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Notation

Symbols in Formulas

Symbol Description Unit

α angle of attack radian

αt total angle of attack radian

β side slip angle radian

χ flight-path azimuth radian

δ geocentric latitude radian

δC cross range radian

∆Θ amount of pitch over radian

ε vertical thrust incidence angle radian

ε singular perturbation parameter –

φ Mayer cost term

Φ roll angle radian

Φ’ aeroballistic roll angle radian

γ flight-path angle radian

λ longitude radian

µE gravitational constant of the central body m³/s²

µa air-path bank angle radian

µt bank angle in total force system radian
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Notation
ν horizontal thrust incidence angle radian

Θ pitch angle radian

ρ air density kg/m³

ρ0 reference air density kg/m³

ω0 natural frequency 1/s

ωΕ angular velocity of the central body radian/s

ξ curvature parameter –

ψ vector of boundary conditions

Ψ yaw angle radian

ζ damping factor –

t time s

aT thrust acceleration m/s²

cD drag coefficient –

cL lift coefficient –

lift coefficient for best glide slope –

cY side force coefficient –

D drag N

d drag acceleration m/s²

e specific energy J/kg

f right hand side of a ordinary differential equation

F vector of external forces N

g path constraints

g gravitational acceleration m/s²

gδ meridional component of gravitational acceleration m/s²

gn effective gravity (local gravity less centrifugal effects) m/s²

h altitude m

hS scale height of the atmosphere m

I scalar cost functional

i orbit inclination radian

it target orbit inclination radian

Kq amplification factor on the dynamic pressure error m³/Ns²

amplification factor on the error of the altitude rate s

Symbol Description Unit

cL
*

K
h
·
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L Lagrange cost term

L lift N

m number of phases –

m mass kg

M Mach number –

n dimension of the state vector –

n total aerodynamic load factor –

nh horizontal load factor –

np dimension of the parameter vector –

nu dimension of the control vector –

nv vertical load factor –

heat flux W/m²

q dynamic pressure Pa

r radius m

S aerodynamic reference area m²

T thrust N

time constant of altitude rate loop s

tacc acceleration time s

tc time constant for pitch over maneuver s

Th time constant of altitude rate loop s

tpo final time of pitch over maneuver s

u control vector

V flight-path velocity m/s

Vcurr current velocity m/s

Vd velocity difference m/s

Vδ velocity in north direction m/s

Vλ inertial velocity in east direction m/s

Vr radial velocity m/s

Vreq required velocity m/s

VW wind velocity m/s

∆vD drag loss m/s

∆vg gravity loss m/s

∆vT thrust alignment loss m/s

Symbol Description Unit

Q
·

T
h
·
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Notation
w pure parameter constraints

x state vector

xF fast manifold of state vector

xS slow manifold of state vector

Ya lateral force N

Symbol Description Unit
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Indices and Superscripts

Symbol Description

0 initial (at start of first phase)

B body-fixed system

0 reference value (input to controller)

a relating to the air-path axis system

A air-path system

AV air-path vertical system

C commanded value (output of controller)

δ in direction of the geocentric latitude

f final

j phase index

λ in direction of the longitude

L local horizontal frame

PL payload

r in radial direction

T trajectory system

TA total angle of attack system

TF total force system

V local vertical system

first derivative of x with respect to time

first derivative of x with respect to velocity

x·

x'
erator for Launch and Reentry Vehicle Trajectory Optimization xxiii
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Abbreviations

Abbreviation Description

ASTOS Aerospace trajectory optimization software

DOF Degrees of Freedom

ESA Energy State Approximation

ESA also: European Space Agency

IFR Institute of Flight Mechanics and Control, University of Stuttgart

IGG Initial Guess Generator

MPOCP Multi-phase optimal control problem

Promis Parameterized optimal control using multiple shooting

SLLSQP Sequential linear least squares quadratic programming

SNOPT Sparse nonlinear optimization

SSTO Single Stage to Orbit

Tropic Trajectory optimization by direct collocation

TSTO Two Stage to Orbit
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Zusammenfassung

In der Raumfahrt bewegt sich der Mensch fast immer an der Grenze des tech-
nisch machbaren. Auf Grund des hohen Energiebedarfs ist der Aufwand,
einen Satelliten ins All zu befördern, enorm. Meist ist der Anteil der Nutzlast
an der Startmasse fast verschwindend gering, schon eine kleine Verschlech-
terung stellt den Erfolg einer Mission in Frage. Aus diesem Grund ist der
Einsatz von Werkzeugen zur Bahnoptimierung in der Raumfahrt weit ver-
breitet. Am IFR wurde seit acht Jahren ein solches Programmpaket entwik-
kelt: ASTOS®.

ASTOS benötigt, wie fast alle Optimierungsprogramme, eine Start-
schätzung der optimalen Flugbahn. Obwohl eine Flugbahn durch ihre
Anfangswerte und den Steuerungsverlauf eindeutig beschrieben werden
kann, ist es mühsam so vorzugehen. Viel einfacher ist es, ein Programm zur
Startwertschätzung zu verwenden. Eine Möglichkeit dafür besteht darin, ein
Lenkgesetz zu definieren, bei dem der Flugzustand an einem Punkt der Bahn
benutzt wird, um einen passenden Steuerungsverlauf auszurechnen.

Diese Arbeit präsentiert solche Lenkgesetze für drei verschieden Arten
von Raumfahrzeugen: konventionelle Raketenträger, luftatmende Aufstiegs-
fahrzeuge und Wiedereintrittsfahrzeuge. Diese Lenkgesetze werden durch
eine kleine Anzahl freier Parameter definiert, die sich direkt aus dem Bahn-
problem ableiten lassen und deshalb sehr einfach vom Benutzer bestimmbar
sind. Außerdem können diese Parameter noch durch Optimierung angepasst
werden. Die kleine Anzahl Steuerungsparameter und die Robustheit der
Lenkgesetze beschleunigen die Optimierung erheblich.
erator for Launch and Reentry Vehicle Trajectory Optimization xxv



Zusammenfassung
Welche Raumfahrzeuge werden unterstützt?

Da ASTOS sehr viele verschiedene Konfiguration von Raumfahrzeugen
unterstützt, ist es sinnvoll, zuerst die drei Haupttypen zu definieren und die
speziellen Problempunkte anzusprechen.

Der derzeit sicher am meisten benutzte Träger ist die klassische
Rakete, die senkrecht von einem festen Startplatz startet. Dieses Konzept
wurde mittlerweile allerdings erweitert. Die Pegasus Rakete, beispielsweise,
wird von einem Flugzeug in große Höhe gebracht. Nach dem Ablösen vom
Trägerfahrzeug benutzt die Rakete eigene Tragflächen, um hochzuziehen.
Bei dem Konzept von Sea-Launch Ltd. wird die Rakete von einer schwim-
menden Plattform gestartet. Dadurch kann ein Startort gewählt werden, der
für de jeweilige Mission ideal ist.

Eines haben aber alle unter dem Begriff “konventionelle Träger”
zusammengefassten Fahrzeuge gemeinsam: die Verwendung eines Raketen-
antriebs. Nicht nur der Treibstoff für diesen Antrieb, sondern auch das Oxy-
dationsmittel für diesen Antrieb werden an Bord mitgenommen. 

Nur in den wenigen Fällen, in denen aerodynamischer Auftrieb aktiv
genutzt wird, ist die Atmosphäre von Vorteil. Meist bedeutet sie nur eine
Quelle von Widerstand und verringerter Effektivität des Antriebs. Deshalb
verlassen Raketen meist schon kurz nach dem Start die dichte Atmosphäre.
Andererseits bedeutet es auch einen Verlust an Effektivität, wenn Treibstoff
erst in großer Höhe verbrannt wird. Deshalb schwenken Raketenflugbahnen
oft auf fast horizontale Bahnteile ein, manchen nähern sich sogar wieder der
dichten Atmosphäre vor der Zündung der Oberstufe.

Diese Beispiel zeigen, dass das größte Problem bei der Bahnoptimie-
rung konventioneller Träger wohl in der Vielfalt der Konfigurationen und
Aufgaben liegt. Ein Lenkgesetz muss also besonders vielseitig sein.

Luftatmende Träger hingegen benötigen, zumindest während eines
Teils der Flugbahn, dem Sauerstoff der Umgebungsluft für den Antrieb. Da
der Oxydator normaler Raketen den größten Teil der Treibstoffmasse aus-
macht, kann auf diese Weise ein große Menge des Startgewichts eingespart
werden.

Um luftatmende Triebwerke längere Zeit betreiben zu können, muss
das Vehikel fast horizontal fliegen. Da die Fluggeschwindigkeit stets weit
unterhalb der Kreisbahngeschwindigkeit liegt, muss das vertikale Kräfte-
gleichgewicht z. B. durch aerodynamischen Auftrieb hergestellt werden.
xxvi An Initial Guess Generator for Launch and Reentry Vehicle Trajectory Optimization
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Deshalb haben die meisten vorgeschlagenen Träger Auftriebshilfen in Form
von Tragflächen. Bei manchen Projekten wird die atmosphärische Flugphase
auch dazu genutzt, um einen günstigen Startpunkt für die Oberstufe zu erzie-
len. Diese ist für den Betrieb in Vakuum mit einem Raketentriebwerk ausge-
stattet. 

In der derzeitigen Version kann ASTOS für Wiedereintrittsfahrzeuge
mit mittlerem oder hohem Auftrieb (mit einem Verhältnis von Auftrieb zu
Widerstand von ca. 0.8 bis 2.0 im Hyperschallbereich) benutzt werden. Diese
Vehikel habe typischerweise kleine Tragflächen oder eine besondere Form-
gebung, um Auftrieb zu erzeugen. Raketenteile mit Auftriebshilfen (z. B.
ausgebrannte, wiederverwendbare Unterstufen) können auch behandelt
werde, während Kapseln normalerweise zuwenig Auftrieb erzeugen können,
um die Flugbahn im nötigen Maße kontrollieren zu können.

Allen Wiedereintrittsfahrzeugen ist gemeinsam, dass ihre sehr hohe
kinetisch Energie durch Luftwiderstand abgebaut werden muss. Dies resul-
tiert in spezifischen Beschränkungen. Meist ist der zulässige Flugbereich nur
sehr schmal. Bei europäischen Projekten muss zusätzlich ein Bedarf nach
hoher seitlicher Reichweite berücksichtigt werden.

Die Rolle des Startwertschätzers

Neben der Modellspezifikation und der Phasenstruktur muss ein Benutzer
von ASTOS auch eine Startschätzung der Steuerungen vorgeben. Eine gute
Schätzung kann die Optimierung erheblich beschleunigen, ja manchmal
sogar erst ermöglichen. Bei Optimierungsproblemen mit mehreren lokalen
Optima kann die Wahl der Startschätzung das Ergebnis der Optimierung
beeinflußen. Aus diesen Gründen ist es sinnvoll, eine Startschätzung anzuge-
ben, die bereits möglichst nahe am Optimum liegt.

Da ASTOS eine große Anzahl an Optionen bietet, die es erlauben, eine
Vielzahl von Fahrzeugen und Missionen zu modellieren, muss auch der
Startwertschätzer besonders flexibel sein.

Da die Optimierungssoftware von ASTOS auf einer Diskretisierung
der Steuerungen und des Zustandsverlaufs beruht, liegt es nahe, eine Start-
schätzung einfach in Form einer Tabelle zu spezifizieren. Ein solcher Zeit-
verlauf kann z. B. von einem ähnlich gelagerten Bahnproblem stammen, von
einem externen Programm berechnet werden oder einfach durch Versuche
erzeugt werden. 
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Aus einleuchtenden Gründen ist keine dieser Vorgehensweisen befrie-
digend, da zu mindest die Grundforderung nach Flexibilität nicht erfüllt wer-
den kann. Aus diesem Grund wurde ein Startwertschätzer implementiert, der
auf Lenkgesetzen beruht. Diese können Steuerungen abhängig vom Zustand
des Fahrzeugs zu jedem Zeitpunkt berechnen.

Zielsetzung bei der Auswahl fortschrittlicher Lenkgesetze

Da sich nur wenig Literatur mit Lenkgesetzen für einen Startwertschätzer
befasst, wurden Lenkgesetze studiert, die zur Lenkung von Luft- und Raum-
fahrt-Vehikeln konzipiert wurden. Das Ziel dieser Lenkgesetze ist es, ein
Fahrzeug in Echtzeit zu bestimmten Zielbedingungen zu lenken, oft jedoch
ohne dabei etwaige Zwischenbedingungen einzuhalten.

Der Anwendung solcher Lenkgesetze in der Optimierung sind aller-
dings enge Grenzen gesetzt. Oft erfüllt ein solcher Algorithmus nur eine ein-
zige Mission, da hierfür umfangreiche Vorrechnungen ausgeführt werden
müssen. Ein Startwertschätzer muss aber nicht nur viele verschiedene Mis-
sionen berechnen können, sondern auch für eine große Anzahl möglicher
Fahrzeugkonfigurationen und Phasenstrukturen tauglich sein.

Die Diskretisierung der Steuerungen kann nicht beliebig fein sein, da
sonst die Anzahl der Optimierungsparameter zu groß würde. Deshalb soll
auch ein Lenkgesetz nur möglichst glatte Verläufe erzeugen. Sollte es zudem
noch die wesentlichen Zustandsbeschränkungen erfüllen und außerdem auch
nahe der optimalen Lösung liegen, kann man gute und schnelle Konvergenz
erwarten.

Die bisher verwendeten Lenkansätze lagen zwar im Konvergenzbe-
reich der optimalen Lösung, aber es wurde erwartet, dass mit verbesseren
Lenkgesetzen eine schnellere Optimierung erzielt werden könne. Insbeson-
ders luftatmenden Träger und Wiedereintrittsfahrzeuge erforderten in den
vorherigen Softwareversionen erhebliche Rechenzeiten. Dies ist bedingt
durch Flugzeiten, die wesentlich länger sind als relevante Manöverzeiten. 

Aus den genannten Gründen wurde ein Startwertschätzer mit neuen
Lenkgesetzen implementiert. Diese Lenkgesetze erlauben es, schon mit
wenigen Parametern Steuerverläufe zu beschreiben, die sehr nahe an den
optimalen Verläufen liegen. Deshalb können diese Lenkgesetze sogar bei der
Optimierung selbst benutzt werden. Durch die Einsparung einer großen
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Anzahl von Parametern zur Steuerungsdiskretisierung kann die Optimie-
rungszeit drastisch verkürzt werden.

Lenkgesetze für Raketenträger

Die Lenkgesetze für Raketenträger wurden als Steuerungen für den Gierwin-
kel und den Nickwinkel implementiert. Der dritte Euler-Winkel, das Rollen,
spielt für die vorhandenen Aerodynamikmodelle keine Rolle. 

Der Gierwinkel wird für die horizontale Steuerung verwendet. Hierfür
stehen zwei Optionen zur Verfügung: der Azimut-Winkel kann direkt als
Gierwinkel benutzt werden – dann ist die Ausrichtung der Rakete immer tan-
gential an der jeweiligen Bodenspur. Der Azimut kann entweder im erdfesten
System gemessen werden (dies bietet sich für die atmosphärischen Teile der
Flugbahn an) oder im inertialen System. Alternativ kann die Inklination
eines Zielorbits optimiert werden. Der Gierwinkel ergibt sich dann aus dem
Azimut der Bodenspur des Orbits, bezogen auf die jeweilige geographische
Breite.

Für die vertikale Steuerung wird der Nickwinkel benutzt. Für die erste
Flugphase ist ein Schwenkmanöver vorgesehen. Nach dem Start der Rakete,
der typischerweise vertikal erfolgt, wird der Nickwinkel aus der Vertikalen
bewegt. Der Flugbahnneigungswinkel folgt dieser Bewegung mit Zeitverzö-
gerung. Wenn er sich ausreichend von der Vertikale weg bewegt hat, wird der
Nickwinkel wider zurückgefahren, bis er identisch zum Flugbahnneigungs-
winkel ist. An diesem Punkt wird ein Gravity-Turn Manöver begonnen, bei
dem sich die Rakete tangential zur jeweiligen Flugbahn bewegt.

Außerhalb der dichten Atmosphäre kann die Oberstufenlenkung ange-
wendet werden. Zwei Optionen sind programmiert: das Required-Velocity
Konzept von Battin und das Bi-Lineare-Tangens Gesetz, das aus der Opti-
malsteuerungstheorie abgeleitete werden kann. Es besagt, dass – bei Ver-
nachlässigung der Erdkrümmung – der Nickwinkel einer Funktion folgen
muss, so dass sein Tangens dem Quotienten zweier linearer Funktionen der
Zeit entspricht. Die freien Parameter der lineare Funktionen sowie die End-
zeit sind optimierbar.

Lenkgesetze für luftatmende Träger und Wiedereintrittsfahrzeuge

Speziell auf Fahrzeuge, die längere Zeit in der dichten Atmosphäre verbrin-
gen, ist ein Lenkgesetz zugeschnitten, das den Staudruckverlauf in eine
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Steuerung umwandelt. Dadurch kann die schnelle Vertikalbewegung von der
langsameren Horizontalbewegung entkoppelt werden. Durch Anwendung
von Differentialgleichungen, in denen die Vertikalbewegung durch die neue
Steuerung ersetzt wurde, kann erheblich Rechenzeit eingespart werden.

Der Staudruck hat direkten Einfluß sowohl auf die Luftkräfte, als auch
auf den Schub luftatmender Triebwerke. Auch wichtige Beschränkungen
hängen direkt vom Staudruck ab, so dass die Optimierung zusätzlich verein-
facht wird. Spezielle Regler werden vorgestellt, um ein Staudruckprofil, das
durch Optimierung gewonnen wurde, wieder in die traditionellen Steuerun-
gen (wie z. B. Lastfaktoren) umzusetzen.

Zur Erzeugung einer Startschätzung kann die Horizontalsteuerung für
Aufstiegsfahrzeuge durch Vorgabe einer Azimut-Drehrate erfolgen. Zur
Optimierung sollte allerdings auf eine variable Steuerung umgeschaltet wer-
den. 

Für Wiedereintrittsfahrzeugen ist meist der Anstellwinkel als Funktion
der Mach-Zahl aus thermischen Gründen vorgegeben. Diese Definition kann
auch bei der Optimierung zur Bestimmung der zweiten Lagesteuerung beibe-
halten werden.

Ergebnisse

Die vorgestellten Lenkgesetze wurden in umfangreichen Testrechnungen
geprüft. Für Raketenträger ergibt sich bei Verwendung der Lenkgesetze wäh-
rend der Optimierung ein erheblicher Zeitgewinn (mit einem Faktor zwi-
schen zwei und vier). Allerdings ist die erzielte Nutzlast um bis zu 10%
niedriger als bei Optimierung mit freien Steuerungen.

Verwendet man allerdings das Bi-Lineare-Tangens Gesetz zusammen
mit einer optimalen Unterstufensteuerung, sind die Ergebnisse praktisch
identisch zu den optimalen Flugbahnen. Hieraus kann man schließen, dass
die Verluste bereits durch die Lenkung in den ersten Bahnteilen auftreten.
Weitere Forschungsarbeit sollte sich somit vor allem mit der Lenkung in den
atmosphärischen Bahnteilen befassen.

Wenn man die Bi-Lineare-Tangens Lenkung mit dem Required-
Velocity Konzept vergleicht, so fällt auf, dass letztere nur als reiner Start-
wertschätzer tauglich ist. Aber selbst bei dieser Anwendung erzeugt das Bi-
Lineare-Tangens Lenkgesetz einen glatteren Verlauf des Nickwinkels und
führt zu Flugbahnen, die die energetischen Endbedingungen besser erfüllen.
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Dies lässt sich auf die Tatsache zurückführen, dass es auf Optimalitätskrite-
rien beruht, während das Lenkgesetz von Battin eher eine ingenieursmässige
Abschätzung darstellt.

Bei den luftgestützen Fahrzeugen führt die Anwendung der reduzierten
Bewegungsgleichungen zu erheblich kürzeren Rechenzeiten. Die Genauig-
keit der erzielten Lösungen im Vergleich zum Optimum ist sehr hoch. Als
zusätzlicher Vorteil werden Oszillationen unterdrückt, die sonst oft auftreten
und die durch Zusatzterme unterdrückt werden müssen. Durch Verwendung
des Staudruck lassen sich die Pfadbeschränkungen als Funktion einer Steue-
rung ausdrücken. Hierdurch wird die Optimierung weiter vereinfacht.

Auch für luftatmende Träger erwies sich das Staudruckprofile in
Zusammenhang mit den reduzierten Differentialgleichungen als adäquate
Steuerung. Die Optimierungszeit kann wesentlich verkürzt werden. Nicht
nur der Zustandsvektor kann verkürzt werden, auch die Anzahl der Stützstel-
len kann reduziert werden. Somit ist die Anzahl der Parameter, die zur Dis-
kretisierung der Flugbahn benötigt werden viel kleiner.

Als weitere Vorteil kann der Staudruck nun durch Beschränkung der
Optimierungsparameter eingehalten werden und muss nicht mehr als nicht-
lineare Beschränkung formuliert werden. Bei dem vorgestellten Beispiel
kann so auf die meisten Auswertungen der Pfadbeschränkungen verzichtet
werden, was eine fühlbare Zeitersparnis bringt.

Allerdings muss man beachten, dass mit dem Lenkgesetz oft nicht die
gleiche Optimierungsgenauigkeit erzielt werden kann. Da die Steuerungen
nur mit wenigen Parameter beschrieben werden, ist es für den Optimierer
schwieriger, alle Zwischen- und Endbedingungen einzuhalten. Ein scheinba-
res Paradox tritt auf, wenn die Flugbahn mit einem Kollokationsverfahren
diskretisiert wird. Obwohl nur eine schlechte Kollokationsgenauigkeit erzielt
wird, kann das Ergebnis in einer abschließenden Simulation erstaunlich
genau sein. Da die schnellen Zustandsvariablen eliminiert sind, genügt
anscheinend eine geringere Genauigkeit der Lösung.

Resümee

Die präsentierten Ergebnisse zeigen, dass die vorgestellten Lenkgesetze für
alle drei Arten von Fahrzeugen zuverlässig Startschätzungen liefern, die im
Konvergenzbereich der Optimierungssoftware liegen. Sie können für eine
große Anzahl verschiedener Konfigurationen und Missionen verwendet wer-
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den. Durch die Einbettung in eine vorhanden Benutzerumgebung ist komfor-
tables Arbeiten möglich.

Die Lenkgesetze sind durch eine kleine Anzahl von Parametern cha-
rakterisiert, die durch Optimierung an die jeweilige Mission angepasst wer-
den können. Das Ergebnis ist zwar meist etwas weniger genau, kann aber in
wesentlich kürzerer Zeit berechnet werden. Dies kann gut für Systemstudien
verwendet werden, bei denen sehr viele Bahnen für verschiedene Konfigura-
tionen berechnet werden. Hierbei kommt es mehr auf die relative Leistung an
und weniger auf das absolut beste Ergebnis.

