematical models of the study.

Thus, the notions of covariant and contrvariant components of the tensor fields are introduced.

Chapter 3 begins with an introduction into the concept of surface deformation within the notion of Riemann

manifolds. The general theories of the methods of the extrinsic and intrinsic surface deformation analysis are

developed and various types of Lagrangian and Eulerian surface deformation measures are defined. The defined

measures are described in terms of the displacement vector and the difference vector of unit normal vectors. The

linearized theory of surface deformation analysis is presented with emphasis to the notion of linearized surface

rotation tensor. The Euler-Lagrange deformation tensor of the second kind (tensor of change of curvature) is

introduced as a measure of surface deformation and formulated in terms of the displacement vector and the

difference vector of the unit normal vectors. The associated invariants of the surface deformation tensors such

as surface dilatation, linearized rotation around the normal and changes of the mean and Gaussian curvatures,

with certain physical meanings are discussed in the last section of the chapter.

The general theory of the extrinsic and intrinsic surface deformation analysis is tailored and applied to study

surface deformations of the real surface of the Earth in Chapter 4. A Gaussian representation of the Earth surface

in terms of the geodetic coordinates with respect to the reference ellipsoid is assumed. Analytical formulation

of the mathematical tools of the extrinsic and intrinsic surface deformation analysis is developed for this special

case. An important step for application of the intrinsic approach in Earth surface deformation analysis is the

conversion of space Cartesian components of the displacement vector, resulting from data processing of geodetic

measurements, onto the surface curvilinear components. We conclude the chapter with the development of
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Figure 1-1: Methods of geometrical modelling of Earth surface deformations in geodesy

exact and approximate methods of the conversion.

Chapter 5 reviews the main causes of the Earth deformation in the first section. The second section deals with

a brief introduction of the space geodetic techniques that can provide us with dense and accurate displacement

fields of the Earth surface. In order to compute the surface deformation tensors and consequently their associated

invariants, it is necessary to know the continuous field of displacement, for evaluation of its partial derivatives,

at every point of the surface or, at least, in the neighborhood of specific points where surface deformation tensors

are to be calculated. Geodetic observations and displacement fields derived from them are usually discrete. In

such a case, the displacement field and its partial derivatives have to be approximated numerically. The finite

element method provide the necessary tools to achieve the goal. A review of the method and the role that it

plays in the context of the intrinsic and extrinsic surface deformation analysis of the Earth surface, are treated

in the third section of the chapter.

The efficiency of the developed method for geometrical modelling of the Earth surface deformations is demon-

strated in Chapter 6 by analysis of a real data set. The position and displacement rates of the data set are dense
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and accurate enough to be utilized in the numerical part of the study. The European and Mediterranean areas,

which are selected for the analysis of the capabilities of the intrinsic approach, are known as an extraordinary

natural laboratory for the study of geodynamics processes. Abundance of the preexisting deformation studies

in the region enable us to compare our numerical results with independent studies. We will investigate the links

between various patterns of the surface deformation measures with geophysical and seismological evidences of

the area to judge the validity of our numerical results.

Chapter 7 concludes the study. In the chapter, the main contributions of the study are summarized. The ad-

vantages and the main features of the application of the intrinsic versus extrinsic approach in Earth deformation

analysis will be critically discussed.
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Chapter 2

Theory of Manifolds

As mentioned previously, the concept of deformation will be presented in the next chapter based on the notion

of differentiable manifolds. Thus, the basic definitions and principles of the theory of manifolds, within the scope

necessary for this study, are recapitulated here. In fact, this chapter introduces the mathematical language of

the thesis. A more comprehensive treatment of the theory may be found in standard textbooks, e.g. T. J.

Willmore (1972), N. Prakash (1981), D. Martin (1991), and A. Visconti (1992).

From the point of view of structure mathematics the theory of manifolds is developed on the fundamental

structures of type algebra and topology. Adequate treatments of the materials of the structures required for

the theory of manifolds are provided by T. A. Whitelaw (1983), E. M. Patterson (1959) and W. A. Sutherland

(1975).

2.1 Differentiable Manifolds

Generally speaking, a manifold is a topological space which is locally Euclidean. This means that a short-

sighted observer at any point on it would regard his neighborhood as flat. The differentiable manifold is the one

which the existence of a unique tangent space is guaranteed at each point on it. Even in this elementary defi-

nition of the differentiable manifolds, there are a few fundamental mathematical terms which have to be defined.

Hausdorff Topological Space:

A topological space M is called a Hausdorff (separated) topological space if for any two distinct points x and y

of M , there exist separated neighborhoods UM (x) and UM (y), open sets of M , that do not intersect each other,

i.e. UM (x) ∩ UM (y) = ∅.

Homeomorphism and Diffeomorphism:

The notion of homeomorphism plays an essential role in the theory of manifold. It can be defined as a bicon-

tinuous bijection φ between two open sets. This means that φ and its inverse φ−1 are both continuous bijective

mappings. Two topological spaces are said to be equivalent if they are homeomorphic with respect to each

other. If the mappings φ and φ−1 are differentiable mapping of class Ck, φ will be called a Ck diffeomorphism.
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Manifold:

A Hausdorff topological space M is called an n-dimensional topological manifold, if to any point x ∈ M there

exists a homeomorphism φ mapping an open neighborhood UM (x) onto an open set φ(UM ) of n-dimensional real

vector space R
n. Thus, M is supposed to be locally equivalent to R

n. The dimension of M is defined as the

dimension n of R n and the space will be denoted by M
n.

Chart and Atlas of a Manifold:

A manifold M
n was defined as a Hausdorff topological space with further provision that every point x of it has

a neighborhood U(x) homeomorphic to an open set in R
n, i.e. φ : U(x) �→ R

n. The pair (U(x), φ) is called an

n-dimensional chart on M
n and U(x) is the domain of the chart. It is almost impossible to find a single chart

covering the whole of a given manifold M
n, in which case it is necessary to introduce a family of charts whose

domains take together M n entirely. A family Φ = (Ui, φi)i∈I of charts on M
n, I being an index set, is called

an atlas of M n if the domains Ui of φi cover M
n completely, i.e. M

n = ∪i∈IUi. Furthermore, Φ is said to be
a Ck atlas if for each two of these charts (Ui, φi) and (Uj , φj) on the manifold, with a non-empty intersection

Ui ∩ Uj ∈/ ∅, the mapping φj ◦ φ−1
i is a Ck diffeomorphism of φi(Ui ∩ Uj) onto φj(Ui ∩ Uj). In such a case,

(Ui, φi) and (Uj , φj) will be compatible charts.

Differentiable Manifolds:

A Ck differentiable manifold of dimension n is a topological n-dimensional manifold with a complete ( or

maximal) Ck atlas of charts (Ui, φi), defined over it. The term complete atlas is given to a Ck atlas on a

manifold if any chart, which is compatible to each chart (Ui, φi), is itself contained in the atlas. A well-known

example of differentiable manifolds is the real vector space R
n. R

n is a manifold covered by the single chart

(U, φ), where U = R
n and φ is the identity mapping.

2.2 Coordinates of Points on a Manifold

A way to describe the geometry of an n-dimensional manifold M
n is assuming the manifold as an embedded

submanifold of a higher dimension manifold, usually M
n+1, which is called the hypersurface of M n ⊂ M

n+1.

The embedding manifold is usually assumed to be an Euclidean space E
n+1. The most convenient way of

describing Euclidean spaces is by means of Cartesian orthonormal coordinate systems. Thus, a point p ∈ M
n is

parametrized in the frame {o, i1, i2, ..., in+1} of the embedding space E n+1 by its coordinates xk,

op = x = xkik k = 1, ..., n+ 1 (2-1)

xk are called space Cartesian coordinates of point p ∈ M
n. Thus, each point on the manifold M

n corresponds

to a vector x as a position vector.

In accordance with the summation convention, when an index appears in a product term once as a subscript

and once as a superscript, e.g. Equation (2-1), then unless the contrary is stated, the index is given all its

possible values and the resulting terms added together. Hereafter, the summation convention is applied to all

the statements.

Besides the embedding space E
n+1 and the embedded manifold M

n, one more space is involved here: a real

vector space R n which is the image of M n under the homeomorphism φ, as a chart of the manifold. Any point
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p ∈ M
n is consequently considered either as a point E n+1 and is parametrized by its coordinates (x1, ..., xn+1),

or as a point of M n and its image in R
n through the chart (U, φ) which is parametrized by its local curvilinear

coordinates (q1, ..., qn). In order to express the fact that p belong to M
n, it is supposed that every single space

coordinate xk is a function of n curvilinear coordinates (q1, ..., qn). Therefore, a parametric representation of

the manifold M
n is given by,

xk = xk(q1, ..., qn) k = 1, ..., n+ 1 . (2-2)

The point p, as a point of Euclidean manifold E
n+1, can be also parametrized by space curvilinear coordinates

(q1, ..., qn+1) through the chart representation of E n+1.

2.3 Tensor Fields

Tensor fields, as differentiable entities associated with any manifold, play an important role in determining the

geometry of a manifold. The fact that a tensor equation is true in all coordinate systems if it is true in one,

makes tensors so useful not only in the theory of manifold but also in many other disciplines. A comprehensive

treatment of tensor analysis can be read in the standard textbooks such as J. L. Synge and A. Schild (1949), J.

A. Schouten (1951, 1954).

A tensor field on a manifold may be viewed either as a multilinear mapping from Cartesian product of vector

spaces to the real or as a set of special type of functions, namely coordinates of the tensor, which obey certain

given transformation laws. The first approach is an index-free approach as opposed to the second, which leans

heavily on usage of indices. Selecting the second approach as a more familiar one to physicists, we restrict

ourselves to defining a tensor in index notation instead of invariant notation.

The n-dimensional manifold M
n can be parametrized locally by a set of curvilinear coordinates (q1, ..., qn).

Introducing another set of curvilinear coordinates (q′1, ..., q′n) on the manifold, the point transformation between
the two coordinate systems is given by

q′i = q′i(q1, ..., qn), i = 1, ..., n . (2-3)

The inverse transformation (q′1, ..., q′n)→ (q1, ..., qn) exists if the Jacobian |∂q′i∂qj | does not vanish. Various kinds
of tensor fields can be introduced according to the defined coordinate transformation.

A Scalar Field ( Tensor of Type(0,0) ):

It corresponds to a real function f of n variables qk such that if (q1, ..., qn) is changed into (q′1, ..., q′n)

(q1, ..., qn)→ (q′1, ..., q′n)⇒ f ′(q′1, ..., q′n) = f(q1, ..., qn) . (2-4)

Hence, the value of the scalar field f at a point on the manifold does not depend on the choice of the curvilinear

coordinate system.

A Contravariant Vector Field (Tensor of Type(1,0) ):

At each point p ∈ M
n, there is a tangent space T pM

n of dimension n. By assigning an element v of T pM
n to

each point p ∈ M
n, we obtain a contravariant vector field over M n.
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v := viai i = 1, ..., n (2-5)

where ai are base vectors of T pM
n. Thus, a contravariant vector field may be given by its n coordinates vi

which are functions of curvilinear coordinates (q1, ..., qn) and obey the following transformation law.

(q1, ..., qn)→ (q′1, ..., q′n)⇒ v′i(q′1, ..., q′n) =
∂q′i

∂qj
vj(q1, ..., qn) . (2-6)

A Covariant Vector Field (Tensor of Type (0,1) ):

At each point p ∈ M
n, besides the tangent space T pM

n, its dual space T
∗
pM

n also of dimension n can be

considered. A covariant vector field over M n assigns an element v of T ∗
pM

n to each point p ∈ M
n.

v := via
i, i = 1, ..., n (2-7)

where, ai are base vectors of the dual space T ∗
pM

n. Similar to the contravariant vector field, the coordinates of

covariant vector v satisfy the transformation law which is given as

(q1, ..., qn)→ (q′1, ..., q′n)⇒ v′i(q
′1, ..., q′n) =

∂qj

∂q′i
vj(q

1, ..., qn) . (2-8)

A Tensor Field of Type (r,s):

By taking tensor products of the tangent space T pM
n and its dual space T

∗
pM

n, we can define a tensor field

of any desired covariant and contravariant type. Hence, an r times contravariant and s times covariant tensor

field T rs can be defined as

T rs := t
i1...ir
j1...js

ai1 ⊗ ...⊗ air ⊗ aj1 ⊗ ...⊗ ajs (2-9)

The transformation laws between the coordinates of the tensor with respect to two related base vectors of T pM
n

can be given as

(q1, ..., qn)→ (q′1, ..., q′n)⇒ t′i1...irj1...js
(q′1, ..., q′n) =

∂q′i1

∂qk1
...
∂q′ir

∂qkr
∂ql1

∂q′j1
...
∂qls

∂q′js
tk1...krl1...ls

(q1, ..., qn) . (2-10)

Techniques that constitute tensor algebra, namely sums, products, contractions, etc. or properties of tensors

such as symmetry, skew-symmetry, ..., can be well defined in terms of components of tensors via an index

notation.

2.4 Riemann Manifolds

Before proceeding with the definition of Riemann manifolds, we have to introduce two more elementary con-

cepts, namely tangent space and metric tensor field.

Tangent Vector Space to a Manifold:

The tangent vector space is defined here in an extrinsic manner. The n-dimensional differentiable manifold M
n

is assumed to be embedded in E
n+1. Point p ∈ M

n with position vector x, Equation (2-1), is considered on the
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manifold. The infinitesimal vector

dx =
∂x

∂qi
dqi (2-11)

is an element of an affine n-dimensional vector space, called tangent space to M
n at p and denoted by T pM

n.

The associated vector space T pM
n has a basis consisting of the covariant vectors ∂x∂qi , i = 1, ..., n.

Metric Tensor:

Assuming every point p on the differentiable n-dimensional manifold M
n possesses a mapping A: T pM

n ×
T pM

n �→ R which satisfies

i) A(v,w)=A(w,v)

ii) A(α1v1 + α2v2,w) = α1A(v1,w) + α2A(v2,w)

iii) A(v, α1w1 + α2w2) = α1A(v,w1) + α2A(v,w2)

iv) A(v,v) ≥ 0

v) A(v,v) = 0 ⇒ v = 0

for all v,w ∈ T pM
n. The mapping A as a symmetric, bilinear, positive definite tensor field of type(0,2) over

M
n is called the metric tensor or first fundamental tensor of the surface. The metric tensor A gives rise to an

inner product on each tangent space T pM
n of M n. Thus, the inner product < v,w > is simply defined to be

A(v,w). The differentiable manifold equipped with such an inner product, is named Riemann manifold. The

metric tensor field A(q1, ..., qn) can be represented by a n by n symmetric matrix of its covariant coordinates,

A = [ aij ]n×n , (2-12)

with elements aij(q
1, ..., qn) that are real and given by

aij =<
∂x

∂qi
,
∂x

∂qj
> . (2-13)

Covariant Derivatives:

The problem of defining the derivative of a tensor field on an n-dimensional manifold can be solved by introducing

an operator of differentiation such as exterior differentiation or Lie derivatives [K. Yano (1957)]. These operators

have some limitations : the exterior differentiation is only applicable to differential forms and Lie derivatives

depend on field vectors in the neighborhood of the point of differentiation [D. Martin (1991)]. The covariant

derivative is given as an operator of differentiation on the manifold which is free of such limitations.

Assuming the contravariant vector field v(q1, ..., qn) over the manifold M
n with the contravariant coordinates

vi, one can obtain partial derivative of the vector field as

∂v

∂qk
=

∂

∂qk
(viai) =

∂vi

∂qk
ai + v

i ∂ai
∂qk

=

(
∂vi

∂qk
+ Γiklv

l

)
ai

(2-14)
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where the Γikl are three-index functions of curvilinear coordinates (q
1, ..., qn) called affine connection coefficients.

They describe an affine connection field whose components are the affine connection coefficients. The equation

2-14 may be abbreviated by

∂v

∂qk
= vi|kai . (2-15)

vi|k are coordinates of a tensor of contravariant order 1 and covariant order 1. They define the covariant partial
derivative of a contravariant vector field as

vi|k := ∂vi

∂qk
+ Γikjv

j . (2-16)

Similarly, the covariant partial derivative of a covariant vector field v(q1, ..., qn) will be a covariant tensor of

order 2. The coordinates of the tensor, namely Vi|k, are obtained by using v = viai as follows

∂v

∂qk
= vi|kai , (2-17)

where

vi|k :=
∂vi
∂qk
− Γjikvj . (2-18)

In the particular case of Riemann manifold of dimension n without torsion, with symmetric affine connection,

i.e. Γijk = Γ
i
kj , the connection coefficients are named the Christoffel symbols of the second kind, due to E. B.

Christoffel (1869). They can be uniquely determined as functions of the coordinates of the covariant metric

tensor A defined over the manifold.

Γijk =
1

2
ail

(
∂ajl
∂qk

+
∂akl
∂qj

− ∂ajk
∂ql

)
(2-19)

ail, as the contravariant coordinates of A, are specified by the following property

aik akj = aik a
kj = δij = δ

j
i (2-20)

2.5 Geometry of 2-dimensional Riemann Manifolds

In this section the main objective is to present a concise introduction to the geometry of an ordinary surface.

The surface is assumed to be a 2-dimensional Riemann manifold M
2 embedded in a 3-dimensional Euclidean

space E 3. After introducing the notions of normal vector field and fundamental forms of the surface, we proceed

with defining some of the geometric invariants of the surface which will be of importance in our considerations

on surface deformation.

Unit Normal Vector:

Considering the parametric representation of the surface in terms of surface curvilinear coordinates (q1, q2),

Equation (2-2), there exists a vector field n(q1, q2) on M
2 at least locally, if not globally, such that at every

point p ∈ M
2

< np,x >= 0 (2-21)
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for every x ∈ T pM
2. The vector field n is called unit normal vector field if n is assumed to be a unit vector,

< n,n >= 1. The unit normal vector at point p with surface curvilinear coordinates (q1, q2) will be obtained as

np =
a1 × a2
|| a1 × a2 || (2-22)

where a1 =
∂x
∂q1 and a2 =

∂x
∂q2 are base vectors of the 2-dimensional tangent vector space T pM

2 and ∧ denotes
vector product.

The Gaussian Moving Frame:

The Gaussian moving frame in 3-dimensional space is constructed using three linearly independent vectors,

namely the unit normal vector n and two tangent base vectors a1 and a2, associated to any point on the

surface. The moving frame plays an essential role in deformation analysis of surfaces based on the intrinsic

approach discussed in the next chapter.

First and Second Fundamental Forms:

The function I(q1, q2), defined as

I(q1, q2) :=< dx, dx >= aαβ dq
αdqβ , (2-23)

is a quadratic form which is called the first fundamental form of the surface. The coefficients aαβ are coordinates

of a surface symmetric tensor of type (0, 2), named the first fundamental tensor of the surface. It can be easily

checked that aαβ are coordinates of the metric tensor of the surface. The first fundamental form I is invariant

with respect to coordinate transformations. In fact, I depends only on the surface and not on any particular

representation of the surface.

The second fundamental form II is defined as,

II(q1, q2) := − < dn, dx >= bαβ dq
α dqβ , (2-24)

where, the coefficients bαβ are given by

bαβ = − < ∂n

∂qα
,
∂x

∂qβ
>

= − < ∂n

∂qα
, aβ > = < n ,

∂aα
∂qβ

> .

(2-25)

bαβ are known as the coordinates of a surface symmetric tensor Bof type(0,2), which is known as the second fun-

damental tensor of the surface. The second fundamental form II is invariant under a coordinate transformation

in the same sense that the first fundamental form I is invariant. It should be noted that II remains invariant as

long as the coordinate transformation preserves the direction of n. Otherwise the second fundamental formII

changes its sign.

Gaussian and Mean Curvatures:

Having the covariant coordinates of the first fundamental tensor aαβ and the second fundamental tensor bαβ

of the surface, Gaussian curvature k and mean curvature h can be determined as two geometric invariants

associated with these tensors.

k(q1, q2) :=
det(bαβ)

det(aαβ)
(2-26)

14



Section 2.5

h(q1, q2) :=
1

2
aαβbαβ (2-27)

det(aαβ) and det(bαβ) denote the determinants of the matrices formed by the covariant coordinates of the metric

tensor and curvature tensor, respectively.

Gaussian curvature is unaffected by change of sign of the unit normal vector while the mean curvature reflects

the change. This significant invariance property of the Gausssian curvature function k(q1, q2), besides its in-

variant nature with respect to a change of surface coordinates, makes it the most appropriate tool to determine

the geometry of the surface.

Gauss-Weingarten Equations:

The Gauss-Weingarten equations are partial differential equations for surfaces that play a role somewhat anal-

ogous to the role of the Frenet equations for space curves. They express the derivatives of the tangent base

vectors a1, a2 and unit normal vector n with respect to surface coordinates q
1, q2 as linear combinations of

these vectors. In fact, they present a decomposition of the vectors ∂aα

∂qβ
, ∂n∂qα , as second order derivatives of the

position vector x(q1, q2), in the Gaussian moving frame.

The first group of the partial differential equations to be introduced is due to C. F. Gauss (1827).�

�

�

�

Gauss Differential Equations of a Surface

daα = Γ
β
αγ dq

γ aβ + bαβ dq
β n ←→ ∂aα

∂qγ
= Γβαγ aβ + bαγ n α, β, γ = 1, 2 (2-28)

The coefficients Γβαγ and bαβ are already known as the Christoffel symbols of the second kind and the covariant

coordinates of the curvature tensor of the surface, respectively.

The second group of differential equations involving the derivatives of the unit normal vector n are given by

the so-called Weingarten differential equations. The equations introduced for the first time by J. Weingarten

(1861).�

�

�

�

Weingarten Differential Equations of a Surface

dn = −bαγ aγβ dqα aβ ←→ ∂n

∂qα
= −bαγ aγβ aβ α, β, γ = 1, 2 (2-29)

The Weingarten equations 2-29 may be abbreviated by

∂n

∂qα
= − bβα aβ , (2-30)

where, −bβα are coordinates of a mixed tensor C of type (1, 1), namely contravariant order 1 and covariant order
1, which is called Gaussian curvature tensor of the surface. General eigenvalue problem of the pair (B,A),

namely det(B− λA) = 0, or special eigenvalue problem of the pair (C, I), namely det(C− λI) = 0, lead us the
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CHAPTER 2. THEORY OF MANIFOLDS

principal curvatures κ1 and κ2 of the surface as eigenvalues of the tensor B or C [E. W. Grafarend (1995)].�

�

�

�

Gaussian Curvature Tensor of a Surface

C = −BA−1 ←→ cβα = − bαγ aγβ (2-31)

The mean curvature h(q1, q2) and Gaussian curvature k(q1, q2) are two important geometrical quantities in

theory of surfaces because of their invariant property. They are defined as the average and the product of the

principal curvatures, respectively.

h(q1, q2) =
1

2
(κ1 + κ2) (2-32)

k(q1, q2) = κ1 κ2 (2-33)
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Chapter 3

Surface Deformation Analysis

By a surface deformation we understand the changes in the characteristics of the geometry of the surface, namely

length of the line segments and angles included by them, curvature, and so on during the motion of the surface.