Vom wissenschaftlichen Standpunkt ist die Kombination von singulä-
rem Störungsansatz mit Parameteroptimierung interessant. Schnelle
Zustände werden als kontinuierliche, glatte Steuerungen modelliert. Dadurch
kann der größte Nachteil der singulären Störungen vermieden werden, die
Notwendigkeit zu Grenzschichtbetrachtungen an Stellen, an denen die
schnelle Zustände springen oder an denen Randbedingungen nicht erfüllen.
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Abstract

In aerospace engineering achieving the best possible performance is a must.
Due to the extremely high energy needed, the technical task of placing a sat-
ellite in outer space is daunting. The payload’s percentage of the launch mass
is often almost negligible. Even a minor deterioration of the performance can
endanger the success of a mission. For this reason, programs are commonly
used to optimize the trajectories of aerospace vehicles. 

Developed by the IFR, ASTOS® is a software packet that simplifies the
task of trajectory optimization considerably. However, ASTOS, like most
optimization programs, needs a kind of starting solution, an initial guess.
One way to describe an initial guess is by specifying the control values for
every point of the trajectory. It is often much more simple to define a guid-
ance law: an algorithm which computes the value of a control depending on
the state vector.

This thesis presents guidance laws for three different kinds of aero-
space vehicles: rocket launchers, air-breathing launchers and reentry vehi-
cles. These guidance laws are characterized by a small number of free
parameters, which are directly related to the trajectory problem. Therefore
they can be easily estimated by the user. Moreover, the guidance laws are
constructed in a way that makes them suitable for optimization. The small
number of parameters and the robust performance expedite the optimization
process considerably. 
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Description of Supported Vehicle Types

ASTOS is designed to handle different kinds of aerospace vehicles. Since
some of these vehicles pose very specific problems for the optimization, a
classification of the main categories is needed. This thesis concentrates on
three different types of aerospace vehicles: conventional and advanced
launcher, as well as reentry vehicles with moderate to high lift capability.

The archetypical conventional launcher is the classic rocket, launched
vertically from a fixed site. However in the last decade several concepts have
evolved that change this notion. For instance, the Pegasus vehicle is carried
by an aircraft to a high altitude and then released. It pulls up from horizon-
tally flight, supported by its wing. The concept of Sea-Launch Ltd. is similar
in that the launch site can be chosen accordingly to the mission’s needs. The
rocket is launched vertically from a swimming platform.

The feature all conventional launchers have in common is the use of
rocket motors. This type of engine is fed with fuel and an oxidizer that the
vehicle carries along. It does not need any ambient air for propulsion. 

Except for a few cases where lift is actively used, the atmosphere is just
a cause for negative effects. Therefore rocket vehicles usually get out of the
dense atmosphere soon after launch. However, when the ascent is too steep,
energy is spent to lift the fuel to high altitudes: this is called gravity loss.
Therefore rocket trajectories tend to have almost horizontal acceleration seg-
ments after leaving the atmosphere. Some even show a dip before an upper
stage is ignited.

As these examples show, the greatest problem for modelling and opti-
mization of conventional launchers is posed by the great variety of staging
concepts and mission profiles. Therefore a guidance law must be especially
versatile.

The main characteristic of an advanced launcher is that, during part of
the trajectory, the engines are using ambient oxygen for combustion. This
can be a huge saving, since for normal rockets the oxidizer accounts for a
large percentage of the total fuel weight.

In order to use air breathing engines for an extended period of time, the
trajectories of advanced launchers are almost horizontal in parts. Since the
velocity is typically far from the velocity of a circular orbit, some aerody-
namic lift capacity is useful (although not strictly required by our definition
of an advanced launcher). In some projects, the extended acceleration and
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climb phase is used to obtain a favorable starting place for the upper stage.
This can be achieved by a cruise phase or by an unsteady pseudo-cruise.

ASTOS currently treats reentry vehicles with medium or high lift to
drag ratio in the range of 0.5 to 2.0. Such a spacecraft will typically have
some sort of wings or other devices to generate lift. Rocket parts (like a re-
usable lower stage) could be treated similarly, while capsules with very low
lift capability may lack sufficient control authority for proper guidance. 

All reentry vehicles have one thing in common – their relatively high
specific energy must be dissipated by using aerodynamic drag. Specific con-
straints and cost functionals ensue. The reentry corridor is very narrow –
sometimes almost non-existent. In addition, European projects demanded a
high cross range – which is difficult to achieve, given the limited lift capabil-
ity of the proposed vehicles. 

The Role of an Initial Guess Generator 

Besides specifying a model and a phase sequence, a user has to supply an ini-
tial estimate of the optimal controls. A good initial guess will simplify the
solution process – in some cases it is even impossible to achieve a solution
without it. In the presence of several local minima, the initial guess can also
influence the outcome of the solution. For these reasons it is worthwhile to
develop an initial guess which is as close to the solution as possible.

ASTOS includes a wide range of modelling options, which allow the
modelling of a large variety of aerospace vehicles. Because of this flexibility,
and also because of the multitude of possible missions which can be opti-
mized, a large number of control options is available, which can be used to
specify an initial guess.

Since ASTOS uses optimization techniques which need a discretiza-
tion of the control history and of the state history, the most straight forward
way to specify an initial guess is by giving starting values for the states and
tables for the control history. These tables could be obtained by using the
optimal solution of a similar problem, by using external tools for trajectory
computation or by a trial and error procedure.

For obvious reasons, none of these approaches is satisfactory. There-
fore the possibility of specifying feedback control laws is introduced. This
allows to specify controls not only depending on time, but also on the current
state. 
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Objective of Advanced Guidance Laws

There is little literature on guidance laws specifically designed for an initial
guess generator. Therefore, guidance laws that are used for the real time
guidance of aerospace vehicles are examined. The purpose of these guidance
laws is to control a vehicle in real time in a way as to guaranty the achieve-
ment of certain target conditions – without necessarily satisfying any inter-
mediate constraints.

A conventional control law is often designed to handle just a single
mission, f.i. it may rely on a pre-computed trajectory. An IGG control law,
however, should handle a wide range of initial and final conditions, as well as
different kinds of models and different phase structures.

Furthermore, since the control discretization used for optimization is
often quite coarse, the controls used for the initial guess should be smooth
and without high frequency content. If in addition an initial guess is close to
the optimal solution and satisfies most of the path constraints, it will lead to
fast optimizations.

The initial guesses obtained with previously implemented guidance
laws proved to be sufficiently close to the optimal solution. However, it is
recognized that improved control laws could make it easier and faster to
obtain an optimal solution. In addition, it was observed that especially
advanced launcher and reentry missions require a very long optimization
time. This is partly due to the different time scales involved and to the large
number of parameters for the control approximation.

For these reasons, an initial guess generator using a novel set of guid-
ance laws is implemented. Some of the guidance laws allow to describe a
control history which is very close to the optimum with a small number of
parameters. Therefore these guidance laws can be used for optimization in
their own right. The resulting savings of a huge number of control discretiza-
tion parameters shortens the time needed for optimization considerably.

Guidance Laws for Conventional Launchers

For conventional launchers, the guidance laws are implemented as controls
of the Euler angles yaw and pitch. The roll angle is of little importance for
the aerodynamic models used.
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The yaw angle is used for the horizontal guidance. Two simple guid-
ance laws are available: one is to set the yaw angle equal to the heading
angle, keeping the projection of the rocket tangentially to its ground track.
The second option uses the inclination of a target orbit and sets the yaw to
the heading of this orbit, calculated for the current declination. The inclina-
tion used for steering is optimizable and may deviate from the inclination of
the actual target orbit.

For the vertical guidance, a sequence of guidance strategies is pro-
vided. Until the rocket clears the launch pad, the pitch is set to the same value
as the flight-path angle. Then a push-over maneuver is initiated: the pitch
angle is deviated from the flight-path angle with a constant rate and then
slowly driven back. While the timing is constant (with user definable time
constants), the pitch over rate is optimizable. The temporary deviation is
used to set a defined flight-path angle at the entry of the gravity turn maneu-
ver. 

Once the rocket gets out of the dense atmosphere, the upper stage guid-
ance is applied. Two options are available: the required velocity concept by
Battin and a bi-linear tangent law. 

The latter is based optimal control theory, applied to the motion of a
point mass in the vertical plane. It states that the tangens of the pitch angle
should always be of the same value as the quotient of two linear functions of
the time. The free parameters of this functions are optimizable.

Guidance Laws for Advanced Launchers and Reentry Vehicles

For air breathing launcher a guidance concept is presented that is based on
the dynamic pressure as a pseudo-control. Since the dynamic pressure by
definition harbors the air density (which depends primarily on the altitude),
this control can be used to replace the variables of the vertical motion, alti-
tude and flight-path angle. These variables are considered “fast” as compared
to the variables of the horizontal motion and therefore removing them not
only reduces the size of the state vector, but also reduces the number of inte-
gration steps needed.

This quantity influences the aerodynamical forces and the thrust
directly, as well as some important path constraints. These facts are further
accelerating the optimization.
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The horizontal control can be specifying a constant turn rate as a first
estimate. Also for reentry vehicle a dynamic pressure control and the
described state vector reduction are proposed. Since for reentry vehicles the
angle of attack as a function of the Mach number is often given by aero-ther-
mal considerations, this is used as the second attitude control.

Results

Using the guidance law which describes the control time history with a small
number of parameters can speed up the optimization time for conventional
launcher missions considerably (by a factor between two and four). However,
there is a penalty in the form of a smaller payload (on the average by 10%
less).

The bi-linear tangent law in conjunction with an optimal lower stage
guidance consistently shows an almost identical performance to an optimized
control. It can be concluded that this guidance law is appropriate for the
upper stage, however, that the gravity turn and the yaw guidance options are
often sub-optimal. More research should be devoted to find better control
laws for the atmospheric phases of the trajectory.

Using the bi-linear tangent law as a pure (non-optimizing) initial guess
generator, when compared to the required velocity guidance, has the advan-
tage of giving a smooth control time history and also a better performance.
This can be attributed to the fact that the bi-linear law is based on an opti-
mum criterion, whereas the required velocity guidance is rather an engineer-
ing “rule of thumb” approach.

The reduced equations of motion for optimization of reentry trajecto-
ries do often result in tremendously reduced optimization times. Part of this
is due to the fact that the optimizer Tropic can be used, since the frequency
content of the solution is reduced.

The accuracy of the solution obtained is very high, when compared to
the optimal trajectory. As an additional benefit, control oscillations, which
otherwise must be smoothed by using a penalty term, can hardly occur.

Using the dynamic pressure as control simplifies the relation of the
most important path constraints. The constraints formulae do contain the
pseudo-control directly, a fact which further simplifies the optimization pro-
cess.
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The dynamic pressure profile in conjunction with the reduced order
differential equations proved to be effective also for advanced launchers. The
optimization time is considerably less than the time needed for optimization
with conventional controls. The size of the parameter vector is reduced,
partly because of the smaller state vector, but also because of a smaller num-
ber of collocation points needed. 

It should be noted, however, that the guidance law does not achieve the
same accuracy during optimization. Since the optimal controls are described
by very few parameters only, it is more difficult to satisfy all path and bound-
ary constraints. Still, when using collocation, the reduced order solution is
often as precise in the final simulation than the full order one. This is due to
the fact, that the fast part of the state vector is not present and therefore larger
intervals for the collocation are admissible. 

As an additional benefit, the guidance law allows to model the dynamic
pressure constraints as box constraints on the parameters which are treated
much more efficiently by the optimizer. For the example given, most path
constraint evaluation points can be therefore eliminated. This reduction in
evaluations speeds up optimization additionally.

Conclusion

The results presented for three types of vehicles show that the new guidance
laws are reliably supplying an initial guess. The proposed control options can
be adapted for a wide range of missions and allow to model attitude controls
close to the optimal ones. The implementation of the guidance laws within
the ASTOS environment makes the usage very simply.

In addition, the control laws are described by a small number of param-
eters, which can be adapted during an optimization. The result is less accu-
rate than a full scale optimization, but it is obtained considerably faster. This
property can be used in system studies, where a large number of trajectories
must be computed and computation time is more important than total accu-
racy.

From a scientific point of view, this thesis treats the adaptation of the
theory of singular perturbations to parameter optimization. It is shown, that
this combination offers distinct advantages when compared to the traditional
approach of using indirect optimization. When the fast members of the state
vector as pseudo-controls are modelled as continuos functions, which are dif-
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ferentiable to the required degree, the separate treatment of boundary layers
can be avoided. Since the user can control the frequency content of the solu-
tion by selecting the discretization of the pseudo-control, a solution can be
achieved, which is flyable by the vehicle – and not just of theoretical interest.
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1  Introduction

ASTOS® is an optimization tool for aerospace vehicles. The acronym stands
for aerospace trajectory optimization software. Formerly known as Altos, it
has been developed for eight years by the IFR.

The optimum is – according to Webster’s Ninth Collegiate Dictionary
– the “greatest degree attained or attainable under implied or specified condi-
tions”. So optimization is a method to minimize or maximize a performance
criterion in the presence of constraints.

Obtaining the best performance is especially important for aerospace
vehicles since these vehicles are almost always operated at the very edge of
technology. Even a slight deterioration from the nominal performance can
make a planned mission impossible.

The payload of a launcher f.i. is usually only a few per cent of the take-
off mass: a small improvement has a big pay-off. Even when a mission is
already well-defined, saving some fuel during launch, which can later be
used for maintaining the position, may prolong the useful life of the satellite
considerably. In other cases optimization may improve the security margin
and minimize the risk for crew and ground personal.

1.1  The Role of an Initial Guess Generator (IGG)

The above mentioned missions as well as many others can be optimized with
ASTOS. However, besides specifying a model and a phase sequence, a user
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has to supply an initial estimate of the optimal controls as well as of the tra-
jectory. That is, ASTOS, as almost all kinds of optimization programs,
requires the user to specify a guess of the solution when starting. For pro-
grams which do not strictly require an initial guess, supplying a good guess
often will help speed up the optimization process. In the presence of several
local minima, the initial guess can also influence the outcome of the solution.
For these reasons it is worthwhile to develop an initial guess which is as
close to the solution as possible.

ASTOS includes a wide range of options, which allow the modelling of
practically all kinds of aerospace vehicles. Because of this flexibility, and
also because of the multitude of possible missions which can be optimized, a
large number of control options is available, which can be used to specify an
initial guess.

Since ASTOS uses optimization techniques which need a discretiza-
tion of the control history and of the state history, the most straight forward
way to specify an initial guess is by giving starting values for the states and
tables for the control history. These tables could be obtained by using the
optimal solution of a similar problem, by using external tools for trajectory
computation or by a trial and error procedure, which often involves guessing
a short starting trajectory and extending it piece by piece.

For obvious reasons, none of these solutions is satisfactory. Therefore
the possibility of specifying feedback control laws is introduced. This allows
to specify controls not only depending on time, but also on the current state
(see [2],[3],[4]). 

1.2  Objective of Advanced Guidance Laws

Several guidance laws for typical missions were previously implemented.
Notably these include the required velocity concept of Battin (see [9]) for
rockets, the Shuttle Guidance for high-lift reentry vehicles (see [30]) and a
guidance for air breathing launchers based on the energy method dating back
to Kaiser (see [42]).

The initial guesses obtained proved to be sufficiently close to the opti-
mal solution. However, it is recognized that improved control laws could
make it easier and faster to obtain an optimal solution.
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In addition, it was observed that especially advanced launcher and
reentry missions require a very long optimization time. This is partly due to
the different time scales involved and to the large number of parameters for
the control approximation. The time scale problem also prohibits in some
cases the use of the optimization code Tropic, which uses collocation instead
of numerical integration.

For these reasons, an initial guess generator using a set of guidance
laws is implemented. Some of the guidance laws allow to describe a control
history which is very close to the optimum with a small number of parame-
ters. Therefore these guidance laws can be used for optimization in their own
right. The resulting savings of a huge number of control discretization
parameters shortens the time needed for optimization considerably.

Another guidance law involving the dynamic pressure as control is
devised for aerospace planes with a prolonged trajectory in the atmosphere.
Together with a reduced set of differential equations, this allows for a time
separation of the horizontal and the vertical motion. Neglecting the fast time
scale during optimization results in much reduced integration times and also
allows the application of a collocation scheme for discretization.

In contrast to the traditional energy state approximations (see e.g. [23])
the continuity and the smoothness of the altitude is preserved. Therefore the
trajectories can be easily followed by simple controllers.

1.3  Structure of the Thesis

In the next chapter the basic types of vehicles treated by the initial guess gen-
erator are defined. Characteristics of the vehicles are introduced, as well as
an outline for a typical mission. In addition, the specific problems an initial
guess must treat for all three classes are discussed.

Chapter 3 states the formulation of the optimization problem. Two sets
of differential equations of motion are presented. Together with the control
options treated subsequently these form the dynamic system. Several path
constraints which have an influence on the construction of the initial guess
generator are discussed, as well as some of the major cost functions imple-
mented in ASTOS.

Next, traditional guidance laws are discussed, as well as their suitabil-
ity for an advanced initial guess generator. Novel guidance laws are pre-
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sented and their advantages are shown, as compared to the previous
solutions.

Optimization results for all vehicle types prove the benefits of the
advanced guidance laws. Finally a conclusion sums up the important points.
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2  Classification of Vehicles

ASTOS is designed to handle different kinds of aerospace vehicles. Since
some of these vehicles pose very specific problems for the optimization, a
classification of the main categories is needed. This thesis concentrates on
three different types of aerospace vehicles: conventional and advanced
launcher, as well as reentry vehicles with moderate or high lift capability.

2.1  Conventional Launcher

The archetypical conventional launcher is the classic rocket, launched verti-
cally from a fixed site. However in the last decade several concepts have
evolved that change this notion.

For instance, the Pegasus vehicle by Orbital Science Corp. is carried by
an aircraft to an altitude of about 11.9 km and then released (see Fig. 2.1). It
pulls up from horizontally flight, supported by its wing (see [34], [54]). This
procedure gives the rocket an initial velocity and allows it to stay out of the
densest part of the atmosphere. The aircraft can also be used to shuttle the
assembled vehicle to a convenient launch site. 

The concept of Sea-Launch Ltd. (see [88]) is similar in that the launch
site can be chosen according to the customer’s needs. The rocket is launched
vertically from a swimming platform (see Fig. 2.2). A command vessel is
used for assembly of the vehicle and for launch control operations. 
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The feature these vehicles have in common is the use of rocket motors.
This type of engine is fed – besides fuel – with an oxidizer that the vehicle
carries along. It does not need any ambient air for propulsion. 

Except for a few cases where lift is actively used, the atmosphere is just
a cause for negative effects. Therefore rocket vehicles usually get out of the
dense atmosphere soon after launch. However, when the ascent is too steep,
energy is spent to lift the fuel to high altitudes: this is called gravity loss.
Therefore rocket trajectories tend to have almost horizontal acceleration seg-
ments after leaving the atmosphere. Some even show a dip before an upper
stage is ignited.

Fig. 2.1: Launch of a Pegasus vehicle carried by a L-1011 airplane
Photography by courtesy of Orbital Science Corp. [87]

Fig. 2.2: Launch platform and command vessel.
Photography by courtesy of Sea Launch Ltd. [88]
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A typical mission for a conventional rocket launcher begins with a ver-
tical launch. After clearing the launch pad, the vehicle is tilted slightly, in
order to achieve curved trajectory. When a suitable state is reached, the vehi-
cle enters a gravity turn maneuver, in which the launcher axis is aligned with
the velocity vector. In this way the losses due to atmospheric drag are mini-
mized. Once out of the dense atmosphere, an upper stage guidance assures
that the vehicle reaches the target orbit. For some missions it is preferable to
enter a coast arc before the final ignition of the upper stage.

Currently most rocket launchers are expandable, that means along the
trajectory rocket stages are jettisoned as their tanks are emptied. However,
there are several projects for wholly or partially reusable launchers, e.g. the
Kistler K-1 vehicle (see [86]). After separation, the first stage will enact a
retro burn and return to the launch site. The upper stage will stay in orbit for
about 24 hours to deliver the payload and then re-enter the atmosphere for a
soft landing (see Fig. 2.3). Missions of this complexity require a new way of
modelling, including optimization of a branched trajectory.

Rocket propulsion can also be used for landing: without atmosphere,
like a lunar lander, or with aerodynamic help for deceleration, like the pro-
posed DC-X vehicle, the Delta Clipper.

As these examples show, the greatest problem for modelling and opti-
mization of conventional launchers is posed by the large variety of staging
concepts and mission profiles.

Fig. 2.3: Kistler K-1 upper stage releasing the payload
The payload door will serve as a heat shield during reentry
Picture by courtesy of Kistler Aerospace Corp. ([86]).
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2.2  Advanced Launcher

The main characteristic of an advanced launcher is that, during a part of the
trajectory, the engines are using ambient oxygen for combustion. Since for
conventional rockets the oxidizer accounts for a large percentage of the total
fuel weight, this can be a huge saving. For instance, for the combination of
liquid hydrogen and liquid oxygen at stochiometric combustion, this is
almost 90%. However, currently at least the upper stage must be propelled by
a conventional rocket engine since the problems of combustion at extremely
high speeds are not yet solved. 

In order to use air breathing engines for an extended period of time, the
trajectories of advanced launchers are almost horizontal in parts. Since the
velocity is typically far from the velocity of a circular orbit, some aerody-
namic lift capacity is useful – although not strictly required by the definition
of an advanced launcher. 

In some projects, the extended acceleration and climb phase is used to
obtain a favorable starting place for the upper stage. This can be achieved by
a cruise phase or by an unsteady pseudo-cruise.

Currently there are two major ideas for advanced launching vehicles.
For a “single stage to orbit” vehicle (SSTO) all propulsion systems are
mounted on the same vehicle which will achieve orbital velocity. There is no

Fig. 2.4: Artist’s view of the British Hotol vehicle
Picture by courtesy of British Aerospace Corp. ([89])
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jettisoning of stages. After fulfilling its mission, the orbiter returns back to
earth. An example is the British Hotol project, which is discontinued (see
Fig. 2.4).

The concurrent “two stages to orbit” projects (TSTO) consist of an
atmospheric vehicle with advanced propulsion and a smaller upper stage
with rocket propulsion. The upper stage, which is released at sub-orbital
speed, reaches the orbit with rocket power, while the lower stage – in most
concepts – returns to base. The cancelled Sänger II project may serve as an
example (see Fig. 2.5). Pegasus will also fit in the scheme of an advanced
launcher, if the carrier aircraft is taken into account.

Several problems are encountered during optimization of advanced
launcher trajectories. No advanced launchers exist yet, therefore the experi-
mental data is quite limited. Models are calculated by costly computer simu-
lations. Often there are only a few data points available, located on a narrow
band around a nominal trajectory. An optimization must be restricted to tra-
jectories which stay within this narrow corridor.

At the high speeds involved, the phugoid motion covers a considerable
altitude difference. This alters the characteristic of this motion, since the den-
sity cannot be considered constant (see [29]). As Bayer and Sachs pointed
out ([11]), there is the possibility of saving a small amount of fuel by using

Fig. 2.5: Sänger II vehicle (Artist’s view)
Picture by courtesy of Mrs. Karen Buchholz.
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the phugoid motion. Since the effect is only a fraction of a percent of the total
fuel, and since this flight path would be rather difficult for a guidance scheme
to follow, this mode should be suppressed by optimization.

From the numerical point of view, long trajectories like the ones pro-
posed for advanced launchers, pose the problem of differing time scales. The
fastest motion of the set of differential equations has a time constant which is
much smaller than the time constant of the slowest motion – or than the total
flight time. Therefore the solution of the optimal control problem must go
into great details. This requires a large number of parameters for the control
discretization, causing the optimization time to increase significantly.

2.3  Reentry Vehicles

A very different type of vehicle is used for reentry calculations. Lift and drag
are produced to achieve aerodynamic control. There is normally no propul-
sion. However, in a few studies, some propulsion is used to control the final
touchdown.

ASTOS currently treats reentry vehicles with medium or high lift to
drag ratio in the range of 0.5 to 2. Such a spacecraft will typically have some
sort of wings or other devices to generate lift, like the X-38 (see Fig. 2.6).
Rocket parts like a re-usable lower stage could be treated similarly, while

Fig. 2.6: Artist’s view of X-38 reentering the atmosphere
Picture by courtesy of NASA ([90], ref. ED97-43903-1)
50 An Initial Guess Generator for Launch and Reentry Vehicle Trajectory Optimization



Reentry Vehicles

An Initial Guess Gen
capsules with very low lift capability may lack sufficient control authority for
proper guidance.

All these vehicles have one thing in common – their relatively high
specific energy must be dissipated by using aerodynamic drag. Specific con-
straints and cost functionals ensue. Especially European projects demanded a
high cross range – which is difficult to achieve, given the limited lift capabil-
ity of the proposed vehicle.

As a special feature, also the optimization of six degrees of freedom
models (6 DOF) is possible in ASTOS. An internal controller is used to
translate the commanded attitude angles into a momentum applied around
the major axis. 

In a typical reentry mission, the vehicle is in a low earth orbit. At a cer-
tain point, the vehicle is decelerated by a de-orbit impulse of its rocket motor.
The new orbit is designed to enter the atmosphere, which is used for further
deceleration. Lift capability of the spacecraft is used to approach the landing
site and to achieve favorable conditions for landing.

Some special problems are encountered during reentry optimizations.
Since the specific energy, which must be dissipated, is very high, some strin-
gent constraints must be heeded. The reentry corridor is very narrow – some-
times almost non-existent.

Again, a phugoid motion due to density differences can ensue. Special
constraints are introduced to avoid problems of controllability. An equilib-
rium glide condition, corresponding to the loft ceiling of a conventional air-
plane, is often used to suppress this motion. For the optimization, again, the
large difference in time scales poses a problem, especially when optimizing
with a six degrees of freedom model.
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3  Formulation of the Optimization Problem

In [1] the standard formulation of the “multi-phase optimal control problem
(MPOCP)” of a dynamic system is specified:

“Given m phases with possibly optimizable phase separation times

(3.1)

let the state vectors ,  be governed by the ordi-
nary differential equations

(3.2)

where  is a vector of model parameters and  are
control functions. Then the optimization problem consists of finding
optimal control functions, model parameters and phase separation
times to minimize a scalar cost functional. Minimize
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This cost functional is a combination of Mayer and Lagrange terms. In
addition to the Eq. (3.2) the solution is required to satisfy separable
multipoint boundary conditions

(3.4)

at the initial time,

(3.5)

at the phase time-points , pure parameter constraints

, (3.6)

path constraints

, (3.7)

and phase transition conditions

.” (3.8)

Some of the equations (3.1) to (3.8), which are of particular interest for the
discussion of the initial guess generator, are explained in more detail below.
Note, that the presence of the control u in the boundary conditions ψ is only
sensible for direct optimization procedures.

3.1  Differential Equations of Motion

Several sets of equations of motion are implemented in ASTOS. Besides a
set based on orbital elements and equations for the rotational dynamics, there
are two sets of equations dealing with the motion of a mass point of a spheri-
cal, rotating planet: one is a system based on inertial velocity components,
the second is the flight-path velocity system.
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These well known equations are only quoted for convenience. A
detailed description of the terms involved can be found in [5].

It should be noted that using ASTOS, the differential equations can be
switched at each phase boundary. The phase connect conditions Eq. (3.8)
will be adjusted accordingly.

3.1.1  Inertial Velocity System

This system is described in [14]. The radius vector is given in spherical,
planet relative coordinates (see Fig. A.1). Its derivative with respect to time
is

, (3.9)

where R, λ, δ are the radius, the longitude and the declination, respectively,
 are the velocity components in the corresponding directions, and

 is the angular velocity of the rotation of the planet.

The derivative of the velocity vector is given by

, (3.10)

where  is the sum of all forces acting on the vehicle, like gravity, aerody-
namic forces and thrust. The index L denotes the local horizontal coordinate
system.

These differential equations are especially useful for rocket launchers,
when a vertical flight is part of the trajectory since the differential equations
of motion accommodate vertical flight. Note that the differential equations
show a discontinuity for flight over the poles ( ).
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3.1.2  Flight-Path System

While the definition of the radius vector is the same, the differential equation
is expressed in the terms of the flight-path velocity vector (see Fig. A.2):

, (3.11)

, (3.12)

(3.13)

with the planet-relative velocity V, the flight-path angle γ, and the azimuth χ.
The equations of motion are, for the velocity:

, (3.14)

for the heading angle:

, (3.15)

and for the flight-path angle:
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. (3.16)

The component of the gravity in meridional direction gδ is often neglected,
the component in longitudinal direction is zero for simple planet models. 

Note that for the dynamic equations the first lines denote the influence
of the external forces and the centrifugal forces due to the vehicle’s motion,
while the last line contains the Coriolis acceleration (terms including 2ωE)
and the centrifugal acceleration due to the rotation of the earth (denoted by
rωE

2). The equations for movement over a non-rotating planet can be
obtained by setting ωE to zero.

The thrust incidence angles ε and ν are taken in the air-path system.
For a rocket with the thrust aligned with the body x axis, ν will be equal to
the side slip angle and ε equal to the angle of attack. For a definition of ε and
ν please refer to Fig. A.5.

3.2  Attitude Controls

The attitude controls describe the orientation of the vehicle with respect to an
axis system. The orientation influences the size and direction of the aerody-
namic force and of the thrust force. 

There are three major possibilities to specify attitude controls in
ASTOS: aerodynamic angles, Euler angles and load factors. Two of these
methods offer the option of specifying a full set of three attitude angles or a
reduced set of controls of two angles only. In the latter case, the side slip
angle is set to zero.

3.2.1  Transformations

In order to define the attitude control angles, it is necessary to describe the
axis systems used and the coordinate rotations needed to transform a vector
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from one to another. For a detailed description of the different axis systems
mentioned in Table 3.1 please refer to Appendix A.

Each transformation is described by a transformation matrix ,
which denotes a rotation around the axis i by the angle δ. Transformations
are given in the form:

, (3.17)

which means: to transform a vector from the AV system to the A system, a
rotation around the first axis by the angle µa is necessary. Three basic matri-
ces are used, one for each the three rotations around an axes:

, (3.18)

, (3.19)

. (3.20)

Table 3.1:  Axis systems

Index Axis System

V local vertical system

AV air-path vertical system

T trajectory system

A air-path system

B body-fixed system

Ti δ( )

TAV
A T1 µa( )=

T1 Φ( )
1 0 0

0 Φcos Φsin

0 Φsin– Φcos

=

T2 Θ( )
Θcos 0 Θsin–

0 1 0

Θsin 0 Θcos

=

T3 Ψ( )
Ψcos Ψsin 0

Ψsin– Ψcos 0

0 0 1

=
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When several rotations are needed, they are done from the right to the left:

. (3.21)

First the rotation around the third axis and then the rotation around the sec-
ond axis is effected. A summary of the different transformation sequences is
given in Fig. 3.1.

3.2.2  Aerodynamic Angles

The most common way to describe the control of aircraft like vehicles are the
aerodynamic angles: air-path velocity bank angle µa, side slip angle β and
angle of attack α (see Figs. A.4 and A.5). The reference frame is the vertical
air-path axis system AV, which is identical to the trajectory axis system when
no wind is present (VW=0).

For vehicles with a distinct plane of symmetry, the aerodynamic angles
have the advantage of relating the body axis directly to the air-path velocity.
The aerodynamic models are also given as functions of the angle of attack

TA
B T2 α( )T3 β–( )=

AV

V

T

A

B
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T3(χ)

T2(γ)

Vw
T1(µa)

T3(−β)

T2(α)

T3(Ψ)

T2(Θ)

T1(Φ)

Fig. 3.1: Angular transformations from local vertical system to body system.
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This reduces the amount of transformations needed, especially when the
flight-path equations of motion are used.

As output functions, the Euler angles Ψ, Θ, and Φ are computed from
the identity of both ways of doing the transformations :

. (3.22)

In order to simplify the computation of the yaw and the pitch angle, the x
axis of the body-fixed system is transformed into the vertical axis system:

(3.23)

and

. (3.24)

Note that the transformation of (3.23) is computed numerically and that the
roll angle rotation is invariant on the x axis. When the matrices and the vector
(3.24) are multiplied:

,

(3.25)

a simple vector equation results:
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. (3.26)

Taking the into account the signs of cx and cy, the attitude angles can be com-
puted easily using (3.23) and (3.26). For the roll angle, the z axis of the verti-
cal system is used for similar computations:

(3.27)

or

. (3.28)

The roll angle can be computed using the cy and cz components of the trans-
formed vector.

3.2.3  Reduced Aerodynamic Angles

When no data is available relating the aerodynamic coefficients to the side
slip angle – and when no wind is present – this member of the attitude con-
trol vector can be set to zero. This will result in a vanishing side force.

In this model the angle of attack can be positive or negative, since there
is no ambiguity due to the missing definition of an attitude angle, unlike the
reduced Euler angles described below. 
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3.2.4  Euler Angles

When the orientation of the vehicle is given in reference to the local vertical
axis system V (see Fig. 3.1), the Euler angles yaw Ψ, pitch Θ, and roll Φ are
used (see also Fig. A.6).

This control system is especially useful for parts of the trajectory dur-
ing which the aerodynamic angles are not well defined, f.i. during the verti-
cal launch of a rocket. Some launcher guidance schemes are also easier
expressed in Euler angles.

As additional output variables, the aerodynamic angles are computed.
By observing that

, (3.29)

the angle of attack and the side slip angle can be obtained from:

. (3.30)

The air-path bank angle is computed similarly from:

(3.31)

or

. (3.32)
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3.2.5  Reduced Euler Angles

This kind of controls is meant for vehicles which show a rotational symmetry
around the x axis of the body system and for which specifying a roll angle
control would not make sense. However, in order to comply with other con-

trol models, notably the reduced aerodynamic angles, an artificial roll angle
is computed. It does not correspond to any characteristics of the vehicle, but
rather to the direction of the resulting aerodynamic force. In this way it is
possible to set the side slip angle to zero, which allows a smooth transition to
and from the reduced aerodynamic angles (see Fig. 3.2 and Table 3.2).

The total angle of attack αt, the bank angle of the total force system µt
and the corresponding roll angle  are computed as additional output func-
tions (see Fig. A.7).

The total angle of attack is the angle between the air-path velocity
and the body x axis (denoted by ):

. (3.33)

Since the vector

(3.34)

is perpendicular to both  and , it is along the y axis of the total force
system TF. Therefore it can be used directly as test vector in formula (3.31).
The aeroballistic roll angle  can be computed analogous to (3.27) and
(3.28). If the air-path velocity and the body x axis are parallel, the total angle
of attack is zero and the bank angle is undefined.

Table 3.2:  Axis systems for axisymmetric bodies

Index Axis System

TF total force system

TA total angle of attack system

Φ'

va xb

αtcos
va xb•
va xb⋅
--------------------=

y va xb×=

va xb

Φ'
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Please note that this way of computation is tailored to vehicles that
show a symmetric lift characteristic, i.e. the magnitude of lift is the same for
positive and negative angle of attack. Especially the lift must be zero for a
vanishing angle of attack.

3.2.6  Load Factor Controls

With this option, the control variables are the horizontal and the vertical load
factor. There is no third component, since the side slip angle is set to zero.
This implies that the side force is vanishing, too.

A load factor is defined as the ratio of the applicable aerodynamic
force component and the vehicle’s weight. In accordance with [7], the norm
of the local gravity vector is used. In high speed flight, when the centrifugal
and Coriolis accelerations cannot be neglected, a vertical load factor balanc-
ing the gravity will be slightly less than one, however.

The total angle of attack and the flight-path bank angle are computed,
conserving the sign of the bank angle. Therefore the discussion of

Fig. 3.2: Angular transformations for reduced attitude controls
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Section 3.2.2 and Section 3.2.3 applies. The tangent of the bank angle
defined by ratio of the load factors, observing the correct sign:

. (3.35)

The aerodynamic model must provide a method to calculate the angle of
attack that corresponds – for the current Mach number – to a given lift coeffi-
cient:

. (3.36)

The side slip angle β is always zero. Therefore the total angle of attack sys-
tem is used (see Section A.3.2 on page 162). Note that a negative vertical
load factor will result in a positive total angle of attack and a vehicle orienta-
tion that will point the top part of the aircraft towards the planet.

3.3  Path Constraints

A path constraint  (see Eq. (3.7)) is enforced during the whole phase j.
It is called “active” when it has an influence on the optimal trajectory. For an
active path constraint, the trajectory can pass along the constraint for part or
for all of the phase or there can be just a finite set of touch points in a phase.
Path constraints are always of the inequality type (an equality constraint
could be eliminated by reducing the state and control vectors).

The most important path constraints are discussed subsequently. These
are the dynamic pressure, the heat load, the normal load and the loft ceiling.
Note that in all these constraints the dynamic pressure plays a prominent
role. This fact will be used later for derivation of atmospheric guidance laws.

The axial acceleration, a path constraint which depends on the atmo-
sphere only to a very limited extend, is especially important for rocket
launchers.

3.3.1  Dynamic Pressure

The dynamic pressure is one of the most important quantities in flight
mechanics. All aerodynamic forces and moments are proportional to it. Also

µt nh nv,( )atan=

cL αt M,( ) qS
mg
------- nh

2 nv
2+=

g
j

0≥
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the actuator forces for the aerodynamic control surfaces depend on the
dynamic pressure. It is a function of the air density and of the air speed:

. (3.37)

The unit is that of a pressure, force per area: .

3.3.2  Heat Rate

The stagnation point heat rate is a measure for the amount of energy that the
ambient medium will dissipate to the vehicle per unit of time. A heuristic for-
mula is given by [24] and by [61] as

. (3.38)

In the case of free stream enthalpy, the parameters are C=1/2, n=1, and m=3,
or:

. (3.39)

For hypersonic heating, when only a small fraction of the available heat is
conducted to the vehicle, the literature suggests n=1/2, and m=3.0 or m=3.15:

. (3.40)

The constant C must be chosen according to the effective stagnation point
radius. Note that the unit of C must be consistent with the other parameters.

The unit of the heat load is thermal power dissipation per area:
.

3.3.3  Normal Load Factor

The normal load relates the acceleration due to aerodynamic forces to the
local acceleration due to gravity by

. (3.41)

q
1
2
---ρV2= qmax≤

q[ ] N m2⁄=
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n
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It is the acceleration that a passenger would feel in the absence of a thrust
force. Note, that the choice of a local  is mandated by [7].

When the lateral force Ya is neglected (and with the short hand g for
gravity), the normal load is 

. (3.42)

Normal load is dimensionless: .

3.3.4  Loft Ceiling

This constraint is dictated by controllability considerations, rather than being
a strict limit. It states that the vertical lift component must be large enough to
balance all other accelerations in Eq. (3.16):

, (3.43)

where stands for the Coriolis and the centrifugal acceleration due to the
planet’s rotation. This equation can be rewritten as

, (3.44)

where cLmax is the maximum achievable lift factor and usually depends only
on the Mach number.

The unit of the lift acceleration is: .

A similar limit exists for vehicles entering at hyperbolic speed. The
“no-skip” condition ensures that the vehicle will not leave the atmosphere
anymore (called “over-shoot” or “skip-out”):

. (3.45)

Note, that the centrifugal acceleration can be larger than the gravity accelera-
tion. The maximum bank angle modulus  is given by flight control con-
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siderations. When it is larger than π/2, the lift is oriented downwards.
Otherwise the Lmax should be replaced by the minimum possible lift.

3.3.5  Axial Acceleration

The fuel of a rocket launcher is typically a large percentage of the total mass
at launch time. When the fuel of a stage is depleted while the thrust is kept
constant, the acceleration of the vehicle is steadily increasing. At some point
the thrust must be reduced, in order not to destroy the launcher or the pay-
load:

. (3.46)

Since the thrust is mostly aligned with the major axis of the vehicle, the
acceleration is called “axial”. Usually the drag can be neglected for rockets.

The unit is .

3.4  Cost Functions

While it is often a difficult task just to satisfy all constraints, there are still
open parameters which can be chosen to the cost function. While in the gen-
eral formulation, a cost functional can have an integral part called Lagrange
term (see Eq. (3.3)), in ASTOS this is only used for control smoothing:

. (3.47)

Cost functions involving the ratio of launch mass to final mass are of particu-
lar interest for launch vehicles, while for reentry vehicles a typical task is to
reduce the heat load on the vehicle, or – during planning of the mission – it is
important to optimize the maneuverability, represented by the achievable
cross range.

3.4.1  Maximum Payload

This cost function is the sum of the masses of all payloads:
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. (3.48)

This can be used to size a satellite during the design phase, or to assess how
much fuel a satellite can use for station keeping.

For this criterion, the mass of at least one payload is variable. In the
case of several payloads, usually the scaling parameters of all but the one to
be sized are set to be constant.

Note that the cost function is conveniently calculated at t0, since the
mass of the payloads is constant during the flight.

3.4.2  Maximum Final Mass

In this case, the total mass at the final time tf or at the time when the last pay-
load is jettisoned is used as cost function:

. (3.49)

The mass of the payloads is held constant. It is assumed that savings in upper
stage propellant during ascent can be used as additional propellant in the
payload – for station keeping, f. i.

3.4.3  Minimum Fuel

While holding the payload masses constant, the sum of the fuel of all tanks at
launch time is minimized:

. (3.50)

This assumes that at least one of the tanks has a variable filling capability.

3.4.4  Minimal Heat Load

Widely used for reentry vehicles, the accumulated stagnation point heat load
is a measure for the thickness (and weight) of the thermal insulation needed.

I mPL i,∑–=

I mi∑–
tf

=

I mF∑
t0

=
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The heat load is the integral of the stagnation point heat rate (see
Eq. (3.38)):

. (3.51)

Most of this energy will be radiated into the ambient, only a small fraction is
actually conducted through the insulation.

3.4.5  Cross Range

When evaluating the capabilities of a reentry vehicle, the achievable cross
range is important, f.i. to assess how many landing sites must be planned for
emergency returns.

The cross range is defined as the distance of the landing site from the
initial orbital plane (see Fig. 3.3). Note that this involves parameters both
from t0 and tf (denoted by the indices 0 and f):

, (3.52)

where  is the unit vector in the direction of the angular momentum of the
initial orbit. All vectors are expressed in the inertial frame.

In order to maximize the (positive) cross range when turning to the
right

(3.53)

or to minimize the (negative) cross range when turning to the left

(3.54)

the sign of the cost function must be chosen accordingly.
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3.4.6  Trajectory Smoothing

For trajectory smoothing an additional term can be used together with any of
the other cost functions. An additional member of the state vector is defined,
whose differential equation is the square of the derivative of the flight-path
angle:

. (3.55)

If the constant c is not set otherwise by the user, its value is zero.

Fig. 3.3: Definition of cross range for reentry
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4  Guidance Laws

There is little literature on guidance laws specifically designed for an initial
guess generator. Therefore, guidance laws that are used for the real time
guidance of aerospace vehicles are examined: conventional launchers (see
[9], [31], [59], [60], [70]), advanced launchers (see [14], [21], [46], [47],
[55], [56], [58]) and reentry vehicles (see [13], [17], [19], [23], [25], [26],
[30], [36], [41], [48], [49], [73], [84]). The purpose of these guidance laws is
to control a vehicle in real time in a way as to guaranty the achievement of
certain target conditions – without necessarily satisfying any intermediate
constraints.

While a conventional control law is often designed to handle just a sin-
gle mission, an IGG control law for the ASTOS software should handle a
wide range of initial and final conditions, as well as different kinds of models
and different phase structures.

Since the control discretization used for optimization is often quite
coarse, the controls used for the initial guess should be smooth and without
high frequency content. A small number of abrupt changes can be modelled,
when these changes happen at well-defined times.

If in addition an initial guess is close to the optimal solution and satis-
fies all or at least some of the path constraints, it will lead to fast optimiza-
tions.

If a controller is used within an IGG, it faces some severe restrictions.
There cannot be any integral stage, since this would extend the state vector.
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Also a differential block is not feasible, since the integrator of the IGG is
allowed to select evaluation times at random order. No information obtained
in a previous step can be used, so also output filtering techniques must be
avoided. However, the whole state vector can be considered exactly known
and no measurement noise must be taken into account. In addition, an IGG
control law should generate the state history with minimal computation
effort.

4.1  Conventional Launcher

An overview is given for some typical guidance schemes. The three guidance
schemes used in ASTOS will be discussed in greater detail in the subsequent
sections. A guidance scheme for a vertically launched rocket involves typi-
cally four sections. In an initial phase the vehicle accelerates vertically until
the launch pad is cleared. Then some maneuver is made to achieve a well
defined interface to the subsequent gravity turn. Finally a guidance is exe-
cuted in order to reach the target orbit conditions.

4.1.1  Previous Work

Skalecki and Martin ([69]) propose guidance by parameter optimization. The
optimizer is only used to satisfy all constraints, so this is actually a targeting
scheme, rather than optimization. 

Similarly, the optimization described by Gath ([27]) can be used for the
parts of the trajectory outside of the atmosphere. The optimization with an
indirect method is reported to be very robust, and no initial guess is needed.
Due to the use of a primer vector, the result is a three dimensional guidance
scheme.

In [55], an altitude profile is used for guidance. It is specified as a cubic
spline with two sectors. The coefficients are optimized to achieve the proper
target orbit. The guidance of the Pegasus vehicle uses a pre-computed pitch
profile for the lower stage guidance (see [54]).

However these guidance schemes either need some pre-computations
or involve a specific kind of optimization on their own. Therefore they do not
qualify for the initial guess generator. 
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4.1.2  Pitch Push-Over

A gravity turn normally cannot be flown from the start of the launcher. There
must be some push-over maneuver to get the trajectory out of the vertical and
to establish a well defined flight-path angle. The pitch program is according
to:

(4.1)

where  are the initial time of the phase, the end of an
acceleration time, the end of the pitch-over rotation, and the phase final time,
respectively. When the time constant tc is not specified, the last formula is
used for reducing the difference between pitch and flight-path angle. 

The pitch difference ∆Θ characterizes the amount of pitch over. It is the
only optimizable parameter. 
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Fig. 4.1: Pitch over maneuver and comparison to flight-path angle
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4.1.3  Gravity Turn

The gravity turn is the most elementary – and the most widely used – control
law for the first stages of rocket launchers. In the vertical plane the trajectory
is governed only by the gravitational acceleration. Thrust serves just for
acceleration along the current velocity vector.

In ASTOS there are two slightly different ways to specify a gravity
turn ([37]). When using aerodynamic angles as control option, the angle of
attack can be fixed to zero. Note that the bank angle becomes undefined and
that there is no controllability in the horizontal direction.