Surface deformation is always analyzed on the basis of comparisons of the differential invariants I, II, and III

of the deforming surface between two chosen states labelled as the reference versus current state. Hence, we

denote the deforming surface as reference surface and current surface in these two different states.

Two different ways of describing deformation may be used in general: Lagrangian or Eulerian. In the Lagrangian

portray, the geometry of the reference surface, defined by the first and second fundamental tensors of the surface,

is supposed to be known and all the tensor fields defined over the surface are connected to the geometrical points

of the surface in the reference state. We can then speak of Lagrangian tensor fields. In Lagrangian portray,

a coordinate system which is defined in connection with the reference surface, is called material coordinate

system and coordinates of geometrical points in such a system are referred to as material coordinates. In the

Eulerian portray, the geometry of the surface in the current state is assumed to be known. Hence, the Eulerian

tensor fields of the surface are expressed in terms of coordinates of geometrical points of the current surface. In

Eulerian portray, coordinate systems related to the current state are called spatial coordinate systems. Thus,

in this case spatial coordinates are used in place of material coordinates. In this chapter, relations valid for

arbitrary smooth deformation of a surface are treated in both Lagrangian and Eulerian portrays.

Following the conventions of continuum mechanics, all the material coordinates, coordinates of tensor fields

and indices are printed in capital letters wherever they are connected to the reference surface and given in

Lagrangian portray. Small letters are used for all the notations in Eulerian portray and spatial coordinates

of the current surface. If Roman letters are used as an index, they will assume the values of 1,2,3. An index

printed in Greek letter will take only values of 1,2. Hence, Roman indices will refer to the space coordinates,

namely to coordinates which cover 3-dimensional Euclidean space, while Greek indices will be assumed for the

surface coordinates.

3.1 The Concept of Surface Deformation

Here, the notion of surface deformation is discussed with reference to Riemann manifolds introduced in chapter

2. Let there be given the left 2-dimensional Riemann manifold M
2
l and the right 2-dimensional Riemann

manifold M
2
r. We start from these two 2-dimensional Riemann manifolds {M 2

l , AΛΘ} and {M 2
r, aλθ}, with

standard metric tensor Al = [AΛΘ] = [AΘΛ] and Ar = [aλθ] = [aθλ] both symmetric and positive-definite,

which represent the reference surface and current surface, respectively. The open subsets Ul ⊂ M
2
l and ur ⊂ M

2
r

17



CHAPTER 3. SURFACE DEFORMATION ANALYSIS

Figure 3-1: The fundamental commutative digram

are covered by charts {Φ, Ul} and {φ, ur}. Such charts are constituted by surface curvilinear (local) coordinates
{Q1, Q2} ∈ Φ(Ul) ⊂ R

2 and {q1, q2} ∈ φ(ur) ⊂ R
2 over open sets Φ(Ul) and φ(ur). Figure 3-1 illustrates

the fundamental commutative diagram that governs the descriptive elements once we transform from the left

Riemann manifold M
2
l onto the right Riemann manifold M

2
r .

The mapping f : M 2
l �→ M

2
r and its local representation f̄ : Φ(Ul) �→ φ(ur) = φ ◦ f ◦ Φ−1 are assumed to be a

homeomorphism. A system of classification, based upon mapping equations f̄ from a left chart to a right chart,

namely of type isoparametric, identical charts, conformal, equiareal, equidistant, cocircular, geodesic, harmonic,

and the general case, has been given by E. W. Grafarend (1982). The mapping f is called deformation.

3.2 Surface Deformation Measures

A comparative analysis of the metric tensors of the two manifolds under comparison is the standard way for

the description of deformation in continuum mechanics [G. Beda et al. (1995), p.18; D. B. Macvean (1968),

p.158]. A comprehensive review of various local as well as global multiplicative and additive measures of surface

deformation, based on comparison of the metric tensors of the two parametrized surfaces, is given in E. W.

Grafarend (1995). In addition to the metric tensors, a comparative analysis of the second fundamental tensors

of the reference and current surfaces is considered as a way of describing surface deformation in shell theory.

In this study, we concentrate on the most common measures of surface deformation which are derived from the

first and second fundamental tensors of the two surfaces and some certain invariants of these derived measures.
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3.2.1 Cauchy-Green deformation tensor

Referring to the fundamental commutative diagram of Figure 3-1, the homeomorphism f and its inverse f−1

will be represented by the chart mapping qλ(QΛ) and QΛ(qλ), respectively. The two point tensors Jl and Jr

defined as,

Jl = J
λ
Λaλ ⊗AΛ versus Jr = j

Λ
λAΛ ⊗ aλ, (3-1)

where

JλΛ :=
∂qλ

∂QΛ
jΛλ :=

∂QΛ

∂qλ
(3-2)

are termed the deformation gradients in the Lagrangian versus Eulerian portray. The coordinates of the defor-

mation gradients determine the elements of the Jacobi matrices of the mapping f̄ and its inverse a
¯
rf−1.

Assuming the two Riemann manifolds {M 2
l , AΛΘ} and {M 2

r, aλθ} as embedded submanifolds of two different
3-dimensional Euclidean space E 3

l and E
3
r, the first fundamental forms Il of M

2
l and Ir of M

2
r in surface local

coordinates of the manifolds are specified by

Il = AΛΘ(Q
Φ) dQΛ dQΘ versus Ir = aλθ(q

φ) dqλ dqθ (3-3)

The left versus right Cauchy-Green deformation tensor are introduced in Box 3-1 as a multiplicative measure of

deformation. The tensors are positive-definite, symmetric tensors of type (0, 2).

Box 3-1: Left versus right Cauchy-Green deformation tensor�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

Ir = aλθdq
λdqθ Il = AΛΘdQ

ΛdQΘ

= aλθ
∂qλ

∂QΛ

∂qθ

∂QΘ
dQΛdQΘ = AΛΘ

∂QΛ

∂qλ
∂QΘ

∂qθ
dqλdqθ

Left Cauchy-Green deformation tensor Right Cauchy-Green deformation tensor

Cl = CΛΘ(Q
Φ) AΛ ⊗AΘ versus Cr = cλθ(q

φ) aλ ⊗ aθ

where

CΛΘ(Q
Φ) := aλθ(Q

Φ)
∂qλ

∂QΛ

∂qθ

∂QΘ
cλθ(q

φ) := AΛΘ(q
φ)
∂QΛ

∂qλ
∂QΘ

∂qθ

= aλθ(Q
Φ) JλΛ J

θ
Θ = AΛΘ(q

φ) jΛλ j
Θ
θ

By means of the left Cauchy-Green deformation tensor we have succeeded to represent the first fundamental

tensor (metric tensor) of the current surface in terms of the material coordinates of the reference surface.

19



CHAPTER 3. SURFACE DEFORMATION ANALYSIS

Similarly, the right Cauchy-Green deformation tensor portrays the first fundamental tensor of the reference

surface in the spatial coordinates of the current surface.

3.2.2 Euler-Lagrange deformation tensor of the first kind (Tensor of change of

metric)

For the description of surface deformations, we can also look at the difference between corresponding first

fundamental forms of the deforming surface at the reference- and current state. The difference Ir − Il leads us
to the definition of a well-known additive measure of deformation called Euler-Lagrange deformation tensor of

the first kind or tensor of change of metric. The Euler-Lagrange deformation tensor(I) is also known widely as

strain tensor. Box 3-2 introduces left versus right Euler-Lagrange deformation tensor of the first kind.

Box 3-2: Left versus right Euler-Lagrange deformation tensor of the first kind (Lagrangian versus Eulerian

tensor of change of metric)�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

Ir − Il= aλθdqλdqθ −AΛΘdQ
ΛdQΘ Ir − Il= aλθdqλdqθ − AΛΘdQ

ΛdQΘ

= aλθ
∂qλ

∂QΛ

∂qθ

∂QΘ
dQΛdQΘ −AΛΘdQ

ΛdQΘ = aλθdq
λdqθ − AΛΘ

∂QΛ

∂qλ
∂QΘ

∂qθ
dqλdqθ

=
(
aλθ

∂qλ

∂QΛ

∂qθ

∂QΘ
−AΛΘ

)
dQΛdQΘ =

(
aλθ −AΛΘ

∂QΛ

∂qλ
∂QΘ

∂qθ
)
dqλdqθ

= 2EΛΘ dQ
Λ dQΘ = 2 eλθ dq

λ dqθ

Left Euler-Lagrange deformation tensor(I) Right Euler-Lagrange deformation tensor(I)

El = EΛΘ(Q
Φ) AΛ ⊗AΘ versus Er = eλθ(q

φ) aλ ⊗ aθ

where

EΛΘ(Q
Φ) :=

1

2

(
aλθ(Q

Φ)
∂qλ

∂QΛ

∂qθ

∂QΘ
−AΛΘ(Q

Φ)
)

eλθ(q
φ) :=

1

2

(
aλθ(q

φ)−AΛΘ(q
φ)
∂QΛ

∂qλ
∂QΘ

∂qθ

)

=
1

2

(
CΛΘ −AΛΘ

)
=
1

2

(
aλθ − cλθ

)

The left Euler-Lagrange deformation tensor of the first kind El, namely Lagrangian strain tensor, is sometimes

associated with the names of Green and St.Venant while the right Euler-Lagrange deformation tensor of the

first kind Er, namely Eulerian strain tensor, is associated with the names Almansi and Hamel [K. Wilmanski

(1998)]. The symmetric deformation tensors El and Er are powerful tools in studying deformations. In surface

deformation analysis, they allow us a pointwise illustration of alteration of the metric properties of the deforming

surface.

Apart from the Cauchy-Green and Euler-Lagrange(I) deformation tensors used to describe the changes in the

geometry of the deforming body induced by the deformation, it is often convenient in continuum mechanics to

employ other equivalent deformation measures. Table 3-1 collects the most common deformation tensors and

their definitions appearing in various applications in continuum mechanics.
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Table 3-1: The most common deformation tensors and their definitions [D. B. Macvean (1968)]

Name Symbol Definition

Left Euler-Lagrange(I) E1
1
2 (Cl −Al)

Right Euler-Lagrange(I) E2
1
2 (Ar −Cr)

Hencky E3
1
2 ln(Cl)

Hencky E4
1
2 ln(Cr)

Left Cauchy-Green E5 JTl ArJl

Right Cauchy-Green E6 JTrAlJr

Left stretch E7 Jl = RE7 ( Polar decomposition of the left Jacobi matrix)

Right stretch E8 Jr = RE8 ( Polar decomposition of the right Jacobi matrix)

Piola E9 C−1
l

Finger E10 C−1
r

Karni-Reiner E11
1
2 (Al −C−1

l )

Karni-Reiner E12
1
2 (C

−1
r −Ar)

3.2.3 Euler-Lagrange deformation tensor of the second kind (Tensor of change of

curvature)

In surface deformation analysis, as another additive measure of surface deformation we can take into account

the difference between the second fundamental forms of the deforming surface at the reference- and current

state. The additive comparison of the second fundamental forms IIl of M
2
l and IIr of M

2
r leads us to definition

of Euler-Lagrange deformation tensor of the second kind or tensor of change of curvature, introduced in Box

3-3. The Euler-Lagrange deformation tensors of the first- and second kind (tensor of change of metric and the

tensor of change of curvature) are considered as the two basic measures of surface deformation in literature of

shell theory, e.g. W. Pietraszkiewicz (1977), L. J. Ernst (1981).

Box 3-3: Left versus right Euler-Lagrange deformation tensor of the second kind (Lagrangian versus Eulerian

tensor of change of curvature)�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

IIr − IIl= bλθdqλdqθ −BΛΘdQ
ΛdQΘ IIr − IIl= bλθdqλdqθ −BΛΘdQ

ΛdQΘ

= bλθ
∂qλ

∂QΛ

∂qθ

∂QΘ
dQΛdQΘ −BΛΘdQ

ΛdQΘ = bλθdq
λdqθ −BΛΘ

∂QΛ

∂qλ
∂QΘ

∂qθ
dqλdqθ

=
(
bλθ

∂qλ

∂QΛ

∂qθ

∂QΘ
−BΛΘ

)
dQΛdQΘ =

(
bλθ −BΛΘ

∂QΛ

∂qλ
∂QΘ

∂qθ
)
dqλdqθ

= KΛΘ dQ
Λ dQΘ = kλθ dq

λ dqθ

Left Euler-Lagrange deformation tensor(II) Right Euler-Lagrange deformation tensor(II)

Kl = KΛΘ(Q
Φ) AΛ ⊗AΘ versus Kr = kλθ(q

φ) aλ ⊗ aθ

where

KΛΘ(Q
Φ) := bλθ(Q

Φ)
∂qλ

∂QΛ

∂qθ

∂QΘ
−BΛΘ(Q

Φ) kλθ(q
φ) := bλθ(q

φ)−BΛΘ(q
φ)
∂QΛ

∂qλ
∂QΘ

∂qθ

It should be noted that the definition of the Euler-Lagrange deformation tensor(I) (strain tensor), Box 3-2, is
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generally accepted in the literature of shell theory. However, the definition of the Euler-Lagrange deformation

tensor(II) (tensor of change of curvature) varies depending on the applications. One important difference comes

from a sign convention adopted. Besides, any functionally independent combination of the strain tensor El/Er

and second fundamental tensor Bl/Br may be chosen as a measure for the surface curvature changes [W.

Pietraszkiewicz (1977)].

3.3 Surface Deformation Measures and the Displacement Vector

We recall the assumption that the reference- and current surface are considered as two 2-dimensional Riemann

manifolds M 2
l and M

2
rembedded in two different 3-dimensional Euclidean spaces E

3
l and E

3
r. On the reference

surface, the place in the embedding space of a generic point is given by the placement vector X(QΛ). After

deformation the place in space of the same point is given by a new placement vector x(qλ). Referring to Figure

3-2, the displacement vector u is defined as

u := t+ x−X (3-4)

where the translation vector t serves to locate the origin o of the spatial coordinate system o x1x2x3 with

respect to origin O of the material coordinate system OX1X2X3.

Figure 3-2: The dispacement vector, the reference- and the current surface in a commutative diagram
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3.3.1 Surface deformation measures as functions of the displacement vector

For practical application of the theory, it is more convenient that measures of deformation be described in terms

of the displacement vector u. Moreover, various approximate theories in continuum mechanics and particularly

shell theory are developed by dropping or approximating nonlinear terms in relations of the deformation

measures expressed as functions of the displacement vector. Thus, we proceed with expressions of the surface

deformation measures as functions of the displacement vector.

The covariant base vectors

AΛ :=
∂X

∂QΛ
versus aλ :=

∂x

∂qλ
(3-5)

span the tangent space T QM
2
l and T qM

2
r of the reference- and current surface at Q and q, respectively. Their

inner products lead to the covariant coordinates of the metric tensors Al and Ar of the left and right manifolds,

respectively.

AΛΘ :=< AΛ,AΘ > versus aλθ :=< aλ, aθ > (3-6)

Similar to the metric tensors Al and Ar, left and right Cauchy-Green deformation tensor can be defined as

scalar product of new base vectors CΛ(Q
Φ) and cλ(q

φ) which are given as

CΛ(Q
Φ) := aλ

∂qλ

∂QΛ
=

∂x

∂qλ
∂qλ

∂QΛ
=

∂x

∂QΛ

cλ(q
φ) := AΛ

∂QΛ

∂qλ
=

∂X

∂QΛ

∂QΛ

∂qλ
=
∂X

∂qλ

(3-7)

Thus, left versus right Cauchy-Green deformation tensor can be written in terms of the new base vectors as

CΛΘ = CΘΛ :=< CΛ,CΘ > versus cλθ = cθλ :=< cλ, cθ > (3-8)

To derive Cauchy-Green and Euler-Lagrange deformation tensors in terms of the displacement vector, we con-

sider the relations of these tensors using the scalar product of the base vectors CΛΘ/cλθ, Equation (3-8), and

the definition of the displacement vector as difference of the placement vectorsX/x, Equation (3-4). Box 3-4

highlights the main steps of the derivation for these deformation tensors in Lagrangian versus Eulerian portray.

It should be noted that the derived expressions for the deformation tensors Cl/Cr and El/Er in Box 3-4, are

general and exact formulae without any approximation being applied to extract them. Another important result

is that these deformation tensors are insensitive to the translation vector t. Hence, the translation vector t is

not considered in our computations any more.

Analogous to Cauchy-Green deformation tensors and Euler-Lagrange deformation tensors of the first kind, it

is more adequate to express the Euler-Lagrange deformation tensors of the second kind (tensor of change of

curvature) as functions of the displacement vector. Unfortunately, similar relations for the tensor of change of

curvature happen to be more complicated, see for example the work of L. J. Ernst (1980). To overcome this

problem and obtain less sophisticated relations, E. Stein (1980) takes into account another difference vector

called difference vector of the unit normal vectors in addition to the displacement vector. Having the unit
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Box 3-4: The left versus right Cauchy-Green deformation tensor (Cl versus Cr), and the left versus right

Euler-Lagrange geformation tensor(I) (El versus Er) as functions of the displacement vector u�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

Coordinates of the left Cauchy-Green

deformation tensor:

Coordinates of the right Cauchy-Green

deformation tensor:

CΛΘ :=< CΛ , CΘ > cλθ :=< cλ , cθ >

=<
∂x

∂QΛ
,
∂x

∂QΘ
> =<

∂X

∂qλ
,
∂X

∂qθ
>

=<
∂(u+X− t)

∂QΛ
,
∂(u+X+ t)

∂QΘ
> =<

∂(x− u+ t)
∂qλ

,
∂(x− u+ t)

∂qθ
>

=<
∂u

∂QΛ
,
∂u

∂QΘ
> + <

∂u

∂QΛ
,
∂X

∂QΘ
> + =<

∂u

∂qλ
,
∂u

∂qθ
> − < ∂u

∂qλ
,
∂x

∂qθ
> −

<
∂X

∂QΛ
,
∂u

∂QΘ
> + <

∂X

∂QΛ
,
∂X

∂QΘ
> <

∂x

∂qλ
,
∂u

∂qθ
> + <

∂x

∂qλ
,
∂x

∂qθ
>

Coordinates of the left Euler-Lagrange

deformation tensor(I):

Coordinates of the right Euler-Lagrange

deformation tensor(I):

EΛΘ :=
1

2
(CΛΘ −AΛΘ) eλθ :=

1

2
(aλθ − cλθ)

=
1

2

(
<
∂u

∂QΛ
,
∂X

∂QΘ
> + <

∂X

∂QΛ
,
∂u

∂QΘ
> + =

1

2

(
<
∂u

∂qλ
,
∂x

∂qθ
> + <

∂x

∂qλ
,
∂u

∂qθ
> −

<
∂u

∂QΛ
,
∂u

∂QΘ
>

)
<
∂u

∂qλ
,
∂u

∂qθ
>

)

normal vectors N of the reference surface and n of the current surface, the difference vector of the unit normal

vectors w can be defined as

w := n−N (3-9)

Figure 3-3 shows the role of the vector in linking the reference- and current surface in a commutative diagram.

The difference vector of the unit normal vectors is used to formulate Lagrangian and Eulerian tensors of change

of curvature as functions of the difference vectors u and w in less complicated features. Box 3-5 summarizes

the main steps towards this goal.

As can be seen in Box 3-5, we end up with the expressions of the left and right Euler-Lagrange deformation

tensor(I) (Lagrangian and Eulerian tensors of change of curvature) as inner products of the displacement vector

and the difference vector of the unit normal vectors. Thanks to the use of the difference vector of the unit

normal vectors, the expressions of the left and right Euler-Lagrange deformation tensors of the second kind are

derived in a less sophisticated manner. Here, the difference vectors u and w appeared in the final relations

of the deformation tensors in an invariant notation. They will be decomposed to coordinates in the following

sections.
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Figure 3-3: The difference vector of the unit normal vectors, the reference- and the current surface in a com-

mutative diagram

Box 3-5: Left versus right Euler-Lagrange deformation tensor(II) (Tensor of change of curvature) in terms of

the displacement vector u and the difference vector of the unit normal vectors w�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

Coordinates of the left Euler-Lagrange

deformation tensor(II):

Coordinates of the right Euler-Lagrange

deformation tensor(II):

KΛΘ :=
∂qλ

∂QΛ

∂qθ

∂QΘ
bλθ −BΛΘ kλθ := bλθ − ∂Q

Λ

∂qλ
∂QΘ

∂qθ
Bλθ

= − ∂q
λ

∂QΛ

∂qθ

∂QΘ
<
∂n

∂qλ
, aθ > −BΛΘ = bλθ +

∂QΛ

∂qλ
∂QΘ

∂qθ
<
∂N

∂QΛ
, AΘ >

= − ∂q
λ

∂QΛ

∂qθ

∂QΘ
<
∂(w +N)

∂qλ
,
∂x

∂qθ
> −BΛΘ = bλθ − ∂QΛ

∂qλ
∂QΘ

∂qθ
<
∂(w − n)
∂QΛ

,
∂X

∂QΘ
>

= − < ∂(w +N)

∂QΛ
,
∂(X+ u)

∂QΘ
> −BΛΘ = bλθ− < ∂(w− n)

∂qλ
,
∂(x− u)
∂qθ

>

= − < ∂w

∂QΛ
,
∂X

∂QΘ
> − < ∂w

∂QΛ
,
∂u

∂QΘ
> − = − < ∂w

∂qλ
,
∂x

∂qθ
> + <

∂w

∂qλ
,
∂u

∂qθ
> −

<
∂N

∂QΛ
,
∂u

∂QΘ
> <

∂n

∂qλ
,
∂u

∂qθ
>
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3.3.2 Surface deformation measures (Extrinsic approach)

We derived the expressions of the various surface deformation measures as functions of the difference vectors u

and w where they are considered in an invariant notation. For practical applications of the theory, we should

take into account the decomposition of the difference vectors in convenient coordinate systems. This is the point

of departure for two different approaches called extrinsic approach versus intrinsic approach. In the extrinsic

approach, a class of coordinate systems are considered which are defined in relation to the embedding spaces.

Here, the embedding spaces of reference- and current surface are assumed to be 3-dimensional Euclidean spaces.

A way of describing Euclidean spaces is by means of Cartesian orthonormal coordinate systems. The space

Cartesian coordinates of a point with the placement vector X in the reference state and x in the current state

with respect to the orthonormal fixed frames {I1, I2, I3} and {i1, i2, i3} are given by

X = XK IK versus x = xk ik . (3-10)

The displacement vector can also be decomposed in these Cartesian coordinate systems as

u = UK IK versus u = uk ik . (3-11)

where UK and uk are titled space Cartesian coordinates of the displacement vector in Lagrangian- and Eulerian

portray, respectively. Box 3-6 includes the expressions of the Cauchy-Green- and Euler-Lagrange(I) deformation

tensors as functions of the space Cartesian coordinates of the displacement vector.