When using Euler angles controls, the gravity turn option sets the pitch
equal to the flight-path angle. The yaw angle can be used to steer in the hori-
zontal plane. Like this, the angle of attack can deviate from zero.

Since the gravity turn does not have any control parameters on its own,
the trajectory is extremely sensitive with respect to the state vector at the
beginning of the maneuver. 

4.1.4  Required Velocity Concept

This guidance concept was introduced by Battin (see [9]). It is often called
Q-Guidance. Several research papers at the IFR have shown the merits of the
concept (see f.i. [59], [60], [70]). 

The base of the guidance is the observation, that, for a given radius that
a velocity vector can be computed, that a vehicle on a given elliptic orbit
should have (the result is definite, except for the sign of the radial compo-
nent). This velocity is called the “required velocity” (Vreq). 

The task of the guidance law is to reduce the difference between the
required velocity and the current velocity to zero (see Fig. 4.2):

. (4.2)

In the most basic form, the net acceleration (thrust acceleration minus net
gravity) is applied in the direction of the velocity difference:

. (4.3)

Vd Vreq Vcurr–=

T
m
---- gn– Vd||
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In a simple geometric procedure, a circle with a radius equal to the thrust
acceleration is drawn around the tip of the gravity acceleration. The point
where this circle intersects the direction of the velocity difference gives the
direction of the thrust. This procedure is shown graphically in Fig. 4.3.

In the triangle formed by gn, the thrust acceleration T/m and the total
acceleration at, the following formulas hold:

(4.4)

Fig. 4.2: Required velocity and direction of velocity difference
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Fig. 4.3: Applying thrust to reduce the velocity difference
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and

. (4.5)

Note that the angle Θ and the length of at are unknowns. The latter is easily
eliminated to obtain:

. (4.6)

With the abbreviations 

, (4.7)

the pitch Θ can be computed from the solution of a quadratic equation:

. (4.8)

The sign of the square root is chosen according to the radial component of
Vd. Note that the effective gravity gn is the local gravity minus the centrifugal
acceleration. 

By setting the pitch angle in this way, the velocity difference is steadily
reduced. Once the difference is sufficiently small, the engine is shut off. It
must be observed that part of the thrust is used to balance the gravitational
acceleration. Therefore this guidance can only be used when the thrust force
is larger than the effective gravitational force. For many rockets this is not the
case at the beginning of the upper stage burn, when the tank is still full and
the horizontal velocity is too small to balance the gravity. Also this concept
can only be used when the altitude of the launcher is in between apogee and
perigee altitude of the target orbit. 
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In ASTOS, if any of these conditions is not true, simply a default pitch
is foreseen, which can be specified by the user. However, at the moment,
when the Q-guidance can be used, a large jump in the pitch control occurs. 

This guidance scheme does not have any optimizable parameters, it is
too rigid for optimization.

4.1.5  Bi-Linear Tangent Law

The bi-linear tangent law is the solution of a very simple control problem, the
“maximum velocity transfer to a rectilinear path” (see [12]):

“Consider a particle of mass m, acted upon by a force of magnitude ma.
We assume planar motion and use an inertial coordinate system x, y to
locate the particle; the velocity components of the particle are u, v. The
thrust-direction angle β(t) is the control variable of the system. 
...
We wish to transfer the particle to a path parallel to the x-axis, a dis-
tance h away, in a given time T with the maximum value of u(t).”

As shown in [12], pp. 59 and pp. 82, and in Appendix B.1, the optimal con-
trol law for this problem is:

. (4.9)

This is called “bi-linear tangent law”, since the tangent of the control
angle is the ratio of two linear functions. The coefficients must be chosen in
order to satisfy the end conditions. With the assumptions of constant thrust
acceleration, this can be done analytically.

In the special case when no end condition depends on the coordinate x,
the coefficient c1 is zero and the guidance law becomes

, (4.10)

which is the “linear tangent law”. In this form, the guidance law is proposed
for the upper stage of the Kistler K-1 vehicle ([31]).
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Application to the Guidance of Rockets

Although this bi-linear tangent law is valid only for a flat planet and a con-
stant gravitational acceleration, it can be used with good results also for the
guidance of rockets (see [60]). The control angle β is replaced by the pitch
angle Θ, and the distance h by the perigee altitude of the target orbit. Maxi-
mizing the horizontal velocity is then equivalent to maximizing the apogee of
the orbit.

The application is limited to trajectory parts where the above assump-
tions are approximately true and where the atmospheric drag can be
neglected.

For optimization, the formulation of in Eq. (4.9) poses some difficul-
ties. Although there are four constants, one is redundant and could be
replaced by one – provided it is not equal to zero! Since this is not known a
priori, one cannot simply divide by one of the constants. 

In addition, during iterations the denominator may vanish. This would
introduce a jump in the control angle, which may trip the numerical integra-
tion algorithm. Finally, it is difficult to estimate good upper and lower
bounds for the coefficients.

To avoid these problems, the guidance law is rewritten. Since the pitch
angle is known to be within the interval of -π/2 to +π/2 (a value outside this
range would reduce the horizontal velocity component instead of increasing
it), using the initial and the final pitch angle offers a convenient way to spec-
ify two of the necessary constants. As a third parameter, a measure of the
curvature was chosen. 

 with . (4.11)

It can easily be seen, that a given c has the opposite curvature effect than the
reciprocal value 1/c. In order to make the relationship symmetric, an expo-
nent was introduced:

(4.12)

with an arbitrary constant . 
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A value of a=100 allows a ξ in the interval of [-1, +1] to cover a wide
range of curvatures (see Fig. 4.4). For ξ=0, the linear tangent law will
result.

4.1.6  Horizontal Guidance

While some rockets are restricted to a constant yaw during the powered
flight, most can have a steering, which greatly improves the versatility. In
ASTOS two methods for guessing the yaw angle are implemented. 

The first corresponds to the gravity turn. The yaw is simply set to the
current heading angle: 

. (4.13)

The trajectory depends largely on the starting value, which should be speci-
fied by the user according to the mission. The heading angle can be chosen in
the earth-relative frame for the atmospheric part of the trajectory or in the
inertial frame for the upper stage.
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The second method is called “target inclination”. The yaw is set to the
value that corresponds to an orbit with the given inclination, at the current
latitude:

(4.14)

with  given by

. (4.15)

The target inclination it can be optimized. It will be close, but not necessarily
identical to the inclination i required by the end conditions. The direction of
Ψ – either northward or southward flight – can either be chosen by the user
or obtained from the current velocity vector.

Note that the only rocket guidance law implemented for aerodynamic
angles, the gravity turn, does not require any additional horizontal guidance.

4.2  Advanced Launcher

While the vertical motion of advanced launchers has been treated extensively
in the literature (see [14], [46], [47], [55], [56], [58]), there are only very few
solutions for the horizontal guidance (e.g. [21]).

Since advanced launchers are in many respects similar to high-perfor-
mance aircraft, some literature concerning fighter aircraft maneuvers is con-
sidered ([16], [21], [28], [67], [68]).

4.2.1  Vertical Guidance

4.2.1.1  Theory of Singular Perturbations

Many publications deal with the ascent guidance of advanced vehicles using
the method of singular perturbations (e.g. [21], [47]). This method is based
on the observation that in many systems of differential equations it is possi-
ble to identify a “fast” and a “slow” subset of the state vector. Some variables
can reach a given final state very fast, while others are changing on a much
slower time scale:

Ψ Ψ0= for northward flight

Ψ π Ψ0–= for southward flight

Ψ0

Ψ0sin itcos δcos=
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. (4.16)

In more formal terms, the left hand side of the “fast” equations is multiplied
by a small constant ε. (see e.g. [16] for further discussion of the procedure).
Sometimes it is possible to identify a system parameter that can serve as the
ε, otherwise it must be introduced arbitrarily (this is called “forced singular
perturbation”):

. (4.17)

To solve the optimization problem of the slow manifold, the constant ε is set
to zero, resulting in additional algebraic conditions, which can be used to
eliminate some of the original controls:

. (4.18)

After the trajectory of the slow variables is solved, all differential equations
are divided by the constant ε. The limit  results in

. (4.19)

On the fast time scale the slow variables can be considered constant. The fast
variables are used to satisfy the remaining boundary constraints. Since this
results in short transients at the beginning and at the end of the trajectory, the
regions are called “boundary layers”.

Problems

In general the method of singular perturbations is used in conjunction with
indirect optimization techniques. Then the reduction of the size of the state
vector is especially advantageous.

x
xF

xS 
 
 

=

xS
·

fS t xS xF,( )T u, ,( ) ,=

εxF
·

fF t xS xF,( )T u, ,( )=

xS
·

fS t xS xF,( )T u, ,( ),=

0 fF t xS xF,( )T u, ,( )=

ε 0→

0 fS t xS xF,( )T u, ,( ),=

xF
·

fF t xS xF,( )T u, ,( )=
erator for Launch and Reentry Vehicle Trajectory Optimization 83



Guidance Laws
However, in the presence of active path constraints, in which not all of
the neglected states show up, a jump in the pseudo-control may occur. Since
a state – even a fast one – cannot change in an instant, such a solution is not
physically sensible. These points should be subject to another boundary layer
investigation.

The assumption that the fast variables reach an equilibrium so quickly
that for most of the trajectory they can be considered constant (second part of
Eq. (4.18)) is a contradiction to the use of the fast variables as pseudo-con-
trols. However, in most papers, the equation is not used any further.

4.2.1.2  Energy State Approximation

For solving the ascent of advanced launchers with the singular perturbation
method, very often the “Energy State Approximation” (or ESA for short) is
used. The variables of the vertical motion, altitude h (or equivalently, the
radius R) and flight-path angle γ, are identified as the fast variables. The slow
state members are the mass and the specific energy e, which replaces velocity
(hence the name of the approximation).

The velocity V is expressed in terms of e and h:

(4.20)

when a constant gravitational acceleration g is assumed, or in terms of the
radius R for a spherical gravitational field:

. (4.21)

Most papers neglect the horizontal dynamics (position and heading). Then
the differential equations are (see e.g. [22]):

, (4.22)
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where Tcosε is the thrust component in flight-path velocity direction, and
Tsinε is the component perpendicular to it (ν is considered to be equal to
zero).

Corban, Calise and Flandro ([22]) solve sub-problems by making fur-
ther simplifications, like setting the flight-path angle to zero and assuming
that the thrust is always aligned with the velocity. As a minor result, it is
shown that the throttle setting will be of a bang-bang type (only zero or one),
when both thrust and fuel rate are a linear function of the throttle.

In [47], Lovell and Schmidt use the ESA for the fast evaluation of
neighboring vehicle design. Schultz et al. ([66]) also use the ESA, and pro-
pose it for reentry as well. 

Kremer and Mease ([44]) treat the control problem for boundary lay-
ers, observing several kinds of constraints.

Hermann and Schmidt [33] examine the conditions for the time scale
separation in detail. Points along the trajectory are reported, where potential
energy is traded for kinetic energy instantaneously.

A few papers also deal with the horizontal guidance problem when
using the ESA for fighter aircraft.

Cliff and Well used forced singular perturbation in three time scales
([21]): fast variables (γ,h), and slow (position x, y, and fuel weight Wf).
Energy and heading χ are considered of intermediate speed. The model was
based on a flat earth, but included correction terms for the centrifugal accel-
eration. In the solution intermediate transients both for the energy and for the
heading angle were observed, independent of each other.

In [68], Shinar, Well, and Järmark compare two concepts for high per-
formance aircraft: one based on the energy state approximation and one
based on indirect optimization with a simplified model. Both results are com-
pared to off-line optimization. Due to the setting (a steadily moving target
airplane), there is a change of χ only in the initial boundary. Further on, all
motion takes place in a vertical plane.

In a paper about the range optimization of a fighter aircraft ([67]), Sey-
wald et al. show that a great number of different switching structures are pos-
sible when a bound on the normal load factor is present.
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4.2.1.3  Energy Method

One of the earliest references to optimization in aerospace technology is the
energy climb investigated by Kaiser ([42]), a geometric procedure to mini-
mize the time to climb for an aircraft by selecting, for each velocity, the alti-
tude where the specific excess power is the highest.

When the energy is monotonously increasing, the state variables can be
derived with respect to energy instead of time. With 

, (4.23)

the second equation of Eq. (4.22) becomes:

. (4.24)

Note that since the derivative of the specific energy with respect to itself is
always unity, this is the only differential equation left of the slow manifold.
The reciprocal formula

(4.25)

describes the amount of energy gained for each small amount of fuel spent.
Since there is only one state left – the mass – and due to the assumption, that
the energy is monotonously, the Bellman principle can be applied. The most
fuel efficient trajectory is achieved, when at every point along the trajectory,
the energy gained for every bit of fuel spent is maximized.

Of the variables involved on the right hand side (R, e, φ, and α), energy
replaces the time as the independent variable. The angle of attack α is given
by the vertical balance of forces – at least as a zeroth order approximation.
This leaves the throttle factor φ and the radius R to be chosen. 

Therefore, for every energy level, an optimal altitude and an optimal
throttle factor can be computed. Since these depend only on the atmosphere,
the engine and the aerodynamic model, the computations can be done off-
line, before launch. Schnepper shows in [64] that in general the best perfor-
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mance is achieved at a bound of the permissible flight region, e.g. at the max-
imum dynamic pressure bound.

It must be kept in mind, however, that this method completely ignores
the horizontal dynamics and therefore cannot satisfy any positional boundary
constraints. In his thesis ([10]), Baunach compared the energy-method very
favorably with result obtained by optimizing a full model. For a long part of
the trajectory, the vehicle did fly along the dynamic pressure boundary, as
predicted, but there were also cruise-like parts of the trajectory, which cannot
be treated adequately.

4.2.1.4  Other Vertical Guidance Concepts

A problem for optimization of advanced launchers is the hypersonic phugoid
oscillation. While it was pointed out, that this can be used to save a very
small amount of fuel, as compared to a conventional trajectory ([11]), it
poses a major problem for a guidance logic. 

In their paper Landiech, Aumasson, and Droz [46] use the flight-path
angle γ as a control, in order to avoid oscillations. This can be regarded as
singular perturbation, too. However the authors use a controller to obtain the
angle of attack and introduce a fast time scale again into the integration.

Schnepper ([64]) achieves suppression of the phugoid by using a pen-
alty term on . The solution presented flies along the upper dynamic pres-
sure bound during most of ascent, and at the lower bound during descent.

As a model reduction, Paus ([56]) uses the flight-path angle and the
heading angle as “virtual” controls. A controller using feedback linearization
computes the real controls α and µa. The reference flight-path angle is split
into two parts: one (called pre-control γp) is the angle needed to follow the
dynamic pressure boundary, while only γc, the second part, is optimized. As
an initial guess γc is set to zero.

4.2.2  Horizontal Guidance

Both Paus ([56]) and Baunach ([10]) use a linear function as an estimate for
the optimal azimuth. This is reported to be within the convergence region of
the optimizer.

In [14], Buhl, Ebert, and Wolf give a heuristic for the return of a lower
stage in a two stage to orbit configuration (TSTO). After the release of the

γ·
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upper stage, the lower stage vehicle flies a circle until the heading is toward
the landing site. Altitude and velocity are kept constant, the thrust of the ram-
jet engines compensates the drag. The angle of attack is selected to achieve
the best lift to drag ratio. Once the heading is aligned to the landing site, the
circle is finished. Again the altitude and velocity are kept constant. Finally,
when the runway can be reached by a glide, the engines are shut off. The
angle of attack is again set for best glide (minimal L/D).

Again, for fighter aircraft, some other guidance laws are given, but for
situations much different from an advanced launcher ascent ([28], [68]).

A common guidance law is proportional navigation (see e.g. [77]). A
pursuer aircraft has to turn into a collision course with a target aircraft, which
flies at constant speed (and direction). The turn command is proportional to
the current change rate of the line of sight. Once this change rate is zero, the
collision course is reached and there is no control activity anymore. This is
similar to the result of [68], which describes a singular perturbation for the
heading angle and gives a guidance law for the initial boundary layer.

Grimm and Hans [28] describe the optimal turn to a given heading in
minimal time, when no load factor constraint is active.

The aircraft solutions tend to have a short phase of heading change and
then a longer phase with constant heading. However several publications
describe the supersonic ascent as a long, unsteady curve ([39], [63], [64]).
Therefore the base assumptions (like “χ is a fast variable”) do not hold and
these schemes cannot be applied.

A simple guidance law is implemented. It consists of computing the
horizontal load factor corresponding to a constant heading turn rate, derived
from eqn. (3.15):

. (4.26)

For simplicity, the thrust incidence angles ν and ε are set to zero. Otherwise,
the bank angle cannot be easily eliminated. Note that no side force exists for
load factor controls, anyway.
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4.3  Reentry Vehicles

Several guidance schemes have been proposed for reentry. The most success-
ful – and the most elaborate – is the Shuttle guidance, which is described in
section 4.3.1. Some other guidance laws and their (lack of) suitability for an
initial guess generator are discussed in this section.

Closed Form Predictions

The earliest attempts to solve the reentry problem were made using closed
form predictions: Wingrove ([82]), Tannas ([73]), and Hankey ([29]) give
some formulas which are valid under specific assumptions. While Tannas
states that the cross range in general cannot be predicted, Causey and Sohoni
([17]) give downrange and cross range estimates by assuming a constant
bank angle. They also achieve targeting in both dimensions by linearizing the
ranges over µa and α.

Usually the assumptions are very stringent and do not allow trajectory
planning for a complex set of constraints. Most of the formulas also predict
just one variable and are not suited for two dimensional targeting.

Reference Trajectory Guidance

Many papers have been published, describing reentry guidance with pre-
computed trajectory profiles. Some examples:

Buhl et al. ([13], [14]) report a technique for energy management using
a reference profile.

Marcus and Kriegsman define a density vs. speed profile ([49]) to
obtain a range estimation. The lift is maximized. In a second mode, a refer-
ence table h(V) is used.

In [58], Pignie, Delpy, and Carmona are tracking a reference profile
with a PI controller for the angle of attack.

Pesch ([57]) and Kugelmann ([45]) use the solution of a two point
boundary value problem as a reference trajectory. The latter paper shows
how the linearization of the necessary conditions for optimality can be used
as a sensitivity matrix for the controls. For the guidance, only a matrix-vector
multiplication is used for every step.
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Jouhaud’s guidance scheme involves the solution of an optimal control
problem, linearized around a reference trajectory, by using the maximum
principle ([41]). The optimal control will bring the vehicle to the final condi-
tions. The resulting three dimensional acceleration vector is mapped to the
two controls α and µa and, at low velocity, to the speed brakes.

All these guidance schemes are not suitable for an IGG, since a refer-
ence trajectory must be computed a priori.

Targeting with few Parameters

In order to reduce the computational load on board of the vehicle, several
guidance schemes which are specified by a very small number of parameters
(down to two), have been proposed.

Burkhardt, Schöttle, and Zimmermann show in several publications
([15], [65], [84]) guidance laws for capsules. Targeting is achieved by adapt-
ing two parameters, the ranges are computed by numerical integration. The
concept of “minimal control effort” is introduced, which reduces the amount
of energy needed.

Fuhry designs a guidance with just two free parameters for the Kistler
K-1 vehicle ([26]): the magnitude of the bank angle  and the timing of a
single bank reversal. The prediction is done by numerical integration, the tar-
geting by linearization. All path constraints must be satisfied by choosing
appropriate initial conditions, therefore the margin for velocity and flight-
path angle at the entry interface are extremely small.

A similar concept is presented by Ishijima and Matsumoto ([35]), how-
ever several bank reversals are foreseen, initiated by a conventional dead
band switch.

These guidance laws offer a fast computation and targeting, but due to
the small number of parameters not all constraints, which make up the small
entry corridor for high lift vehicles, can be fulfilled – even when optimizing
the free parameters.

ESA and Reduced Order Systems

The energy state approximation (see Section 4.2.1.2) has also been used to
solve the reentry problem. E.g. Schultz et al. ([66]) apply it and solve the
reduced problem by using the maximum principle.

µa
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For mission design studies, Ardema, Bowles, Chou, and Windhorst,
([20], [81]) employ the energy-state approximation, reducing the system to
the integration of a single variable: energy (see also 4.2.1.3). Several differ-
ent cost criteria are investigated. Due to the reduction of the state vector, no
targeting is possible.

A different approach is used by Mease, Teufel, et al. ([51], [75]). By
using energy as the independent variable, replacing the radius with a refer-
ence radius and setting cosγ=1, a reduced order system is found. The drag D
and the ratio of the vertical part of the lift and the drag (Lcosµa/D) are used
as controls. 

Chern, Yang, Vinh, and Hanson ([18], [76]) use a normalized set of dif-
ferential equations with the Chapman variables 

. (4.27)

A quadratic polar is assumed, with  the lift coefficient for the best lift to
drag ratio. By setting  (equilibrium glide condition) and also , the
altitude variable Z is eliminated. It is shown, that for maximizing cross range
the optimal bank angle is given by:

. (4.28)

for a given final longitude λf. The solution does not take path constraints into
account (as do Chern, Yang, and Sheen in [19]). In addition, it shows large
oscillations, which are in contradiction to the original assumption of equilib-
rium glide.

In order to protect the upper surface from excessive heat load current
vehicles fly in the post stall region for a large part of the trajectory. Therefore
the lift coefficient for best glide slope, , cannot be used for theses trajecto-
ries.
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4.3.1  Shuttle Guidance Law

Probably the guidance law most referred to is the Shuttle reentry guidance.
Since its inception in the early seventies, numerous papers have been pub-
lished, analyzing this guidance scheme or modifying it for special purposes.

An excellent description of the guidance logic is given by Harpold and
Graves in [30]. Additional information can be found at Arrington and Jones
([8]), as well as at Joosten ([40]).

4.3.1.1  Angle of Attack Profile

During a long part of the reentry, the Space Shuttle encounters very high
thermal loads. Since only the lower surface of the orbiter is designed to with-
stand the heat, the upper part of the shuttle is kept sheltered on the lee side by
flying at a high angle of attack. This is a post stall condition, with the drag
almost as large as the lift. Only at a much lower speed the nose is taken
down, changing over to a normal flight regime.

The higher the initial angle of attack, the lower will be the total heat
load. However a high angle of attack does limit the cross range capability
(note that the necessary down range can be achieved by proper timing of the
deorbit impulse). Therefore the maximum angle of attack that satisfies the
cross range requirements is flown in the high speed regime.

Before every Shuttle mission, the angle of attack profile (f.i. as a func-
tion of the Mach number or of the velocity) is specified. During flight, there
are only small deviations from the prescribed profile for modulating the drag
during bank reversals.

4.3.1.2  Side Slip Angle

Due to thermal considerations the side slip angle should be zero, and the side
force can be neglected for the design of the guidance. Therefore the attitude
controls correspond to the case described in Section 3.2.3.

4.3.1.3  Velocity Bank Angle

During the initial phase of the reentry the orbiter flies normally at wings-
level attitude (µa=0o). During a steep entry, all the available lift is needed for
a pull-up maneuver. When the entry is more shallow (f.i. due to a small de-
orbit impulse), the excessive lift is dumped by turning the orbiter sideways
(µa= o). 90±
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When the aerodynamic forces reach a suitable level, the drag controller
mode is initiated and used to compute the bank angle.

4.3.1.4  Drag Profile

It has been shown that the major path constraints for reentry can be expressed
as functions of the dynamic pressure and the velocity (see section “Path Con-
straints” on page 65). Therefore the flight corridor could be specified in a
diagram of q vs. V. However, the dynamic pressure cannot be directly mea-
sured in hypersonic flight. 

Since the angle of attack profile is prescribed for every shuttle flight,
the drag acceleration (which is easier to estimate) can be used instead of q:

 (4.29)

for a sufficiently well know aerodynamic model. This also allows a conve-
nient estimate of the range that still can be flown by analytical formulas.

During the shuttle entry, the drag profile is specified by a series of simple
functions of the velocity or, for the last part of the trajectory, of the specific
energy. This sequence consists of:

Temperature Control

The drag is a quadratic fit to the heat rate constraint:

. (4.30)

For increased flexibility, two such segments with different coefficients are
used.

Equilibrium Glide

Equilibrium glide is defined as . When neglecting the Earth’s rotation
(by setting ωE=0), setting cosγ=1, and applying all lift vertically (cosµ=1),
equation (3.16) becomes:
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Finally gr is replaced by a constant , which is varied for ranging:

. (4.32)

Constant Drag Acceleration

This phase can be used to control the normal load, since – for constant lift to
drag ratio – a constant drag corresponds to constant normal load:

. (4.33)

Transition Phase

In the final part of the supersonic reentry, when the flight-path becomes
steeper and the change in potential energy cannot be neglected anymore, the
specific drag is modulated as a linear function of the specific energy:

. (4.34)

In this way, when approaching the final energy ef, a drag deceleration df com-
patible with the final approach is reached.

4.3.1.5  Range Control

The distance covered during reentry is:

. (4.35)

When neglecting the rotation of the Earth as well as the lateral gravity com-
ponent gδ, and for small flight-path angles (when ), Eq. (3.14)
becomes:

. (4.36)

These two equations can be combined to compute the distance travelled for a
velocity range, given a drag profile as a function of the velocity:

. (4.37)
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At lower speed, when the flight-path angle cannot be neglected anymore, the
range is integrated over the specific energy. Observing that ,
the derivative of the energy with respect to time is

 (4.38)

and the integration of the distance covered for an energy range is given by:

. (4.39)

These integrals are easily solved for the drag profiles given by eqns. (4.30),
(4.32), (4.33), and (4.34). 

During the flight the resulting distance that can be still covered with
the nominal drag profile is compared to the actual distance to the target site.
When there is a difference, the profile is adjusted. 

By changing just a single parameter of the current segment (either the
level of the drag or the final velocity of a segment), sufficient reserves are
kept for adjustments necessary during later parts of the flight. This is impor-
tant, since during the communication black out at hypersonic speed, naviga-
tional errors accumulate and must be corrected when the radio link is
reestablished.

4.3.1.6  Drag Controller

Since the drag acceleration cannot be steered directly, a controller is used to
achieve the commanded profile. While the angle of attack is used for short
period drag control (f.i. during a bank reversal), the magnitude of the bank
angle is the main control.

The vertical part of the lift Lcosµa is the control input in the differential
equation of the flight-path angle (see Eq. (3.16), with some simplifications):

. (4.40)

The flight-path angle and the velocity make up the differential equation of
the altitude (Eq. (3.11)), which is the major influence for the air density.
Therefore the drag can be controlled by the bank angle via two integrations.
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The bank angle controller compares the commanded drag d0 and the
actual drag. In order to improve the response to drag errors, also the differ-
ence between the actual altitude rate  and an estimated rate  computed
from the drag profile is taken into account:

. (4.41)

The term cosµ0 is derived from the equilibrium glide condition  and
from the curvature of the drag profile. The integral term is used to offset
measurement errors in the altitude rate and can be neglected for a numerical
simulation, in which the state is know exactly.

The two remaining gains are determined by pole placement and analyt-
ical computation of the gain scheduling.

4.3.1.7  Lateral Steering

Since the guidance logic does not supply an estimate for the cross range
capability, the targeting scheme is rather simple.

Whenever the azimuth to the target becomes larger than a predefined
azimuth error, a bank reversal is initiated, i.e. the sign of the bank angle is
reversed. The dead band is around 12o for high and 18o for intermediate
velocities. Below 1.4 km/s, the band is narrower again, to ensure guidance
accuracy.

During bank reversals, the vertical part of the lift is larger than required
by the drag controller. To avoid large deviation from the drag profile, the
angle of attack is temporarily reduced, reducing the drag.

Note that in order to ensure lateral control authority, several bank
reversals must be planned along the trajectory. The angle of attack profile is
designed for the total cross range needed, which includes reserves for the
cross range lost due to changing the direction of the turn.

4.3.1.8  Literature on the Shuttle Guidance

Since the inception of the guidance scheme, a large body of literature was
published, analyzing and enhancing it.

Hechler [32] adapted the guidance to the needs of Hermes, the pro-
posed European shuttle. The bank angle – the controller output – shows large
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peaks, whenever a new segment of the profile is reached or when the profile
is updated for ranging.

In [72], Strohmaier, et al. compare the trajectories obtained by a Shut-
tle guidance to an optimized one. Due to variations of the angle of attack, a
lower heat load and higher cross range is achieved. The cross range require-
ments of a landing in Europe do not allow bank reversals.

Mease and Kremer analyze the controller part of the Shuttle guidance
and propose modifications to extend the domain of applicability ([50]).
Down and cross range, however, are not considered.

Ishizuka, Shimura, and Ishimoto describe a Shuttle guidance with “free
form” subarcs instead of closed functions ([36]). Each subarc is defined by a
few parameters. Range is estimated by numerical integration.

Lu et al. ([48]) define the drag profile by a piece wise linear function.
The integrals for both cost function and range are solved analytically. The
profile is computed a priori to achieve the necessary range at the lowest accu-
mulated heat load. When deviations occur during the flight, the whole profile
is scaled to reach the target.

The application of the Shuttle law on the reentry of a low lift capsule
was investigated by Metzler in [53]. Also Frank ([25]) applies the guidance
law to capsules, but he uses the derivative of the distance that can be covered,
which is proportional the reciprocal value of the drag acceleration:

. (4.42)

This simplifies the analytical integration considerably. One of the free condi-
tions of the spline is used to achieve the appropriate ranging.

4.3.1.9  Conclusions

The Shuttle Guidance Law has proven its robustness and its precision in 100
controlled landings up to now. It is designed for on-line control of a real air-
craft. The design principles involve robustness, simple measurement and lit-
tle computational requirements on board. 

While robustness is an issue, the other considerations are of less impor-
tance for an initial guess generator. Since all quantities are known without
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uncertainties, also one that would be difficult to measure can be used as ref-
erence profile. 

The biggest disadvantage of the shuttle guidance is its inability to esti-
mate the cross range. Also the down range can only be estimated, with the
assumption that the flight-path will not deviate too much from the original
orbital plane. Matching the different segments for ranging purposes involves
complicated – and error prone – formulas.

The lateral ranging is done by a dead band switch initiating bank rever-
sals. This technique needs a large cross range reserve. For missions that
require a high cross range capability, this scheme cannot be used. From the
point of view of an initial guess generator, fast changes in the controls are
also not desirable.

By its definition the drag profile is continuos, but it has sharp bends at
the junctions of the different segments. Since the estimate of the altitude rate
corresponds to the derivative of the commanded drag, this leads to sharp
peaks in the control output. 

4.3.2  Adaptation of the Shuttle Guidance for the IGG

4.3.2.1  Cross and Down Range Prediction

The shuttle guidance uses a fast analytical prediction for ground range. How-
ever this only works well for trajectories that stay close to the original orbital
plane, since only the curved path is predicted and not the actual down range.
For trajectories generating a significant cross range from the orbital plane,
the prediction will be too far off the linear down range.

In addition, there is no way to predict and correct the cross range. For a
trajectory like the one originally proposed for Hermes, generating sufficient
cross range to reach Istres in the South of France form an orbit of an inclina-
tion of 28.5o is a major task. There is not enough cross range reserve for
guidance by multiple bank reversals.

Therefore, for the guidance a scheme is developed that uses a numeri-
cal integration, which is much slower, but can exactly predict cross and down
range at the same time. 

The shuttle achieves its ranging capability by selecting a single param-
eter of the drag profile at a time and linearizing the predicted range for this
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parameter. Due to the numerical integration of the new guidance this is more
difficult, but an optimizer can be used to achieve the required cross and down
range, while satisfying the path constraint and minimizing a cost function at
the same time!

4.3.2.2  Dynamic Pressure Control

The shuttle guidance uses drag deceleration as pseudo-control for the reasons
explained above. But in the IGG, using drag poses some problems.

For the estimate of the bank angle the second derivative of the drag
deceleration is needed. This involves the second derivative of the drag coeffi-
cient cD. But since the drag coefficient depends on the angle of attack, which
can be an optimizable control, no information is known about the first deriv-
ative of the coefficient, let alone the second.

Therefore instead of drag deceleration dynamic pressure is chosen.
This eliminates the problem of the drag coefficient and makes many expres-
sions simpler. All important path constraints can be expressed as easy in
terms of dynamic pressure as in terms of drag deceleration, or even easier.

Since the range prediction is done by numerical integration, it is not
hindered by this choice, either.

4.3.2.3  Cubic Spline

The shuttle uses a profile which is defined in segments. At the junction
points the profile is continuous, but it may show discontinuous slopes.

Therefore, since the estimate of the altitude rate depends directly on
the derivative of the dynamic pressure, a change in the slope of the profile
will introduce a jump in the altitude rate. The altitude rate being part of the
controller equation, it will also create a discontinuity in the bank angle. Since
it is very desirable for an initial guess generator to produce smooth controls,
these jumps should be avoided. 

In addition, if at the beginning of a phase the commanded dynamic
pressure and/or altitude rate differ from the starting conditions, the controller
can show undesirable behavior, like overshooting and several oscillations of
the bank angle. Therefore the profile should be continuous and – at least –
once differentiable, even across the segment boundaries.
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The different functions used for the shuttle drag profile all can be writ-
ten as polynomials of velocity of degree two or less. However, when enforc-
ing the continuity as defined above, a piece wise profile defined by quadratic
polynomials is generally very oscillatory. Given a series of points and a start-
ing slope, the equations defining the coefficients are already used up. There
is no degree of freedom left to smooth the curvature.

Cubic splines however are known to minimize the bending energy of
the curve. This type of spline is continuously differentiable twice. When
comparing the number of parameters and the number of conditions, it is seen
that there are two degrees of freedom left, for which arbitrary conditions can
be imposed. A common set of conditions describes the “natural spline”: the
curvature at both ends of the spline to set to zero. 

Formulas exist for prescribing the slopes at both sides. Fortunately this
possibilities can be mixed: the slope on one side is prescribed and the
remaining degree of freedom is used, arbitrarily, to set the curvature at the
other side to zero (for details see appendix B.2).

4.4  Reduced Order Equations

While the Shuttle Guidance type of initial guess generator produces accurate
results that are within the convergence region of the optimal solution, it is not
very well suited for an optimization itself. The presence of the controller
inside the simulation introduces a fast time scale, which makes integration
very time consuming. Therefore a modified approach is considered.

It has been observed, that the time scale of some subsets of the state
vector are separated (see also Section 4.2.1.1). For numerical integration,
treating only the slower subset will save a large part of the computation time. 

The vertical dynamic (altitude and flight-path angle) can be considered
faster than the horizontal motion (velocity, azimuth, longitude and latitude).
Although the accelerating forces are of the same magnitude in horizontal and
vertical direction, the distances covered are different by orders of magnitude:
the altitude is constricted to be between 0 and 120 km, but the downrange is
about 10,000 km. While the flight-path angle is in the range of a few degrees,
the azimuth can cover a quarter of the circle easily.

The time separation can be achieved by neglecting the fast dynamics or
by regarding it as a pseudo-control. For the method of singular perturbations,
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usually both is done. While the flight-path angle as the fastest state is com-
pletely removed, the altitude becomes a control.

Singular perturbations are normally used in conjunction with indirect
optimization methods. This results in controls, that can have a discontinuity
at the time points when a path constraints becomes active, that does not
directly depend on controls (the constraint is of an order higher than zero).
However, using a state element as pseudo control, a discontinuity is not phys-
ically feasible: states don’t jump.

By using parameter optimization, this problem can be avoided. The
discretization of the control can be chosen to be continuous and even differ-
entiable. As discussed, the dynamic pressure is well suited as a control, since
it contains the vertical motion and since the major path constraints can be
expressed in terms of velocity and dynamic pressure. Then the flight-path
equations of motion (eqns. (3.11) – (3.16)) become:

, (4.43)

, (4.44)

, (4.45)

, (4.46)
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Note that the radius and the flight-path angle are algebraic variables and are
not governed by differential equations. While in ASTOS the radius is com-
puted by inverting the atmospheric density model, it could be replaced by a
constant value with only a small loss of accuracy. The flight-path angle can
be estimated by (see Section B.3 on page 172):

, (4.47)

or, when the dynamic pressure is given as a function of the velocity:

. (4.48)

The air-path bank angle can be estimated as (see Section B.4 on page 174):

,

(4.49)

or, when the dynamic pressure is given as a function of the velocity:

. (4.50)

Note that for the reentry vehicles the thrust is zero. For air breathing launch-
ers it is expected that the thrust varies with the dynamic pressure. 
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4.5  Dynamic Pressure Controller

In order to convert a dynamic pressure profile back to traditional controls the
estimates of (B.34) and (B.39) are not sufficiently exact. Using this esti-
mates, the vertical motion is unstable. Therefore a controller is needed to sta-
bilize the trajectory integration.

Due to the limitations a controller inside an initial guess generator
faces, a rather simple design must be used. Just like the shuttle guidance, a
design with an auxiliary feedback of the altitude rate (for which a com-
manded rate can be easily computed) is chosen. Pole placement is used to
compute the free parameters of the controller as function of the current state
using gain scheduling.

The vertical lift acceleration can be split into two parts:

. (4.51)

The first is needed to offset the external forces and can be computed from
Eq. (3.16) by setting  to zero, assuming that the side force, the thrust and
the meridional component of the gravity are negligible:

, (4.52)

while the second part is supplied by the controller:

. (4.53)

With this, the differential equation for the flight-path angle becomes:

. (4.54)

For simplicity, a term for the curvature of the dynamic pressure profile (like
in Eq. (B.34) or Eq. (B.39)) is neglected.
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Fig. 4.5 shows the structure of the controller. For the time scale of the
controller the commands and the velocity can be considered constant. For
small flight-path angles, sinγ is replaced by γ. The right most block contains
the linearization of the atmosphere and the conversion from density to
dynamic pressure.

The inner loop in Fig. 4.5 (surrounded by the grey box) can be replaced by its
closed loop transfer function (see Fig. 4.6):

. (4.55)

The transfer function of the forward part can be replaced by

. (4.56)
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With this the transfer function of the complete controller can be written as:

. (4.57)

Comparing the coefficients with the standard form of a second order transfer
function 

(4.58)

yields the gains:

, , . (4.59)

The frequency and the damping  can be chosen by the user, the gains
 and Kq will be computed accordingly.

4.6  Dynamic Pressure Controller Based on Load Factor 
Controls

This controller is an alternate formulation to the one described in the previ-
ous section. It consists of two cascaded loops (see Fig. 4.7). In the outer loop,
the current dynamic pressure q is compared to the commanded one, q0. The
difference is transformed into a required altitude rate using a user supplied
time constant. In the inner loop, this altitude rate, and a component which
depends on the slope of the dynamic pressure profile, is divided by a second
time constant, in order to obtain the required vertical acceleration, which is
then converted into the vertical lift.

In the following a locally exponential atmosphere is assumed:

. (4.60)

A part of the required altitude rate can be attributed to the change in dynamic
pressure:
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, (4.61)

or, since the velocity change is usually very small compared to the (super-
sonic) velocity:

. (4.62)

Since for a given velocity, the dynamic pressure is proportional to the den-
sity, the difference of the current altitude h and h0, the one corresponding to
the commanded dynamic pressure is:

. (4.63)

By choosing a suitable time constant Th for the altitude, we can get a com-
manded altitude rate:

. (4.64)

This value can be compared with the current altitude rate Vsinγ and divided
by a time constant to get the altitude acceleration needed: 

ln q0 ln q

1/hS
1/Th 1/Th

.

1/g

∫ ∫ 1/hS

lV0
nvhSq0/q0

.

Fig. 4.7: Dynamic pressure controller based on load factors
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. (4.65)

When inserting this term into the differential equation of the flight-path angle
(Eq. (3.16)), with the approximation 

(4.66)

one can determine the vertical load factor:

. (4.67)

The time constants of the two loops are user definable and should differ by a
factor of five, at least, in order to satisfy the time separation condition. An
additional term for the curvature of the dynamic pressure profile can be
added, but normally this is not necessary (see Section B.4 on page 174).

h
··

C
h
·
C V γsin–

T
h
·

--------------------------=

hC
··

V
· γsin Vγ· γcos+ Vγ·≈=

nVg h
··

C g V2

R
------– 

  γcos –+=

2ωEV χ δcossin RωE
2 δ δ γ χcossinsin δ γcoscos+( )cos––
erator for Launch and Reentry Vehicle Trajectory Optimization 107



Guidance Laws
4.7  Summary of Guidance Laws

4.7.1  Conventional Launcher

A summary of the guidance laws available for conventional launchers is
given in Table 4.1. Note that the required velocity concept is missing, since it
cannot be used during optimizations. The values for the constant or the linear
laws can be supplied by the user, otherwise they are taken from the attitude
controls of the previous phase. 

Table 4.1:  Guidance laws for conventional launchers

Control Law Parameter Source Optimizable
Attitude 
Control

Target orbit it user supplied yes

Ψ

Tangential – – –

Constant yaw Ψc user / comp. yes

Linear yaw
Ψ0
Ψf

user / comp.
user / comp.

yes
yes

Optimal yaw Ψ(t) user supplied yes

Push over

tacc
tpo
∆Θ
tc

user supplied
user supplied
user supplied
user supplied

no
no
yes
no

Θ

Gravity turn – – –

Bi-linear 
tangent law

Θ0
ξ
Θf

computed
computed
computed

yes
yes
yes

Constant pitch Θc user / comp. yes

Linear pitch
Θ0
Θf

user / comp.
user / comp.

yes
yes

Optimal yaw Θ(t) user supplied yes
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4.7.2  Advanced Launcher

Specific control options for advanced launchers are supplied by the load fac-
tor attitude controls. The dynamic pressure profile can be specified either as
a function of time or as a function of flight-path velocity (see Table 4.2).  

Table 4.2:  Guidance laws for advanced launchers

Control Law Parameter Source Optimizable
Attitude 
Control

Constant 
turn rate

user supplied yes

nhOptimal 
horizontal
load factor

nh(t) user supplied yes

Dynamic 
pressure 
velocity
profile 

V0

q(V0)

q’(V0)
Vi

qi(vi)

computed
computed
computed

user supplied
computed

yes
yes
yes
no
yes

nvDynamic 
pressure 
time 
profile

t0
q(t0)

q’(t0)
ti

qi(ti)

computed
computed
computed

user supplied
computed

yes
yes
yes
no
yes

Optimal 
vertical
load factor

nv(t) user supplied yes

χ
·
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4.7.3  Reentry Vehicles

Reentry vehicles are typically controlled by using the aerodynamic angle
control options. Very often the angle of attack is not optimizable since it is
given by aero-thermodynamic considerations. Therefore the options of speci-
fying the angle of attack either as a function of the time or as a function of
the Mach number exist (see Table 4.3). The dynamic pressure profile is only
available as a function of the velocity.  

Table 4.3:  Guidance laws for reentry vehicles

Control Law Parameter Source Optimizable
Attitude 
Control

angle of attack 
profile

ti
αi(ti)

user supplied
user supplied

no
no

α

ti
αi(ti)

user supplied
user supplied

no
no

Constant 
angle of attack

αc user / comp. yes

Linear 
angle of attack

α0
αf

user / comp.
user / comp.

yes
yes

optimal
angle of attack

α(M) or α(t) user supplied yes

Dynamic 
pressure 
profile

V0
q(V0)
q’(V0)

Vi
qi(vi)

computed
computed
computed

user supplied
computed

yes
yes
yes
no
yes

µa
Constant 
bank angle

µc user / comp. yes

Linear 
bank angle

µ0
µf

user / comp.
user / comp.

yes
yes

optimal
bank angle

µa(t) user supplied yes
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5  Comparison of Optimal and Guidance Law Solutions

The guidance laws described in the previous chapter are tested with the ini-
tial guess generator. For all three types of vehicles a typical mission is dis-
cussed in detail, comparing the result obtained with the guidance laws to the
optimal solution. For several other missions only a summary of the numerical
results is given.

5.1  Conventional Launcher

5.1.1  Escape Mission

The mission is to deliver a payload into an escape orbit given by the declina-
tion of the asymptote and the excess speed (i.e. the speed the craft would
have at “infinite” distance from the central body). This kind of orbit can be
used f.i. for interplanetary missions. The aim of the optimization is to maxi-
mize the payload mass delivered.

Phase Structure

The start is affected with both the first stage main engine H150 and both
solid propellant boosters P230 of the Ariane V launch vehicle thrusting. The
boosters are jettisoned when empty. The phase structure is described in
Table 5.1.
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During the second and the third phase only the first stage main engine
is burning. The separation is marked by jettisoning of the payload fairing.
This time is optimizable and depends on the heat flux condition. After the
third phase, the first stage is separated. During the final phase the upper stage
engine L7 is used.

Constraints

For range safety reasons an azimuth constraint is demanded for the first
phase. However since the azimuth for vertical take-off is undefined it cannot
be imposed for the first few seconds of flight time. Therefore it can only be
imposed for the second phase. In this particular phase, however, the con-
straint is inactive anyway.

After the jettisoning of the payload fairing, the heat flux may not raise
above a certain limit. Therefore the time when this limit is reached marks the
end of the second phase.

Table 5.1:  Phase Structure of escape mission

Duration

(seconds)

Active
Propul-
sion

Aerody-
namic

Boundary
Con-
straints

Path
Con-
straints

Remarks

1 0 - 123
H150

+ 2 P230
Ariane 5

P230s are 
jettisoned 
at end

2 123 - tf,2 H150 Ariane 5
W/m2

fairing 
jettisoned 
at end

3
tf,2 - 

580.509
H150 Ariane 5

W/m2

H150 
jettisoned 
at end

4
580.509 - 
1370.117

L7 Ariane 5

= 

2.5 km/s

W/m2

10.5° χ≤ ≤–

91.5°

Q
·

1135≤

Q
·

1135≤

V∞

δasymptote =

12°–

Q· 1135≤
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It should be noted that due to a dip into the denser atmosphere the heat
flux constraint will again be active in the last phase. Therefore the constraint
must be activated and checked in both phases.

The parameters of the escape orbit supply the final boundary con-
straints for the last phase. The excess velocity describes the kinetic energy
the craft would have at a very large distance to the earth and the declination
of the asymptote the elevation angle above the equator at this point. Both
must be understood as limits with the flight time approaching infinity.