Box 3-6: Left versus right Cauchy-Green deformation tensor (Cl versusCr) and left versus right Euler-Lagrange

deformation tensor(I) (El versus Er) as functions of the space Cartesian coordinates of the displacement vector

UK/uk�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

Coordinates of the left Cauchy-Green

deformation tensor:

Coordinates of the right Cauchy-Green

deformation tensor:

CΛΘ = AΛΘ +
∂U I

∂QΛ

∂U I

∂QΘ
+
∂U I

∂QΛ

∂XI

∂QΘ
+ cλθ = aλθ +

∂ui

∂qλ
∂ui

∂qθ
− ∂u

i

∂qλ
∂xi

∂qθ
−

∂XI

∂QΛ

∂U I

∂QΘ

∂xi

∂qλ
∂ui

∂qθ

Coordinates of the left Euler-Lagrange

deformation tensor(I):

Coordinates of the right Euler-Lagrange

deformation tensor(I):

EΛΘ =
1

2

(
∂U I

∂QΛ

∂XI

∂QΘ
+
∂XI

∂QΛ

∂U I

∂QΘ
+ eλθ =

1

2

(
∂ui

∂qλ
∂xi

∂qθ
+
∂xi

∂qλ
∂ui

∂qθ
−

∂U I

∂QΛ

∂U I

∂QΘ

)
∂ui

∂qλ
∂ui

∂qθ

)
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Similarly, left and right Euler-Lagrange deformation tensors of the second kind (Lagrangian and Eulerian tensors

of change of curvature) can be introduced in terms of space Cartesian coordinates of the displacement vector and

space Cartesian coordinates of the difference vector of the unit normal vectors, Box 3-7. The Space Cartesian

coordinates of the difference vector w are

w :=WKIK versus w := wkik (3-12)

and its partial derivatives with respect to the surface curvilinear coordinates QΛ/qλare given by

∂w

∂QΛ
=
∂WK

∂QΛ
IK versus

∂w

∂qλ
=
∂wk

∂qλ
ik (3-13)

Box 3-7: Left vesus right Euler-Lagrange deformation tensor of the second kind (Lagrangian versus Eulerian

tensor of change fo curvature) as functions of the space Cartesian coordinates of the displacement vector u and

the difference vector of the unit normal vectors w�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

Coordinates of the left Euler-Lagrange

deformation tensor(II):

Coordinates of the right Euler-Lagrange

deformation tensor(II):

KΛΘ= − < ∂w

∂QΛ
,
∂X

∂QΘ
> − < ∂w

∂QΛ
,
∂u

∂QΘ
> − versus kλθ= − < ∂w

∂qλ
,
∂x

∂qθ
> + <

∂w

∂qλ
,
∂u

∂qθ
> −

<
∂N

∂QΛ
,
∂u

∂QΘ
> <

∂n

∂qλ
,
∂u

∂qθ
>

= BΦ
Λ

∂XK

∂QΦ

∂UK

∂QΘ
− ∂W

K

∂QΛ

∂XK

∂QΘ
− ∂W

K

∂QΛ

∂UK

∂QΘ
= bφλ

∂xk

∂qφ
∂uk

∂qθ
− ∂w

k

∂qλ
∂xk

∂qθ
+
∂wk

∂qλ
∂uk

∂qθ

Instead of Cartesian coordinates, the embedding spaces in the reference- and current state can be parametrized

locally by means of space curvilinear coordinates QK(K = 1, 2, 3) and qk(k = 1, 2, 3) through the chart repre-

sentations of the Euclidean spaces. In extrinsic approach, the surface deformation tensors can be expressed as

functions of the space curvilinear coordinates of the difference vectors u and w as well. The space curvilinear

coordinates of a vector are those coordinates which are obtained by the decomposition of the vector in the 3-

dimensional orthogonal moving frames which are established by means of the triads of the covariant base vectors

GK :=
∂X

∂QK
versus gk :=

∂x

∂qk
(3-14)

at each point of the embedding spaces with the space curvilinear coordinates QK and qk. The covariant and

contravariant curvilinear coordinates of the displacement vector, referred to the triads of base vectors GK/gk

and their reciprocal (contravariant) base vectors GK/gk , are given by

u = ŪKGK = ŪKG
K versus u = ūkgk = ūkg

k (3-15)

where the space curvilinear coordinates are barred in order to distinguish them from the space Cartesian

coordinates.
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The partial derivatives of the placement vectors X/x and the displacement vector u with respect to surface

curvilinear coordinates QΛ/qλ, given in invariant notation in Box 3-4, can be rewritten for the placement vectors

as

∂X

∂QΛ
=
∂QK

∂QΛ

∂X

∂QK
∂x

∂qλ
=
∂qk

∂qλ
∂x

∂qk

versus

=
∂QK

∂QΛ
GK =

∂qk

∂qλ
gk,

(3-16)

and for the displacement vector as

∂u

∂QΛ
=
∂QK

∂QΛ

∂u

∂QK
∂u

∂qλ
=
∂qk

∂qλ
∂u

∂qk

versus

=
∂QK

∂QΛ
ŪJ |KGJ = ∂QK

∂QΛ
ŪJ|KGJ =

∂qk

∂qλ
ūj |kgj = ∂qk

∂qλ
ūj|kgj ,

(3-17)

where ŪJ |K/ūj|k and ŪJ|K/ūj|k denote the covariant derivatives of the displacement vector in terms of its
contravariant and covariant curvilinear coordinates.

ŪJ |K = ∂ŪJ

∂QK
+ ŪLΓJLK versus ūj |k = ∂ūj

∂qk
+ ūlΓjlk (3-18)

ŪJ|K =
∂ŪJ
∂QK

− ŪLΓLJK versus ūj|k =
∂ūj
∂qk
− ūlΓljk (3-19)

Regarding Equations (3-16) and (3-17), Cauchy-Green and Euler-Lagrange(I) deformation tensors can be ex-

pressed as functions of the space curvilinear coordinates of the displacement vector. Box 3-8 summarizes the

final results.

Box 3-8: Left versus right Cauchy-Green deformation tensor (Cl versusCr) and left versus right Euler-Lagrange

deformation tensor(I) (El versus Er) as functions of the space curvilinear coordinates of the displacement vector

ŪK/ūk and ŪK/ūk�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

Coordinates of the left first fundamental

tensor:

Coordinates of the right first fundamen-

tal tensor:

AΛΘ =
∂QK

∂QΛ

∂QJ

∂QΘ
GKJ aλθ =

∂qk

∂qλ
∂qj

∂qθ
gkj

Coordinates of the left Cauchy-Green

deformation tensor:

Coordinates of the right Cauchy-Green

deformation tensor:

CΛΘ=
∂QK

∂QΛ
(ŪJ |KŪJ|L + ŪK|L + ŪL|K +GKL)

∂QL

∂QΘ
cλθ=

∂qk

∂qλ
(ūj |kūj|l − ūk|l − ūl|k + gkl) ∂q

l

∂qθ

=
∂QK

∂QΛ
(ŪJ |KŪJ|L + ŪK|L + ŪL|K)

∂QL

∂QΘ
+AΛΘ =

∂qk

∂qλ
(ūj |kūj|l − ūk|l − ūl|k) ∂q

l

∂qθ
+ aλθ

28



Section 3.3

Box 3-8(Contd.): Left versus right Cauchy-Green deformation tensor (Cl versus Cr) and left versus right

Euler-Lagrange deformation tensor(I) (El versus Er) as functions of the space curvilinear coordinates of the

displacement vector ŪK/ūk and ŪK/ūk�

�

�

�

Coordinates of the left Euler-Lagrange

deformation tensor(I):

Coordinates of the right Euler-Lagrange

deformation tensor(I):

EΛΘ=
1

2
(CΛΘ −AΛΘ) eλθ=

1

2
(aλθ − cλθ)

=
1

2

∂QK

∂QΛ
(ŪK|L + ŪL|K + ŪJ |K ŪJ|L)∂Q

L

∂QΘ
=
1

2

∂qk

∂qλ
(ūk|l + ūl|k − ūj |kūj|l) ∂q

l

∂qθ

The partial derivatives ∂Q
K

∂QΛ /
∂qk

∂qλ
are the coordinates of the Jacobi matrices of the coordinate transformations

from surface curvilinear coordinates QΛ/qλ to the space curvilinear coordinates QK/qk.

To complete this section, Euler-Lagrange deformation tensor of the second kind (tensor of change of curvature)

has to be evaluated in terms of the space curvilinear coordinates of the displacement vector and the difference

vector of the unit normal vectors. The partial derivatives of w with respect to the surface curvilinear coordi-

nates QΛ/qλ can be written in terms of covariant derivatives of contravariant and covariant space curvilinear

coordinates of w as

∂w

∂QΛ
=
∂QK

∂QΛ

∂w

∂QK
∂w

∂qλ
=
∂qk

∂qλ
∂w

∂qk

versus

=
∂QK

∂QΛ
W̄ J |KGJ = ∂QK

∂QΛ
W̄J|KGJ =

∂qk

∂qλ
w̄j |kgj = ∂qk

∂qλ
w̄j|kgj

(3-20)

Final results of the formulations have been collected in Box 3-9.

Box 3-9: Left versus right Euler-Lagrange deformation tensor of the second kind (tensor of change of curvature)

as functions of the space curvilinear coordinates of the displacement vector u and the difference vector of the

unit normal vectors w�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

Coordinates of the left Euler-Lagrange

deformation tensor(II):

Coordinates of the right Euler-Lagrange

deformation tensor(II):

KΛΘ= − < ∂w

∂QΛ
,
∂X

∂QΘ
> − < ∂w

∂QΛ
,
∂u

∂QΘ
> − kλθ= − < ∂w

∂qλ
,
∂x

∂qθ
> + <

∂w

∂qλ
,
∂u

∂qθ
> −

<
∂N

∂QΛ
,
∂u

∂QΘ
> <

∂n

∂qλ
,
∂u

∂qθ
>

= − ∂Q
I

∂QΛ

∂QJ

∂QΘ
W̄P |I < GP ,GJ > − = − ∂q

i

∂qλ
∂qj

∂qθ
w̄p|i < gp,gj > +

∂QI

∂QΛ

∂QK

∂QΘ
W̄P |I ŪM |K <GP ,GM > +

∂qi

∂qλ
∂qk

∂qθ
w̄p|iūm|k < gp,gm > +

29



CHAPTER 3. SURFACE DEFORMATION ANALYSIS

Box 3-9(Contd.):Left versus right Euler-Lagrange deformation tensor of the second kind (tensor of change of

curvature) as functions of the space curvilinear coordinates of the displacement vector u and the difference

vector of the unit normal vectors w�

�

�

�

BΦ
Λ

∂QL

∂QΦ

∂QK

∂QΘ
ŪM|K < GL,GM > bφλ

∂ql

∂qφ
∂qk

∂qθ
ūm|k < gl,gm >

= BΦ
Λ

∂QI

∂QΦ

∂QJ

∂QΘ
ŪI|J − ∂Q

I

∂QΛ

∂QJ

∂QΘ
W̄J|I− = bφλ

∂qi

∂qφ
∂qj

∂qθ
ūi|j − ∂q

i

∂qλ
∂qj

∂qθ
w̄j|i+

∂QI

∂QΛ

∂QJ

∂QΘ
W̄K|I ŪK |J ∂qi

∂qλ
∂qj

∂qθ
w̄k|iūk|j

3.3.3 Surface deformation measures (Intrinsic approach)

In the previous section, surface deformation analysis was presented based on the extrinsic approach where all

the surface deformation measures were investigated and formulated from the viewpoint of the embedding spaces.

Unlike the extrinsic approach, the intrinsic approach formulates the surface deformation measures in connection

to the geometry of the deforming surface in its own right. In the intrinsic approach, the surface deformation

measures are written alternatively in terms of surface curvilinear coordinates of the displacement vector and

the difference vector of the unit surface normal vectors. The surface curvilinear coordinates of a vector are

obtained by the decomposition of the vector in the Lagrangian and Eulerian Gaussian surface moving frames.

The Gaussian surface moving frames are built by the triads of the two tangent base vectors AΛ/aλ and the

unit normal vector N/n, with

N :=
A1 ×A2

||A1 ×A2 || = N
K IK versus n :=

a1 × a2
|| a1 × a2 || = n

k ik , (3-21)

being the third base vectors of the frames, at every point on the reference- and current surface.

Figure 3-4: The Gaussian surface moving frames of the reference- and current surface

In such a case, the displacement vector can be decomposed in the Lagrangian and Eulerian three-dimensional

surface moving frames as
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u = ŪΛAΛ + Ū
3N u = ūλaλ + ū

3n

versus

u = ŪΛA
Λ + Ū3N u = ūλa

λ + ū3n

(3-22)

The contravariant coordinates ŪΛ/ūλ and Ū3/ū3 or their covariant counterparts ŪΛ/ūλ and Ū3/ū3 are called

surface curvilinear coordinates of the displacement vector. It should be noted that because of the normality

of the unit normal vector N/n and its orthogonality to the tangent base vectors, the unit normal vector and

its reciprocal vector are equal and consequently there is no difference between the contravariant and covariant

coordinates of u with respect to N/n, i.e. Ū3 = Ū3 and ū
3 = ū3.

Considering the above decomposition of the displacement vector, Equation (3-22), the partial derivatives of the

vector with respect to the surface coordinates QΛ/qλ can be given as follows

∂u

∂QΛ
=
∂(ŪΘAΘ)

∂QΛ
+
∂(Ū3N)

∂QΛ
versus

∂u

∂qλ
=
∂(ūθaθ)

∂qλ
+
∂(ū3n)

∂qλ

= ŪΘ|ΛAΘ + Ū
ΘBΛΘN+

∂Ū3

∂QΛ
N+ Ū3 ∂N

∂QΛ
= ūθ|λaθ + ūθbλθn+ ∂ū

3

∂qλ
n+ ū3

∂n

∂qλ

= ŪΘ|ΛAΘ − Ū3BΘ
ΛAΘ + Ū

ΘBΛΘN+
∂Ū3

∂QΛ
N = ūθ|λaθ − ū3bθλaθ + ūθbλθn+

∂ū3

∂qλ
n

= (ŪΘ|Λ − Ū3BΘ
Λ )AΘ + (

∂Ū3

∂QΛ
+ ŪΘBΛΘ)N = (ūθ|λ − ū3bθλ)aθ + (

∂ū3

∂qλ
+ ūθbλθ)n

= UΘ
ΛAΘ + U

3
ΛN = uθλaθ + u

3
λn

(3-23)

where the surface tensors UΘ
Λ /u

θ
λ and U

3
Λ/u

3
λ are considered to have the form of,

UΘ
Λ := ŪΘ|Λ − Ū3BΘ

Λ versus uθλ := ū
θ|λ − ū3bθλ , (3-24)

and

U3
Λ :=

∂Ū3

∂QΛ
+ ŪΘBΛΘ versus u3λ :=

∂ū3

∂qλ
+ ūθbλθ . (3-25)

To achieve the above results for partial derivatives of u, we have taken into account the Gauss-Weingarten

equations introduced in chapter 2,

∂AΘ

∂QΛ
:= ΓΦ

ΛΘAΦ +BΛΘN versus
∂aθ
∂qλ

:= Γφλθaφ + bλθn (3-26)

∂N

∂QΛ
:= −BΛΘA

Θ = −BΘ
ΛAΘ versus

∂n

∂qλ
:= −bλθaθ = −bθλaθ . (3-27)
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The surface covariant derivatives of the surface curvilinear contravariant coordinates of the displacement vector

are given as

ŪΛ|Θ := ŪΛ
,Θ + Γ

Λ
ΘΦŪ

Φ versus ūλ|θ := ūλ,θ + Γλθφūφ . (3-28)

With similar computations, it can be also proved that

∂u

∂QΛ
= UΘΛA

Θ + U3ΛN versus
∂u

∂qλ
= uθλa

θ + u3λn (3-29)

where

UΘΛ := ŪΘ|Λ − Ū3BΘΛ versus uθλ := ūθ|λ − ū3bθλ , (3-30)

and

U3Λ = U
3
Λ versus u3λ = u

3
λ . (3-31)

Now, we can derive expressions of the Cauchy-Green and Euler-Lagrange(I) deformation tensors as functions

of the surface curvilinear coordinates of the displacement vector. Box 3-10 highlights the main steps of the

computations.

Box 3-10: Left versus right Cauchy-Green deformation tensor (Cl versusCr) and left versus right Euler-Lagrange

deformation tensor(I) (El versus Er) as functions of the surface curvilinear coordinates of the displacement

vector�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

Coordinates of the left Cauchy-Green

deformation tensor:

Coordinates of the right Cauchy-Green

deformation tensor:

CΛΘ =< (u,Λ +AΛ) , (u,Θ +AΘ) > cλθ =< (aλ − u,λ) , (aθ − u,θ) >

=< (UΦΛA
Φ + U3ΛN+AΛ) , (UΨΘA

Ψ+ =< (aλ − uφλaφ − u3λn) , (aθ−

U3ΘN+AΘ) > uψθa
ψ − u3θn) >

= UΦΛUΨΘA
ΦΨ + UΦΛδ

Φ
Θ + UΨΘδ

Ψ
Λ+ = uφλuψθa

φψ − uφλδφθ − uψθδψλ+

U3ΛU3Θ +AΛΘ u3λu3θ + aλθ

= UΨ
Λ UΨΘ + UΘΛ + UΛΘ + U3ΛU3Θ +AΛΘ = uψλuψθ − uθλ − uλθ + u3λu3θ + aλθ

Coordinates of the left Euler-Lagrange

deformation tensor:

Coordinates of the right Euler-Lagrange

deformation tensor:

EΛΘ =
1

2
(CΛΘ −AΛΘ) eλθ =

1

2
(aλθ − cλθ)

=
1

2

(
UΛΘ + UΘΛ + U

Ψ
Λ UΨΘ + U3ΛU3Θ

)
=
1

2

(
uλθ + uθλ − uψλuψθ − u3λu3θ

)
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Again, we have to consider the surface curvilinear coordinates of the difference vector of the unit normal vectors

in addition to the surface curvilinear coordinates of the displacement vector to obtain expressions of the left

and right Euler-Lagrange deformation tensors of the second kind (tensors of change of curvature). The surface

curvilinear coordinates of w of contravariant and covariant types are defined by

w := W̄ΛAΛ + W̄
3N w := w̄λ aλ + w̄

3 n

versus

= W̄ΛA
Λ + W̄ 3N = w̄λ a

λ + w̄3 n ,

(3-32)

The coordinates of the left and right Euler-Lagrange deformation tensors of the second kind (tensor of change of

curvature) Kl/Kr can now be evaluated as functions of the surface curvilinear coordinates (W̄Λ, W̄
3)/(w̄Λ, w̄

3)

and the surface curvilinear coordinates of the displacement vector, Box 3-11.

Box 3-11: Left versus right Euler-Lagrange deformation tensor of the second kind (Lagrangian versus Eulerian

tensor of change of curvature) in terms of the surface curvilinear coordinates of the displacement vector u and

the difference vector of the unit normal vectors w�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

Coordinates of the left Euler-Lagrange

deformation tensor(II):

Coordinates of the right Euler-Lagrange

deformation tensor(II):

KΛΘ= − < ( ∂w
∂QΘ

+
∂N

∂QΘ
) , (

∂X

∂QΛ
+
∂u

∂QΛ
) > −BΛΘ kλθ= bλθ− < ( ∂w

∂qθ
− ∂n

∂qθ
) , (

∂x

∂qλ
− ∂u

∂qλ
) >

= − < (WΦΘA
Φ +W3ΘN+

∂N

∂QΘ
) , (AΛ+ = bλθ− < (wφθaφ + w3θn− ∂n

∂qθ
) , (aλ−

UΨΛA
Ψ + U3ΛN) > −BΛΘ uψλa

ψ − u3λn)

= BΨ
Θ UΨΛ −WΛΘ −WΨ

Θ UΨΛ −W3Θ U3Λ = bψθ uψλ − wλθ + wψθ uψλ + w3θ u3λ

where

WΘ
Λ := W̄

Θ|Λ −BΘ
Λ W̄

3 wθλ := w̄
θ |λ − bθλ w̄3

WΛΘ := W̄Λ|Θ −BΘΛ W̄
3 wλθ := w̄λ|θ − bθλ w̄3

W3Λ := B
Θ
Λ W̄Θ + W̄

3
,Λ w3λ := b

θ
λ w̄θ + w̄

3
,λ
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3.4 Linearized Theory of Surface Deformation Analysis

All the expressions of the surface deformation tensors derived so far are non-linear formulae referred to the space

and surface coordinates of the displacement vector and the difference vector of the unit normal vectors. They

form a basis for various approximate theories in different applications of the surface deformation analysis. The

linear expressions of the surface deformation tensors in terms of the displacement vector and the difference vector

of the unit normal vectors can be determined by dropping the nonlinear terms in the non-linear mathematical

relations of the previous section for surface deformation measures, Box 3-6 through Box 3-11. The developed

linearized theory of surface deformation analysis performs a theoretical base for the widely used so-called

infinitesimal approach in deformation analysis. For more details on the infinitesimal approach in deformation

analysis, we refer to A. C. Eringen (1962). In addition to the simplicity of the formulae in linearized theory,

another advantage of the approach is the determination of a skew-symmetric tensor, the so-called linearized

surface rotation tensor R̃l/R̃r, which represents the infinitesimal rotation of a small neighborhood of the point

in question with respect to its original orientation. Box 3-12 reviews the final expressions of the linearized

Cauchy-Green deformation tensors C̃l/C̃r and the linearized Euler-Lagrange deformation tensors of the first

kind Ẽl/Ẽr as well as the linearized surface rotation tensors R̃l/R̃r in the cases that space Cartesian or space

curvilinear coordinates of the displacement vector are known, namely the extrinsic approach.

Box 3-12: The linearized surface deformation tensors C̃l/C̃r and Ẽl/Ẽr, and the linearized surface rotation

tensors R̃l/R̃r in the extrinsic approach�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

•Coordinates of the linearized surface deformation tensors
in terms of the space Cartesian coordinates of u

C̃ΛΘ = AΛΘ +
∂U I

∂QΛ

∂XI

∂QΘ
+
∂XI

∂QΛ

∂U I

∂QΘ
c̃λθ = aλθ − ∂u

i

∂qλ
∂xi

∂qθ
− ∂x

i

∂qλ
∂ui

∂qθ

ẼΛΘ =
1

2

(
∂U I

∂QΛ

∂XI

∂QΘ
+
∂XI

∂QΛ

∂U I

∂QΘ

)
ẽλθ =

1

2

(
∂ui

∂qλ
∂xi

∂qθ
+
∂xi

∂qλ
∂ui

∂qθ

)

R̃ΛΘ =
1

2

(
∂U I

∂QΛ

∂XI

∂QΘ
− ∂X

I

∂QΛ

∂U I

∂QΘ

)
r̃λθ =

1

2

(
∂ui

∂qλ
∂xi

∂qθ
− ∂x

i

∂qλ
∂ui

∂qθ

)
•Coordinates of the linearized surface deformation tensors
in terms of the space curvilinear coordinates of u

C̃ΛΘ = AΛΘ +
∂QK

∂QΛ

∂QL

∂QΘ
( ŪK|L + ŪL|K ) c̃λθ = aλθ − ∂q

k

∂qλ
∂ql

∂qθ
( ūk|l + ūl|k)

= AΛΘ +
∂QK

∂QΛ

∂QL

∂QΘ
(
∂ŪK
∂QL

+
∂ŪL
∂QK

− = aλθ − ∂q
k

∂qλ
∂ql

∂qθ
(
∂ūk
∂ql

+
∂ūl
∂qk
−

2 ΓMKLŪM ) 2 Γmklūm )
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Box 3-12(Contd.): The linearized surface deformation tensors C̃l/C̃r and Ẽl/Ẽr, and the linearized surface

rotation tensors R̃l/R̃r in the extrinsic approach�

�

�

�

ẼΛΘ =
1

2

∂QK

∂QΛ

∂QL

∂QΘ
( ŪK|L + ŪL|K ) ẽλθ =

1

2

∂qk

∂qλ
∂ql

∂qθ
( ūk|l + ūl|k )

=
1

2

∂QK

∂QΛ

∂QL

∂QΘ
(
∂ŪK
∂QL

+
∂ŪL
∂QK

− =
1

2

∂qk

∂qλ
∂ql

∂qθ
(
∂ūk
∂ql

+
∂ūl
∂qk
−

2 ΓMKLŪM ) 2 Γmklūm )

R̃ΛΘ =
1

2

∂QK

∂QΛ

∂QL

∂QΘ
( ŪK|L − ŪL|K ) r̃λθ =

1

2

∂qk

∂qλ
∂ql

∂qθ
( ūk|l − ūl|k )

=
1

2

∂QK

∂QΛ

∂QL

∂QΘ
(
∂ŪK
∂QL

− ∂ŪL
∂QK

) =
1

2

∂qk

∂qλ
∂ql

∂qθ
(
∂ūk
∂ql
− ∂ūl
∂qk

)

Box 3-13 presents expressions of the above linearized tensors in the intrinsic approach where the surface curvi-

linear coordinates of the displacement vector are known. In this case, the linearized deformation tensors will

be linear functions of the surface coordinates ŪΛ/ūλ and Ū3/ū3. Note the simple expressions of the linearized

Euler-Lagrange deformation tensors of the first kind and particularly the linearized rotation tensors in the

intrinsic approach in comparison to the extrinsic approach.

Box 3-13: The linearized surface deformation tensors C̃l/C̃r and Ẽl/Ẽr, and the linearized surface rotation

tensors R̃l/R̃r in the intrinsic approach�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

C̃ΛΘ = AΛΘ + UΛΘ + UΘΛ c̃λθ = aλθ − uλθ − uθλ

= AΛΘ + ŪΛ|Θ + ŪΘ|Λ − 2BΛΘŪ
3 = aλθ − ūλ|θ − ūθ|λ + 2 bλθū3

= AΛΘ +
∂ŪΛ

∂QΘ
+
∂ŪΘ

∂QΛ
− 2 ΓΦ

ΛΘŪΦ− = aλθ − ∂ūλ
∂qθ
− ∂ūθ
∂qλ

+ 2Γφλθūφ+

2BΛΘŪ
3 2 bλθū

3

ẼΛΘ :=
1

2
(C̃ΛΘ − AΛΘ) ẽλθ :=

1

2
(aλθ − c̃λθ)

=
1

2
(
∂ŪΛ

∂QΘ
+
∂ŪΘ

∂QΛ
)− (ΓΦ

ΛΘŪΦ+ =
1

2
(
∂ūλ
∂qθ

+
∂ūθ
∂qλ

)− (Γφλθūφ+

BΛΘ Ū
3) bλθ ū

3)

R̃ΛΘ =
1

2
(ŪΛ|Θ − ŪΘ|Λ) r̃λθ =

1

2
(ūλ|θ − ūθ|λ)

=
1

2
(
∂ŪΛ

∂QΘ
− ∂ŪΘ

∂QΛ
) =

1

2
(
∂ūλ
∂qθ
− ∂ūθ
∂qλ

)
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We can also define the linearized Euler-Lagrange deformation tensors of the second kind (linearized tensors of

change of curvature by dropping nonlinear terms in relations of the tensors in Box 3-7 and 3-9. The linearization

can be done nicely due to expressions of the tensors in terms of the coordinates of the difference vector of the unit

normal vectors in addition to the coordinates of the displacement vector. This should be considered as another

main advantage of the use of the difference vector w in the expressions of the Euler-Lagrange deformation

tensors of the second kind. Box 3-14 includes the final results of the linearization of the left versus right Euler-

Lagrange deformation tensor of the second kind (Lagrangian versus Eulerian tensor of change of curvature) in

case that the tensors are functions of the space Cartesian and space curvilinear coordinates of u and w, namely

in the extrinsic approach.

Box 3-14: Left versus right linearized Euler-Lagrange deformation tensor of the second kind (Lagrangian versus

Eulerian linearized tensor of change of curvature) in the extrinsic approach�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

Left linearized Euler-Lagrange deformation

tensor(II) as function of the space Cartesian

coordinates of u and w:

Right linearized Euler-Lagrange deformation

tensor(II) as function of the space Cartesian

coordinates of u and w:

K̃ΛΘ= − < ∂w

∂QΛ
,
∂X

∂QΘ
> − < ∂N

∂QΛ
,
∂u

∂QΘ
> k̃λθ = − < ∂w

∂qλ
,
∂x

∂qθ
> − < ∂n

∂qλ
,
∂u

∂qθ
>

= BΦ
Λ

∂XK

∂QΦ

∂UK

∂QΘ
− ∂W

K

∂QΛ

∂XK

∂QΘ
= bφλ

∂xk

∂qφ
∂uk

∂qθ
− ∂w

k

∂qλ
∂xk

∂qθ

Left linearized Euler-Lagrange deformation

tensor(II) as function of the space curvilinear

coordinates of u and w:

Right linearized Euler-Lagrange deformation

tensor(II) as function of the space curvilinear

coordinates of u and w:

K̃ΛΘ= B
Φ
Λ

∂QI

∂QΦ

∂QJ

∂QΘ
ŪI|J − ∂Q

I

∂QΛ

∂QJ

∂QΘ
W̄J|I k̃λθ = b

φ
λ

∂qi

∂qφ
∂qj

∂qθ
ūi|j − ∂q

i

∂qλ
∂qj

∂qθ
w̄j|i

We complete this section by introducing the Left and right linearized Euler-Lagrange deformation tensor of the

second kind in case of the intrinsic approach. The relations of Box 3-15 show efficiency of the intrinsic approach

in leading us to the compact and simplified relations of the tensors after linearization with respect to the surface

curvilinear coordinates of the difference vectors u and w.

Box 3-15: Left versus right linearized Euler-Lagrange deformation tensor of the second kind (Lagrangian versus

Eulerian linearized tensor of change of curvature) in the intrinsic approach�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

Left linearized Euler-Lagrange deformation

tensor(II) as function of the surface curvilin-

ear coordinates of u and w:

Right linearized Euler-Lagrange deformation

tensor(II) as function of the surface curvilinear

coordinates of u and w:

K̃ΛΘ = BΨ
Λ UΨΘ −WΛΘ k̃λθ = bψλ uψθ − wλθ

= BΨ
Λ ŪΨ|Θ − W̄Λ|Θ + Ū3(BΛΘ −BΨ

ΛBΨΘ) = bψλ ūψ|θ − w̄λ|θ + ū3(bλθ − bψλbψθ)
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The linearized surface deformation tensors, which are introduced in this section, are the most appropriate

deformation measures in infinitesimal approach where

|| ∂u
∂QΛ

|| � || ∂X
∂QΛ

|| versus || ∂u
∂qλ
|| � || ∂x

∂qλ
|| . (3-33)

However, for arbitrarily large displacement, different deformation measures will be needed to describe finite

strain and finite rotations of the deforming surface.

3.5 Associated Invariants of the Surface Deformation Tensors

The coordinates of the surface deformation tensors introduced in Section 3.4 depend on the surface coordinates

and consequently the moving reference frame used for the decomposition of the displacement vector and the

difference vector of the unit surface normal vectors. Thus, we have to look for scalar functions of the elements of

the surface deformation tensors which are invariant with respect to the change of surface coordinates. Moreover,

these associated invariants should have evident physical interpretations to be of any use. We should emphasize

here that in contrast to the classical 2-dimensional plane deformation analysis, where for example the coordinates

of the strain tensor have direct physical interpretations, we can’t proceed in this way because of the curvilinear

nature of the methods of the analysis.

E. W. Grafarend (1995) treats the method of general eigenvalue problem for the pair of two second order

tensors, one symmetric and one symmetric and positive-definite, to determine eigenvalues associated with the

deformation and strain tensors. The general eigenvalue problem is equivalent to the standard problem of the

simultaneous diagonalization of two symmetric matrices in matrix algebra. Taking into account the matrix

representation of the metric tensors of the reference- and current surface and left and right Cauchy-Green

deformation tensors

Al = [AΛΘ]2×2 versus Ar = [aλθ]2×2 (3-34)

Cl = [CΛΘ]2×2 versus Cr = [cλθ]2×2 (3-35)

for the pair of positive-definite, symmetric matrices {Cl,Al} or {Cr,Ar} a simultaneous diagonalization is
obtained from the general eigenvalue problem. Then, the associated eigenvalues are determined by

Λ2
1,2 =

1

2

{
tr(ClA

−1
l )± λ21,2 =

1

2

{
tr(CrA

−1
r )±

versus√
{tr(ClA−1

l )}2 − 4 det(ClA−1
l )

} √
{tr(CrA−1

r )}2 − 4 det(CrA−1
r )

}
(3-36)

where, tr and det denote trace and determinant of the corresponding matrices, respectively. The eigenvalues

are usually numbered according to the inequalities Λ2
2 < Λ

2
1 and λ

2
2 < λ

2
1. They are positive real numbers for

symmetric, positive-definite second order tensors Cl and Cr. The square roots of the eigenvalues Λ
2
1,2/λ

2
1,2 are

interpreted physically as the maximum and minimum values of stretch (dilatation factor or length distortion)

at the points with the surface curvilinear coordinates QΘ/qθ on the reference- or current surface.

Λ2(QΘ) :=
ds2

dS2
versus λ2(qθ) :=

dS2

ds2
(3-37)
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It is a well-known fact in matrix algebra that eigenvalues are invariant quantities independent of the selected

coordinate system. Thus, principal stretches are convenient scalar invariants associated with the left and right

Cauchy-Green deformation tensors.

With reference to the general eigenvalue problem we experienced for the left and right Cauchy-Green deformation

tensors, we arrive at the general eigenvalue problem for the pair of symmetric matrices {El,Al} or {Er,Ar},
where

El = [EΛΘ]2×2 versus Er = [eλθ]2×2 . (3-38)

The eigenvalues of the left and right Euler-Lagrange deformation tensors of the first kind El and Er can be

determined analogously as

Λ′
1,2 =

1

2

{
tr(ElA

−1
l )± λ′1,2 =

1

2

{
tr(ErA

−1
r )±

versus√
{tr(ElA−1

l )}2 − 4 det(ElA−1
l )

} √
{tr(ErA−1

r )}2 − 4 det(ErA−1
r )

}
.

(3-39)

Unlike the eigenvalues of the Cauchy-Green deformation tensors which are positive due to positive-definite

property of the deformation tensors, the eigenvalues of the Euler-Lagrange deformation tensors can be negative

or positive. The invariant quantities (Λ′
1,Λ

′
2)versus(λ

′
1, λ

′
2) are called the Lagrangian versus Eulerian principal

strains. A deformation portrait with a positive principal strain is referred to as extension, while that with a

negative principal strain as compression. Two well-known associated invariants of the left versus right Euler-

Lagrange deformation tensors of the first kind (Lagrangian versus Eulerian strain tensors are defined in terms

of principal strains. They are surface dilatation

∆ := Λ′
1 + Λ

′
2 = tr(ElA

−1
l ) versus δ := λ′1 + λ

′
2 = tr(ErA

−1
r ) (3-40)

and surface maximum shear strain

Γ := Λ′
1 − Λ′

2 γ := λ′1 − λ′2
versus

=
√
{tr(ElA−1

l )}2 − 4 det(ElA−1
l ) =

√
{tr(ErA−1

r )}2 − 4 det(ErA−1
r )

(3-41)

Surface dilatation represents the isotropic part and surface maximum shear strain the anisotropic part of de-

formation in the infinitesimal vicinity of the point of interest. They are both point functions with the following

physical interpretation: ∆/δ is the areal change per unit area which is positive for an increase in area, and Γ/γ

is the shear across the direction of its maximum value which has always positive sign. When the linearized

Cauchy-Green deformation tensors C̃l/C̃r and the the linearized Euler-Lagrange deformation tensors of the first

kind Ẽl/Ẽr are considered, their corresponding associated invariants may be determined in the same fashion as

the exact tensors.

For the linearized surface rotation tensor R̃l/R̃r, the associated invariant Φ/φ, titled linearized rotation around

the normal is introduced [W. Pietraszkiewicz (1977)] with

Φ :=
1

2
εΛΘR̃ΛΘ versus φ :=

1

2
ελθ r̃λθ , (3-42)

and εΛΘ/ελθ being the contravariant coordinates of the surface alternation tensor given by

ε12 = −ε21 = 1√
det(Al)

ε12 = −ε21 = 1√
det(Ar)

versus

ε11 = ε22 = 0 ε11 = ε22 = 0

(3-43)
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The linearized rotation around the normal can be interpreted as the third component of the linearized rotation

vector along the unit normal vector to the surface. Once, we made use of the property to map the skew-

symmetric tensors onto a vector. The uniqueness of the unit normal vector N/n assures the invariant property

of Φ/φ.

Analogous to the Cauch-Green deformation tensors and Euler-Lagrange deformation tensors of the first kind,

the general eigenvalue problem can be applied to the pair of symmetric matrices {Kl,Al} or {Kr,Ar} to obtain
the eigenvalues of the left or right Euler-Lagrange deformation tensors of the second kind (tensor of change of

curvature), named principal curvature differences,

Kl = [KΛΘ]2×2 versus Kr = [kλθ ]2×2 . (3-44)

Thus, the principal curvature differences are achieved as result of simultaneous diagonalization of the left versus

right Euler-Lagrange deformation tensor of the second kind (Lagrangian versus Eulerian tensor of change of

curvature) along with their corresponding metric tensors,

Λ′′
1,2 =

1

2

{
tr(KlA

−1
l )± λ′′1,2 =

1

2

{
tr(KrA

−1
r )±

versus√
{tr(KlA−1

l )}2 − 4 det(KlA−1
l )

} √
{tr(KrA−1

r )}2 − 4 det(KrA−1
r )

}
.

(3-45)

We can look at the sum Λ′′
1 + Λ

′′
2 or the difference Λ

′′
1 − Λ′′

2 of Lagrangian principal curvature differences or

their Eulerian counterparts as invariant measures of surface deformation. However, in differential geometry we

learn about two well-known scalar invariants connected to the second fundamental tensor of the surface, namely

mean curvature H/h and Gaussian curvature K/k, Box 3-16. Therefore, the differences of the Gaussian or

mean curvatures of the current- and reference surface are considered as more appropriate surface deformation

measures. They find a gentle physical interpretation relevant to sinking and rising regions. We will discuss

about it more later when the practical applications of the theory are treated.

Box 3-16: The change of the mean- and Gaussian curvature in the Lagrangian versus Eulerian portray�

�

�

�

�� ��Lagrangian portray
�� ��Eulerian portray

The change of mean curvature:

h−H := 1

2

[
aλθbλθ −AΛΘBΛΘ

]
h−H := 1

2

[
aλθbλθ −AΛΘBΛΘ

]
=
1

2

[
(AΛΘ + 2EΛΘ)(BΛΘ +KΛΘ)−AΛΘBΛΘ

]
=
1

2

[
aλθbλθ − (aλθ − 2 eλθ)(bλθ − kλθ)

]
=
1

2

[
AΛΘKΛΘ + 2E

ΛΘBΛΘ + 2E
ΛΘKΛΘ

]
=
1

2

[
aλθkλθ + 2 e

λθbλθ − 2 eλθkλθ
]

The change of Gaussian curvature:

k −K :=
1

2

(
ελφεθψbλθbφψ − εΛΦεΘΨBΛΘBΦΨ

)
k −K :=

1

2

(
ελφεθψbλθbφψ − εΛΦεΘΨBΛΘBΦΨ

)
=
det(bλθ)

det(aλθ)
− det(BΛΘ)

det(AΛΘ)
=
det(bλθ)

det(aλθ)
− det(BΛΘ)

det(AΛΘ)

=
det(BΛΘ +KΛΘ)

det(AΛΘ + 2EΛΘ)
− det(BΛΘ)

det(AΛΘ)
=
det(bλθ)

det(aλθ)
− det(bλθ − kλθ)
det(aλθ − 2 eλθ)
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Chapter 4

The Earth Surface Deformation

Analysis

The general theory of the extrinsic versus intrinsic surface deformations analysis, developed in Chapter 3, is

formulated here for the particular case of deformations of the Earth surface. By the Earth surface, we mean

the realistic (topographic or physical) surface of the Earth with a mathematical description. The surface

is assumed to be a star-shaped orientable, smooth surface (no sharp point, edges or self-interaction), a 2-

dimensional Riemann manifold which is being isometrically embedded into a 3-dimensional Euclidean space

with the mass center of the Earth as its origin. The Earth surface is called star-shaped if the mapping of the

surface onto the Earth reference surface is one-to-one. The geometry of the Earth surface in the reference or

current surfaces has to be known as a parametrized curved surface. In this chapter, we focus on the Lagrangian

portray of the surface deformation measures where we assume the first and second fundamental tensors of the

Earth surface as two known surface tensor fields. The parameterization of the Earth surface in the reference

state should be done by means of appropriate surface coordinates. This will be the topic of the first section

of this chapter. The remaining sections deal with the formulation of the surface deformation measures for the

Earth surface as a deforming surface.

4.1 Surface-normal Coordinates

The embedding space E 3 can be covered by a chart of space curvilinear coordinates QJ , (J = 1, 2, 3). In geodesy,

the space curvilinear coordinates are usually defined by means of an Earth-fixed, 3-dimensional coordinate

system, whose geometry is a good regional or global approximation of the geometry of the Earth gravity field.

Such coordinate systems are preferred for representing points on the Earth surface. They are generally defined

based on a geodetic reference surface, which roughly represents an equipotential surface near the Earth surface.

As a restriction for the surface, the points on the Earth surface are assigned to their corresponding points on a

geodetic reference surface using a one-to-one mapping. Projection by means of surface normals is often selected

for the purpose of the mapping from the Earth surface onto this geodetic reference surface. Thus, a class of space

curvilinear coordinates, so-called surface-normal coordinates, is introduced. A comprehensive introduction of

the surface-normal coordinates and their geometric principals from a geodetic standpoint is provided by S. Heitz

(1985).

The geodetic reference surface, which gives a good mean approximation of the equipotential surfaces near

the Earth surface, is considered as a surface with a well known geometry. The geodetic reference surface
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is parametrized by means of surface curvilinear coordinates QΛ(Λ = 1, 2). The surface-normal coordinates

QJ , (J = 1, 2, 3) of a point on the Earth surface consist of the surface coordinates QΛ of the foot point of its

normal to the reference surface and the height H of the point above the reference surface, namely the distance

along the surface normal.

(Q1, Q2, Q3) := (Q1, Q2, H) = (QΛ, H) (4-1)

Geodetic coordinates

Geodetic coordinates are a special type of surface-normal coordinates for which the geodetic reference surface is

referred to as an ellipsoid of revolution , i.e. a biaxial ellipsoid. In this case, the surface-normal coordinate H is

named ellipsoidal height. If the ellipsoidal (geographic) longitude L and ellipsoidal (geographic) latitude B play

the role of surface coordinates of the ellipsoid of revolution, the geodetic coordinates are named geographically

geodetic coordinates or geographic coordinates. Hence, the geographic coordinates of a point on the Earth

surface is given by

(QΛ, H) = (L,B,H) . (4-2)

The geographically geodetic coordinates are of main interest in this study. Hereafter, we refer to them as simply

geodetic coordinates.

According to E. W. Grafarend and P. Lohse (1991), and E. W. Grafarend and J. Engels (1992), a Gaussian

representation of the Earth surface in terms of the geodetic coordinates with respect to the reference ellipsoid

E
2
A1,A2

is

X(L,B) = I1X
1(L,B) + I2X

2(L,B) + I3X
3(L,B)

= I1

[
A1√

1− E2 sin2B
+H(L,B)

]
cosL cosB +

I2

[
A1√

1− E2 sin2B
+H(L,B)

]
sinL cosB +

I3

[
A1(1− E2)√
1− E2 sin2B

+H(L,B)

]
sinB

(4-3)

where

E :=

√
A2

1 −A2
2

A1
(4-4)

is called first relative eccentricity in terms of semi-major axis A1 and semi-minor axis A2 of E
2
A1,A2

. Here, the

geodetic longitude L and the geodetic latitude B serve as surface coordinates of the Earth surface. In this

case, the geodetic height H is considered as a function of surface curvilinear coordinates L and B and not as

an independent coordinate. In order to apply this representation, Equation (4-3), in deformation studies of

the Earth surface, the theory of differential geometry requests at least C2 continuity. Namely, the embedding

functions XK(L,B) and H(L,B) should enjoy at least continuity up to the second derivatives.

4.2 Extrinsic Deformation Analysis of the Earth Surface

In chapter 3, we derived the expressions of Lagrangian surface deformation tensors as functions of space Cartesian

coordinates of the displacement vector and the difference vector of unit normal vectors, Box 3-6 and Box 3-7.
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We also obtained the linearized relations of these tensors, Box 3-12 and Box 3-14. According to Equation (4-3),

the partial derivatives ∂X
K

∂QΛ which are necessary in this case, are acquired as

∂X1

∂Q1
=

∂X1

∂L
= cosB[HL cosL− (N +H) sinL]

∂X2

∂Q1
=

∂X2

∂L
= cosB[HL sinL+ (N +H) cosL]

∂X3

∂Q1
=

∂X3

∂L
= HL sinB

∂X1

∂Q2
=

∂X1

∂B
= cosL[HB cosB − (M +H) sinB]

∂X2

∂Q2
=

∂X2

∂B
= sinL[HB cosB − (M +H) sinB]

∂X3

∂Q2
=

∂X3

∂B
= [HB sinB + (M +H) cosB]

(4-5)

HL and HB stand for partial derivatives of the height function with respect to the surface coordinates L and

B. The normal curvature radius N and meridional curvature radius M of the reference ellipsoid are given as

follows

N(B) :=
A1

(1− E2 sin2B)
1
2

(4-6)

M(B) :=
A1(1− E2)

(1− E2 sin2B)
3
2

(4-7)

Besides the above partial derivatives, we also need to have the partial derivatives ∂UI

∂QΛ and ∂W I

∂QΛ and the

coordinates of the mixed tensor BΦ
Λ that will be discussed later.