5.1.1.1  Reference Solution

The optimal solution is computed using the optimization routine Tropic. The
controls pitch and yaw are optimizable in all phases. The result is the best
obtainable, as can be seen in Table 5.2.

5.1.1.2  Guidance Law

Guidance laws, as described in Section 4.1, are used to reduce the number of
parameters to define the attitude controls. The parameters and their respec-
tive values are summed up in Table 5.3.

In the first phase a pitch-over maneuver of optimizable magnitude
defines the state in which the vehicle enters the gravity turn, which is flown
for the next two phases. In the final phase, the bi-linear tangent law is used.

Since for the escape orbit setting the inclination in the higher phases
does not make sense, only in the first phase the target inclination option is

Table 5.2:  Comparison of execution times and results of escape mission

nominal optimal guidance law
bi-linear law, 
lower stage 
optimization

Iteration 91 17 271

Execution time 201 s 54 s 320 s

Payload 6159 kg 6346 kg 5799 kg 6341 kg

Declination of 
asymptote -12o -12.004o -12.09o -12.004o

Escape velocity 2.5 km/s 2.499 km/s 2.42 km/s 2.499 km/s
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used for the yaw angle. This defines the plane in which the remainder of the
trajectory is flown, setting the yaw tangential to the trajectory. In this way,
the yaw history is described by a single optimizable parameter. The guidance
laws are described in detail in Section 4.1 on page 74.

Comparing the trajectory to the optimal one reveals remarkable differ-
ences (see Figs. 5.1 and 5.2). The limitations of the attitude controls do
greatly influence all state histories. The altitude rate is effected by the rigid
gravity turn and therefore is much higher during the first part of the trajec-
tory, and the dip into the denser atmosphere is later than for the optimal solu-
tion.

During rocket ascent, not all of the available thrust can be used for
velocity increment. Therefore several formulas for estimates of the incurred
losses due to external forces are given in literature. The losses are computed
in the form of a velocity decrement. The drag loss is the integral of the drag
force (which is by definition opposed to the flight-path velocity vector):

, (5.1)

Table 5.3:  Horizontal and vertical guidance laws and parameters of escape mission

Control Law Phase
Para-
meter

Esti-
mate

Lower 
Bound

Upper 
Bound

Opt. 
Value

Target orbit 1 it 20o -180o 180o 22.854o

Tangential 2,3,4 –

Pitch push 
over

1

tacc

tpo

∆Θ
tc

5 s
10 s

3.4o

5 s

–
–

-18o

–

–
–

18o

–

–
–

3.4197o

–

Gravity turn 2,3 –

Bi-linear 
tangent

4

Θ0

ξ
Θf

2.028o*

0*

-9.396o*

* computed

-90o

-1

-90o

90o

1

90o

-4.6222o

0.2107

19.066o

∆vD
D
m
---- td

t0

tf

∫=
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while the gravity loss occurs when the velocity vector is not perpendicular to
the gravity vector (note, that for negative flight-path angle there is a gain):

. (5.2)

Another source of losses is due to misalignment of the thrust and the velocity
vector during maneuvers. The following formula assumes that the thrust is
aligned with the vehicle x-axis:

. (5.3)

When comparing these kinds of losses it can be seen that the guidance law
solution incurs less drag than the optimal solution. Also the losses due to
misalignment of the thrust vector are very small, since most of the trajectory
is flown in the gravity turn mode (see Table 5.4).

However, since the trajectory is much steeper in the beginning, higher
gravity losses occur. Most of the fuel is burned at higher altitudes, this
accounts for the reduction of 10% of the payload.

Table 5.4:  Sources of losses of escape mission

optimal guidance law
bi-linear law, 
lower stage 
optimization

Drag loss 157 m/s 102 m/s 158 m/s

Gravity loss 2251 m/s 2464 m/s 2245 m/s

Alignment loss 126 m/s 4 m/s 131 m/s

Total losses 2534 m/s 2570 m/s 2534 m/s

∆vg g γsin td
t0

tf

∫=

∆vT
T
m
---- 1 αtcos–( ) td

t0

tf

∫=
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Fig. 5.1: Comparison of states for escape mission
The markers show the phase boundaries.
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Fig. 5.2: Comparison of controls and constraints for escape mission
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5.1.1.3  Optimal Lower Stage Control

In order to identify the reason for the loss in payload, an optimization with a
mixed guidance scheme was performed. The phase sequence is described in
Table 5.1. While the yaw was optimizable in all phases, the pitch was optimi-
zable only in the lower stages, the upper stage being guided by the bi-linear
tangent law (see Table 5.5). 

All variables of the resulting trajectory are practically identical to the
optimum. In addition, the payload is almost the same, and the end conditions
are satisfied to the same degree as for the optimal solution. Therefore it can
be assumed that the bi-linear tangent law is very close to the optimal solu-
tion. 

The lower stage guidance however is not very well modelled. This is
also visible in the first graph of Fig. 5.2: in the first phase the optimal pitch is
well below the guidance law solution. The pitch history of the optimization
with upper stage guidance, however, is indistinguishable from the optimum
(see Fig. 5.3). The losses of this solution are practically similar to the losses
of the optimal solution (see Table 5.4).

Table 5.5:  Guidance laws and parameters for partially optimal control

Control Law Phase
Para-
meter

Esti-
mate

Lower 
Bound

Upper 
Bound

Opt. 
Value

Optimal yaw 1,2,3,4 – -180o 180o

Optimal pitch 1,2,3 – -90o 90o

Bi-linear 
tangent

4
Θ0

ξ
Θf

2.051o*

0*

-9.437o*

* computed

-90o

-1

-90o

90o

1

90o

-8.111o

0.0738

19.338o
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Fig. 5.3: Optimal solution vs. solution with upper stage guidance
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5.1.2  Molnija Orbit

The mission is to deliver a payload with maximal mass into a Molnija orbit.
This is a highly elliptic twelve hour orbit with an inclination that allows to
cover the ground between the arctic circles. The perigee is chosen to be the
southernmost point of the orbit. The phase structure is described in
Table 5.6.

By virtue of the special inclination, the argument of the perigee will
not drift due to the oblateness of the earth. Therefore this orbit is well suited
for communication satellites in the northern part of Europe, Asia and Amer-
ica.

Table 5.6:  Phase Structure of Molnija orbit mission

Duration

(seconds)

Active
Propul-
sion

Aerody-
namic

Boundary
Con-
straints

Path
Con-
straints

Remarks

1
0 − 123

H150
+ 2 P230

Ariane 5
−10.5° ≤ χ
 ≤ 91.5°

P230s are 
jettisoned 
at end

2
123 − tf,2 H150 Ariane 5

W/m2

payload 
fairing 
jettisoned 
at end

3

tf,2 − 

580.509
H150 Ariane 5

50 km,

W/m2

H150 
jettisoned 
at end

4 580.509 − 
tf,4

- Ariane 5 coast arc

5

tf,4 −  tf,5 ; 

∆tfix = 
789.609

L7 Ariane 5

ha = 
40067 km,
hp = 

300 km,
i = 63.4°,
ω = 270°

Q
·

1135≤

hp ≤

δip 50o≤
Q
·

1135≤
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In addition to the conditions of the ASTOS test case 2, a splash down
constraint was introduced, preventing the H150 stage from falling on inhab-
ited areas in Australia.

The results of different optimizations are shown in Table 5.7. The rela-
tively large deviation of apogee and perigee altitude can be attributed to the
special kind of trajectory. After a long coast arc, the launcher descends
towards perigee altitude. Since a deviation of a few kilometers in altitude
does have a sizable impact on the air density, even an extremely small error
at the beginning of the coast arc can result in a large deviation of the final
part of the trajectory. 

The sequence of control laws for the “guidance law” case and the cor-
responding parameters are shown in Table 5.8. A comparison of the different
kinds of losses incurred is given in Table 5.9. It can be seen, that the guid-
ance law solution has much higher losses than the others. Therefore the pay-
load is lower.

Table 5.7:  Comparison of execution times and results of Molnija orbit mission

nominal optimal guidance law
bi-linear law, 
lower stage 
optimization

Iteration 80 42 50

Execution time 140 s 56 s 62 s

Payload 6315kg 6908 kg 5999 kg 6558 kg

Perigee altitude 300 km 298 km 193 km 299.8 km

Apogee altitude 40067 km 40073 km 41960 km 40045 km

Perigee argument -90o -89.9o -89.2o -89.99o

Inclination 63.4o 63.4o 63.6o 63.4o
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Table 5.8:  Guidance laws and parameters of Molnija orbit mission

Control Law Phase
Para-
meter

Esti-
mate

Lower 
Bound

Upper 
Bound

Opt. 
Value

Target orbit 1 it 63.4o -180o 180o 76.667o

Target orbit 2 it 63.4o -180o 180o 66.861o

Target orbit 3 it 63.4o -180o 180o 65.448o

Linear 4
Ψ0

Ψf

27.909o*

27.909o*
-180o

-180o
180o

180o
25.787o

27.906o

Target orbit 5 it 63.4o -180o 180o 60.799o

Push over 1

tacc

tpo

∆Θ
tc

5 s
10 s

2.6o

3.5 s

–
–

-18o

–

–
–

18o

–

–
–

2.403o

–

Gravity turn 2,3 –

Linear 4
Θ0

Θf

3.415o*

3.415o*
-90o

-90o
90o

90o
4.832o

4.391o

Bi-linear 
tangent

5

Θ0

ζ
Θf

0o*

0*

0o*

-90o

-1

-90o

90o

1

90o

9.782o

-0.0818

-8.766o

* computed

Table 5.9:  Sources of losses of Molnija mission

optimal guidance law
bi-linear law, 
lower stage 
optimization

Drag loss 103 m/s 94 m/s 109 m/s

Gravity loss 2158 m/s 2720 m/s 2402 m/s

Alignment loss 126 m/s 52 m/s 89 m/s

Total losses 2387 m/s 2866 m/s 2600 m/s
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5.1.3  GTO

The mission is to deliver the payload to a transfer orbit with an apogee suit-
able for insertion into a geostationary orbit. The aim of the optimization is to
maximize the payload mass delivered into the transfer orbit. Since the

Table 5.10:  Phase Structure of GTO mission

Duration

(seconds)

Active
Propul-
sion

Aerody-
namic

Boundary
Con-
straints

Path
Con-
straints

Remarks

1*

* only when optimizing with a control law; else the next phase starts at t=0

0 − 11.6
L220 
+ 2 PAP 
+ 2 PAL

Ariane 
44LP

χ ≤ 91.5°

2

11.6 − 
44.959

(0–44.959)

L220 
+ 2 PAP 
+ 2 PAL

Ariane 
44LP

χ ≤ 91.5°
PAPs 
jettisoned 
at end

3
44.959 − 
143.658

L220
 + 2 PAL

Ariane 
42L

χ ≤ 91.5°
PALs 
jettisoned 
at end

4
143.658 − 
211.355

L220 Ariane 40

qα≤ 

5.9°kPa †,
q ≤ 

1.88 kPa †

† final six seconds of the phase only

L220 
jettisoned 
at end

5
211.355 − 
299.925

L33 Ariane 40
W/m2

fairing 
jettisoned 
at end

6
299.925 − 
342.19

L33 Ariane 40
W/m2

L33 
jettisoned 
at end

7
342.19 − 
1068.371

H10 Ariane 40

ha = 

35786 km,
hp = 

185 km,
i  = 7°, 
ω = 180°

Q
·

1135≤

Q
·
 = 1135
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impulse for the final circularization is fixed and can be computed analyti-
cally using the assumptions of Hohmann, it is not considered part of the opti-
mization problem. The phase structure is shown in Table 5.10 and the results
in Table 5.11. Note that the solution with yaw guidance does not satisfy the
inclination and the perigee argument constraints. Therefore it has a better
payload than the solution with optimized yaw, using a guidance law for the
pitch only.

The control law sequence for the case with optimizable yaw and the
corresponding parameters are shown in Table 5.12. Again, the guidance law
solution shows the largest total loss, while the losses for the mixed solution
are similar to the losses of the optimal solution.

Table 5.11:  Comparison of execution times and results for GTO mission

nominal optimal guidance law
guidance law, 
yaw optimized

Iteration 116 42 79

Execution time 196 s 61 145 s

Payload 5785 kg 5899 kg 5549 kg 5486 kg

Perigee altitude 185 km 187 km 185 km 168 km

Apogee altitude 35786 km 35914 km 35784 km 36739 km

Perigee argument 180o 171o 136o*

* constraints not enforced

180.3o

Inclination 7o 6.99o 5.2o* 6.99o

Table 5.13:  Sources of losses of GTO mission

optimal guidance law
guidance law, 
yaw optimized

Drag loss 144 m/s 78 m/s 140 m/s

Gravity loss 1453 m/s 1824 m/s 1472 m/s

Alignment loss 140 m/s 46 m/s 156 m/s

Total losses 1737 m/s 1948 m/s 1768 m/s
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5.1.4  Sun-Synchronous Orbit

The mission is to deliver a payload to a sun-synchronous circular orbit. For a
certain range of orbit radii, the orbit can be inclined such that the drift of the
ascending node due to the oblateness of the Earth is the same as the angular
velocity of the Earth around the sun (see boundary constraints in Table 5.14).
Like this, the orientation of the orbit towards the sun remains the same. This
can be used f.i. for Earth observation satellites which can always view a part
of the Earth under the same light conditions, e.g. at dawn and dusk.  

The objective is to maximize the final mass, which includes the pay-
load and the remaining fuel, which can be used to deliver a second payload
or for house keeping operations.The guidance laws and parameters used can
be seen in Table 5.15.

The optimization using guidance laws for all stages takes about one
third of the normal optimization time, while delivering almost the same pay-
load. Using the bi-linear tangent law in the upper stage only is even slightly
faster, while offering the same performance as a full optimization (see
Table 5.16). An estimate of the losses is given in Table 5.17.

Table 5.12:  Guidance laws for the GTO mission case with optimized yaw

Control Law Phase
Para-
meter

Esti-
mate

Lower 
Bound

Upper 
Bound

Opt. 
Value

Optimal yaw 1 – 7 – -180o 180o

Vertical pitch 1 –

Push over 2

tacc

tpo

∆Θ
tc

0 s
19.2s

0.6o

2.5 s

–
–

-18o

–

–
–

18o

–

–
–

0.5498o

–

Gravity turn 3,4,5,6 –

Bi-linear 
tangent

7

Θ0

ζ
Θf

45.06o*

0*

-29.25o*

-90o

-1

-90o

90o

1

90o

21.60o

-0.267

-7.592o

* computed
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Table 5.14:  Phase Structure of the SSO mission

Duration

(seconds)

Active
Propul-
sion

Aerody-
namic

Boundary
Con-
straints

Path
Con-
straints

Remarks

1 0 - 129.1
H155
+ 2 P230

Ariane 5 χ ≤ 91.5°
P230s
jettisoned 
at end

2 129.1 - tf,2 H155 Ariane 5
W/m2

fairing 
jettisoned 
at end

3
tf,2 - 

567.764
H155 Ariane 5

W/m2

H155 
jettisoned 
at end

4
567.764 - 
tf,4

L9 Ariane 5
ha = hp =

800 km
i = 98.6°

Table 5.15:  Horizontal and vertical guidance laws and parameters of SSO mission

Control Law Phase
Para-
meter

Esti-
mate

Lower 
Bound

Upper 
Bound

Opt. 
Value

Optimal yaw 1 – 4 – -180o 180o

Push over 1

tacc

tpo

∆Θ
tc

6 s
10 s

1.3o

2.5 s

–
–

-18o

–

–
–

18o

–

–
–

2.425o

–

Gravity turn 2 –

Bi-linear 
tangent

3

Θ0

ζ
Θf

21.3o*

0*

21.3o*

-90o

-1

-90o

90o

1

90o

43.96o

-0.0642

21.34o

Bi-linear 
tangent

4
Θ0

ζ
Θf

35.7o*

0*

35.7o*

-90o

-1

-90o

90o

1

90o

23.23o

-0.0688

-24.67o

* computed

Q
·

1135≤

Q
·

1135≤
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Table 5.16:  Comparison of execution times and results for the SSO mission

nominal
optimal
(Promis)

optimal
(Tropic)

guidance 
law*

bi-linear 
law, lower 
stage opti-
mization

Iteration 32 163 67 62

Execution time 379 249 s 87 s 79 s

Final mass 13800 kg 14013 kg 13930kg 13817 kg 13967 kg

Perigee altitude 800 km 799.99 km 799.98 km 799.85 km 799.98 km

Apogee altitude 800 km 800.00 km 800.6 km 800.1 km 800.5 km

Inclination 98.6o 98.5999o 98.5998o 98.5999o 98.5999o

* see Table 5.15

Table 5.17:  Sources of losses of SSO mission

optimal
(Tropic)

guidance law
bi-linear law, 
lower stage 
optimization

Drag loss 123 m/s 82 m/s 115 m/s

Gravity loss 2488 m/s 2636 m/s 2508 m/s

Alignment loss 393 m/s 434 m/s 373 m/s

Total losses 3004 m/s 3152 m/s 2996 m/s
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5.2  Reentry Vehicle

5.2.1  X-38 Return to Captieux

The X-38 is an experimental hypersonic reentry vehicle currently in planning
stage. It may evolve into a crew rescue vehicle (CRV) for the international
space station. Just like the space shuttle, the X-38 will enter the atmosphere
at very high speed. During the flight towards the landing site, several severe
conditions exist that would easily destroy the vehicle, if not properly con-
trolled (see Table 5.18, and also Section 3.3).  

The phase structure is presented in Table 5.19. For this case, the angle
of attack was optimizable in a corridor of  around the nominal profile.
With a fixed α profile, no convergence could be achieved. The results of all
optimizations is shown in Table 5.20.

The optimal solution obtained with Promis shows very rough control
histories. Therefore a smoothing term which penalizes variations of the atti-

Table 5.18:  Constraints of the X-38 return to Captieux

Initial Boundary
Constraints

Path
Constraints

Final Boundary
Constraints

initial orbit:

i = 51.6o

r = 6838 km

entry altitude:
h = 121.9 km

Landing site:

δΤ = 44.4o

λΤ = 0.4o

Table 5.19:  Phase structure of optimal solution

Phase
Duration
(seconds)

Differential
Equations

Control Laws

1 0 – 1221
flight-path
equations

AoA: optimal
bank angle: optimal

Q
·

1175kW/m
2≤

nmax 2≤

q 14364Pa≤
γ 0≤

αmin M( ) α αmax M( )≤ ≤

24.1km h 25.1km≤ ≤
645m/s v 845m/s≤ ≤

5°±
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tude controls was introduced. This did reduce the optimization time consid-
erably for this test case (however, this cannot be generalized). The slight
improvement of the cost function and the slightly shorter flight time of 1187
seconds can be attributed to the fact that the “rough” solution is not con-
verged to the same accuracy.

5.2.1.1  Reduced Order Solution

Although the solution with reduced differential equations is not perfectly
converged (the convergence criteria are missed by a small margin), it does
compare very well to the optimal solution, see Figs. 5.4 to 5.6. After an ini-
tial pull-up maneuver, the trajectory follows two path constraints: first the
heat flux constraint, than the normal load constraint. This is the expected
behavior for a minimum heat load reentry, since by maximizing the drag, the
flight time is minimized, and this lowers the heat flux integral.

While the optimal solution consists of a single phase only, for the
reduced solution two phases are needed (see Table 5.21). During the first
phase the bank angle is fixed at 0o, in order to obtain the highest possible lift
in the vertical direction for a pull-up maneuver. When almost level flight is
achieved, the dynamic pressure control mode is initiated for phase two. The
phase timing is optimizable. The guidance law is described in detail in
Section 4.3 on page 89.

Table 5.20:  Comparison of execution times and results for X38 mission to Captieux

nominal optimal*

* reduced optimization accuracy

optimal,
smoothed

reduced ode

Iteration 93 35 96

Execution time 28650 s 5003 s 1075 s

Optimizer Promis SNOPT Tropic

Integ. heatload 958 MJ/m2 951 MJ/m2 942 MJ/m2

Final velocity 645–845 m/s 845 m/s 845 m/s 832 m/s

Final altitude 24.1–25.1 km 25.1 km 24.2 km 26.0 km

Target distance < 30 km 30 km 14.9 km 48 km
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The dynamic pressure profile is defined by a cubic spline. The slope of
the spline at the beginning of the phase is the same as the one at the end of
the first phase in order to avoid a jump in the required altitude rate. The first
point of the spline is therefore given in terms of initial flight-path velocity,
dynamic pressure and its derivative with respect to the velocity. Since these
three parameters must be adapted to the situation at the end of the first phase,
all three are optimizable.  

Table 5.21:  Horizontal and vertical guidance laws of reduced order solution

Phase
Duration
(seconds)

Differential
Equations

Control Laws

1 0 – 322
flight-path
equations

AoA: optimal
bank angle: vertical

2 322 – 1187
reduced flight-path
equations

AoA: optimal
dynamic pressure

Table 5.22:  Specification of dynamic pressure profile

Para-
meter

at Velocity Estimate*

* computed

Lower 
Bound*

Upper 
Bound*

Optimal 
Value

V0
q

dq/dV

–
V0
V0

7503 m/s
1529 Pa

-2.78 sPa/m

3751 m/s
0 Pa

-8.93 sPa/m

11254 m/s
4587 Pa

8.93 sPa/m

7507 m/s
1719 Pa

-2.44 sPa/m

q1
q2
q3
q4
q5
q6
q7
q8
q9
q10
q11
q12
q13

500 m/s
1000 m/s
2000 m/s
3000 m/s
4000 m/s
4500 m/s
4750 m/s
5000 m/s
5500 m/s
6000 m/s
7000 m/s
7200 m/s
7400 m/s

14364 Pa
14364 Pa
14364 Pa
14364 Pa
14364 Pa
14364 Pa
12303 Pa

9868 Pa
6550 Pa
4505 Pa
2322 Pa
2057 Pa
1828 Pa

7182 Pa
7182 Pa
7182 Pa
7182 Pa
7182 Pa
7182 Pa
6152 Pa
4934 Pa
3275 Pa
2253 Pa
1161 Pa
1029 Pa

914 Pa

15800 Pa
15800 Pa
15800 Pa
15800 Pa
15800 Pa
15800 Pa
13534 Pa
10855 Pa

7205 Pa
4956 Pa
2554 Pa
2263 Pa
2011 Pa

9862 Pa
12929 Pa
13538 Pa
11696 Pa
11728 Pa
11660 Pa
11902 Pa
10001 Pa

6539 Pa
4506 Pa
2322 Pa
2055 Pa
1849 Pa
130 An Initial Guess Generator for Launch and Reentry Vehicle Trajectory Optimization



Reentry Vehicle

An Initial Guess Gen
Fig. 5.4: Comparison of states for X-38 return to Captieux
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Fig. 5.5: Comparison of controls and constraints for X-38 return
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Fig. 5.6: Constraints in the drag and dynamic pressure diagram
Please note that the limits are computed for the reduced equation
case, small deviations for the other cases are possible.
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Note that only the velocity points must be given by the user. The grid
can be rather sparse, but it should be more dense at the point, where the tran-
sition from the heat flux constraint to the dynamic pressure or normal load
constraint takes place. The initial profile is estimated by using the maximum
heat flux and the maximum dynamic pressure value supplied by the user. The
upper and lower limits are obtained by multiplying this estimate by 0.5 or
1.1, respectively (see Table 5.22).