The second method of the extrinsic deformation analysis was presented by formulating the surface deformation

measures in terms of space curvilinear coordinates of the difference vectors u and w, Box 3-8 and Box 3-9. In

Lagrangian portray, the method asks for the coordinates of the Jacobi matrix of the coordinate transformation

from surface curvilinear coordinates QΛ to the space curvilinear coordinates QK . The Jacobi matrix can be

derived for the particular case for which the geodetic coordinates serve as the space curvilinear coordinates and

geodetic longitude and geodetic latitude (L,B) as the surface coordinates.

[JKΛ ] =

[
∂QK

∂QΛ

]
=

 1 0

0 1

HL HB

 (4-8)

In addition to the coordinates of the Jacobian matrix, we also need the analytical expressions of the space

Christoffel symbols ΓIJK for computing the surface deformation measures of the Earth surface. They have been

computed and listed in Box 4-2 for the geodetic coordinates (L,B,H).
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Box 4-1: The covariant and contravariant coordinates of the embedding space metric tensor for the geodetic

coordinates (L,B,H)�

�

�

�

•The covariant coordinates of the metric tensor of the embedding space E
3

[GIJ (L,B,H)] =

 (N +H)2 cos2B 0 0

0 (M +H)2 0

0 0 1



•The contravariant coordinates of the metric tensor of the embedding space E
3

[GIJ(L,B,H)] = [GIJ(L,B,H)]
−1

=


1

(N +H)2 cos2B
0 0

0
1

(M +H)2
0

0 0 1



•Partial derivatives of GIJ with respect to (L,B,H)

∂G11

∂L
= 0

∂G11

∂B
= −(N +H)(M +H) sin 2B

∂G11

∂H
= 2 (N +H) cos2B

∂G22

∂L
= 0

∂G22

∂B
= 2MB(M +H)

∂G22

∂H
= 2 (M +H)

∂G33

∂L
=
∂G33

∂B
=
∂G33

∂H
= 0
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Box 4-2: Space Christoffel symbols ΓIJK/Γ
i
jk as functions of the geodetic coordinates (L,B,H)�

�

�

�

ΓKIJ =
1

2
GKL(

∂GLI
∂QJ

+
∂GLJ
∂QI

− ∂GIJ
∂QL

)

Γ1
11 = Γ1

22 = Γ
1
23 = Γ

1
33 = 0

Γ1
12 =

− (M +H) tanB

(N +H)

Γ1
13 =

1

(N +H)

Γ2
11 =

(N +H) sin 2B

2 (M +H)

Γ2
12 = Γ2

13 = Γ
2
33 = 0

Γ2
22 =

MB
(M +H)

Γ2
23 =

1

(M +H)

Γ3
12 = Γ3

13 = Γ
3
23 = Γ

3
33 = 0

Γ3
11 = − (N +H) cos2B

Γ3
22 = − (M +H)

where

MB :=
3A1E

2 (1− E2) sinB cosB

(1− E2 sin2B)
5
2

Having the partial derivatives ∂ŪK

∂QJ and
∂W̄K

∂QJ and also the space Christoffel symbols, the space covariant deriva-

tives ŪK|J and W̄K|Jcan be computed. Consequently, the surface deformation measures of the Earth surface
can be determined based on the second procedure of the extrinsic approach. The linearized surface deformation

tensors and the linearized surface rotation tensor have a less complicated form, Box 3-12. The analytical expres-

sions of the coordinates of the tensors have been calculated explicitly as functions of the geodetic coordinates

in Box 4-3.
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Box 4-3: The left linearized Cauchy-Green deformation tensor C̃l, the left linearized Euler-Lagrange deformation

tensor Ẽl, and the Left linearized rotation tensor R̃l of the Earth surface in terms of the space curvilinear

coordinates of the displacement vector (Extrinsic approach)�

�

�

�

•Coordinates of the left Cauchy-Green deformation tensor:

C̃11 = 2
[∂Ū1

∂L
+HL (

∂Ū1

∂H
+
∂Ū3

∂L
) +H2

L

∂Ū3

∂H
−HL 2 Ū1

(N +H)
− (N +H)

( sin 2B

2(M +H)
Ū2−

Ū3 cos
2B

)]
+H2

L + (N +H)2 cos2B

C̃12 = C̃21 =
∂Ū1

∂B
+
∂Ū2

∂L
+HL

(∂Ū2

∂H
+
∂Ū3

∂B

)
+HLHB +HB

(∂Ū1

∂H
+
∂Ū3

∂L

)
+ 2HLHB

∂Ū3

∂H
+

2

[
Ū1[(M +H) tanB −HB]

(N +H)
− Ū2HL
(M +H)

]

C̃22 = 2
[∂Ū2

∂B
+HB

(∂Ū2

∂H
+
∂Ū3

∂B

)
+H2

B

∂Ū3

∂H
−
(
MB + 2HB
(M +H)

)
Ū2 + (M +H)Ū3

]
+

H2
B + (M +H)2

•Coordinates of the left Euler-Lagrange deformation tensor of the first kind:

Ẽ11 =
∂Ū1

∂L
+HL (

∂Ū1

∂H
+
∂Ū3

∂L
) +H2

L

∂Ū3

∂H
−HL 2 Ū1

(N +H)
− (N +H)

( sin 2B

2(M +H)
Ū2−

Ū3 cos
2B

)

Ẽ12 = Ẽ21 =
1

2

[∂Ū1

∂B
+
∂Ū2

∂L
+HL

( ∂Ū2

∂H
+
∂Ū3

∂B

)
+HB

(∂Ū1

∂H
+
∂Ū3

∂L

)]
+ HLHB

∂Ū3

∂H
+

[
Ū1[(M +H) tanB −HB]

(N +H)
− Ū2HL
(M +H)

]

Ẽ22 =
∂Ū2

∂B
+HB

(∂Ū2

∂H
+
∂Ū3

∂B

)
+H2

B

∂Ū3

∂H
−
(
MB + 2HB
(M +H)

)
Ū2 + (M +H)Ū3

•Coordinates of the Left linearized rotation tensor:

R̃11 = R̃22 = 0

R̃12 = −R̃21 =
1

2

[∂Ū1

∂B
− ∂Ū2

∂L
+HB

(∂Ū1

∂H
− ∂Ū3

∂L

)
+HL

(∂Ū3

∂B
− ∂Ū2

∂H

)]
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4.3 Intrinsic Deformation Analysis of the Earth Surface

Taking into account the parameterization of the Earth surface in terms of the geodetic longitude L and geodetic

latitude B as surface coordinates Equation (4-3), the geometric quantities of the Earth surface in the reference

state can be identified.

• Covariant tangent base vectors of the Earth surface AΛ :

A1 =
∂X(L,B)

∂L
= I1 cosB

[
HL cosL− (N +H) sinL

]
+ I2 cosB

[
HL sinL+

(N +H) cosL
]
+ I3 sinBHL

A2 =
∂X(L,B)

∂B
= I1 cosL

[
HB cosB − (M +H) sinB

]
+ I2 sinL

[
HB cosB−

(M +H) sinB
]
+ I3

[
HB sinB + (M +H) cosB

]
(4-9)

• Covariant coordinates of the metric tensor of the Earth surface AΛΘ :

A11(L,B) = H2
L + (N +H)2 cos2B

A12(L,B) = A21(L,B) = HLHB

A22(L,B) = H2
B + (M +H)2

(4-10)

• Determinant of the covariant metric tensor A :

A = det(AΛΦ)

= H2
L (M +H)2 + (N +H)2 cos2B [(M +H)2 +H2

B]

(4-11)

• Contravariant coordinates of the metric tensor of the surface AΛΦ :

A11(L,B) =
A22

A

=

[
H2
B + (M +H)2

]
H2
L (M +H)2 + (N +H)2 cos2B [(M +H)2 +H2

B]

A12(L,B) = A21(L,B) = −A12

A

=
−HLHB

H2
L (M +H)2 + (N +H)2 cos2B [(M +H)2 +H2

B]

A22(L,B) =
A11

A

=

[
H2
L + (N +H)2 cos2B

]
H2
L (M +H)2 + (N +H)2 cos2B [(M +H)2 +H2

B]

(4-12)
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• Contravariant tangent base vectors of the topographic surface AΛ :

A1 = A1ΛAΛ

=
1

A

{
(M +H)2 cosB [HL cosL − (N +H) sinL ] +HLHB cosL sinB(M +H)−

H2
B cosB sinL(N +H)

}
I1 +

1

A

{
(M +H)2 cosB[HL sinL+ (N +H) cosL] +

HLHB sinL sinB(M +H) +H2
B cosB cosL(N +H)

}
I2+

1

A

{
(M +H)2 sinBHL −HLHB(M +H) cosB

}
I3

A2 = A2ΛAΛ

=
1

A

{
(N +H)2 cos2B cosL[HB cosB − (M +H) sinB] +HLHB cosB sinL(N +H)−

H2
L cosL(M +H) sinB

}
I1 +

1

A

{
(N +H)2 cos2B sinL[HB cosB − (M +H) sinB]−

HLHB(N +H) cosL cosB −H2
L sinL(M +H) sinB

}
I2 +

1

A

{
H2
L(M +H) cosB+

(N +H)2 cos2B[HB sinB + (M +H) cosB]
}
I3

(4-13)

Taking a closer look at the relations of the tensors of change of curvature in intrinsic and extrinsic approaches,

Box 3-9 and Box 3-11, and their corresponding linearized tensors, Box 3-14 and Box 3-15, one notes the need

for the covariant coordinates of the second fundamental tensor BΛθ of the reference surface. The covariant

coordinates of the second fundamental tensor of the Earth surface have been computed explicitly in terms of

the surface coordinates (L,B) and listed in Box 4-4.

Box 4-4: Covariant coordinates of the second fundamental tensor BΛΦ of the Earth surface as functions of

(L,B)�

�

�

�

B11(L,B) =
1√
A
cosB

{
HLL(N +H)(M +H)− 2H2

L(M +H)− (N +H)2 cosB sinBHB−

cos2B(N +H)2(M +H)
}

B12(L,B) = B21(L,B)

=
1√
A

{
cosB(N +H)[HBL(M +H)−HBHL] +HL(M +H)[sinB(M +H)−

HB cosB]
}

B22(L,B) =
1√
A
cosB(N +H)

{
HBB(M +H)− 2H2

B −HBMB − (M +H)2
}
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The coordinates of the mixed tensor BΦ
Λ can be obtained by the rule of raising indices applied to the second

fundamental tensor BΛΘ as

BΦ
Λ = A

ΦΘ BΛΘ . (4-14)

The surface Christoffel symbols of the second kind ΓΦ
ΛΘ are another important geometrical quantity of the

intrinsic surface deformation analysis. They enter in all the relations of the surface deformation measures in

the intrinsic approach via the surface covariant derivatives, Equation (3-28). The surface Christoffel symbols of

the second kind of the Earth surface have been computed and included in Box 4-5 along the partial derivatives

of the covariant coordinates of the metric tensors with respect to (L,B), necessary in the computations.

Box 4-5: Christoffel symbols of the second kind ΓΛ
ΦΘ computed for the Earth surface�

�

�

�

• Partial derivatives of the covariant coordinates of the metric tensor ∂AΛΦ

∂QΘ
:

∂A11

∂L
= 2HL(N +H) cos2B + 2HLHLL

∂A11

∂B
= 2HB(N +H) cos2B + 2HLHB − 2 sinB cosB(N +H)(M +H)

∂A12

∂L
= HLLHB +HBLHL

∂A12

∂B
= HBBHL +HLBHB

∂A22

∂L
= 2HL(M +H) + 2HBHBL

∂A22

∂B
= 2(MB +HB)(M +H) + 2HBHBB

• Surface Christoffel symbols of the second kind of the Earth surface ΓΛ
ΦΘ :

ΓΛ
ΦΘ =

1

2
AΛΨ(AΨΦ,Θ +AΨΘ,Φ −AΦΘ,Ψ)

Γ1
11 =

1

A

{
HL(M +H)2[(N +H) cos2B +HLL] +HLHB(N +H) cosB[2HB cosB − sinB(M +H)

}

Γ1
12 =

1

A

{
[H2
B + (M +H)2][HB(N +H) cos2 B − sinB cosB(N +H)(M +H)]+

HL(M +H)[HLB(M +H)−HLHB]
}

Γ1
22 =

1

A
HL(M +H)

{
(M +H)[HBB − (M +H)]−HB (2HB +MB)

}
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Box 4-5(Contd.): Christoffel symbols of the second kind ΓΛ
ΦΘ of the Earth surface�

�

�

�

Γ2
11 =

1

A
(N +H) cosB

{
HB(N +H) cosB[HLL − (N +H) cos2 B ]− 2H2

LHB cosB+

sinB(M +H)[H2
L + (N +H)2 cos2B]

}

Γ2
12 =

1

A

{
HL(M +H)[H2

L + (N +H)2 cos2B +HB sinB cosB(N +H)] +

(N +H)HB cos
2 B [(N +H)HBL −HLHB]

}

Γ2
22 =

1

A

{
(M +H) (2HB +MB)H

2
L + (N +H)2 cos2B[HB HBB + (MB +HB) (M +H) ]

}
where

HLL =
∂2H(L,B)

∂L2
HBB =

∂2H(L,B)

∂B2
HLB = HBL =

∂2H(L,B)

∂L∂B

We specified the explicit relations of most of the geometrical quantities and the terms which are involved in

the extrinsic and intrinsic deformation measures of the Earth surface. The only terms that have not been

discussed yet, are the partial derivatives of the coordinates of the difference vector functions u and w with

respect to the surface and space curvilinear coordinates. In practical applications, these vector valued functions

rarely exist analytically. The values of these functions, given at nodal points of geodetic networks on the Earth

surface, are the only available information. Thus, we are confronted with the problem of propagating the vector

valued functions from nodal point values of coordinates of the difference vector functions in order to estimate the

necessary partial derivatives. In the same manner, the scalar valued function H(L,B) has to be propagated from

geodetic height values of nodal points in order that the partial derivatives of the function can be approximated.

4.4 Transformations of Space and Surface coordinates of a Vector

The space geodetic techniques provide us with Cartesian coordinates of nodal points at different time epochs

on the Earth surface. The observed coordinates of a point are related to space Cartesian coordinates of the

displacement vector of the point (U1, U2, U3) as follows

U1 = x1(t)−X1(t0)

U2 = x2(t)−X2(t0)

U3 = x3(t)−X3(t0)

(4-15)

where [x1(t), x2(t), x3(t)] and [X1(t0), X
2(t0), x

3(t0)] are point Cartesian coordinates observed at time epoch t

and t0 in a common reference fixed frame. The developed theory of the extrinsic versus intrinsic deformation

49



CHAPTER 4. THE EARTH SURFACE DEFORMATION ANALYSIS

analysis of the Earth surface in the previous sections asks for space and surface curvilinear coordinates of the

displacement vector. Therefore, conversion of the observed Cartesian coordinates into the space and surface

curvilinear coordinates will be the subject of this section.

4.4.1 Conversion of the space Cartesian coordinates into the space curvilinear

coordinates

The placement vector X of a point on the Earth surface can be represented in terms of the geodetic coordinates

(L,B,H) as

X(L,B,H) = I1X
1(L,B,H) + I2X

2(L,B,H) + I1X
3(L,B,H)

= I1 (N +H) cosL cosB + I2 (N +H) sinL cosB + I3 [N(1− E2) +H ] sinB

(4-16)

This representation of the placement vector with respect to the fixed frame {I1, I2, I3} is used to derive the
covariant base vectors of the geodetic coordinate system in the following manner

G1 =
∂X(L,B,H)

∂L
= −I1 (N +H) sinL cosB + I2 (N +H) cosL cosB

G2 =
∂X(L,B,H)

∂B
= −I1 (M +H) cosL sinB − I2 (M +H) sinL sinB + I3 (M +H) cosB

G3 =
∂X(L,B,H)

∂H
= I1 cosL cosB + I2 sinL cosB + I3 sinB .

(4-17)

The contravariant base vectors GI are computed by means of the covariant base vector GI and contravariant

coordinates of the metric tensor GIJ , presented in Box 4-1, as

G1 = G1JGJ = −I1 sinL

(N +H) cosB
+ I2

cosL

(N +H) cosB

G2 = G2JGJ = −I1 cosL sinB
(M +H)

− I2 sinL sinB
(M +H)

+ I3
cosB

(M +H)

G3 = G3JGJ = I1 cosL cosB + I2 sinL cosB + I3 sinB .

(4-18)

With respect to the orthogonal, non-normalized moving frames {G1,G2,G3} or {G1,G2,G3}, the space curvi-
linear coordinates of the displacement vector of covariant type can be derived as

ŪK = < u , GK >

= < (UJIJ ) , GK > = < IJ , GK > UJ .

(4-19)

Thus, the conversion of the space Cartesian coordinates UJ into the curvilinear coordinates ŪK has been derived.

In matrix representation, the final form of the conversion is written as follows
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 Ū1

Ū2

Ū3


space

=


−(N +H) cosB sinL (N +H) cosB cosL 0

−(M +H) sinB cosL −(M +H) sinB sinL (M +H) cosB

cosB cosL cosB sinL sinB


 U1

U2

U3

 (4-20)

Similarly, the space curvilinear coordinates of the displacement vector of contravariant type are computed from

the Cartesian coordinates,

ŪK = < u , GK >

ŪK = < (UJIJ) , G
K > = < IJ , G

K > UJ
(4-21)

and the conversion into contravariant coordinates ŪK is specified in matrix representation as

 Ū1

Ū2

Ū3


space

=



− sinL
(N +H) cosB

cosL

(N +H) cosB
0

− sinB cosL
(M +H)

− sinB sinL
(M +H)

cosB

(M +H)

cosB cosL cosB sinL sinB



 U1

U2

U3

 . (4-22)

As can be seen from the Equations (4-20) and (4-22), the coefficient matrices of the conversions are presented in

terms of the geodetic coordinates. Hence, the conversions request the geodetic coordinates to be available. While

transformation of the geodetic coordinates onto the Cartesian coordinates can be carried out straightforwardly,

as in Equation (4-16), the inverse transformation raises certain difficulties. The inverse transformation is usually

done by successive approximations in an iterative process [W. A. Heiskanen and H. Moritz (1967)], or using

closed form solutions [M. K. Paul (1973); K. M. Borkowski (1989)]. We should not forget the presence of the

two parameters semi-major axis A1 and relative eccentricity E in all the above transformations which reflect

the role of the reference ellipsoid of revolution in final results.

The left and right Euler-Lagrange deformation tensors of the second kind (Lagrangian and Eulerian tensors of

change of curvature) require that the coordinates of the difference vector of unit normal vectors w as well as

the coordinates of the displacement vector u, Box 3-7, Box 3-9 and Box 3-11 be specified. The space Cartesian

coordinates W J of the difference vector of the unit normal vectors at a point on the Earth surface can be

determined by means of Cartesian coordinates of the unit normal vectors

W 1 = N1 − n1
W 2 = N2 − n2
W 3 = N3 − n3 .

(4-23)

The Cartesian coordinates NJ and nj can be determined in terms of geodetic longitudes and geodetic latitudes

of the point at the reference- and current state, respectively. Box 4-6 presents the final derivations.
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Box 4-6: Space Cartesian coordinates of the unit normal vectors N(L,B) and n(l, b)�

�

�

�

The Reference Surface The Current Surface

N1(L,B) =
1√
A

{
sinL(M +H)HL + cosB cosL(N+ n1(l, b) =

1√
a

{
sin l(m+ h)hl + cos b cos l(n+

H)[sinBHB + cosB(M +H)]
}

h)[sin bhb + cos b(m+ h)]
}

N2(L,B) =
1√
A

{
cosB sinL(N +H)[sinBHB+ n2(l, b) =

1√
a

{
cos b sin l(n+ h)[sin bhb+

cosB(M +H)]− cosL(M +H)HL

}
cos b(m+ h)]− cos l(m+ h)hl

}

N3(L,B) =
1√
A

{
cosB(N +H)[sinB(M +H)− n3(l, b) =

1√
a

{
cos b(n+ h)[sin b(m+ h)−

HB cosB]
}

hb cos b]
}

Having the space Cartesian coordinates of w, they can be converted into the space or surface curvilinear

coordinates using the convenient methods of conversions, established in the remainder of this section.

4.4.2 Conversion of the space Cartesian coordinates into the surface curvilinear

coordinates

The intrinsic approach is based on the surface curvilinear coordinates of the displacement vector as well as

the difference vector of the unit normal vectors. Thus, we have to establish a sort of conversion from space

Cartesian coordinates, which are usually available, into the surface curvilinear coordinates, which are requested.

The procedure here is the same as conversion into the space curvilinear coordinates, discussed in Section 4.4.1.

The surface curvilinear coordinates of the displacement vector of type covariant can be obtained as orthogonal

projections of the displacement vector onto the covariant base vectors of the reference surface.

ŪΛ = < u , AΛ >

= < (UJIJ ) , AΛ > = < IJ , AΛ > UJ .

(4-24)

The out of surface coordinate U3 of the displacement vector is derived by inner product of the displacement

vector and the unit normal vector of the surface N

Ū3 = Ū
3 = < u , N >

= < (UJIJ ) , N > = < IJ , N > UJ

= N1U1 +N2U2 +N3U3 .

(4-25)

The covariant base vectors AΛ have been represented with respect to the fixed frame {I1, I2, I3}, Equation
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(4-9). The representation of the unit normal vector N with respect to this frame can be established as follows,

N(L,B) = I1N
1(L,B) + I2N

2(L,B) + I3N
3(L,B)

=
1√
A

{
sinL(M +H)HL + cosB cosL(N +H) [ sinBHB + cosB(M +H) ]

}
I1+

1√
A

{
cosB sinL(N +H)[sinBHB + cosB(M +H)]− cosL(M +H)HL

}
I2+

1√
A

{
cosB(N +H)[sinB(M +H)−HB cosB]

}
I3 .

(4-26)

Finally, the conversion of the Cartesian coordinates into the surface curvilinear coordinates can be shown in

matrix representation as

 Ū1

Ū2

Ū3


surface

=



cosB
h
HL cosL− (N +H) sinL

i
cosB

h
HL sinL+ (N +H) cosL

i
sinBHL

cosL
h
HB cosB − (M +H) sinB

i
sinL

h
HB cosB − (M +H) sinB

i h
HB sinB + (M +H) cosB

i

1√
A

n
sinL(M +H)HL+

cosB cosL(N +H) [ sinBHB+

cosB(M +H) ]
o

1√
A

n
cosB sinL(N +H)[sinBHB+

cosB(M +H)] − cosL(M+

H)HL

o

1√
A

n
cosB(N +H)[sinB(M+

H) −HB cosB]
o



 U1

U2

U3



(4-27)

Analogous to the covariant surface curvilinear coordinates of the displacement vector, their contravariant coun-

terparts can be computed. In this case, the coefficient matrix will be much more complicated because of the

form of contravariant base vectors AΛ, Equation (4-13).

ŪΛ = < u , AΛ >

= < (UJIJ) , A
Λ > = < IJ , A

Λ > UJ
(4-28)

The conversion in matrix representation will be written as follows

 Ū1

Ū2

Ū3


surface

=



1

A

n
(M +H)2 cosB [HL cosL−

(N +H) sinL ] +HLHB

cosL sinB(M +H)−
H2

B cosB sinL(N +H)
o

1

A

n
(M +H)2 cosB[HL sinL+

(N +H) cosL] +HLHB

sinL sinB(M +H)+

H2
B cosB cosL(N +H)

o

1

A

n
(M +H)2 sinBHL −

HLHB(M +H) cosB
o

1

A

n
(N +H)2 cos2 B cosL[HB

cosB − (M +H) sinB]+

HLHB cosB sinL(N +H)−
H2

L cosL(M +H) sinB
o

1

A

n
(N +H)2 cos2 B sinL[HB

cosB − (M +H) sinB]−
HLHB(N +H) cosL cosB−
H2

L sinL(M +H) sinB
o

1

A

n
H2

L(M +H) cosB+

(N +H)2 cos2B[HB sinB+

(M +H) cosB]
o

1√
A

n
sinL(M +H)HL+

cosB cosL(N +H) [ sinBHB+

cosB(M +H) ]
o

1√
A

n
cosB sinL(N +H)[sinBHB+

cosB(M +H)] − cosL(M+

H)HL

o

1√
A

n
cosB(N +H)[sinB(M+

H) −HB cosB]
o



 U1

U2

U3



(4-29)

53



CHAPTER 4. THE EARTH SURFACE DEFORMATION ANALYSIS

4.4.3 Conversion of the space curvilinear coordinates into the surface curvilinear

coordinates

In the same manner, we can obtain the conversion of the curvilinear coordinates into the surface curvilinear

coordinates. The conversion is developed for the case of transformation from space contravariant coordinates

into the surface covariant and contravariant coordinates. Again, the coordinates of the coefficient matrices can

be written as inner products of the base vectors of the space moving frame {G1,G2,G3, } and the surface
moving frames {A1,A2,N} and {A1,A2,N}

ŪΛ = < u , AΛ >

= < (ŪJGJ ) , AΛ > = < GJ , AΛ > ŪJ .

(4-30)

The out of surface component of the displacement vector U3 is derived by the inner product of the displacement

vector and the unit normal vector of the surface N

Ū3 = Ū
3 = < u , N >

= < (ŪJGJ ) , N > = < GJ , N > ŪJ .

(4-31)

The coefficient matrix in case of transformation from space contravariant coordinates onto surface covariant

coordinates will be written as

 Ū1

Ū2

Ū3


Surface

=



(N +H)2 cos2 B 0 HL

0 (M +H)2 HB

−(N +H) (M +H)HL cosB√
A

−(N +H) (M +H)HB cosB√
A

(N +H) (M +H) cosB√
A



 Ū1

Ū2

Ū3


Space

(4-32)

In the same manner, the space contravariant coordinates can be converted onto the surface contravariant

coordinates
ŪΛ = < u , AΛ >

= < (ŪJGJ) , A
Λ > = < GJ , A

Λ > ŪJ .

(4-33)

The conversion in matrix representation has the final form as

Ū1

Ū2

Ū3


Surface

=
1

A



(N +H)2 [H2
B + (M +H)2] cos2 B −(M +H)2 HLHB HL(M +H)2

−(N +H)2HLHB cos2 B (M +H)2[H2
L + (N +H)2 cos2B] (N +H)2HB cos2 B

−√
A (N +H) (M +H)HL cosB −√

A (N +H) (M +H)HB cosB
√
A (N +H) (M +H) cosB




Ū1

Ū2

Ū3


Space

(4-34)
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The transformations from the space curvilinear coordinates into the surface curvilinear coordinates can be

useful in the linearized theory of deformation where we assume the displacement vector and the coordinates of

its gradients are small. In such a case, the space curvilinear coordinates of the displacement vector of a point

on the Earth surface can be written with sufficient accuracy as

 Ū1

Ū2

Ū3


space

≈

 l(t)− L(t0)
b(t)−B(t0)
h(t)−H(t0)

 (4-35)

where (L(t0), B(t0), H(t0)) and (l(t), b(t), h(t)) are geodetic coordinates of the material point observed at time

epoch t0 and t, respectively. Thus, having the geodetic coordinates of a point on the Earth surface in the

reference and current states, space curvilinear contravariant coordinates of the displacement vector of the point

can be obtained in the first order approximation from the difference of these coordinates. Then, the space

curvilinear coordinates can be converted into the surface curvilinear coordinates of the displacement vector, by

means of Equations (4-32) and (4-34), which are requested in the intrinsic approach of the surface deformation

theory.

4.4.4 Conversion of the space Cartesian coordinates into the surface curvilinear

coordinates based on the least square solution

As an alternative approach to the problem of the conversion of the space Cartesian coordinates of the displace-

ment vector into its surface curvilinear coordinates in a particular case of small displacements, the generalized

inverse method can be applied. Taking into account the Gaussian representation of a surface X(Q1, Q2), the

differential of the vector valued function X is defined as,

dX :=
∂X

∂Q1
dQ1 +

∂X

∂Q2
dQ2 (4-36)

or in terms of Cartesian coordinates as,

dXJ :=
∂XJ

∂Q1
dQ1 +

∂XJ

∂Q2
dQ2 (4-37)

Then, the matrix representation of the differential can be written in the form,

 dX1

dX2

dX3

 =



∂X1

∂Q1

∂X1

∂Q2

∂X2

∂Q1

∂X2

∂Q2

∂X3

∂Q1

∂X3

∂Q2


[
dQ1

dQ2

]
or Y = A X (4-38)

In the language of the least square theory, we encounter the following problem: Find the vector of unknown

parameters X from the vector of observations Y subject to rankA = 2, Y ∈ R
3×1, A ∈ R

3×2, X ∈ R
2×1. The

least squares solution of this overdetermined problem based on ||Y −A X || = min., is given by means of left
inverse A−1

L . The reader interested in an in-depth treatment of the generalized inverse techniques is referred to

E. W. Grafarend and B. Schaffrin (1993); K. R. Koch (1999).
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X̂ = A−1
L Y = (ATA)−1ATY (4-39)

As application of this theory, in a special case of small displacements the space Cartesian coordinates of the

displacement vector UJ can be considered as the differentials dXJ and its surface curvilinear coordinates ŪΛ

as differentials dQΛ. Thus, the solution of the transformation from the space Cartesian coordinates onto the

surface curvilinear coordinates is introduced.

[
Ū1

Ū2

]
Surface

≈ (ATA)−1AT

 U1

U2

U3


Space

(4-40)

In this case, the coefficient matrix A can be specified based on the geodetic longitude and geodetic latitude as

the surface coordinates.

A =



∂X1

∂L

∂X1

∂B

∂X2

∂L

∂X2

∂B

∂X3

∂L

∂X3

∂B


(4-41)
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Chapter 5

The Earth Surface Deformations and

Displacement Fields

This chapter deals with the practical aspects of the Earth surface deformation analysis. The developed theory of

the surface deformation analysis for the Earth surface in Chapter 4 requests a known displacement field. Geodesy

as a discipline of geosciences which treats the geometrical modelling of the Earth surface, provides us valid

knowledge of these displacement fields thanks to the advances in the space geodetic techniques. Displacement

is understood as an effect of (visco-) elastic deformations of the Earth in response to time-varying surface loads

and other causes. We start with considering the main causes of the Earth temporal deformations and proceed

with the role of space geodesy in geometrical modelling of the Earth surface. The last section discusses the

finite element method as a mathematical tool for propagating the discrete displacement fields derived from space

geodetic measurements.

5.1 The Earth’s Deformations

The Earth’s deformations can be classified as secular, periodic or episodic in a temporal scale and as global,

regional or local in a spatial scale. Our knowledge of these deformations varies considerably depending on the

nature of the causes and time duration of observational records. In geodesy, we are interested in the effects

of these deformations on horizontal and vertical movements of the earth’s surface. According to P. A. Cross

et al. (1987), the major causes of Earth’s deformations include tidal forces, Earth rotation and polar motion,

man-made activities, crustal loading and unloading, plate tectonic and episodic movements, Figure 5-1.

The periodic tidal forces directly influence the Earth’s gravity field and deform the shape of the Earth as a

non-rigid body. The most impressive effect of tidal forces is the tidal variation of sea water masses, known as

ocean tide. The ocean tide creates secondary tidal deformations of the Earth’s surface, called ocean loading

effect. The tidal force deforms the Earth in the global scale. The maximum deformation in the radial direction is

as large as 48 centimeters [P. Vani′ček and E. Krakiwsky (1982)]. These effects can be modelled mathematically
because their origin has been understood well enough. They need to be taken into account when an accuracy of

1mm is desired in determining station coordinates. The polar motion affects the shape of the Earth surface at

the cm level. Taking into account the coordinate accuracy achievable by space geodetic techniques nowadays,

the station coordinates are recommended to be corrected for polar motion deformation. Variation in the Earth

rotation rate causes displacements that are below the mm level and can be neglected. D. D. McCarthy (1996)

gives technical information and mathematical models of the corrections to station coordinates due to solid

Earth and ocean loadings and polar motion effects. E. W. Grafarend (1986) proposes a two-step procedure
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Figure 5-1: Main causes of Earth surface deformations

to decompose the displacement field into a global and a local part. The global part due to the tidal and

polar motion effects are represented in terms of vector spherical harmonics and are filtered from the observed

displacements.

The man-made activities cause deformations mostly in local scale. The major cause is withdrawal of ground

water or oil. An example is the subsidence of the Ekofisk oil field in the North Sea. Here an annual subsidence

of several decimeters has been observed [ R. Johnsen (1985)]. The Earth surface is composed of lithospheric

plates of average density ρ = 2.67g/cm3 varying in thickness from 10 to 80km. The lighter solidified plates float

on the denser, viscous mantle material made by heat and pressure. There is a tendency to use the term crust

for the top 10 to 30km of the lithospheric plates. The crust is affected by various geophysical loads which cause

deformations of the Earth surface. The Earth response to a loading or unloading process depends on the size

and temporal behaviour of the load and the rheology of the lithosphere and the mantle. The most significant

examples of unloading regional deformations are the postglacial rebounds in Fennoscandia and Canada. The

Fennoscandian Shield is presently undergoing crustal uplift with a maximum rate of about 10mm/yr [J. Kakkuri

(1997)].

Today, there is no doubt that the old assumption of a rigid Earth surface is no longer acceptable in the light of

the new dynamic concept of plate tectonics and experimental evidences. For the past three decades, the theory

of plate tectonics has provided the geodynamic framework for the geosciences. Its fundamental postulate is that

the Earth lithosphere is broken up into a finite number of quasi-rigid plates moving relative to one another. The

relative current motions between the assumed-rigid plates are described by global plate motion models. These

global models have been determined by inverting geological plate motion data such as transform fault azimuth,

spreading rates and earthquake slip vectors observed at plate boundaries. The first plate motion models were

presented by J.B.Minster and T. H. Jordan (1978) and C. G. Chase (1978). Many new high-quality plate

motion models have become available since the publications of these models. The new data have been used to

determine improved global models, for example NUVEL-1 [C. DetMets et al. (1990)] and its successor NUVEL-

1A [C. DetMets et al. (1994)]. These models can explain the large-scale features of plate kinematics. Major

deformations take place only in the comparatively narrow zones near the plate boundaries. Consequently, a

large number of intense earthquakes occur near these zones. On the other hand, there is a low level of seismicity

in the interior of plates. Figure 5-2 shows the plate boundaries on a map of the world. A global seismicity

distribution is shown in Figure 5-3 for earthquakes with magnitude ≥ 5 on Richter’s scale.
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Figure 5-2: Map of global major tectonic plate boundaries

Winkel Tripel Map Projection

Origin: Lat. 0º & Long. 0º

Reference Ellipsoid: GRS 80Reference Ellipsoid: GRS 80Reference Ellipsoid: GRS 80

Figure 5-3: Map of global seismicity distribution M≥ 5 (1973-2000)
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A comparison of these two figures confirms that boundaries of the global tectonic plates are specified by narrow

zones of high seismic activity. Four principal types of interaction between plates are distinguished by plate

tectonic studies [C. Lomnitz (1975), E. V. Artyushkov (1983)]. They are subduction, strike-slip, spreading

and collision boundaries. Space geodesy plays an important role in plate tectonic studies as it provides the

precise geometrical information necessary for plate motion determinations. Space geodetic techniques have now

approached the level of precision of global plate models and measured plate motions over a period of the last

few years. Thus, the space geodetic measurements are used to confirm the validity of plate motion models

determined from geological data, see for example R. G. Williamson et al (1989), D. E. Smith et al. (1989), R.

E. Reilinger et al. (1997b); D. S. MacMillan and C. Ma (1999); C. DeMets and T. H. Dixon (1999).

As long as the plates move, elastic strain energy is accumulated at the boundary zones. After a certain time

interval dependent on various factors, the accumulated energy will suddenly be released in the form of earth-

quakes, often without any warning. The episodic deformations related to earthquakes can be as large as several

meters. In recent years, earthquake prediction as an interdisciplinary research has been considered a serious

scientific topic in countries with high risk of earthquakes like U.S.A and Japan. Again, space geodetic mea-

surements contribute the main source of geometrical information on the temporal deformations of the Earth

surface in earthquake investigations [P. J. Clarke et al. (1998); S. N. Ward (1998a); T. Kato et al. (1998); T.

Sagiya and W. Thatcher (1999)]. The geodetic measurements can quantify potential seismic activities even on

faults that are unknown, too slowly slipping or too deeply buried to be studied by conventional geological or

seismological methods.

The theory of plate tectonics assumes a rigid behaviour of the plates and therefore fails to account for observed

intraplate deformations. The assumption also restricts the theory’s applicability because no real material

is absolutely rigid. But what makes the theory applicable is that smaller deformations and lower level of

seismic activities happen in plate interiors in comparison with the plate boundaries. Geophysicists have already

attacked the issue by dividing the Earth surface into two domains, nearly rigid plate interiors and deforming

plate boundary regions. Deformations in each domain are treated differently. Plate interiors, which show very

limited permanent deformation induced by boundary forces, are generally treated as elastic plates deforming

in response to tectonic loads. Plate boundary regions, where significant permanent deformations usually occur,

should be studied taking inelastic deformations into account [S. Wdowinski (1998)].

5.2 Geodetic Displacement fields

Geodesy has functioned well and proved that measurement and representation of geodynamic phenomena such

as Earth tides, polar motion and crustal motion, is stated as one of its major goals. The study of geometrical

aspects of these geodynamic phenomena fall within the realm of geodesy. Repeated positioning of geodetic

network benchmarks using either conventional or satellite-based geodetic techniques has allowed differential

displacements to be measured at the surface of the Earth over time scales of a few to one hundred years. About

seventy years ago, Japanese seismologists T. Terada and N. Miyabe (1929) used the geodetic displacements

of a re-observed horizontal network to investigate strain field patterns of the area. Since that time, a huge

number of investigations has been carried out in various aspects of Earth deformation analysis based on geodetic

measurements. Specially, over the last three decades, considerable efforts have been made by geodesists to

develop new methodologies and techniques for deformation studies as well as new theories and algorithms for

network design and analysis of geodetic observations.

It has been a common practice to study the horizontal and vertical components of the displacement vectors

separately. The main reason for this divided treatments was the separately available horizontal and vertical

observation data in classical geodesy. In reality though, purely horizontal or purely vertical Earth surface
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movements do not exist. This separation was the main weakness of classical geodesy. Another weakness of

classical geodesy was that the accuracy of the point positioning techniques for global, regional and, even more so,

for local deformation studies was not high enough. These two limitations restricted applications of the geodetic

measurements in Earth deformation studies. It should be mentioned that despite their relative poor precision,

classical geodetic observations can provide valuable information about broad-scale tectonic deformations of the

Earth surface. Their lack of precision is balanced by the time span of the observations. J. Pagarete et al. (1998)

have analyzed sets of classical geodetic observations carried out in Acores triple junction spanning about six

decades in combination with GPS observations to establish a tectonic model of the area.

In the last two decades, Space geodetic methods have overcome these restrictions and opened the door for geodesy

to join geology and seismology in geodynamics and earth science researches. Space geodetic measurements form,

for the first time, a quantitative link between historical seismology, fault geology and deformation modelling.

The current capabilities of space geodesy allow us to perform geodetic observations with an accuracy which is

significantly higher than typical deformations of the Earth surface occurring on global to regional or even local

scales.

Three international services in IAG dealing with space geodesy should be mentioned here. They are the

International Earth Rotation Service (IERS), the International GPS Service (IGS), and the Commission on

International Coordination of Space Techniques for Geodesy and Geodynamics (CSTG). The IERS and IGS are

service-type organization, while CSTG is a joint commission of the IAG and of the committee on Space Research

(COSPAR). Information concerning IERS activities and related topics is given in the series of technical notes,

e.g. D. D. McCarthy (1996). The IGS central bureau also publishes annual reports on IGS activities which

can be downloaded via ftp://igscb.jpl.nasa.gov/igscb/resource/pubs/. As mentioned previously, 3-dimensional

displacements can be monitored with a rapidly improving accuracy based on space geodetic techniques. At

present, there are four most widely used techniques in space geodesy, namely VLBI, SLR, DORIS and GPS.

The status of these techniques is reviewed here briefly.

VLBI (Very Long Baseline Interferometry) is a geometric space technique. The technique measures the time

difference between the arrival at two Earth-based antennas of a radio wavefront emitted by a distant quasar.

Using large numbers of time difference measurements from many quasars observed with a global network of

antennas, VLBI determines the inertial reference frame defined by the quasars and simultaneously the precise

positions of the antennas. The time difference measurements are precise to a few picoseconds. Thus, VLBI

determines the relative positions of the antennas to a few millimeters. Since the antennas are fixed to the Earth,

their locations track the instantaneous orientation of the Earth in the inertial reference frame. Relative changes

in the antenna locations from a series of measurements can indicate tectonic plate motion, regional deformation,

and local uplift or subsidence. The technique is unique in its ability to define an inertial reference frame and

to measure the Earth’s orientation in this frame. In the past, the focus in VLBI was exclusively on horizontal

movements. Recently, more attention has been drawn to the vertical components [T. M. VanDam and T. A.

Herring (1994)]. However, the error of vertical components of VLBI displacement vectors is still about three

times that of the horizontal components and considerable efforts are being devoted to improve the accuracy.

A significant source of random and systematic error in VLBI is the neutral atmosphere, which slows down the

incoming radio waves and causes an excess ”delay” of the radio signal. Main improvements for VLBI are to

be expected in the observing methods. Troposphere modelling is also planned. Most VLBI stations are now

equipped with a permanent GPS receiver on site. Comparison of the results from VLBI and GPS observations

are likely to improve further the accuracy of VLBI measurements by use of GPS-derived troposphere parameters

for VLBI solutions. Precision of VLBI station position for a one-day session is now as good as 1 mm in the

horizontal and 3 mm in the vertical.

SLR (Satellite Laser Ranging) targets are satellites equipped with corner cubes or retroreflectors. The observ-

able is the round-trip pulse time-of-flight to the satellite. This round trip time-of-flight of an ultra-short (a few
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picosecond) laser pulse from a ground station to a satellite is certainly the most straightforward and accurate

observable of all the competing space geodetic techniques. The current global SLR network consists of over

forty five stations. During the past three decades, this network has evolved into a powerful source of data for

studies of the solid Earth and its ocean and atmospheric sub-systems. Of all the space geodetic techniques, SLR

suffers the least from propagation delay in the atmosphere because optical frequencies are relatively insensitive

to the two most dynamic components of the atmospheric refraction delay, namely the ionosphere and water

vapor distribution. Another advantage of SLR is the simplicity and low cost of the space segment. Despite all

the aforementioned advantages that make the technique the preferred approach for Earth deformation studies,

it presently suffers from some negative features. SLR is not an all-weather method, and the current global

coverage of SLR stations is far from optimum. Future improvements are expected by a better distribution of

stations, improved handling of the atmospheric corrections, and the deployment of a new generation of satellite

targets supporting millimeter accuracy ranging. Some of the scientific results derived from SLR include detection

and monitoring of tectonic plate motion, crustal deformation, Earth rotation, and polar motion, establishment

and maintenance of the International Terrestrial Reference System (ITRS), and detection and monitoring of

post-glacial rebound and subsidence.

DORIS (Doppler Orbitography and Radio positioning Integrated by Satellite) is a radio tracking system

developed by the French National Space Agency, Center National d’Etudes Spatiales (CNES). The main reason

of this development was to get an efficient system for the precise tracking of low orbiting remote sensing

satellites which require precise orbits. Among the various applications of the DORIS observations, utilization of

the coordinates and velocities of the DORIS global network stations in the definition of global reference frames

and Earth surface deformation studies is of interest to this study.

GPS (Global Positioning System) has certainly provided the most important source of information in geody-

namics projects. For most scientific applications, GPS is used as an interferometric technique, namely highest

accuracies are obtainable only if the differences of the original phase observables are analyzed. The principles

of GPS in observation and processing are much the same as VLBI. In this sense, the difference is VLBI abso-

lute feature because of no orbit modelling requirement in VLBI data processing phase. GPS uses microwave

frequencies. Hence, it is fully exposed to the so-called wet tropospheric delay which is very difficult to predict

on the necessary accuracy level. The models of tropospheric delay are getting more complex. The more com-

plex the model is, the better the observable may be represented. In high-accuracy level GPS projects, SLR

is usually used as a calibration tool for testing tropospheric delay models. Currently, a large fraction of GPS

observations originate from campaigns with episodic occupations of stations. But there is a clear trend for more

continuously operating GPS networks, e.g. S. Miyazaki et al. (1997). A major improvement in high-accuracy

GPS applications is expected due to advents in next generation of receivers and antennas, several improvements

in the atmosphere modelling, and better coverage of global GPS networks. Thus, it is predictable that GPS

measurements will be the main source to acquire spatially and temporally dense 3-dimensional displacement

fields in near future.

The precise definition and realization of reference frames is a key factor for Earth deformation studies. These

studies require the adoption of consistent reference frames whose uncertainty in realization is less than the level

of the signals assigned to the deformation processes. A reference frame is fundamentally defined by an origin

of a coordinate system, three orthogonal axes, and a scale. The realization of such a reference frame is via the

3-dimensional coordinates of points on the Earth surface [K. Lambeck (1988)]. Space geodetic techniques such

as VLBI, SLR, DORIS and GPS play the main role in definition and realization of terrestrial reference frames by

providing high accuracy 3-dimensional station coordinates. IERS has produced a series of terrestrial reference

frames from a combination of all submitted solutions of these space geodetic techniques, such as ITRF92,

ITRF94, ITRF96 and ITRF97. A complete description of the definition of the IERS reference systems and their

realizations is given in D. D. McCarthy (1996). The organization is currently working on a new reference frame,
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named ITRF2000. Data processing procedures of space geodetic data usually produce a free-network estimate of

Cartesian coordinates of network sites that is loosely oriented with respect to any arbitrary terrestrial reference

frame. The coordinates of this free network adjustment represent the locations of the sites with respect to

each other, and the displacement rates (velocities) show the deformation of the network as a result of tectonic

movements of the Earth surface. Then, the free network is aligned with an ITRF coordinate system by seven-

parameter Helmert transformations with reference to a global network with known ITRF coordinates, see for

example P. Tregoning et al. (1998). IGS has a global network of GPS stations with known coordinates and

velocities in ITRF framework. The network includes 227 stations as of February 2000 according to the IGS

homepage http://igscb.jpl.nasa.gov, Figure 5-4 .