5.2.2  X-38 Return to Coober Pedy with Bank Reversals

Return to Coober Pedy (Australia) is the NASA benchmark mission. The
applicable constraints are shown in Table 5.23. For guidance reasons, two
distinct bank reversals (sign changes of the bank angle) are foreseen (a third
one, as foreseen by NASA, is outside of the final time). Additional phases
were introduced to model these control changes (see Table 5.24).  

Table 5.23:  Constraints of the X-38 return to Coober Pedy

Initial Boundary
Constraints

Path
Constraints

Final Boundary
Constraints

initial orbit:

i = 51.6o

r = 6838 km

entry altitude:
h = 121.9 km

Landing site:

δΤ = -28.2402o

λΤ = 134.9825o

Table 5.24:  Phase structure of optimal solution

Phase
Duration
(seconds)

Differential
Equations

Control Laws

1 0 – 1015
flight-path
equations

AoA: optimal
bank angle: optimal, 

2 1015 – 1150
flight-path
equations

AoA: optimal
bank angle: optimal, 

3 1150 – 1224.5
flight-path
equations

AoA: optimal
bank angle: optimal, 

Q
·

1175kW/m
2≤

nmax 2≤

q 14364Pa≤
γ 0≤

αmin M( ) α αmax M( )≤ ≤

24.1km h 25.1km≤ ≤
645m/s v 845m/s≤ ≤

µ 0≥

µ 0≤

µ 0≥
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The additional phase boundaries, at fixed times, complicate the optimi-
zation process, especially, since the duration of the optimal flight is much
smaller than the flight time of the nominal. The bank reversal times may
have to be adjusted accordingly. 

The optimal solution shows large oscillations of the bank angle, espe-
cially in the last phase. In addition, the optimization did not converge to the
required precision. Therefore another optimization was done with a control
smoothing term, using Promis in conjunction with the SLLSQP package (see
Table 5.25). 

5.2.2.1  Reduced Order Solution

While the reference solution has fixed phase timing (except for the final
time, which is optimizable), the reduced order solution needs variable timing
(see Table 5.26). The dynamic pressure profile is based on velocity points
and within each phase the sequence of these points, together with the initial
velocity of the phase must be monotonically decreasing. Therefore a fixed
phase would unduly restrict the optimization process.

The dynamic pressure profile is specified for each phase. Variables to
connect the slope are introduced at each phase junction (see Table 5.27).

 

Table 5.25:  Comparison of execution times and results of X-38 return to Coober Pedy

nominal optimal*

* not converged; optimization ended with message “reached apparent stall”.

optimal,
smoothed

reduced ode

Iteration 135 103 69

Execution time 25126 s 21727 s 928 s

Optimizer
Promis 
SNOPT

Promis 
SLLSQP

Tropic

Integ. heatload 976 MJ/m2 964 MJ/m2 996 MJ/m2

Final velocity 645–845 m/s 845 m/s 845 m/s 713 m/s

Final altitude 24.1–25.1 km 25.1 km 25.1 km -12.1 km

Target distance < 30 km 30 km 30 km 13 km
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Table 5.26:  Phase structure of reduced order solution

Phase
Duration
(seconds)

Differential
Equations

Control Laws

1 0 - 433
flight-path
equations

AoA: optimal
bank angle: vertical

2 433 - 944
reduced flight-
path equations

AoA: optimal
dynamic pressure profile, 

3 944 - 1060
reduced flight-
path equations

AoA: optimal
dynamic pressure profile, 

4 1150 - 1224.5
reduced flight-
path equations

AoA: optimal
dynamic pressure profile, 

Table 5.27:  Specification of dynamic pressure profile

P
Para-
meter

at Velocity Estimate* Lower 
Bound*

Upper 
Bound*

Optimal 
Value

2

V0
q

dq/dV

–
V0
V0

7526 m/s
1736 Pa

-1.11 sPa/m

3763 m/s
0 Pa

-3.34 sPa/m

11289 m/s
5359 Pa

3.34 sPa/m

7515 m/s
1652Pa

-2.00 sPa/m

q1
q2
q3
q4

6000 m/s
6500 m/s
7000 m/s
7300 m/s

4506 Pa
3194 Pa
2322 Pa
1939 Pa

2253 Pa
1597 Pa
1161 Pa

969 Pa

4956 Pa
3513 Pa
2554 Pa
2133 Pa

4511 Pa
3149 Pa
2322Pa
1938 Pa

3

V0
q

dq/dV

–
V0
V0

5564 m/s
5748 Pa

-2.85 sPa/m

2782 m/s
0 Pa

-8.54 sPa/m

8345 m/s
17245 Pa
8.54 sPa/m

5650 m/s
5558Pa

-2.99 sPa/m

q1
q2

5000 m/s
5400 m/s

9868 Pa
7088 Pa

4934 Pa
3544 Pa

10855 Pa
7797 Pa

9069 Pa
7102 Pa

4

V0
q

dq/dV

–
V0
V0

4218 m/s
14134 Pa

-5.43 sPa/m

2109 m/s
0 Pa

-16.3 sPa/m

6326 m/s
42403 Pa

16.3 sPa/m

4400 m/s
11438 Pa

-3.95 sPa/m

q1
q2
q3
q4

1000 m/s
2000 m/s
3000 m/s
3800 m/s

14364 Pa
14364 Pa
14364 Pa
14364 Pa

7182 Pa
7182 Pa
7182 Pa
7182 Pa

15800 Pa
15800 Pa
15800 Pa
15800 Pa

14158 Pa
12871Pa
11169 Pa
10947 Pa

* computed

µ 0≥

µ 0≤

µ 0≥
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5.2.3  Hermes Return to Kourou

Hermes was a project of the ESA. Launched on top of an Ariane 5, it was
planned to be the European entry into manned space exploration. Due to
international treaties on the usage of the future space station, the project was
cancelled, however many results of the research are used in the X-38 and
CRV project.

The major constraints can be seen in Table 5.28. For the optimal solu-
tion the flight-path velocity are used (see Section 3.1.2 on page 56). Due to
thermodynamic reasons, the angle of attack follows a fixed profile as a func-
tion of the Mach number. Since speed brakes cannot be applied at high
speeds, the bank angle is the only control left (see Table 5.29).  

The results are shown in Table 5.30. Since the optimal solution shows
some fluctuations of the bank angle, an second optimization with a control
smoothing term is presented.

Table 5.28:  Constraints of the Hermes return to Kourou

Initial Boundary
Constraints

Path
Constraints

Final Boundary
Constraints

initial orbit:

i = 51.6o

r = 6838 km

entry altitude:
h = 121.9 km

Landing site:

δΤ = 5.25o

λΤ = -52.8o

Table 5.29:  Phase structure of optimal solution

Phase
Duration
(seconds)

Differential
Equations

Control Laws

1 0 – 1196
flight-path
equations

AoA: Mach profile
bank angle: optimal

Q
·

440kW/m
2≤

nmax 2.5≤

q 14400Pa≤
γ 0≤

30km h 40km≤ ≤
800m/s v 1200m/s≤ ≤
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5.2.3.1  Reduced Order Solution

The initial phase of the reentry is flown with a bank angle of zero. Using all
available lift ensures that the initial flare is completed without violating the
thermal constraint. When the dynamic pressure has reached a sufficient level,
it is used as a control for the second phase. The final times of both phases are
optimizable (see Table 5.31).

In Table 5.32 the parameters describing the dynamic pressure profile
are given. Note that during flight the velocity is steadily decreasing. There-
fore the first data point encountered is q(V0), than q13 and so on. The point q1
is actually outside the velocity range considered, therefore it has only a small
influence.

Table 5.30:  Comparison of execution times and results of Hermes case

nominal optimal
optimal,
smoothed

reduced ode

Iteration 32 44 13

Execution time 2848 s 4124 s 83 s

Optimizer Promis SLLSQP Tropic

Integ. heatload 360 MJ/m2 353 MJ/m2 347 MJ/m2

Final velocity 0.8–1.2 km/s 1.2 km/s 1.2 km/s 1.19 km/s

Final altitude 30 – 40 km 32.61 km 32.57 km 32.5 km

Longitude -52.8o -52.799o -52.9o -52.82o

Latitude 5.25o 5.2501o 5.2499o 5.205o

Table 5.31:  Phase structure of optimal solution

Phase
Duration
(seconds)

Differential
Equations

Control Laws

1 0 – 243
flight-path
equations

AoA: Mach profile
bank angle: optimal

1 243 – 1092
reduced 
flight-path
equations

AoA: optimal
dynamic pressure profile, µ 0≤
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Table 5.32:  Specification of dynamic pressure profile

Para-
meter

at Velocity Estimate* Lower 
Bound*

Upper 
Bound*

Optimal 
Value

V0
q

dq/dV

–
V0
V0

7573 m/s
940 Pa

-1.44 sPa/m

3787 m/s
0 Pa

-4.30 sPa/m

7573 m/s
2819 Pa

4.30 sPa/m

7573 m/s
980 Pa

-1.48 sPa/m

q1
q2
q3
q4
q5
q6
q7
q8
q9
q10
q11
q12
q13

500 m/s
1000 m/s
2000 m/s
3000 m/s
4000 m/s
4500 m/s
4750 m/s
5000 m/s
5500 m/s
6000 m/s
7000 m/s
7200 m/s
7400 m/s

14400 Pa
14400 Pa
14400 Pa
14400 Pa
13940 Pa

8702 Pa
7010 Pa
5710 Pa
3900 Pa
2753 Pa
1486 Pa
1328 Pa
1190 Pa

7200 Pa
7200 Pa
7200 Pa
7200 Pa
6970 Pa
4351 Pa
3505 Pa
2855 Pa
1950 Pa
1377 Pa

743 Pa
664 Pa
595 Pa

15840 Pa
15840 Pa
15840 Pa
15840 Pa
15333 Pa

9573 Pa
7711 Pa
6281 Pa
4290 Pa
3029 Pa
1635 Pa
1461 Pa
1309 Pa

7200 Pa
9705 Pa
9098 Pa
8008 Pa
7240 Pa
7291 Pa
6928 Pa
5771 Pa
3896 Pa
2754 Pa
1486 Pa
1330 Pa
1185 Pa

* computed
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5.3  Advanced Launcher

The concept of the Sänger vehicle is an advanced launcher. The lower stage
is equipped with air-breathing engines, which offer a turbojet and a ram jet
mode. The upper stage is powered by a rocket engine.

The base mission is, starting from a European site, to deliver the upper
stage into a transfer orbit up to a low circular orbit. After release of the upper
stage, the carrier returns to the launch site. However, the return is not mod-
elled in the presented case. A fuel reserve for the return flight and for resid-
ual fuel that cannot be used is included in the structural mass. The
optimization criterion was to minimize the fuel consumption of the lower
stage.

In order to avoid the complex aerodynamics and thrust models for the
transonic region, the optimization was started at a a velocity of 490 m/s and
in an altitude of 12.6 km. An amount of 12,020 kg of fuel for the acceleration
(estimated by preliminary simulations) is not included in the fuel consumed,
as well as 8,500 kg for the return flight and 500 kg of residual fuel, which
cannot be burned. (see Table 5.35).

The turbojet engine can be operated up to Mach 3.5, the ramjet starting
form that Mach number. Therefore an equality constraint is set at the phase
boundary when the engine type is switched. Both types of air-breathing
engines can operate only in a region of dynamic pressure that is between
20 kPa and 50 kPa. A path constraint during the ramjet operation ensures that
the Mach number remains below 7 (see Table 5.33). 

While the turbojet engine can only be operated at full thrust level in
supersonic flight, the ramjet can be operated with a varying degree of over-
fueling (using more hydrogen than needed for combustion). The throttle set-
ting is always one for the turbojet, and in between zero (completely burned
hydrogen) to one (maximum overfueling). However, the overfueling capabil-
ity is hardly used, since the aim of the optimization is to minimize the fuel
consumed by the lower stage.   

The phase structure of the optimal solution is presented in Table 5.34.
A trajectory smoothing term, which integrates the square of the derivative of
the flight-path angle, was introduced. It is multiplied by an user supplied
constant and added to the cost function. This term penalizes oscillations.
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Table 5.33:  Constraints of the Sänger ascent mission

Phase
Initial Boundary
Constraints

Path
Constraints

Final Boundary
Constraints

1

2

3

Table 5.34:  Phase Structure of the Sänger ascent mission

Duration
(seconds)

Active
Propulsion

Differential 
Equations

Control Laws

1 176 – 444 Turbojet
flight-path equations,
trajectory smoothness

AoA: optimal
bank angle: optimal

2 444 – 1346 Ramjet
flight-path equations,
trajectory smoothness

AoA: optimal
bank angle: optimal

3 1346 – 1640
Upper stage 
rocket engine

flight-path equations,
trajectory smoothness

AoA: optimal
bank angle: optimal

h 12.6km=

λ 4.590=

δ 42.590=

v 490m/s=

χ 1800=

20kPa q 50kPa≤ ≤

00 α 60≤ ≤
M 3.5=

20kPa q 50kPa≤ ≤

00 α 60≤ ≤
M 7≤

M 7≤

ax 34.5m/s≤

ha 70km=

hp 450km=

i 28.50=
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5.3.1  Reduced Order Solution

The phase structure of the this solution is shown in Table 5.36. The end times
of all phases are optimizable and differ slightly from those of the optimal
solution. Even though during optimization the required constraint accuracy
was relaxed, the solution satisfies the boundary conditions as well as the
optimal one (see Table 5.35).  

The parameter of the guidance laws used are depicted in Table 5.37. In
the first phase a dynamic pressure profile as a function of the time is used. In

Table 5.35:  Comparison of execution times and results for Sänger ascent mission

nominal optimal optimal guidance law*

Iteration 149 142 26

Execution time 8116 s 1399 s 123 s

Optimizer
Promis/
SNOPT

Tropic Tropic

Fuel consumption 143 600 kg 138 483 kg 140 928 kg 140 475 kg

Perigee altitude 70 km 70.0 km 70.0 km 70.0 km

Apogee altitude 450 km 446 km 450 km 447 km

Inclination 28.5o 28.50o 28.50o 28.51o

* reduced accuracy

Table 5.36:  Phase Structure of the reduced order solution

Duration
(seconds)

Active
Propulsion

Differential 
Equations

Control Laws

1 176 – 435 Turbojet
reduced flight-path 
equations

nh: optimal
dynamic pressure q)

2 435 – 1329 Ramjet
reduced flight-path 
equations

nh: optimal

dynamic pressure q(v)

3 1329 – 1626
Upper stage 
rocket engine

flight-path equations
AoA: optimal
bank angle: optimal
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the second phase a profile as a function of the velocity, which is more flexi-
ble with respect to the variable phase times.

The reduced order solution is very close to the optimal one (see
Figs. 5.7 and 5.8). Small deviations, f. i. at the end of the second phase can
be attributed to the limited flexibility of the guidance law, when compared to
the optimal solution. Note, that even the pull-up maneuver to achieve favor-
able conditions for delivering the upper stage can be modelled using the
dynamic pressure profile.

 

Table 5.37:  Specification of dynamic pressure profile

Para-
meter

at Time /
at Velocity

Estimate*

* values in italics are computed automatically, all others are supplied by the user

Lower 
Bound*

Upper 
Bound*

Optimal 
Value

t0
q

dq/dt

–
t0
t0

176 s
39.2 kPa
38.2 Pa/s

88 s
20 kPa

-115 Pa/s

180 s
50 kPa

115 Pa/s

180 s
39.4 kPa
38.2 Pa/s

q1
q2
q3
q4
q5

200 s
250 s
300 s
350 s
400 s

40  kPa
40  kPa
40  kPa
40  kPa
40  kPa

20  kPa 50 kPa

44.2 kPa
37.5 kPa
37.3 kPa
40.1 kPa
39.9 kPa

V0
q

dq/dV

–
V0
V0

1060 m/s
40 kPa

33.6 sPa/m

530 m/s
20 kPa

-101 sPa/m

1060 m/s
50 kPa

101 sPa/m

1029 m/s
40.0 kPa

33.7 sPa/m

q1
q2
q3
q4
q5
q6
q7
q8
q9

1200 m/s
1300 m/s
1400 m/s
1600 m/s
1800 m/s
2000 m/s
2050 m/s
2100 m/s
2150 m/s

40  kPa
40  kPa
40  kPa
40  kPa
40  kPa
40  kPa
40  kPa
40  kPa
40  kPa

20  kPa 50 kPa

40.9 kPa
38.1 kPa
35.9 kPa
33.4 kPa
29.8 kPa
34.4 kPa
39.6 kPa
50.0 kPa
28.9 kPa
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Fig. 5.7: Comparison of states for Sänger ascent
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Fig. 5.8: Comparison of controls and constraints for Sänger ascent
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6  Conclusion

Optimization is a valuable tool, especially for aerospace engineering. How-
ever, currently most programs need a kind of starting solution, an initial
guess. One way to describe an initial guess is by specifying a guidance law:
an algorithm which computes the value of a control depending on the state
vector at each point.

This thesis presents guidance laws for three different kinds of aero-
space vehicles: rocket launchers, air-breathing launchers and reentry vehi-
cles. These guidance laws are characterized by a small number of free
parameters, which are directly related to the trajectory problem and therefore
can be easily estimated by the user.

Moreover, the guidance laws are constructed in a way that makes them
suitable for optimization. The small number of parameters and the robust
performance expedite the optimization process considerably. 

In cases, when the optimum is relatively flat, direct optimization tech-
niques often introduce crooked control histories: smoothness – beauty in the
eyes of an engineer – is simply not part of the optimization criterion. The
limited degree of freedom of the guidance laws does not allow the optimizer
to introduce arbitrary movements in the control histories and therefore obvi-
ates the necessity for manual smoothing.
erator for Launch and Reentry Vehicle Trajectory Optimization 147



Conclusion
Conventional Launchers

Using the guidance law which describes the control time history with a small
number of parameters can speed up the optimization time considerably (by a
factor between two and four). However there is a penalty in the form of a
smaller payload (on the average by 10% less).

The bi-linear tangent law in conjunction with an optimal lower stage
guidance consistently shows an almost identical performance to an optimized
control. It can be concluded that this guidance law is appropriate for the
upper stage, however that the gravity turn and the yaw guidance options are
often sub-optimal. More research should be devoted to find better control
laws for the atmospheric phases of the trajectory.

Using the bi-linear tangent law as a pure (non-optimizing) initial guess
generator, when compared to the required velocity guidance, has the advan-
tage of giving a smooth control time history and also a better performance.
This can be attributed to the fact that the bi-linear law is based on an opti-
mum criterion, whereas the required velocity guidance is rather an engineer-
ing “rule of thumb” approach.

Reentry Vehicles

Using the reduced equations of motion for optimization does often result in
tremendously reduced optimization times. This is mainly due to the fact, that
the optimizer Tropic can be used, since the frequency content of the solution
is reduced.

The accuracy of the solution obtained is very high, when compared to
the optimal trajectory. As an additional benefit, control oscillations, which
must be smoothed by using a penalty term, can hardly occur.

The guidance of reentry vehicles can be closely related to the dynamic
pressure, since this quantity directly influences both the aerodynamic forces
and the major constraints encountered along the trajectory. While altitude has
been used widely as a pseudo-control in papers about singular perturbation
theory, the dynamic pressure also includes the air density in the control,
which simplifies the relation of the pseudo-control to the most important
path constraints. The constraints formulae do contain the control directly, a
fact which simplifies the optimization process.
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Advanced Launchers

The dynamic pressure profile in conjunction with the reduced order differen-
tial equations proved to be effective also for advanced launchers. The result
is very close to the optimal solution.

The optimization time is considerably less than the time needed for
optimization with conventional controls. The size of the parameter vector is
reduced, partly because of the smaller state vector, but also because of a
smaller number of collocation points needed. 

It should be noted, however, that the guidance law does not achieve the
same accuracy during optimization. Since the controls are described by very
few parameters only, it is more difficult to satisfy all path and boundary con-
straints. Still, when using collocation, the reduced order solution can be more
precise in a simulation than the full order one. This is due to the fact, that the
fast part of the state vector is not present and therefore larger intervals for the
collocation are admissible. 

As an additional benefit, the guidance law allows to model the dynamic
pressure constraints as box constraints on the parameters which are treated
much more efficiently by the optimizer. Since the second path constraint, the
angle of attack range, is not active in the solution, this allows to set constraint
evaluation points only at the end of the second phase, when the Mach num-
ber constraint becomes active. This reduction in evaluations speeds up each
iteration of Tropic noticeable.

Future Work

Converting fast states into pseudo-controls using the singular perturbation
approach can reduce the number of parameters used for the discretization of
the optimization problem in two ways. The length of the state vector is
reduced, without the penalty of additional control parameters since the
pseudo-controls can replace some other controls, and second – in the case of
a direct collocation method like Tropic – the number of discretization nodes
can be reduced. When an adaptive integration scheme is used (f. i. as in Pro-
mis), getting rid of the fast manifold of the states vector will accelerate the
integration, since the step size can be larger.

However, even fast states cannot vary instantaneously. Therefore the
pseudo-control history must be continuous and smooth to a degree depend-
ing on the model reduction used. Since in the current version of GESOP con-
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trols can only be piece wise constant or linear, the discussed implementation
of the control laws uses an internal parameterization. This does not allow to
use the advanced graphical features of the optimization environment.

For a future version of GESOP it would be a worthwhile improvement
to implement a spline with a user definable degree as a control option. The
spline must be differentiable all throughout a single phase and the derivatives
must be available to the user for the right hand side equations and for the path
constraints. Furthermore it should be possible to specify continuity condi-
tions not only for the value of a control at the beginning of a phase, but also
for its derivatives.
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A Coordinate Systems

The description of the axis systems is taken, with minor omissions, from [5]. All designations
are from [7], except when noted otherwise.

A.1  Planet-Relative Systems

A.1.1  Planet-Fixed Geocentric System E

The origin of the planet-fixed geocentric axis system is the planet’s geometric center, which is
assumed to be at rest (see Fig. A.1). The z-axis is parallel to the planet’s angular momentum
vector, the x-y axes span the equatorial plane. The x-axis is the intersection of the reference
meridian and the equatorial plane. The axis system rotates with the planet as time progresses.

A.2  Vehicle-Carried Axis Systems

The following axis systems are used to specify position and velocity of the vehicle’s center of
gravity with respect to the planet. Their origins are attached to the vehicle (see Fig. A.1).

For the sake of simplicity, the influence of wind is neglected. For the vehicles treated, the
velocity is very much higher than the expected wind velocity during most of the trajectory.
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Coordinate Systems
A.2.1  Local Horizontal System L and Vertical System V

The definition of the local vertical axis system conforms to the normal earth-axis system
defined in flight mechanics [6]. The z-axis points downward to the center of the planet. The x-
y axes span the local horizontal plane, the x-axis pointing north along the local meridian and
the y-axis pointing east along the local parallel (see Fig. A.1). 

The east longitude λ is measured from the Greenwich meridian to the vehicle’s current
meridian going east. The declination δ is the angle between the vehicle’s radius vector and the
equatorial plane. The transformation from planet-fixed geocentric coordinates to the local ver-
tical axis system is given by

. (A.1)

The local horizontal system L differs from the vertical system just by the sequence (and direc-
tion) of the axis (see Fig. A.1).