Winkel Tripel Map Projection

Origin: Lat. 0º & Long. 0º

Reference Ellipsoid: GRS 80Reference Ellipsoid: GRS 80Reference Ellipsoid: GRS 80

Figure 5-4: Current global network of GPS stations supporting the IGS (February 2000)

5.3 Finite Element Approach

The models of the intrinsic and extrinsic deformation analysis of the Earth surface, developed in Chapter 4,

demand partial derivatives of the height function and vector-valued displacement function with respect to the

surface coordinates. The ideal form of these functions should be of areal nature and continuous in spatial and

temporal domains, and continuously differentiable. Unfortunately, geodetic techniques have not provided us

with the functions in the ideal form so far. Typical geodetic observables are discrete functions in time and

space. Consequently, the height and displacement vectors, deduced from the geodetic data, are of discrete

nature. Assuming that a sufficient number of appropriately distributed discrete data are available, continuous

information in space and time has to be estimated by computing best interpolation or approximation of the

unknown functions over the given discretizations. The determination of interpolation or approximation functions

is a basic subject of applied mathematics and numerical analysis and has been treated there in a great variety.

The Finite element method has been introduced as a powerful and widely used numerical technique which deals
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with the problem. It is defined as a computer-aided mathematical technique for obtaining approximate numerical

solutions to the abstract equations of calculus that predict the response of physical systems subjected to external

influences [D. S. Burnett (1987)]. This introductory definition of the method identifies the broad spectrum of

its applications in areas of engineering, science and applied mathematics. Here, we provide a summary of how

the method generally works. The domain of the problem is divided into smaller regions or subdomains, called

elements. Adjacent elements touch without overlapping, and there are no gaps between the elements. The shape

of the elements is intentionally made as simple as possible, such as triangle and quadrilaterals in 2-dimensional

domains, and tetrahedra and pentahedra in 3-dimensions. The process of partitioning a domain into a set of

elements, namely mesh generation, is nowadays an automated procedure to a high degree by means of suitable

computer programs. In each element, the element equations which are usually algebraic equations, are replaced

instead of the governing equations. The much simpler element equations will be an approximation of the

governing equations which are often unknown or too difficult to be handled. Two features are here specially

noteworthy. First, the element equations are algebraically identical for all elements. Second, the derivation

of element equations is usually straightforward because of the simple geometry of the element. Thus, a good

approximation may be obtained with only a few algebraic equations since the element covers only a small part

of the entire domain. Then, the terms in the element equations are numerically evaluated for each element in

the mesh, a process best performed on computers. Depending on the type of applications, the resulting numbers

can be assembled into a much larger set of algebraic equations to characterize the response of the entire system

to loading conditions. The final operation displays the solutions in tabular, graphical, pictorial form, or other

physically meaningful quantities which might be derived from the solution and also represented.

The mathematical structure of the finite element method is identified by three principal operations that are

present in every finite element analysis, namely construction of a trial solution, application of an optimization

criterion and estimation of accuracy. The finite element method seeks a trial solution as an approximate

solution of the unknown function, which only approximately satisfies the governing equation(s) and boundary

conditions. The trial solution in the form of a finite sum of functions is given as

Ũ(QJ ;A) = F0(Q
J ) +A1F1(Q

J) +A2F2(Q
J) + ...+ ANFN (Q

J) (5-1)

Here QJ represents all the independent variables in the problem. The functions FI(Q
J) are known functions,

called trial functions or basis functions. The trial function F0(Q
J) is not multiplied by any parameter. Its

purpose is to satisfy some or all of the boundary conditions. From a practical point of view, it is important to

use the trial functions that are algebraically as simple as possible and also easy to work with, such as polynomials

or trigonometric functions. The coefficient A1, A2, ..., AN are unknown parameters.

Each unknown parameter can assume an infinity of possible values. Hence, there is infinity of possible solutions

for Ũ(QJ ;A). The purpose of the optimizing criterion is to determine specific numerical values for each of the

undetermined parameters AI and consequently the optimum (a best) trial solution. There are two types of

optimizing criteria, namely methods of weighted residuals and Ritz variational method. Methods of weighted

residuals are applicable when the governing equations are differential equations. They seek to minimize an

expression of error in the differential equation and not the unknown function itself. Some of the most popular

methods of weighted residuals are the collocation method, the least-squares method, and the Galerkin method.

In the variational method, we look for a minimum or an extremum in some physical quantities, such as energy,

relevant to the unknown functions. The final operation is estimation of accuracy. We would like to get some

idea of the closeness of the approximate solution to the exact solution. For a more comprehensive treatment of

the subject, we refer the reader to D. S. Burnett (1987), and D. L. Logan (1993).

In finite element analysis, the domain of the problem is partitioned into elements and the approximate solution

is determined for each element. A question naturally arises concerning the continuity of the solutions at the
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interelement boundary points. This is a critical problem in the step of assembly of elements. Similar to

continuity definition of functions, the interelement continuity can be of different classes from C0 to C∞. The
problem is handled by definition of interelement boundary conditions. These conditions must be satisfied by the

element solutions on the boundaries between elements.

The nodes and elements are collectively referred to as a mesh. The process of defining the size, shapes and

locations of the elements, and assigning numbers to each nodes and element is called mesh generation. A planar

triangle is the most easy-going geometry for an element in 2-dimensional finite element analysis. We use a

procedure of mesh generation based on triangular elements or a triangulation algorithm, which was devised

originally by A. K. Cline and R. J. Renka (1984) and modified by S. W. Bova and G. F. Carey (1992) to handle

boundaries. It yields what is known as a Delaunay triangulation , one in which the triangles formed are as

near equilateral as possible for the given positions of irregularly spaced nodes. Figure 5-5 shows the results of

Delaunay triangulation among a set of VLBI stations in the Northern America in the plane of chart of geodetic

longitude and latitude.
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Figure 5-5: Result of Delaunay triangulation among a set of VLBI stations

The finite element method has found manifold applications in geodesy and particularly in Earth deformation

studies because a geodetic network can be viewed as a typical example for a set of irregularly shaped finite

elements in 2- or 3-dimensions. Some examples of the recent works are E. W. Grafarend (1986), S. Zhao (1994),

R. Klees (1995), P. Lundgren et al. (1995), M. Gölke et al. (1996), O. Lesne et al. (1998), Y. Vanbrabant et

al. (1999).

In realm of Earth deformation analysis based on the extrinsic or intrinsic approaches, mathematical tools include

partial derivatives of Cartesian or curvilinear components of displacement vector and difference vector of unit

normal vectors with respect to space or surface curvilinear coordinates. These functions are usually unknown

and their partial derivatives have to be estimated numerically. The main computational steps for deriving the

linearized deformation tensors and the linearized rotation tensor based on the extrinsic and intrinsic approaches

are depicted in Figure 5-6. The flowchart shows the role of two- and three-dimensional finite element methods

in numerical estimations of the unknown functions and their relevant partial derivatives.
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Figure 5-6: The role of finite element method in deriving the linearized deformation tensors based on the

extrinsic versus intrinsic approach 66



Chapter 6

Present-day Surface Deformation

Patterns of the European and

Mediterranean Area

The efficiency of the proposed methodology in Chapter 4 for geometrical modelling of surface deformation is

demonstrated here by analysis of a real data set. The selected region, namely European and Mediterranean

area, is known as an extraordinary natural laboratory for the study of seismotectonic processes. Abundance

of deformation studies in the region will allow test of the developed models in real applications. This area

is geologically and geophysically as well as geodetically one of the best studied regions on the Earth surface.

The research interest encompasses the past 100 year and consequently a huge number of publications exist

addressing local and regional geodynamic processes. Various surface deformation patterns of the area are

computed and compared with the results of these studies. We investigate the links between the numerical

results and geophysical and seismological evidences for the area of interest which encloses a wide region from

the Atlantic ocean in the west to the Black sea in the east, and from Fennoscandia in the north as far as to the

northern border of the African plate in the south. Besides the special geodynamic features, local and regional

networks of space geodetic stations are already available or presently being developed in the area, suitable for

surface deformation studies. These networks can benefit from the existence of the stations of global reference

frames such as those produced by the IERS and IGS which are fortunately dense and accurate in Europe as

illustrated in Figure 5-4. Many fixed stations in this region are fiducial stations of IGS and IERS global networks

and consequently their tracking history is remarkable for quality and quantity of data. Thus, the space geodetic

data of the region will be accurate enough and reliable for the goals of this study.

6.1 The Tectonic and Geophysical Settings

The assessment and interpretation of the geodetic results for detection of possible spatial displacements and the

Earth surface deformation studies have to be integrated with realistic tectonic and geophysical models for the

region. The Earth surface deformations of the European and Mediterranean area can be most readily explained

by tectonic forces associated with spreading at the mid-Atlantic Ridge and the northward motion of the African

plate relative to the Eurasian plate. The recent major tectonic processes occur within the large-scale kinematic

framework of active sea-floor spreading in the Atlantic ocean and the African-Eurasian convergence boundary

in the Mediterranean sea, Figure 6-1.
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Figure 6-1: Geodynamic settings of Europe and adjacent areas

The higher spreading rate in the South Atlantic (40mm/yr) as compared to that in the North Atlantic

(20mm/yr) leads to a gradual counterclockwise rotation of the African plate resulting in a north-northwestward-

directed push against Eurasia, which in turn leads to a lithospheric shortening of 5 to 6mm/yr increasing to

40mm/yr in active subduction zones [D. F. Argus et al. (1989)]. With northwest-southeastward-oriented

spreading in the North Atlantic the whole region is expected to be under compression, particularly the Mediter-

ranean area to a large extent. As far as the Mediterranean in concerned, the collision of Eurasia, Africa and

Arabia plates make the tectonic of the area very puzzling. The seismic map of the region shown in Figure 6-2

clearly shows a high seismic activity due to relatively strong tectonic forces that govern the compression zone.

Moreover, a wide-spread intraplate seismicity takes place in the region which illustrates that the plate collision

zone is complex and not sharply defined.

The European and Mediterranean area can be divided into three main sub-regions with distinct geodynamic

features, namely western Europe, northern Europe and the Alpine-Mediterranean sub-regions. Within western

Europe, roughly covering the area between 45◦N to 55◦N latitude and −10◦W to 20◦E longitude, a weak

seismic activity is observed. The area is characterized as a field of compressional tectonics. A generalized stress

map of Europe [B. Müller et al. (1992)] indicates a generally northwest-southeast uniform orientation for the

maximum compressive horizontal principal stress in western Europe.

The northern European sub-region is defined as the area lying at latitudes greater than 55◦N . The stress map
of Europe shows that the NW-SE orientation of the maximum compressive horizontal stress, which generally

prevails in western Europe, is not as consistent in northern Europe. The Fennoscandian (Norway, Finland

and Sweden) part of this area is characterized by thick lithosphere (110 − 170km) and low thermal heat flow
(< 50mW/m2) . It is presently undergoing recent crustal uplift as a result of postglacial rebound. The observed

land uplift rates, Figure 6-3, vary from 9mm/yr to −1mm/yr with maximum uplift in the northern Baltic Sea

[J. Kakkuri (1997)]. There are geological and geophysical evidences that suggest stresses created from ridge
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Trans. Mercator Map Projection
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Figure 6-2: Seismicity of the European and Mediterranean area

push of the Mid-Atlantic Ridge as the dominant source of intraplate deformations in the region, e.g. P. Wu

(1998), O. Stephansson (1988). Figure 6-4 shows the spatial distribution of recent earthquakes in northern

Europe which indicates little correlation with the center of postglacial rebound. Most of larger earthquakes

(magnitude> 4) are distributed along the coastal regions while the interior is relatively nonseismic. The seismic

map, Figure 6-4 has been created using a catalogue of earthquakes in northern Europe [T. Ahjos and M. Uski

(1992)], updated by the institute of Seismology, University of Helsinki.

Present-day 3-dimensional displacement fields in and around the former glacial area, derived from space geodetic

techniques, have stimulated new interest in the contemporary deformations associated with the present post-

glacial rebound, e.g. H. -G. Scherneck et al. (1998), T. S. James and A. Lambert (1993). The present status

of postglacial rebound measurements in Fennoscandia has been summarized in H. -P. Plag et al. (1998). The

existence of more than 50 permanent GPS stations covering the area, is a promising news for a more complete

understanding of current surface deformation fields in northern Europe.

The Alpine-Mediterranean region marks a broad transformation zone between the African, Arabian and Eurasian

plates. The region is expected to be largely under compression. It is characterized as a region of intensive seismic

activity, Figure 6-2. The region has been interpreted as an assemblage of microplates trapped between the

Eurasian and African plates [C. Gasparini et al. (1985)]. Tectonic evolution of this region is strongly affected

by the convergence of the microplates. In spite of the overall compression between African and Eurasian

plates, the Alpine-Mediterranean area encompasses large sedimentary basins that have in the past and even

now experienced major extension such as the western Mediterranean, Aegean and Panonian basins [J. F. Dewey

(1988)]. The displacement rates obtained so far for the region present a complex nature of the tectonics. In

Eastern Mediterranean, many of the estimated motions from SLR data, are very different from the model

predictions for the major plates [G. Bianco et al. (1998)]. The Aegean Sea and Western Anatolia area is

bounded by the North Anatolian fault to the north and the East Anatolian fault to the east, and a convergent

boundary, namely the extension of Hellenic Trench, to the south and west. The Hellenic Trench results from

the northward motion of Africa relative to Eurasia, Figure 6-1. The stress data for the Aegean Sea and Western

Anatolia compiled by B. Müller et al. (1992) show a dominant N-S extension. It has been confirmed by geodetic

deformation studies of the area based on space geodetic data, e.g. H. -G. Kahle et al. (1998).
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Figure 6-3: The present day observed post glacial land uplift in Fennoscandia [J. Kakkuri (1997), J. Kakkuri

and Z. T. Wang (1998)]
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Figure 6-4: Seismicity of Northern Europe (1950-2000)
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The most recent tectonic feature and the most likely tectonic unit to influence the current deformation field

in Europe is the Alpine orogenic belt, Figure 6-1. The Alps have formed as a results of collision between the

African plate and Eurasian plate. Currently, the central Alps are estimated to be rising with an average speed

of about 2mm/yr [E. Gubler et al. (1984), G. Bada et al. (1999)].

6.2 Space Geodetic Data

Figure 6-5 represents the sites of ITRF97 solution across the European and Mediterranean area. The ITRF97

solution includes positions, displacement rates (velocities) and uncertainties of about 390 stations around the

world. The solution is based on a combination of a selected set of individual solutions submitted to the IERS

Central Bureau in 1998 and some past data sets. The individual solutions selected for the ITRF97 anal-

ysis are 4 VLBI, 5 SLR, 6 GPS, 3 DORIS and one multi-technique (SLR+DORIS) solutions [C. Boucher

et al. (1999)]. Most of the individual solutions have data time spans longer than 4 years, Table 6-

1. The site positions, displacement rates, and uncertainties can be downloaded free from the internet site

(http://lareg.ensg.ign.fr/ITRF/ITRF97/). Table 6-1 gives the quality analysis of the ITRF97 results which is

based more specifically on global residuals per solution.
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Figure 6-5: Sites of ITRF97 in the European and Mediterranean area
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Table 6-1: Selected solutions for the ITRF97 analysis and their global residuals

No. Technique Data time span Number of Reference Position RMS Velocity RMS

[yr] stations epoch [mm] [mm/yr]

1 VLBI 1979-98 129 97:001 3.3 0.7

2 VLBI 85-97 49 93:001 2.5 0.6

3 VLBI 79-94 107 93:001 5.8 1.1

4 VLBI 79-98 110 97:001 2.9 0.6

5 SLR 86-98 76 93:001 11.9 2.2

6 SLR 76-98 129 93:001 11.7 2.5

7 SLR 83-97 72 93:001 19.2 3.3

8 SLR 80-97 38 86:182 3.8 0.7

9 SLR 93-98 51 93:001 5.2 2.8

10 GPS 93-98 139 95:314 3.7 1.6

11 GPS 94-97 40 98:001 5.3 0.5

12 GPS 96-98 67 97:074 1.9 1.8

13 GPS 93-97 76 97:001 8.7 2.9

14 GPS 91-98 84 96:001 3.6 2.2

15 GPS 95-98 145 98:001 2.1 2.8

16 DORIS 93-96 54 93:001 26.9 10.4

17 DORIS 93-98 63 93:001 27.9 5.5

18 DORIS 90-97 69 94:001 32.1 10.7

19 SLR+DORIS 85-96 143 10.8 4.4

Besides the accuracy, the main feature of ITRF97 displacement rates is that they are free of any tectonic plate

model assumption. This feature makes the data adequate for this study. The European and Mediterranean

area is covered by nearly 100 sites of ITRF97 solution. We make use of this sufficiently dense space geodetic

data to obtain various surface deformation patterns of the area. Figure 6-6 plots representative horizontal

displacement rates in a western Europe-fixed frame. In this map, an averaged displacement vector in western

Europe is subtracted from all the ITRF97 displacement vectors to draw the vectors in a western Europe-fixed

frame. Unlike the northern European sites in Scandinavia, the western European stations north of the Alps do

not show significant horizontal motions. In the Mediterranean area, the horizontal displacement vectors behave

completely different. Moving westward across Turkey to the southern Italy, the horizontal displacement rates

are detected with large magnitude, over 30mm/yr, apparently in irregular and different directions. As can be

seen, the plot of horizontal displacement vectors does not give much information about the surface deformation

fields especially in high active seismicity regions such as the Mediterranean area. This justifies why we have to

look for some other analysis and representation procedures of the Earth surface deformations.

Figure 6-7 shows the vertical components of the displacement rates of ITRF97 sites in the European and

Mediterranean area. The upward and downward arrows indicate positive and negative vertical movements in

real scale, respectively. Similar to the sketch of the horizontal components of the displacement rates in Figure

6-6, the sketch of the vertical components can not be of much use for interpretation of the current kinematics

of the area, particularly relevant to existence of rising and sinking regions.
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Figure 6-6: Horizontal displacement rates of ITRF97 sites in a Western Europe-fixed frame
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Figure 6-7: Vertical displacement rates of ITRF97 sites
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6.3 Data Processing Strategy

The main objective of this study is to obtain patterns of the Earth surface deformation parameters for the area,

covered by the selected sites of ITRF97 solution. The analysis procedure is divided into four main computa-

tional phases: conversion of space coordinates to surface coordinates, 2-dimensional finite element method, left

linearized Euler-Lagrange deformation tensor of the first and second kinds and invariants associated with these

deformation tensors, and graphical representation of the numerical results. From theoretical point of view, both

the developed intrinsic and extrinsic approaches turn out the same results for the surface deformation tensors

and consequently their associated invariants. In practice, there are some numerical limitations and difficul-

ties related to the application of the extrinsic approach. Particularly, the extrinsic approach based on space

curvilinear coordinates of the displacement vector requests 3-dimensional finite element method for numerical

estimation of necessary partial derivatives of the mathematical models. Moreover, we have special interest in

investigation of the efficiency of the intrinsic approach, as the standard method of surface deformation analysis

in shell theory, in Earth surface deformation analysis. The results of this investigation clarify applicability of the

intrinsic approach to the Earth deformation studies and let us take more advantages of existing mathematical

models and relations of shell theory in our field.

To put into practice the intrinsic surface deformation analysis , in the first phase the space Cartesian coordinates

of ITRF97 sites (X1, X2, X3) are transformed onto geodetic coordinates (L,B,H) for the whole test area.

The geodetic coordinates are computed with respect to GRS80 reference ellipsoid (A1 = 6378137.0m,E2 =

0.00669438003), recommended for the transformation of ITRF Cartesian coordinates onto geodetic coordinates

[D. D. McCarthy (1996)]. The Cartesian coordinates of the displacement rate vectors are also converted onto

the surface curvilinear coordinates according to the developed mathematical models in Section 4.4.2. Now, the

Earth surface of the test area has been covered by the chart of the geodetic longitude and geodetic latitude

as surface curvilinear coordinates. The mathematical models of the left Euler-Lagrange deformation tensors

of the first and second kinds (Lagrangian strain tensor and Lagrangian tensor of change of curvature), in the

intrinsic approach, requires that partial derivatives of some unknown functions such as H(L,B), ŪΛ(L,B) and

W̄Λ(L,B) be provided. We apply the 2-dimensional finite element approach to find approximate solutions

of these unknown functions. The planar triangular element is selected and Delaunay triangulation method is

utilized for mesh generation in the plane of chart of the geodetic coordinates as described in Section 5.3. Figure

6-8 depicts the results of optimal Delaunay triangulation among the points on the chart of the area.
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Figure 6-8: Optimal Delaunay triangulation of ITRF97 sites across the European and Mediterranean area
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We consider the element trial solution to be a linear 2-dimensional polynomial in our straight-sided

triangular-shaped elements.

Ũ(L,B;A) = A1 +A2L+ A3B (6-1)

The coefficients A1, A2, A3 are determined for each unknown function, namely surface curvilinear coordinates of

u and w and height, based on the nodal values of the function. Clearly, the inter-element boundary condition is

satisfied by the element trial solution F (L,B) on the boundaries between triangular elements. In fact, this choice

of a triangular shape and the placement of the interpolation points at the nodes achieve the desired interelement

continuity. The interelement continuity will be of class C0 in this case. Thus, the element trial solution will

be continuous but not its partial derivatives. It should be noted that unlike the Cartesian coordinates of the

displacement vectors which are input data of the analysis, the Cartesian coordinates of the difference vector

of the unit normal vectors W I have to be determined at nodal points. Having the estimated values of the

partial derivatives of the height functions H(L,B) and h(l, b) of each element, the space Cartesian coordinates

of the unit normal vectors N(L,B) and n(l, b), and consequently W I can be computed based on the developed

mathematical models in Box 4-6 at nodal points. The remaining computational steps for quantifying the partial

derivatives of the surface functions WΛ(L,B) and W 3 is similar to the surface curvilinear coordinates of the

displacement vector field.

In the third phase, the left linearized Euler-Lagrange deformation tensors of the first and second kinds are

quantified at the geometrical center of each element using the results of the finite element analysis of the

second phase. These quantities are utilized to the computations of the scalar invariants connected to these two

deformation tensors, introduced in Section 3.5. In the last step of this phase, the scalar invariants are refined

from any outliers that may have resulted due to any unrealistic estimation of displacement rates in ITRF97

solution or weak geometry of the triangular elements.

The numerical results have to be represented in an appropriate way for any further interpretations and compar-

isons. We used the GMT (Generic Mapping Tools) graphical software package [P. Wessel and W. H. F. Smith

(1998)] to map the surface deformation patterns. The main advantages of the software, for our application, are

its ability in contouring the input data and representing the patterns in adequate map projections. Albers Conic

map projection is often utilized to create the plots. The results are presented in Figure 6-9 to Figure 6-18. The

projection, developed by H. C. Albers (1773-1833) of Germany in 1805, is generally used to map regions of large

east-west extent. It is a conic, equal-area projection, in which parallels are unequally spaced arcs of concentric

circles. The parallels are more closely spaced toward north and south edges of the map. Meridians are equally

spaced radii about a common center, and cut the parallels at right angles. The two standard parallels are free of

angular and scale distortion. The distortion will be constant along any parallel and small for the area between

the two standard parallels.