A.2.2  Velocity-Carried Axis Systems

A.2.3  Trajectory System T

As depicted in Fig. A.2, the trajectory axis system is aligned with the plane spanned by the
vehicle’s flight-path velocity and the geocentric position vector. The x-axis is parallel to the
velocity vector. The z-axis points downward and is contained in the local vertical plane. The y-
axis is contained in the local horizontal plane. 

The flight-path inclination angle γ indicates ascent or descent with respect to the local
horizontal plane. The flight-path azimuth χ is the heading angle measured clockwise from
north. The transformation from the local vertical system to the trajectory axis system is given
by

. (A.2)

A.2.4  Air-Path System A

The vertical air-path axis system AV is similar to the trajectory system, however, the x-axis is
parallel to the air-path velocity, not the flight-path velocity (see Fig. A.3). The y and z axes are
contained in the horizontal and vertical plane, respectively. 

TE
V T2

π
2
---– δ– 

  T3 λ( )=

TV
T T2 γ( )T3 χ( )=
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Body-Axis Systems
Corresponding to the flight-path angles, the air-path inclination γa and the air-path azi-
muth χa denote climb and heading of the air-path velocity, respectively. The air-path flight-
path angle γa is formed by the air-path velocity vector and the local horizon and is positive for
ascent. The air-path heading angle χa lies in the local horizontal plane and is measured clock-
wise from north. In the absence of wind, the trajectory axis system and the vertical air-path
axis system are identical and γa=γ, χa=χ.

The air-path axis system differs from the vertical air-path system in that the z-axis is con-
tained in the vehicle’s x-z plane of symmetry, not the local vertical (see Fig. A.4). The air-path
bank angle µa results from a rotation about the air-path velocity vector and is formed by the y
axis and the local horizontal plane. 

The transformation from local vertical coordinates to the air-path axis system is given by

. (A.3)

Fig. A.5 shows the direction of the aerodynamic lift L and drag D as well as the lateral, or
cross-stream, force Ya along the air-path axis system. Aerospace standards define positive lift
acting in the negative z-axis direction, drag as being positive along the negative x-axis, and the
lateral force as acting in the positive y-direction. In components of the air-path system the
aerodynamic force vector is given by: 

. (A.4)

A.3  Body-Axis Systems

The body-fixed axis system and the total angle-of-attack system are defined by aerospace stan-
dards [7]. The total force system has been added by the A. Roenneke.

A.3.1  Body-Fixed System B

The body-fixed axis system is shown in Fig. A.5. It is rigidly attached to the vehicle’s geome-
try. The x-z axes span the vehicle’s plane of symmetry, the x-axis pointing forward, the z-axis
downward. The y-axis is pointing starboard and is perpendicular to the vehicle’s plane of sym-
metry. 

TV
A T1 µa( )T2 γa( )T3 χa( )=

Faero

D–

Ya

L– A

=
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Coordinate Systems
The angle-of-attack α and the sideslip angle β determine the orientation of the vehicle’s
forward axis with respect to the air-path velocity (see Fig. A.5). The mapping from the air-path
axis system to body-fixed coordinates is given by 

. (A.5)

The yaw angle Ψ, the pitch angle Θ, and the roll angle Φ determine the vehicle’s orientation
with respect to the vehicle-carried axis systems (see Fig. A.6). The transformation matrix from
the local vertical system (index V) to body-fixed coordinates (index B) is given by 

. (A.6)

Fig. A.5 shows the direction of the aerodynamic forces when decomposed along the body-
fixed axis system. Analogous to drag and lift, aerospace standards define the axial force A to be
positive in the negative xB-direction, the normal force N to be positive in the negative zB-direc-
tion, and the side force Y to be positive in the positive yB-direction. Written in components
along the body-fixed axis system, the aerodynamic force vector is given by 

. (A.7)

A.3.2  Total Angle-of-Attack System TA

The total angle-of-attack, or aeroballistic, axis system is an aerodynamic reference frame
applied to space flight vehicles whose forward axis is an axis of rotational symmetry. The x-z
plane of such a vehicle is an arbitrary definition of the designer. Consequently, for a vehicle of
rotational symmetry the distinction between angle of attack and sideslip is deliberate. The
aerodynamic forces and moments acting on the vehicle only depend on the total angle of attack
αt between the body-fixed forward axis and the air-path velocity (see Fig. A.7). 

The x-z axes of the total angle-of-attack system span exactly this total angle-of-attack
plane, the xTA-axis being parallel to the body xB-axis. The yTA-axis points starboard and is per-
pendicular to this plane. The zTA-axis points downward completing a right-handed system. 

In a 6-degree-of-freedom simulation, given the angle of attack and the sideslip angle, the
total angle-of-attack αt can be computed from: 

. (A.8)

TA
B T2 α( )T3 β–( )=

TV
B T1 Φ( )T2 Θ( )T3 Ψ( )=

Faero

A–

Y

N– B

=

αt α βcoscos( )acos=
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Body-Axis Systems
This expressions holds for ; the total angle of attack is always positive. 

The angle formed by the yTA-axis and the body-fixed yB-axis is defined as the aerody-
namic roll angle  given by 

. (A.9)

The mapping from the total angle-of-attack axis system to body-fixed coordinates is given by 

. (A.10)

The total axial force At is defined positive in the negative xTA-direction, and the normal force
Nt is positive in the negative zTA-direction. By definition, no side force exists in the total angle-
of-attack system. The total force vector is given by 

. (A.11)

A.3.3  Total Force System TF

The total force axis system is an aerodynamic reference frame aligned with the total aerody-
namic lift and drag acting on a vehicle of rotational symmetry. The magnitude of the total lift
and drag are functions of the total angle-of-attack αt.

As shown in Fig. A.7 the yTF-axis is a normal vector on the total angle-of-attack plane
and identical with the yTA-axis of the total angle-of-attack system. The xTF-axis is parallel to
the air-path velocity. 

The angle formed by the yTF-axis and the yA-axis is not defined by aerospace standards.
It is denoted here as the aerodynamic bank angle  given by 

. (A.12)

The mapping from the total force frame to air-path coordinates is given by 

. (A.13)

π– α β, π≤ ≤

φ'

φ'sin βsin
αtsin

-------------= φ'cos α βcossin
αtsin

------------------------=

TTA
B T1 φ'( )=

Faero

At–

0

Nt–
TA

=

µt

µtsin αcos βsin
αtsin

------------------------= µtcos αsin
αtsin

-------------=

TTF
A T1 µt( )=
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Coordinate Systems
The mapping from the total force frame to the total angle-of-attack frame is given by 

. (A.14)

The total drag Dt is defined to be positive along the negative xTF-axis, and the total lift Lt
opposes the zTF-axis. By definition, no lateral force exists in the total force frame. The total
force vector is given by 

. (A.15)

TTF
TA T2 αt( )=

Faero

Dt–

0

Lt–
TF

=
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Body-Axis Systems
. 

Fig. A.1: Planet-centered and vehicle-carried axis systems. 

The z axis of the rotating planet-fixed axis system E coincides with the planet’s axis
of rotation. The local horizontal axis system L and the vertical axis system V are
attached to the vehicle’s center of mass. 

xG

yG

zG

xE

zE

Equatorial
Plane

λ

δ

xL

yL

zL VR

Vλ

Vδ

zV

yV

xV

ΩE∆t

R

Horizontal
Plane

yE

yL

xL

zL

Vk

χ

γ

γ

χ
yTzT

xT

Vertical
Plane

North

East

Fig. A.2: The trajectory axis system (index T). 

The xT and zT axes are contained in the local vertical plane. The xT-axis is parallel
to the planet-relative velocity vector. The flight-path angle γ is formed by the
velocity vector and the local horizon and is positive for ascent. The heading angle
χ lies in the local horizontal plane and is measured clockwise from north.
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Fig. A.3: The vertical air-path axis system (index AV). 

The xAV and zAV axes are contained in the local vertical plane. Note the presence
of wind . The xAV is parallel to the air velocity.vw
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Fig. A.4: Definition of the air-path axis system (index A). 

The xA and zA axes span the vehicle’s plane of symmetry. The air-path bank angle µa
results from a rotation around the air-path velocity vector.
166 An Initial Guess Generator for Launch and Reentry Vehicle Trajectory Optimization



Body-Axis Systems
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Fig. A.5: Definition of the body-fixed system (index B) and aerodynamic angles.

The normal, axial and side force are defined to be parallel to the body axes, whereas
the triple lift, drag and lateral force is along the air-path velocity axes.
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Fig. A.6: Definition of the Euler angles.

Transition from the vehicle-carried vertical system (index V) to the body-fixed axis
system (index B)
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Fig. A.7: Definition of the total angle-of-attack axis system (index TA). 

The total angle of attack is formed by the vehicle’s forward axis and the air-path velocity
vector. The total force axis system (index TF) is aligned with the air-path xA axis, but rotated
by the angle µt, so that zA axis is along the total lift (the combination of lift and lateral force). 
168 An Initial Guess Generator for Launch and Reentry Vehicle Trajectory Optimization



The Bi-Linear Tangent Law
B Mathematical Appendix

B.1  The Bi-Linear Tangent Law

The differential equations for the optimization problem described in Section 4.1.5 are very
simple:

. (B.1)

For motion in the horizontal plane, the gravitational acceleration g is set to zero.

For a cost function that only depends on the final state and/or on the final time, the
Hamiltonian can be written as:

. (B.2)

The differential equations of the adjoints are derived from :

. (B.3)

Evidently the adjoint variables are of the form

(B.4)

with constant ci (the choice of the signs is for convenience only). Therefore the optimal control
is found by

(B.5)

or (as long as  and ):

. (B.6)

This is called “bi-linear tangent law”, since the tangent of the control angle is the ratio of two
linear functions. The coefficients must be chosen in order to satisfy the end conditions.

x· u   y·; v   u·; β   v·;acos βasin g–= = = =

H λua βcos λv a βsin g–( ) λxu λyv+ + +=

λ· H xδ⁄δ–=

λ· u λx;  λ· v λy;  λ· x 0;  λ· y 0==–=–=

λx c– 1;  λy c– 2;  λu= c1t c3;  λv+ c2t c4+= = =

H βδ⁄δ 0 c1t c3+( )a βsin– c2t c4+( )a βcos+= =

c1t c3+ 0≠ a 0≠

βtan
c2t c4+

c1t c3+
------------------=
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For the problem of maximizing the final horizontal velocity, any  and 
can be ruled out, since a thrust component in negative x-direction will only decrease the hori-
zontal velocity. 

Properties of the Bi-Linear Function

When the denominator vanishes (and when numerator and denominator are linearly indepen-
dent), the function shows a pole. The function value switches from minus infinity to plus infin-
ity or vice versa. This corresponds to a jump from  to  (or vice versa) for the control
angle. This jump has no physical meaning and therefore should be avoided.

When no pole exists within a time range, the function is strictly monotonic (except for
the case, when it is constant). Therefore the inequalities hold for :

. (B.7)

B.2  Cubic Spline with Prescribed End Slopes

When given a set of function values for a series of monotonous abscissa values, there are many
ways to define an interpolating function. It can be shown, f.i. by a mechanical analog, that a
natural cubic spline will have the least bending energy, that is the integral of the square of the
second derivative will be the least. 

A cubic spline consists of a set of cubic polynomials, one per consecutive interval of the
abscissa values. It has the properties that it is continuous and even two times continuously dif-
ferentiable. For (n+1) points this means that there are n intervals and 4n coefficients. Each
cubic must satisfy the function values at both sides, this results in 2n conditions. Also at the n-
1 intermediate points the first and the second derivative must be continues, from which 2(n-1)
are derived.

This leaves two more conditions, which can be arbitrarily chosen. A common case is the
“natural” spline, for which the curvature at the two outermost points is set to zero. Another
possibility is to specify the slope at both sides. 

As described in detail in [71], the spline coefficients can be computed using a matrix
equation of the form

β π 2⁄> β π 2⁄–<

π 2⁄– π 2⁄

t0 t1 t2 tf< < <

Θ0 Θf< Θ0 Θ t1( )< Θ t2( )< Θf<⇒

Θ0= Θf Θ0= Θ t1( ) = Θ t2( ) = Θf⇒

Θ0 Θf> Θ0 Θ t1( ) Θ t2( ) Θf> > >⇒
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(B.8)

with the “moments” Mi being the second derivatives of the spline at the support points and the
abbreviations and with

(B.9)

and 

. (B.10)

[71] discusses three cases: natural spline (the curvature at both sides is zero), prescribed slope
at both sides and cyclical spline (when the conditions at the end of the interval match those at
the very beginning). The latter case is of no interest here and is discarded.

The first conditions can be accommodated by setting

, , (B.11)

, , (B.12)

while the second set of conditions will give

, , (B.13)

, . (B.14)
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However, both can be combined as well (eqns. (B.11) and (B.14), f.i.), giving a spline with pre-
scribed slope at one side and a vanishing curvature at the other. 

B.3  Estimation of the Flight-Path Angle

B.3.1  Dynamic Pressure as a Function of the Time

Given a profile for the dynamic pressure as a function of the flight-path velocity q(V), we can
derive an estimate for the flight-path angle needed to follow this profile. 

By definition, dynamic pressure is:

. (B.15)

The time derivative results to:

. (B.16)

Given a locally exponential atmosphere with the scale height :

(B.17)

it follows that

(B.18)

and thus

(B.19)

with the differential equation for radius (and also altitude) Eq. (3.11) we obtain:

q
1
2
---ρV

2
=

q·
1
2
---ρ

·
V2 ρVV

·
+=

hS

ρ ρ0e
h hS⁄–

≈

ρ· ρ0e
h hS⁄– h

·

hS
-----–

 
 
 

ρ h
·

hS
-----–= =

q·
1
2
--- ρ–

h
·

hS
-----

 
 
 

ρVV
·

+
h
·

hS
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V
·

V
---q+= =
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(B.20)

or

. (B.21)

With the differential equation of the velocity (Eq. (3.16), but for simplicity without the centrif-
ugal term of the earth rotation and the – rather small – lateral part of the gravity), we get:

. (B.22)

and thus 

. (B.23)

In order to match the initial boundary of the dynamic pressure profile, it is necessary to com-
pute the derivative of the dynamic pressure for a given velocity and flight-path angle:

. (B.24)

B.3.2  Dynamic Pressure as a Function of Velocity

Often it is convenient to specify the dynamic pressure as a function of the air path velocity, f.i.
some path constraints can be expressed easily in terms of velocity and dynamic pressure.

Since the profile is given as a function of velocity, the derivative of q with respect to the
time can be replaced by one with respect to the velocity (denoted here by an apostrophe):

, (B.25)

therefore (B.21) becomes:

q·
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. (B.26)

With the differential equation of the velocity (Eq. (3.14) simplified), we get:

. (B.27)

For small flight-path angle, the gravity acceleration can be neglected compared to the one from
thrust and drag, thus 

 (B.28)

otherwise we have to use

. (B.29)

In order to compute the derivative of the dynamic pressure for given V and γ 

(B.30)

can be used.

B.4  Estimation of the Bank Angle

Differentiating Eq. (B.21) with respect to time, we obtain:

(B.31)

or
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. (B.32)

Combining this with Eq. (3.38) gives an estimate for the required vertical lift accelera-
tion:

(B.33)

or (neglecting  and the side force):

. (B.34)

B.4.1  Dynamic Pressure as a Function of Velocity

When we differentiate Eq. (B.28) once more (neglecting variations of the scale height), a for-
mula for  can be obtained:

. (B.35)

When we assume that the acceleration changes slowly (in other words, the second derivative of
the velocity is close to zero), the formula reduces to:

(B.36)
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and, in the special case of a constant dynamic pressure profile, to:

. (B.37)

Note that this is always negative, i.e. the curvature of the h(v) is always in the same direction
for constant dynamic pressure.

Combining this with Eq. (3.38) gives an estimate for the required vertical lift accelera-
tion:

(B.38)

or (neglecting  and the side force):

. (B.39)

B.5  Estimate of the Reentry Conditions

While for the launcher applications usually the launch conditions are fixed, like f.i. the loca-
tion, and the final conditions are given by some non-linear equations, for the reentry case this
is just the other way round. The landing site is fixed in most cases, but the starting point is opti-
mizable. This makes it necessary to estimate the starting point of the trajectory.

We can distinguish three kinds of initial conditions. The most simple, form the modeling
point of view, is the prescriptions of the radius and the velocity vector. This form does not
require any additional computations. It is also called “atmospheric condition”.
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An other condition is described by the elements of a transfer orbit. Of this set, usually
one or two parameters are considered optimizable (and therefore must be estimated), whereas
the others are given by the mission.

The computation of the de-orbit parameters is left to the third option. These parameters
consist of the velocity change in three directions: opposite the velocity vector at the point of
de-orbit, parallel to the radius vector and a third component, normal to these. However in order
to lessen the user calculations, the altitude of the peri-apsis can be specified. This is value
which is quite characteristic for a each combination of vehicle and a planet’s atmosphere and
makes the data specification independent from the kind of initial orbit used.

Atmospheric Conditions

This initial state consists of a position and a velocity vector. Both can be given, independently,
in inertial or planet relative coordinates.

This kind of specification is used to describe a fixed initial situation, therefore no param-
eters are optimizable per se, however after an initial guess is obtained, each state can be made
optimizable manually. In this case also non-linear initial conditions can be enforced.

Transfer Orbit

This situation arises when a de-orbit maneuver has already taken place and the vehicle is on its
transfer orbit. An other possibility is that the de-orbit impulse was given by other consider-
ations and only some parameters can still be adapted.

Note that all elements of the Orbit record can take a bounded value, i.e each can be com-
posed of a value, an unit and, optionally a lower and/or an upper bound. When one bound is
not given, the value is assumed for it. When both bounds coincide (which includes the case
when no bound is given at all), then the parameter will be fixed and not optimizable during
iterations.

Although this option can be applied to any of the orbital elements, it is probably only
sensible for the true anomaly at the time of de-orbit and for the right ascension of the ascend-
ing node. While the former is variable for almost any kind of conceivable mission, adjusting
the latter can be done during early phases of mission planning.

The eccentricity and the argument of the perigee are optional and will be set to the values
shown (which correspond to a circular orbit), when not specified by the user.
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De-Orbit State

When also the de-orbit impulse shall be optimized, this option can be used. The parameters are
the same as for the transfer orbit, with the addition of a record of velocity changes.

The orbit specification is the one of the initial orbit, before the de-orbit maneuver takes
place. Whereas the tangential impulse is opposite the velocity vector and actually means a
velocity decrement, the two other impulses are in the direction of the corresponding axes.

All values can be bounded as described above. The default value for the radial and nor-
mal velocity increment is zero.

Reentry State

More comfort for the user is achieved by using the reentry state. Instead of the de-orbit
impulse, data of a target orbit is entered. This relieves the user from computing the de-orbit
impulse which depends on the initial orbit as well as on the planet properties. Also in this case
the part of the trajectory between the de-orbit and the entry into the atmosphere is approxi-
mated by a Keplerian arc.

The perigee altitude is the lowest point of the transfer orbit. It is a measure how deep the
vehicle will enter into the atmosphere before it can be flared.

The reentry altitude is an altitude where atmospheric effects are assumed to be negligi-
ble. For the Earth it is traditionally set to 400,000 feet, or about 121.9 km.

Target longitude and latitude correspond to the landing site or to the interface to the ter-
minal energy management area. The estimate of the downrange depends mostly on the vehicle.
These parameters are used to estimate the true anomaly and the right ascension of the de-orbit
point, when they can be varied.

Setting the ascending branch flag to true will set the target site on the northbound part of
the trajectory. This has only an effect when the modulus of the latitude of the landing site is
less than the inclination of the initial orbit.

Finally, when the ascending node passage is not set fixed, the initial guess will find a
node passage which is close the landing site, even though this may take several revolutions.

B.6  Estimation of the De-Orbit parameters

The reentry state (see previous section) relieves the user from some tedious calculations. Some
heuristic is used to chose suitable orbit parameters. This is described step by step in the follow-
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ing. Note that for all quantities that will be optimized, upper and lower bounds as well as a
nominal value must be computed.

Entry Radius

The entry altitude is an arbitrarily border of the atmosphere. It is chosen in a way that the atmo-
sphere will have still negligible influence. For the computation of the initial boundary con-
straint actually the radius is used.

Due to the oblateness of the earth, it will vary with latitude. Therefore the nominal value
is computed with a mean planet radius, whereas the upper and lower bounds are computed
with the equatorial and the polar radii, respectively.

Transfer Orbit Perigee 

For convenience the user has to enter the altitude of the transfer orbit instead of the radius. For
the estimate of the radius, the radius of the landing site is used and the altitude is added.

, , . (B.40)

The indices “+”, “o” and “-” denote upper bound, nominal value and lower bound, respectively.
The subscripts “T” stands for transfer orbit, “p” for perigee.

Velocity Decrement

Since again the bounds must be computed, two extreme combinations of the radii of the trans-
fer orbit are used, as well as a mean one (see Table B.1). From this radii the semi major axis of
the transfer orbit and its eccentricity are calculated:

Table B.1:  Combinations of radii

Velocity decrement Transfer orbit perigee Transfer orbit apogee

RTp
+ hp

+ RLS+= RTp
o hp

o RLS+= RTp
- hp

- RLS+=

∆V+ RTa RIp= RTp RTp
–

=

∆Vo RTa RIp= RTp RTp
o

=

∆V- RTa RIa= RTp RTp
+=
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(B.41)

and the momentum

(B.42)

and, with the momentum of the initial orbit

. (B.43)

Note that this will be negative. It is assumed that de-orbit point is the apogee of the transfer
orbit and therefore the velocity is perpendicular to the radius vector.

Right Ascension and Argument of the Perigee

For the following computations it is assumed, that the right ascension of the ascending node
and the true anomaly of the de-orbit point are not limited by any bounds. If such bounds exist
and the value obtained is outside, it will be set to the border closest to the computed value. This
includes the case, where the borders coincide and there is no liberty for variations at all.

In the first step the node and the argument of the perigee of a transfer orbit is computed,
whose perigee is exactly over the landing site. In the case the landing site is North or South of
the inclination band, the positive or negative inclination is used as a pseudo target. The argu-
ment of the perigee of this orbit depends also on the “Ascending_Branch” flag.

The increment of the ascending node  in Table B.2 is computed as:

. (B.44)

Since by virtue of the formula used the modulus of the perigee argument is always in between
zero and , also  will fall into this range. Both formulas can be easily derived by using
spherical geometry.
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True Anomaly from De-Orbit down to the Entry Interface

The formula is akin to the one for true anomaly, just that the angle from the apogee onward is
used:

. (B.45)

Argument of the Perigee of the Transfer Orbit

With the angles obtained so far, and with the user supplied estimate for the downrange, we can
obtain

Table B.2:  Deriving Argument of the Perigee and Node
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(B.46)

and the true anomaly of the de-orbit point in terms of the initial orbit:

. (B.47)

When this value is outside the user supplied bounds, it is set to the nearest boundary.

Inertial Ascending Node

With the total time of flight, form de-orbit until the end of the supersonic phase, the angle from
the vernal equinox to the ascending node can be given:

(B.48)

with the hour angle of the zero meridian λ0 and the earth rotation. The angle is set to be within
the user bounds.
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