6.4 Analysis and Discussion of the Results

Various deformation patterns, based on intrinsic deformation analysis of the ITRF displacement rates, are

compared with the geophysical and geological deformation evidences of the area. The analysis and interpretation

of the surface deformation patterns of the area are done by taking into account the geological and geophysical

information to avoid any sort of the misleading interpretations. We first discuss the patterns of the invariants

associated with the left Euler-Lagrange deformation tensor of the first kind (Lagrangian strain tensor), namely

surface maximum shear strain and surface dilatation. They are well known and often used for interpretation

of the strain tensors. Then, we analyze the patterns of the associated invariants of linearized surface rotation

tensor and the Euler-Lagrange deformation tensor of the second kind (tensor of change of curvature), namely

linearized rotation around the surface normal, Mean- and Gaussian curvature difference. These invariants are

less familiar and new in the Earth deformation investigations as surface deformation measures.

75



CHAPTER 6. PRESENT-DAY SURFACE DEFORMATION PATTERNS OF THE EUROPEAN AND
MEDITERRANEAN AREA

6.4.1 Left Euler-Lagrange deformation tensor of the first kind (Lagrangian Strain

tensor)

Surface maximum shear strain and surface dilatation were introduced as two associated invariants of surface

strain tensor in Section 3.5. Here, we study patterns of these invariants as well as another associated invari-

ant of the strain tensor, the so-called maximum geodetic surface strain. Figure 6-9 maps maximum geodetic

surface strain rate for the European and Mediterranean area in units of 10−8/yr. The maximum geodetic

surface strain rate is the largest eigenvalue, in absolute value, of rate of the Lagrangian surface strain tensor,

max[|Λ′
1(L,B)|, |Λ′

2(L,B)|]. S. N. Ward (1998a, 1998b) offers the maximum geodetic strain rate as a good

representation of total deformation where only horizontal motions are available or accurate. It should be noted

that Figure 6-9 does not provide contours for maximum geodetic strain rates in equal contour intervals because

the rates vary by a factor of 100 across the area. The values of the contour lines are considered in the manner

such that the whole area of the study is covered by contour lines. This strategy is considered for all the contour

maps of this section. Thus, we can quantify the surface deformation measures in any particular region of our

maps.
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Figure 6-9: Maximum geodetic surface strain rate
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The pattern of surface maximum shear strain rate in units of 10−8/yr is shown in Figure 6-10. A comparison

between Figure 6-9 and Figure 6-10 shows similarity between the two maps. The surface maximum shear strain

rates have greater values than the maximum geodetic strain rates which can be expected due to their math-

ematical formulations. Similar to the map of horizontal displacement rates Figure 6-6, the surface maximum

shear strain rates increase southward from a continent low values 0.75 × 10−8/yr in the western Europe to

high values 7 × 10−8/yr across northern Turkey and Aegean sea. Unlike western Europe, high values about

9× 10−8/yr are observed over the southwestern Fennoscandia.
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Figure 6-10: Surface maximum shear strain rate

Northern Italy is another region with high surface maximum shear strain rates peak beyond 8 × 10−8/yr. As

can be seen, regions in vicinity of plate boundaries are mapped with significantly larger values of the surface

maximum shear strain rates. Surface maximum shear strain represents the anisotropic part of deformation

and is considered as a key deformation measure in understanding physical processes of the Earth surface and

earthquake prediction studies. A comparison can be made between the pattern of surface maximum shear

strain and the seismic map of the Mediterranean area, Figure 6-2, and also the seismic map of the northern
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Europe, Figure 6-4. The agreement of the geodetic pattern and seismic maps, namely peaks of the pattern at

regions with high seismic activity, confirms the key role of the surface maximum shear strain rate in earthquake

studies as well as the validity of the surface maximum shear strain rate pattern which are obtained based on

the intrinsic Earth surface deformation analysis.

Figure 6-11 illustrates the patterns of surface dilatation rates in units of 10−7/yr over the European and

Mediterranean area. The surface dilatation represents the isotropic part of surface deformation. The negative

values of surface dilation indicate areas which are under a compressional strain regime. Its positive values

are observed at areas with extensional strain regime. In general, the pattern clearly reveals extensive regions

under high compressional or extensional strain regimes in vicinity of plate boundaries across Italy and eastern

Mediterranean.
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Figure 6-11: Surface dilatation rate
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There are no significant values of surface dilatation over western Europe. A very interesting pattern of surface

dilatation rate can be seen across the northern Europe, particularly in the southwestern Fennoscandia. The

pattern in this area indicates that although most of central and eastern Fennoscandia are characterized as areas

of extension because of post glacial land uplift, the western coastal regions are under compression due to the

ridge-push forces at Mid-Atlantic. The stress data for the Aegean sea and the western Turkey compiled by B.

Müller et al. (1992) come mainly from neotectonics and seismology. These data suggest strong north-south

extension in the Aegean sea and the western Turkey. A number of further studies based on geodetic data has

verified the north-south extension of the region, e.g. H. -G. Kahle et al. (1998), The pattern of surface dilatation

rate for these area, 40◦N and 25◦E, derived from space geodetic data, confirms obviously the existence of the

dominant extensional strain regime. West and south of this area, the central Turkey and eastern Mediterranean

are to a large extent under compression due to north-northwestward directed push of the African and Arabian

plates against the Eurasian plate.

6.4.2 Left surface linearized rotation tensor

The linearized rotation around the normal is defined in Section 3.5 as an associated invariant of linearized

surface rotation tensor. Unlike the surface maximum shear strain and surface dilatation, the surface rotation

tensor has rarely been considered as a deformation measure in Earth deformation studies. Here, we investigate

which significant role the linearized rotation around the normal can play as an invariant deformation measure

in Earth deformation studies. Figure 6-12 contours absolute values of rates of the linearized rotation around

the normal |Φ| in units of 10−8rad/yr for the European and Mediterranean area. In general, the pattern of the

linearized rotation around the normal is similar to the pattern of surface maximum shear strain, Figure 6-10.

Peaks as high as 3×10−8rad/yr are monitored in the regions of high active seismicity such as the northern Italy,

southwestern Scandinavia and east Mediterranean. The correlation between the pattern of absolute values of

rates of the linearized rotation around the normal and the seismic map of the area proves that the linearized

rotation around the normal as a deformation measure can play a valuable role in earthquake investigations.

Moreover, the pattern in the eastern Mediterranean area presents more detailed information in comparison to

the pattern of surface maximum shear strain for the same area.

The pattern of the rates of the linearized rotation around the normal in units of 10−8rad/yr is illustrated in

Figure 6-13. In this map, rates of the linearized rotation around the normal with positive values are referred to

as clockwise rotations, shown by the red contour lines, with negative values as counterclockwise rotations, shown

by the blue contour lines. The pattern uncovers some significant signals of the current kinematics of the area.

In northern Europe, two adjacent zones of high surface rotation are observed. They display a clockwise rotation

of nearly 3 × 10−8rad/yr for the western zone and a counterclockwise rotation of about −2 × 10−8rad/yr for

the eastern zone. The zones can be linked to preweakened tectonic belts of the area and the ridge-push forces

at the Mid-Atlantic which are perpendicular to the shore lines in Scandinavia. Rotations of these tectonic belts

can be responsible for the high seismicity of the region.

Another zone of high values of surface rotation is obviously monitored over the Anatolian microplate in Turkey.

The shape of contour lines of the zone proves the existence of the microplate in this region and suggests a

counterclockwise rotation of about −4 × 10−8rad/yr for this microplate. The Arabian plate is moving in a

north-northwest direction relative to Eurasia at a rate of about 25mm/yr. The African plate is also moving

in a northward direction relative to Eurasia at a rate of about 10mm/yr. Differential motion between Africa

and Arabia (∼ 15mm/yr) is thought to cause the apparent westward extrusion of the Anatolian plate [D. P.
McKenzie (1970)]. R. E. Reilinger et al. (1997a) have estimated a counterclockwise rotation of 1.3◦± 0.1/Myr,
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or 2.3× 10−8rad/yr, for the Anatolian microplate based on a data set of GPS measurements across the eastern

Mediterranean. The GPS-derived Euler pole of the microplate, located at 29◦N 33◦E, is very close to the peak
of the contour lines of the pattern of linearized rotation around the normal over this area.
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Figure 6-12: Absolute values of rates of the linearized rotation around the normal

Moving westward in the Mediterranean, the pattern exhibits a zone of high values of surface rotation over

Greece. It suggests existence of a subregion with a clockwise rotation of about 3 × 10−8rad/yr in this area.

Some independent investigations support this idea. F. Horner and R. Freeman (1983) reported geological

evidence of a clockwise rotation of 38◦ in northwestern Greece since 30 million years ago, namely a rotation rate
of about 2.2× 10−8rad/yr. Moving upward from this region, a small zone with a counterclockwise rotation is

found in Northern Italy. The noticeable behaviour of contourlines has been verified independently to be due to

the underlying kinematics of the region. A.Caporali and S.Martin (2000) have concluded the existence of such a

zone with a counterclockwise rotation relative to a stable continental Europe in Northern Italy from analysis of
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Albers Conic Map Projection
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Figure 6-13: rates of the linearized rotation around the normal

the observations of permanent GPS stations along the flanks of the Alps. These geodetic interpretations have

been supported by other investigations based on geologic and structural data, e.g. A. Castellarian et al. (1992),

G. Renner and D. Slejko (1994).

In southwestern Europe, another region with a clockwise rotation of about 2×10−8rad/yr is located over Spain.

Taking into account the northwestward motion of African plate relative to Eurasian plate, the clockwise rotation

of this subregion of Eurasian plate can be justified. Moreover, the seismic and tectonic maps of the area indicate

that a different deformation regime rules over Spain which distinguishes the motion of this subregion from the

rest of the Eurasian plate.
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6.4.3 Left Euler-Lagrange deformation tensor of the second kind (Lagrangian ten-

sor of change of curvature)

As mentioned before, the use of the Euler-Lagrange deformation tensor of the second kind (tensor of change

of curvature) as a deformation measure is new in Earth deformation studies. We decided to first look at the

patterns of difference and sum of eigenvalues of the tensor. The aim was to evaluate the patterns for any

trends and meaningful results connected to the eigenvalues. Figure 6-14 shows the pattern of the difference of

eigenvalues Λ′′
max−Λ′′

min for the quantified Lagrangian tensor of the change of curvature over the European and

Mediterranean area. According to its definition, the difference is a positive quantity like the maximum shear

strain. Thus, the pattern includes only contourlines of positive
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Figure 6-14: Rate of the left Euler-Lagrange deformation tensor of the second kind (Lagrangian tensor of change
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Figure 6-15: Rate of the left Euler-Lagrange deformation tensor of the second kind (Lagrangian tensor of change

of curvature): Λ′′
max + Λ

′′
min

and zero values.In general, the pattern is very similar to the pattern of surface maximum shear strain rates

in Figure 6-10. The pattern clearly uncovers the expected regions of highly active surface deformations. The

southern Scandinavia and northern Italy are covered with two obvious peaks of contour lines. The values

Λ′′
max − Λ′′

min generally increase southwestward from nearly zero values in western Europe to a rainbow of

contour lines of significantly larger values over the central and east Mediterranean. The very interesting feature

of the pattern is a peak of high values around the triple junction of Arabian, African and Eurasian plates in

the southeast of the map where a high active zone of deformations can be expected. Unlike the difference of

eigenvalues Λ′′
max − Λ′′

min, the sum of eigenvalues can be negative or positive quantities like surface dilatation.
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The sum of the eigenvalues of the Lagrangian tensor of change of curvature is contoured for the test area in

Figure 6-15. The map contains some clear trends over the active deformation regions. The patterns of difference

and sum of the eigenvalues proves that the coordinates of the tensor of change of curvature, derived from the

intrinsic deformation analysis of the ITRF97 data, possess some signals of deformation processes of the test

area. This motivates the computation of values of the associated invariants of the tensor and study of their

patterns.

Mean- and Gaussian curvature differences were introduced as scalar invariants associated with the tensor of

change of curvature in Section 3.5. Positive and negative values of these invariants are connected to relative

motion in direction of the normal to the surface, namely rising and lowering regions on the deforming surface.

This will be the main characteristic of patterns of Mean- and Gaussian curvature differences. They are used

to investigate possible vertical deformations of the surface. The rate of mean curvature difference in units of

10−14/myr is shown in Figure 6-16. In this map, negative values of rate of Mean curvature difference are
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Figure 6-16: Rate of the Mean curvature difference
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referred to as rising regions, shown with the blue contour lines, and positive values as sinking regions, shown

with the red contour lines. The pattern reveals some significant signals of the current vertical deformations

of the area. In northern Europe, the most interesting signal of the map is relevant to undergoing postglacial

land uplift of Fennoscandia. The shape of contour lines is in a general similarity with the map of the observed

land uplift of the area in Figure 6-3. The peaks of the maximum land uplift and the maximum Mean curvature

difference are located closely in the north of Baltic Sea.

In a similar fashion, Figure 6-17 maps the rate of Gaussian curvature difference in units of 10−21/m2yr. Both

the maps show nearly the same pattern of rising and sinking regions in the European and Mediterranean

area, though the map of Gaussian curvature difference apparently behaves more stable than the map of mean

curvature difference. Another interesting result of these patterns is the evidence of a sinking area in the North
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sea, among United Kingdom, Norway, Denmark and Germany. The sinking area can be related to the oil

extraction activities of the area. The pattern of rate of Gaussian curvature difference is portrayed in a larger

scale for the specific region of northern Europe in Figure 6-18. The disagreement between the pattern of

Gaussian curvature difference and the map of observed land uplift over Finland and the southern Baltic sea can

be traced back to lack of necessary accuracy of vertical components of the displacement rates, or appropriate

coverage of the stations in the eastern Fennoscandia.

In the Mediterranean area the pattern of rate of Gaussian curvature difference, mapped in a larger scale in

Figure 6-19, shows clearly a rising region in Aegean sea and a sinking region across the Pannonian basin and

the northeastern Italy. These rising and sinking regions can be connected to large sedimentary basins existing in

these areas. The shape of contour lines of the sinking region in the northeastern Italy is approximately similar
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Figure 6-19: Rate of Gaussian curvature difference in Mediterranean area

to the shape of Pannonian basin in Figure 6-1. G. Bada et al. (1999) present a comprehensive review of the

recent crustal deformation and geodynamics of the Pannonian basin and its surroundings. This study confirms

that distinct areas inside the Pannonian basin are still subsiding. Unfortunately, assessment and interpretation

of rising and sinking fields of the patterns, based on geological and geophysical evidences, are very difficult.

Except the postglacial land uplift phenomena, which has been under intensive investigations and relatively

well-known, most of deformation studies focus on horizontal motions and only little is known about possible

vertical deformations in the European and Mediterranean area.

Figure 6-20 shows pattern of vertical components of the displacement rates in the European and Mediterranean

area. The figure contours the vertical component for the area in units of millimeter as obtained from difference

of geodetic heights of each site. Thus, contours of positive values are connected to rising regions whereas

contours of negative values are related to sinking regions. In the northern Europe, it is very difficult to conclude
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existence of the rising region. There is no consistency between the pattern and the real situation of the vertical

deformations of the area. The shape of the contour lines of the northern Europe and the contour lines of the

land uplift of Fennoscandian area in Figure 6-3 can not stick together.

A comparison of the patterns of vertical components of the displacement rates in Figure 6-20 and the Gaussian

curvature differences in Figure 6-17 indicates capability of the pattern of Gaussian curvature differences in

describing current kinematics of the area in vertical direction. In other words, spatial pattern of Gaussian

curvature differences presents more reliable and accurate portray of the existing sinking and rising regions of

the study area. This can be considered as a unique ability of the Euler-Lagrange deformation tensor of the

second kind (tensor of change of curvature) and its associated invariants in comparison to what can be extracted

in this context from the vertical components alone.
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Chapter 7

Summary and Conclusions

This chapter summarizes the main contributions and results of this study. The advantages and the characteristics

of the proposed method of deformation analysis of the Earth surface are critically reviewed. Having recognized

the absence of any method of surface deformation analysis which has been developed based on the geometry of

the real surface of the Earth and the incompleteness of the existing mathematical models for analysis in geodetic

literature, this study has presented the development and the implementation of the intrinsic deformation analysis

of the Earth surface. The developed models of the analysis were established upon the observed displacement

vectors on the Earth surface without referring or projecting the vectors on any reference surfaces.

Tensor analysis was extensively applied to the mathematical formulation of the method. Lagrangean and Eule-

rian descriptions of various deformation tensors were introduced as measures of surface deformations in Chapter

3. The description of the tensors obtained as functions of space Cartesian and space curvilinear components of

the displacement vector u and the difference vector of the unit normal vectors w in the extrinsic approach, and

as functions of surface curvilinear components of u and w in the intrinsic approach. Particular attention was

given to definitions and derivations of the linearized rotation tensor and Euler-Lagrange deformation tensor of

the second kind (tensor of change of curvature) according to literature of shell theory. The elegance of this treat-

ment was clearly demonstrated by the formulation of the Euler-Lagrange deformation tensor of the second kind

in terms of the difference vector of the unit normal vector as well as the displacement vector. The introduction

of the difference vector w yielded transparent and compact mathematical expressions for the Euler-Lagrange

deformation tensor of the second kind in both the extrinsic and intrinsic approaches. The treatment was also

advantageous as far as computer programming and practical applications were concerned. It allowed us to

quantify Euler-Lagrange deformation tensor of the second kind based only on the first order partial derivatives

of u and w, instead of higher order partial derivatives of the displacement vector. The independence of the

numerical computations from estimation of these higher order derivatives clearly improved the numerical accu-

racies of the computations and achieved meaningful results for the Euler-Lagrange deformation tensor of the

second kind.

The appropriate invariants with specific physical meanings were defined for all the introduced deformation

tensors of the study in Section 3.5. The considerable role of these invariants was obvious in graphical rep-

resentations of spatial variations of the deformation tensors fields. The graphical representation of a scalar

field is an easier task in comparison to a tensor field. Moreover the spatial patterns of the invariants eased

physical interpretation and assessment of the information contained in the deformation tensor fields especially

the comparison of the information with the geodynamic and seismic maps of the studied area.

Assuming a Gaussian representation of the Earth surface in terms of the geodetic coordinates, the mathematical
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models of the extrinsic and intrinsic approaches were set up for the parameterized Earth surface in Chapter

4. The coordinates of the deformation tensors were obtained as explicit functions of the space Cartesian and

curvilinear components of u and w in the extrinsic approach, and of the surface curvilinear components of u

and w in the intrinsic approach. A key step for the method of intrinsic analysis was the conversion of the

Cartesian coordinates of u and w into their surface curvilinear coordinates. The exact relations as well as the

approximate technique of the conversion were established and discussed in Section 4.4. The exact relations

were developed based on the theory of shifters in tensor analysis whereas the approximate technique was set up

based on the method of least squares solution.

As a real case study, a series of tests using displacement rates and positions of ITRF97 solution was performed

to investigate the efficiency of the proposed method of the Earth surface deformation analysis in Chapter 6. The

study made use of the space geodetic displacement field available in the European and Mediterranean area. The

data set included sufficiently dense and accurate data for the aims of this study. Moreover, the study area, rich

in various tectonic and geodynamic processes, was one of the best studied regions on the Earth from geological,

geophysical and geodetic points of view. A huge number of publications exist addressing geodynamic problems

and contribute to the better understanding of various aspects of kinematics of the area. The numerical results of

the tests of the geodetic data based on the developed models of the intrinsic approach were graphically displayed

as various spatial patterns. A comparison of the patterns with the geological and geophysical evidences of the

area indicated how well the patterns were able to reveal different geodynamical features of the region. One of

the main goals of this research was an investigation about the possible applications of the linearized rotation

tensor and Euler-Lagrange deformation tensor of the second kind in Earth deformation studies. The meaningful

and reliable patterns of the linearized rotation around the normal revealed that the linearized surface rotation

tensor contained valuable information. A comparison of this pattern with the surface maximum shear strain

pattern shows the ability of the linearized rotation to reveal more details of the underlying geodynamics of

the area. It yields a better insight into the tectonic structure and possible rotations of specified or unspecified

subplates with respect to each other. One of the most interesting results of this research is the spatial pattern of

Gaussian curvature difference as an associated invariant of the Euler-Lagrange deformation tensor of the second

kind. The power of the patterns in detecting and addressing the on-going sinking and rising regions showed

that the tensor was able to provide significant information about the vertical changes of the Earth surface in

the area. Reliable estimates of vertical motions could be extracted from the patterns because of their stable

behaviours. The stability of the numerical results of the tensor could be due to its differential nature which

filtered out small irregularities in the discrete displacement field and presented more meaningful patterns for

vertical deformations. Thanks to the Euler-Lagrange deformation tensor of the second kind, the surface method

preserved the simplicity of 2-dimensional spaces while it nicely modelled vertical deformations.

We should not forget the significant role of the 2-dimensional finite element method in the determination of an

approximate solution for the unknown functions. Reliable estimates of the necessary partial derivatives of the

mathematical models based on the finite element triangulation lead us to convincing numerical results. The

method was able to extract valuable information from a 3-dimensional discrete displacement field. The spatial

pattern presented different aspects of governing deformation regimes of the study area. Thus, the proposed

method, as a well developed and efficient tool of the Earth surface deformation analysis, equips us with a

new way for a deeper understanding of the present day kinematics and strain regime of the Earth surface. A

deeper knowledge of spatial variations in the deformation fields of the Earth surface will certainly provide a key

contribution to establishing a link between the determined kinematics and the dynamics of the Earth’s interior.

This study has indicated the applicability of the developed concepts and mathematical tools of shell theory in

Earth deformation studies. This attempt opened the door for geodesy to join other scientific disciplines which

have been taking advantages of these tools in shell theory. Further studies could be carried out to improve

the performance and numerical results of the model of finite element method used in this study. An example
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could be use of curved triangular elements, with the sides of the elements are chosen along geodesic lines on

the deforming surface, instead of planar ones which might further improves accuracy of the phase of unknown

functions modelling in the intrinsic approach. There exist a great number of studies concerning the application

and efficiency of different methods of finite element in shell theory.

Research could be undertaken into establishment of stress-strain relations and functional representation of strain

energy as further steps in Earth surface deformation analysis based on the theoretical foundation provided herein.

Further work should be undertaken to formulate uncertainty measure and assess the statistical significance of

coordinates of surface deformation tensors and their associated invariants. Although the individual coordinates

of the deformation tensors are linear functions of displacement vector, their associated invariant are not. The

formulation of general eigenvalue problem introduces non-linearity in the associated invariants. Fortunately, a

convenient theoretical basis has been provided in this direction by the works of P. Xu and E. W. Grafarend

(1996) and, P. Xu (1999).
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